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PART III: 
Beyond secondary creep: anisotropic flow laws 
and the theory of continuous diversity 

1. Fabric and its evolution: Available anisotropic flow laws

2. Continuous diversity of polycrystalline ice masses: 
    the most comprehensive theory to model induced anisotropy
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1. Fabric and its evolution: Available anisotropic laws 
microscopic macroscopic         phemomenological

Azuma & Goto-Azuma
1996       H
static anisotropic flow law
no fabric evolution

v. d. Veen & Whillans      
1994                               I 
dyn. anisotropic viscous 
power law for indiv. grains

Duval, Castelnau et al.
1983 ~ 2005                    I
VPSC (Visco-Plastic
Self Contained)
dyn. anisotr. linear flow law
for individual grains

Lliboutry
1993
static anisotropic flow law

Meyssonnier & Philipp                
1996                           S
dynamic anisotropic flow law (transv.
isotropic) based on VPSC and ODF
(Orientation Distribution Function) 
implemented (simplified version) by
Gagliardini & Meyssonnier 1999/2000

Gillet-Chaulet et al.                    
2005                                                     S
stat. anisotr. (orthotr.)  flow law based on
ODF and parameters from physical μ-M 
models, designed for l.s. num. modeling

Svendsen/Gödert & Hutter            
1996, 1998                                     S/SI
dyn. anisotr. (transv. isotr./orthotr.) flow
law based on ODF/ODF + indiv. grains 

Morland & Staroszczyk
1998~2001
obtain evolving anisotropy 
from instantaneous states
of deformation without 
explicit reference to fabric
or grain size
(! reversibility of anisotropy)
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1. Fabric and its evolution: Available anisotropic laws 

H – (homogenization) models: based on averages of individual grains

Schmidt tensors: Š
ij 
=1/N ∑n

g=1 
m

i 
(g) c

j
(g)

m
i
(g) : unit vector parallel  to resolved shear stress in the basal plane

 c
j 
(g) : unit vector parallel to the c-axis orientation 

     n: Number of grains g        

S – (statistical) models: based on an Orientation Distribution Function

ODF: orientation density f=f (x,t,n), n vector of unit length in S2

               

f (x,t,n) d2n =1

        alignment/structure/anisotropy tensors: A :=      f (x,t,n) n x n d2n

∫S2

S2∫
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2. Continuous diversity of polycrystalline ice masses: the   
    most comprehensive theory to model induced anisotropy
The theory of mixtures with continuous diversity  (MCD)

• has been developped by S. H. Faria from ~ 2001 
• conforms to the principles of Rational Mechanics
  Modeling of Materials
• is a thermodynamic theory
• is the most comprehensive theory to model hetero-
  geneity, in particluar induced anisotropy 
• has many other applications 

In the context of ice sheet modeling, MCD allows for
the simultaneous modeling of  

• texture evolution (rotation of c-axis) 
• recrystallization, polygonization, recovery                
   

S.H. Faria, 
Kohnen Station, 
Antarctica, 2004
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2. Continuous diversity of polycrystalline ice masses: the   
    most comprehensive theory to model induced anisotropy

Background to the MCD:

Single constituent continua:

5 scalar balance laws for independent primary fields ρ(x,t), v(x,t), T (x,t)

general balance law: 

(*): additive quantity, v: velocity, φ, s, p:  flux, supply and production of (*)  

div: divergence operator in Euclidean space E3

conservation equation: p=0

∂ (*)/ ∂t  + div [ (*)v + φ)] – s = p
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2. Continuous diversity of polycrystalline ice masses: the   
    most comprehensive theory to model induced anisotropy

Multiconstituent continua (chemically reacting mixtures, granular media,...): 

N discrete constituents, indexed by α, typically  N ≤ 3

General balance law: 

Non-conservation equations on constituent level: p
α 
≠ 0

Mixture balance laws are derived from the constituent balance laws 
according to the Rational Mechanics Modeling of Materials approach 
(Truesdell's third metaphysical principle)  and provide homogenization rules:

 ∑N
α=1 

ρ
α 
= ρ

5N balance laws for primary fields:    ρ
α
(x,t )  v

α
(x,t ),T

α 
(x,t )

                       
α =1, ...N 

∂ (*
α
)/ ∂t  + div [ (*

α
)v

α
 + φ

α
)] – s

α
 = p

α

 ∑N
α=1 

T
α  

- ρ
α  

 u
α
 x u

α
  = T u

α 
 = v

α
 – v diffusion velocity
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Classical continuous mixtures

Countable set of constituents 
with individual primary variables,

e.g. 

Each constituent has countably  
many properties distinguishing it 
from other constituents

Mixtures with continuous diversity

Infinitely many constituents with
primary variables depending on the
continuously varying species label

 

Constituents differ from each other 
only in very few properties
(size, orientation, age, ...)

           Polycrystalline ice

Nature shows us often the 
reverse situation:

 
ρ

α 
(x, t) 

 
ρ*(x, t, α )  

α in A = [α
min

, α
max

] species assemblage

2. Continuous diversity of polycrystalline ice masses: the   
    most comprehensive theory to model induced anisotropy
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2. Continuous diversity of polycrystalline ice masses: the   
    most comprehensive theory to model induced anisotropy

Mixtures with continuous diversity

Balance equations for primary fields (note: # does not increase with α) 
depend on position in i/ Euclidean space and ii/ Species space 

ρ(x,t, α), v(x,t, α), T
 
(x,t , α)

                       
α in A = [α

min
, α

max
] 
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2. Continuous diversity of polycrystalline ice masses: the   
    most comprehensive theory to model induced anisotropy

Mixtures with continuous diversity

Balance equations for primary fields (note: # does not increase with α) 
depend on position in i/ Euclidean space and ii/ Species space 

ρ(x,t, α), v(x,t, α), T
 
(x,t , α)

                       
α in A = [α

min
, α

max
] 

Polycrystalline ice: species (single crystals) are identified by 
their orientation, represented by a unit normal vector n in S2
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2. Continuous diversity of polycrystalline ice masses: the   
    most comprehensive theory to model induced anisotropy

Mixtures with continuous diversity

Balance equations for primary fields (note: # does not increase with α) 
depend on position in i/ Euclidean space and ii/ Species space 

ρ(x,t, α), v(x,t, α), T
 
(x,t , α)

                       
α in A = [α

min
, α

max
] 

Primary fields amended by dislocation density ρ
D 

and c-axis spin velocity s: 

ρ(x,t, n), ρ
D
(x,t, n), s(x,t, n), v(x,t, n), T

 
(x,t , n)

  

∂ (*)/ ∂t  + div
E3 [ (*)v + φ)]  + div

S2 [(*)w + ψ]  – s = p

ψ interspecies fluxw interspecies transition rate

General
Balance
Equation
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2. Continuous diversity of polycrystalline ice masses: the   
    most comprehensive theory to model induced anisotropy

Species balance equation for polycrystals modeled as mixtures with
continuous diversity (Faria, 2006, Proc. R. Soc. Lond. A)

Balance of mass: includes recrystallization 
Balance of dislocation density: includes interspecies flux 

density of dislocations and 
production rate of dislocations

Balance of linear momentum: includes interspecies stress and 
high-angle interaction force

Balance of lattice spin velocity: includes polygonization tensor 
(interspecies couple stress) and 
high-angle interaction couple 

Balance of internal energy: includes dissipative 
contributions associated with 
all new interspecies quantities
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2. Continuous diversity of polycrystalline ice masses: the   
    most comprehensive theory to model induced anisotropy

Homogenization of species balance equations:

explores Rational Mechanics Modeling of Materials approach, is of type

 ∑N
α=1 

ρ
α 
= ρ  ∑N

α=1 
T

α  
- ρ

α  
 u

α
 x u

α
  = T

∫S2
ρ  =    ρ(x,t, n) d2n

∫S2
T =    ( T(x,t, n) - ρ(x,t, n) [v(x,t, n) – v(x,t) ]  x [v(x,t, n) – v(x,t) ] ) d2n 

continuous mixtures: 
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2. Continuous diversity of polycrystalline ice masses: the   
    most comprehensive theory to model induced anisotropy

Constitutive theory:

Work in progress

In Part III: Simplified reduced model 
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2. Continuous diversity of polycrystalline ice masses: the   
    most comprehensive theory to model induced anisotropy

The simplified model presented in Faria's Part III is still more general than
all other anisotropic flow laws.

T= -p 1 + μ(4)DE μ(4) = μ(4)(ρ
D
, n, ...)with  

It encompasses the  previously suggested models by 

• Svendsen/Gödert/Hutter

• Azuma/Goto-Azuma

• and the CAFFE model [Continuum mechancial Anisotropic Flow model 
  based  on an anisotropic Flow Enhancement factor]
  (cf. Placidi & Hutter, 2005, Seddik et al. 2008, Greve et al. (in print), Faria 2008)
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2. Continuous diversity of polycrystalline ice masses: the   
    most comprehensive theory to model induced anisotropy

The flow law in the  CAFFE model:

D= E (TD, A(2), B(4)) A( T ) σ n-1 TD

  A(2)=      f (x,t,n) n x n d2n
S2∫

S2∫B(4)=     n x n f (x,t,n) n x n d2n

The CAFFE model is implemented in Elmer/Ice @ CSC Finland (Th. Zwinger)


