
  

Introduction to Glimmer: part 1

 Shallow Ice Approximation
 Based on model by Tony Payne (pub. 1999)
 Developed into Glimmer as part of the GENIE 

Earth System Model (2003 onwards)
 Code released under GPL
 Tested against EISMINT and Bueler 

Isothermal
 Adopted as land ice model of CCSM
 Combined project: Glimmer-CISM (2009)



  

Introduction to Glimmer: part 1

 Modular design
 F95 standard
 NetCDF I/O with CF metadata
 Uses standard Linux tools
 Some code autogenerated
 Consistent version numbering
 Stable API
 Well-documented



  

 GLIDE: the core model (GLimmer Ice Dynamics Element)

 GLINT: the climate model interface (GLimmer INTerface)

Structure



  

Equations solved by GLIDE

 Continuity Equation:

 Shallow Ice Velocities:



  

Equations solved by GLIDE

 Continuity Equation:

 Shallow Ice Diffusivities:

q=D∇ s



  

 Velocity and diffusivity 
calculated on staggered 
grid

 Flux (q) is calculated at 
point between thickness 
points

 This is the same principle 
as the Arakawa C-grid 
(1977)

Horizontal Discretization

q=D∇ s



  

Horizontal Discretization



  

How do we solve this?

 Some level of implicitness is needed for 
stability...

 Equations are non-linear, because s (i.e. H) 
appears in D...

 Two distinct methods are implemented:
 Alternating Direction Implicit (ADI)
 Semi-implicit (Crank-Nicolson)



  

Crank-Nicolson Method

 Evaluated as a 
mean of two time-
steps (at n+½)



  

Crank-Nicolson Method

 Linear scheme uses D at current time step:

Forward time step Current time step



  

Crank-Nicolson Method

 Leads to a system of equations we can solve 
using iterative methods:

Unknown

Known



  

Non-linearity

 Deal with non-linearity using a Picard iteration

Calculate
diffusivity D

at t

Geometry
at t

Geometry
at t+1

Calculate
diffusivity D

at t+1

Solve
for
H

Perform the loop until the geometry at t+1 stops changing significantly

First time only



  

Solving for Temperature

 Basic temperature equation:

Diffusion 
(horizontal and vertical)

Horizontal
advection

Internal heat 
generation

Vertical 
advection



  

Vertical discretization

 Two problems:
 Temperature tends to change most rapidly at the 

base of the ice – equal spacing of levels not 
appropriate

 Thickness of ice changes, so fixed physical spacing 
doesn't work  - levels would move in and out of ice

 Solution:
 Introduce a new vertical coordinate, scaled by the 

ice thickness
 Use unequally-spaced levels



  

Vertical discretization

 Sigma coordinates:

So, sigma coordinates run between 0 (ice surface) 
and 1 (bed)

This means we have to transform all our coordinates:

x , y , z , t x ' , y ' , , t '



  

Vertical discretization

 Mainly affects derivatives:



  

Vertical discretization

 Mainly affects derivatives:

More detail in Pattyn (2003), and Hindmarsh and Hutter (1988)



  

Transformed Temperature



  

Solving temperature

Vertical terms (solve using Crank-Nicolson)

Horizontal term (use explicit advection, then Picard 
iterations)

Much quicker than solving the full 3D problem!



  

GLIDE API

 Software Interface (API) is designed to be 
simple

 Use of derived types in design allows multiple 
ice sheets to be defined in a single code

 Code for simple_glide is a good example of 
how to use the API

 Most parameters are read from a config file
 Supply mass-balance and surface temp each 

time-step



  

Initialising GLIDE

Use statements:

  use glide
  use glimmer_config

Relevant declarations:

  type(glide_global_type)      :: model
  type(ConfigSection), pointer :: config

Initialisation calls:

  call ConfigRead(fname,config)
  call glide_config(model,config)
  call glide_initialise(model)
  call glide_nc_fillall(model)
  time = model%numerics%tstart



  

GLIDE timestepping

Time loop statements:

  do while(time.le.model%numerics%tend)
     call glide_set_acab(model,acab)
     call glide_set_artm(model,artm)
     call glide_tstep_p1(model,time)
     call glide_tstep_p2(model)
     call glide_tstep_p3(model)
     time = time + model%numerics%tinc
  end do

N.B. Units: mass-balance (m of ice)
 surface temp (deg C)
 time (years)



  

Finishing up

 Remember to finalise GLIDE!
 This closes output files, and generally tidies up

call glide_finalise(model)



  

Anatomy of a config file

 Configuration files follow a simple syntax:
 Divided into sections [section_name]
 Sections contain a list of key-value pairs
 Allowed sections/keys listed in documentation
 Where appropriate, Glimmer defines sensible 

defaults for missing parameters
 Array-value parameters are possible
 Config files are read into a data structure at the 

start
 Utilities exist for manipulating the data structure



  

Example GLIDE config file

[EISMINT-1 fixed margin]

[grid]
# grid sizes
ewn = 31
nsn = 31
upn = 11
dew = 50000
dns = 50000

[options]
temperature = 1
flow_law = 2
marine_margin = 2
evolution = 0
basal_water = 2
vertical_integration = 1

[time]
tend = 200000.
dt = 10.
ntem = 1.
nvel = 1.
niso = 1.

[parameters]
flow_factor = 1
geothermal = -42e-3

[CF default]
title: EISMINT-1 fixed margin
comment: forced upper kinematic BC

[CF output]
name: e1-fm.1.nc
frequency: 1000
variables: thk uflx vflx bmlt btemp 
temp uvel vvel wvel diffu acab



  

Finding your way around...

 All fortran code is in src/fortran

 Use grep!

 Most important file prefixes:
 glide_*.F90
 glint_*.F90
 glimmer_*.F90

 Some code is generated automatically...



  

NetCDF I/O autogeneration

 Writing NetCDF I/O code by hand would be 
very time-consuming and error-prone

 Use Python to generate I/O code automatically

Config
File

*_vars.def

Code
template

generate_ncvars.py Fortran
code



  

NetCDF I/O autogeneration

[thk]
dimensions:    time, y1, x1
units:         meter
long_name:     ice thickness
data:          data%geometry%thck
factor:        thk0
standard_name: land_ice_thickness
hot:           1
coordinates:   lon lat



  

Scaling in GLIDE

 In GLIDE only, all variables are scaled
 Need to be aware of this when:

 accessing variables within GLIDE data structures 
from elsewhere

 adding/changing code in GLIDE

 Familiarity with existing code is best way to 
learn

 True value = GLIDE value × factor



  

Finding out about scaling

 Basic scale factors defined in 
glimmer_paramets.F90

 Scaling of individual variables given in I/O 
definition files

 You can remind yourself of how scaling works 
by looking at the end of auto-generated I/O files 
(e.g. glide_io.F90) – this where get/set code 
resides



  

GLIDE Derived Types
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