

Introduction to Glimmer: part 1

 Shallow Ice Approximation
 Based on model by Tony Payne (pub. 1999)
 Developed into Glimmer as part of the GENIE

Earth System Model (2003 onwards)
 Code released under GPL
 Tested against EISMINT and Bueler

Isothermal
 Adopted as land ice model of CCSM
 Combined project: Glimmer-CISM (2009)

Introduction to Glimmer: part 1

 Modular design
 F95 standard
 NetCDF I/O with CF metadata
 Uses standard Linux tools
 Some code autogenerated
 Consistent version numbering
 Stable API
 Well-documented

 GLIDE: the core model (GLimmer Ice Dynamics Element)

 GLINT: the climate model interface (GLimmer INTerface)

Structure

Equations solved by GLIDE

 Continuity Equation:

 Shallow Ice Velocities:

Equations solved by GLIDE

 Continuity Equation:

 Shallow Ice Diffusivities:

q=D∇ s

 Velocity and diffusivity
calculated on staggered
grid

 Flux (q) is calculated at
point between thickness
points

 This is the same principle
as the Arakawa C-grid
(1977)

Horizontal Discretization

q=D∇ s

Horizontal Discretization

How do we solve this?

 Some level of implicitness is needed for
stability...

 Equations are non-linear, because s (i.e. H)
appears in D...

 Two distinct methods are implemented:
 Alternating Direction Implicit (ADI)
 Semi-implicit (Crank-Nicolson)

Crank-Nicolson Method

 Evaluated as a
mean of two time-
steps (at n+½)

Crank-Nicolson Method

 Linear scheme uses D at current time step:

Forward time step Current time step

Crank-Nicolson Method

 Leads to a system of equations we can solve
using iterative methods:

Unknown

Known

Non-linearity

 Deal with non-linearity using a Picard iteration

Calculate
diffusivity D

at t

Geometry
at t

Geometry
at t+1

Calculate
diffusivity D

at t+1

Solve
for
H

Perform the loop until the geometry at t+1 stops changing significantly

First time only

Solving for Temperature

 Basic temperature equation:

Diffusion
(horizontal and vertical)

Horizontal
advection

Internal heat
generation

Vertical
advection

Vertical discretization

 Two problems:
 Temperature tends to change most rapidly at the

base of the ice – equal spacing of levels not
appropriate

 Thickness of ice changes, so fixed physical spacing
doesn't work - levels would move in and out of ice

 Solution:
 Introduce a new vertical coordinate, scaled by the

ice thickness
 Use unequally-spaced levels

Vertical discretization

 Sigma coordinates:

So, sigma coordinates run between 0 (ice surface)
and 1 (bed)

This means we have to transform all our coordinates:

x , y , z , t x ' , y ' , , t '

Vertical discretization

 Mainly affects derivatives:

Vertical discretization

 Mainly affects derivatives:

More detail in Pattyn (2003), and Hindmarsh and Hutter (1988)

Transformed Temperature

Solving temperature

Vertical terms (solve using Crank-Nicolson)

Horizontal term (use explicit advection, then Picard
iterations)

Much quicker than solving the full 3D problem!

GLIDE API

 Software Interface (API) is designed to be
simple

 Use of derived types in design allows multiple
ice sheets to be defined in a single code

 Code for simple_glide is a good example of
how to use the API

 Most parameters are read from a config file
 Supply mass-balance and surface temp each

time-step

Initialising GLIDE

Use statements:

 use glide
 use glimmer_config

Relevant declarations:

 type(glide_global_type) :: model
 type(ConfigSection), pointer :: config

Initialisation calls:

 call ConfigRead(fname,config)
 call glide_config(model,config)
 call glide_initialise(model)
 call glide_nc_fillall(model)
 time = model%numerics%tstart

GLIDE timestepping

Time loop statements:

 do while(time.le.model%numerics%tend)
 call glide_set_acab(model,acab)
 call glide_set_artm(model,artm)
 call glide_tstep_p1(model,time)
 call glide_tstep_p2(model)
 call glide_tstep_p3(model)
 time = time + model%numerics%tinc
 end do

N.B. Units: mass-balance (m of ice)
 surface temp (deg C)
 time (years)

Finishing up

 Remember to finalise GLIDE!
 This closes output files, and generally tidies up

call glide_finalise(model)

Anatomy of a config file

 Configuration files follow a simple syntax:
 Divided into sections [section_name]
 Sections contain a list of key-value pairs
 Allowed sections/keys listed in documentation
 Where appropriate, Glimmer defines sensible

defaults for missing parameters
 Array-value parameters are possible
 Config files are read into a data structure at the

start
 Utilities exist for manipulating the data structure

Example GLIDE config file

[EISMINT-1 fixed margin]

[grid]
grid sizes
ewn = 31
nsn = 31
upn = 11
dew = 50000
dns = 50000

[options]
temperature = 1
flow_law = 2
marine_margin = 2
evolution = 0
basal_water = 2
vertical_integration = 1

[time]
tend = 200000.
dt = 10.
ntem = 1.
nvel = 1.
niso = 1.

[parameters]
flow_factor = 1
geothermal = -42e-3

[CF default]
title: EISMINT-1 fixed margin
comment: forced upper kinematic BC

[CF output]
name: e1-fm.1.nc
frequency: 1000
variables: thk uflx vflx bmlt btemp
temp uvel vvel wvel diffu acab

Finding your way around...

 All fortran code is in src/fortran

 Use grep!

 Most important file prefixes:
 glide_*.F90
 glint_*.F90
 glimmer_*.F90

 Some code is generated automatically...

NetCDF I/O autogeneration

 Writing NetCDF I/O code by hand would be
very time-consuming and error-prone

 Use Python to generate I/O code automatically

Config
File

*_vars.def

Code
template

generate_ncvars.py Fortran
code

NetCDF I/O autogeneration

[thk]
dimensions: time, y1, x1
units: meter
long_name: ice thickness
data: data%geometry%thck
factor: thk0
standard_name: land_ice_thickness
hot: 1
coordinates: lon lat

Scaling in GLIDE

 In GLIDE only, all variables are scaled
 Need to be aware of this when:

 accessing variables within GLIDE data structures
from elsewhere

 adding/changing code in GLIDE

 Familiarity with existing code is best way to
learn

 True value = GLIDE value × factor

Finding out about scaling

 Basic scale factors defined in
glimmer_paramets.F90

 Scaling of individual variables given in I/O
definition files

 You can remind yourself of how scaling works
by looking at the end of auto-generated I/O files
(e.g. glide_io.F90) – this where get/set code
resides

GLIDE Derived Types

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

