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Adjoint models
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= Community portal
= Current events [Presentation pdf B]

= Recent changes . i .
In an introductory presentation | talk about my background, and how we use adjoint n

the Oceap & (ECCO).project (with an aside on sea-level) to improve our understandin

exercises from-the-instructors="

Some background: why adjoint models are good for you

n Otes toa I ut’i’@ﬂesc S@fl mzﬁa& to compute the derivatives of a scalal

dimensional gradieht. Two ap| e readily to mind are

= Random page

= What links here
= Relgted changes
U fi

= Sensitivity analysis - an example:
You would like to know how Greenland or Antarctic total ice sheet volume (a scali
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Greenland
= We need better communication between modellers & data-collectors, with feedback.
Antarctica

= Basal processes are the hot ticket.

Mountain glaciers Summary of four separate
= We Heart Valley Glaciers 20-30 minute discussions
(students/instructors mixed)

= Simple models are all you need for a valley glacier
Other/Global

= |Is it just sea level change that's of interest to glaciologists?

= Are rapid changes large changes?
= Surprise: surges

Possible discussion questions:

= What questions are the climate change community pressuring us to answer?

= What do we know now that would have been a big surprise 10 years ago?

= How important is field data to your research? If you could collect any field data/observations to progress your work, what would it/they be?
= What is the holy grail of our subfield?

= What areas should we avoid trying to answer at this time due to complexity?




Geology

= There exist opportunities to work in the private sector
= Taking classes, reading papers outside the discipline (e.g. math(s), physics)
= Flexibility!

Engineering/CS/Other

= Interesting research is at the boundary of disciplines, but the hiring is at the core... one's career is a balance game (NICE)
= Building personal relationships
= Predisposed to become pigeonholed as Endnote teachers / website writers

Physics
= Best background to have for glaciology, we have no regrets.
= Glaciology is presently a tiny field compared to its importance / focus on by IPCC
= Planetary ice is a new frontier that might blow up

= Building personal relationships with which to muddle through funding
= Career moves: at each transition, choose a new problem, institution, and even country.

Math(s) Summary of four separate

20-30 minute discussions
(students/instructors mixed)

= Math is great, but often weak in converting glacial processes into equations.
= We may have a disconnect between equations & physical space
= Dealing with the naysayers: fearmongering vs. reassurance
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GLIMMER Climate Drivers GLINT Drivers

A SIMPLE GLINT
Example GENIE

(or another
Ll | E : “I'l global climate

model)

~ EIS

GLIDE: the core model (GLimmer Ice Dynamics Element)

GLINT: the climate model interface (GLimmer INTerface) EISMINT3
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practicals

finite differencing

e 2 (—D(r)dh) - M

where
‘ n—1
D(.T) = (_7Hn+2 ﬁ |
dx
and
- 2A
(e ,
5 \P9)



practicals
GLIMMER

SIA - not perfect, but
hey you can run
Greenland for a
thousand years in
an afternoon
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practicals
COMSOL multiphysics

solve full momentum and
mass balance equations easily

quickly make your mesh

easy to use for simple
problems but steep learning
curve - not designed with
glaciers explicitly in mind



what | took away from the course
— - -

-we have to figure this out together
-full Stokes is great but...

-it’s all about the physics




