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PART II: The legacy of isotropic ice

1. A flow law for ice: experimental evidence

2. A flow law for ice: continuum mechanical modeling

3. Microscale processes beyond secondary creep 
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1. A flow law for ice: experimental evidence
Experimental in-situ validation 
of any flow law for ice is difficult:

• extremely long time scales
• Flow-Structure-Environment-Interplay

H. Oerter, AWIExperimental validation in the lab
suffers from

• limitations in test-duration
• constrained dimensions
• limited/no account of  FSEI

BUT: 
analogies to high temperature alloys/
metal crystal plasticity (since early 20th

century, von Mises etc.)
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Ice in the lab: since  ~1950
• Early experiments:

Simple shear, uniaxial tension/compression at constant force (stress) or  
constant strain rate and prescribed temperature 

• For constant stress experiments
    - Applied force is monitored
    - Deformation γ(t), δ(t) is measured

● For constant strain rate experiments
    - Certain components of deformation are monitored
    - Forces are measured

Simple shear Uniaxial tension/compression

const. temp.

1. A flow law for ice: experimental evidence
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Accelerated creep arising at large 
stresses is accompanied by stress/
strain induced crystallographic
rearrangements. At moderate forces, 
tertiary creep becomes stationary 
again; otherwise, fracture occurs.

1. A flow law for ice: experimental evidence
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Measured creep curves

a) b) c)

a) Creep curves for isotropic polycrystalline ice at stresses between  0.15 MPa      
    and 0.85 MP (Glen, 1953)
b) Creep curves for isotropic polycrystalline ice at various temperatures and a        
     pressure of 0.6 MPa (Glen, 1953)
c) Creep curves for isotropic polycrystalline ice at -4.8 deg C at stresses between
    0.7 MPa and 1.54 MPa (Steinemann, 1958)

1. A flow law for ice: experimental evidence
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1. A flow law for ice: experimental evidence

elastic
material 
behavior

ε

loading

unloading

σ=f(ε(t))
σ

linear elasticity (E Youngs modulus):

σ=E ε(t) 

σ
ε

E
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1. A flow law for ice: experimental evidence

inelastic
material 
behavior

loading

unloading

σ

σ=f(ε(t), ε
.
(t))

ε

ε
σ

E η

viscoplastic solid
Kelvin-Voigt 

E
η ε

1ε
2

σ
viscoplastic fluid
Maxwell

viscoelastic solid: σ=E ε + ηε
. 

viscoelastic fluid: σ
.
+ σ E/ η= Eε

.

Burgers model for ice (Jellinek & Brill,1956):
Kelvin-Voigt and Maxwell body in series
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1. A flow law for ice: experimental evidence

secondary 
(stationary) 
creep

tertiary
(accelerating)
creep

ε
.
= A(T) f(|σ|) sgn(σ)

A(T) rate factor (Arrhenius type)
T temperature
 f(|σ|) creep response function

power law: f(|σ|) = (|σ|)
n
 

       n =1:             NS-fluid
2 ≤ n ≤ 5:         Glaciology 
      n = 3:         Glen's law
   n=n(σ):       Steinemann
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1. A flow law for ice: experimental evidence

Ice can not be regarded as a material with a single unique 
constitutive response. The latter is determined by the FSEI and is 
seldomly one-dimensional.  Rational Mechanics of Material 
Modeling provides the framework for general, thermomechanically
coupled three-dimensional constitutive modeling of ice.
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The behavior of any material body on Earth is such that it obeys 

• conservation of mass

• conservation of linear momentum

• conservation of energy

Material  specific behavior enters through 

• restrictions on the spatio-temporal variation of the fields involved

  (e.g. incompressibility, represented by ρ
.
=0 ) 

• prescription of constitutive relations (e.g. a ”flow-law” for the stress)

2. A flow law for ice: continuum mechanical modeling
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Constitutive equations 

• relate heat flux q and internal energy ε  to temperature T

”Inversion”inversion

• relate stress T to e.g. velocity  v and temperature T 

2. A flow law for ice: continuum mechanical modeling
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2. A flow law for ice: continuum mechanical modeling

Generalizing        (Glen-Steinemann)   to a 3-d law ?    ε
.
= A(T) f(|σ|) sgn(σ)

Material  Modeling: the ”Rational Mechancis” approach 
(C. Truesdell, R.A. Toupin, W. Noll, 1960ies, Hutter & Jöhnk, 2004) 

e1

e2

e3
X

e1

e2

e3 x
χ χ            motion function

X,x   position of particle 
      in reference/present 
                 configuration
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2. A flow law for ice: continuum mechanical modeling

Generalizing        (Glen-Steinemann)   to a 3-d law ?    ε
.
= A(T) f(|σ|) sgn(σ)

Material  Modeling: the ”Rational Mechancis” approach 
(C. Truesdell, R.A. Toupin, W. Noll, 1960ies) 

• define a set S of independent, primary variables:

• define a set C of dependent, constitutive quantities:
 
• constitutive relation:

S={ρ,T, v,...}

C= { T, q, ε, ...}

respects: determinism, inhomogeneity, non-local effects, rule of equipresence

e1

e2

e3
X

e1

e2

e3 x
χ χ              motion function

X,x    position of particle   
       in reference/present  
                  configuration

T( X, t )= Ť
Y in B , 0 ≤ s < ∞

 ( χ (Y, t-s), ρ(Y, t-s), T (Y, t-s), X )



Swedish Polar Research Secretariat / Bert Bolin Center for Climate Research / Stockholm University

2. A flow law for ice: continuum mechanical modeling

Simplification of general constitutive relations achieved by application of ...

.... ”common sense”:

• local action

• homogeneity

• fading memory

T( X, t )= Ť
Y in B , 0 ≤ s < ∞

 ( χ (Y, t-s), ρ(Y, t-s), T (Y, t-s), X )
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2. A flow law for ice: continuum mechanical modeling

Simplification of general constitutive relations achieved by application of ...

.... ”common sense”:

• local action

• homogeneity

• fading memory

T( X, t )= Ť
Y in B , 0 ≤ s < ∞

 ( χ (Y, t-s), ρ(Y, t-s), T (Y, t-s), X )

... Rational Mechanics principles:

• invariance under change of observer
  and rule of material indifference 
  (principle of objectivity) 

• principle of material symmetry  

• entropy  principle 
  (2nd law of thermodynamics)
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2. A flow law for ice: continuum mechanical modeling

Example: the stress tensor for a linear elastic  solid  

F=F
iA
= ∂x

i
 / ∂X

A
functional dependence: 

 

T=Ť(F) 
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2. A flow law for ice: continuum mechanical modeling

Example: the stress tensor for a linear elastic  solid  

F=F
iA
= ∂x

i
 / ∂X

A

2E=  (FTF-1)  
  Green-Lagrange strain tensor

functional dependence: 

material objectivity: 

 

T=Ť(F) 

T=Ť(F) = Ť(E) 
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2. A flow law for ice: continuum mechanical modeling

Example: the stress tensor for a linear elastic  solid  

F=F
iA
= ∂x

i
 / ∂X

A

2E=  (FTF-1)  
  Green-Lagrange strain tensor

Ψ Helmholtz energy
S Piola-Kirchhoff stress tensor

functional dependence: 

material objectivity: 

entropy principle: 

T=Ť(F) 

T=Ť(F) = Ť(E) 

S = ρ ∂Ψ /  ∂ E
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2. A flow law for ice: continuum mechanical modeling

Example: the stress tensor for a linear elastic  solid  

F=F
iA
= ∂x

i
 / ∂X

A

2E=  (FTF-1)  
  Green-Lagrange strain tensor

Ψ Helmholtz energy
S Piola-Kirchhoff stress tensor

Ψ:     quadratic in E
C(4):   elasticity tensor with 
        81 components

functional dependence: 

material objectivity: 

entropy principle: 

linear behavior:

T=Ť(F) 

T=Ť(F) = Ť(E) 

S = ρ ∂Ψ /  ∂ E

2 Ψ=E (C(4) E)
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2. A flow law for ice: continuum mechanical modeling

Example: the stress tensor for a linear elastic  solid  (ctnd) 

symmetry properties of C(4) (81 independent components):

S and E are symmetric tensors: C(4)  has 36 independent components

S derivable from the potential Ψ: C(4) has 21 independent components 

Voigt notation:  

Σ = (S
11

, S
22

, S
33

, S
12

, S
13

, S
23

),      Ξ = (E
11

, E
22

, E
33

, E
12

, E
13

, E
23

) 

C*(2) symmetric 6 x 6 matrix

Σ = C*(2) Ξ   
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2. A flow law for ice: continuum mechanical modeling

In 3D, a linear elastic solid has at most 21 independent elasticity constants.
To reduce this number, the symmetry of the material itself can be exploited.

c1  c2  c2  0  0  0
      c1  c2  0  0  0    
            c1  0  0  0
         2(c1-c2) 0 0
            2(c1-c2) 0 
               2(c1-c2)

c1  c2  c3  0  0  0
      c1  c3  0  0  0    
            c6  0  0  0
                 c7 0  0
                     c7 0 
              (c1-c2)/2

c1  c2  c3  0  0  0
      c4  c5  0  0  0    
            c6  0  0  0
                 c7 0  0
                     c8 0 
                        c9

orthotropic, 9 coefficients
Symmetry wrt 180°rotations

c1  c2  c3  0  0  0
      c1  c3  0  0  0    
            c6  0  0  0
                 c7 0  0
                     c7 0 
                        c9

orthotropic, horizontally regular, 
6 coefficients, Symmetry wrt 180° 
rotations and 90°rotations about 
a given axis of  symmetry 

orthotropic, horizontally isotrop
(”transverse isotropic”), 5 coefficients
Symmetry wrt 180°rotations and 
arbitrary rotations about a given axis

c1  c2  c2  0  0  0
      c1  c2  0  0  0    
            c1  0  0  0
                 c7 0  0
                     c7 0 
                        c7

regular cubic,  3 coefficients
Symmetry wrt 90°rotations 
about 3 fixed perpendicular 
axes

c1= λ+2μ, c2=λ 

isotropic,  2 coefficients
Symmetry wrt arbitrary rotations

c1  c2  c3  0  0  0
      c1  c3  0  0  0    
            c6  0  0  0
                 c7 0  0
                     c7 0 
               2(c1-c2)

hexagonal symmetry, 5 coefficients
Symmetry wrt n x 30°rotations about  
given axis (c-axis)
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2. A flow law for ice: continuum mechanical modeling

Nye's generalization of Glen's flow law:

Postulate: Cold ice is a density preserving, viscous, heat conducting fluid

Constitutive relation: TE= Ť ( D, T, grad T ) 

Assumption 1: The dependence on grad T has never been measured and 
is hence dropped.  Rational Mechanics Modeling gives

Incompressibility: div v = 0 or tr D = 0 0=3 β
1 
  +  β

3 
tr (TE 

2
)

D = Ď ( TE, T, grad T ) 

D= β
1 
1 + β

2 
TE +  β

3 
TE 

2
β

1 
, β

2 
, β

3 
= fct(tr 

 
TE, tr 

 
TE

2
, det 

 
TE, T ) 

D= - β
3 
tr (TE 

2
)/3 +  β

2 
TE +  β

3 
TE 

2
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2. A flow law for ice: continuum mechanical modeling

Nye's generalization of Glen's flow law (cntd):

Assumption 2: D and TE are collinear to each other (β
3 
= 0). 

D =  β
2 
TE =  β

2 
(tr 

 
TE

2
, T ) TE 

 

Assumption 3: D does not depend on det TE 

Assumption 4: β
2 
 can be factorized as   β

2 
(tr 

 
TE

2
, T ) = A( T ) f  ( tr 

 
TE

2
)

D =  A( T ) f  ( tr 
 
TE

2
)  TE 

 

3D generalization of the flow law of Glen & Steinemann        (Nye 1952)

D =   β
2 
TE  β

2 
= fct(tr 

 
TE=0, tr 

 
TE

2
, det 

 
TE, T ) 
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Glen/Steinemann/Nye

Morland & Spring 1981
McTigue, Jones & Passman 1981, 
Man & Sun 1987, + onging PhD
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Colebeck & Evans 1973,
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Hutter 1980

2. A flow law for ice: continuum mechanical modeling
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Glen/Steinemann/Nye

Morland & Spring 1981
McTigue, Jones & Passman 1981, 
Man & Sun 1982

Lliboutry 1969,
Colebeck & Evans 1973,
Thompson 1979,
Hutter 1980

2. A flow law for ice: continuum mechanical modeling

long timescales  and high
temperatures: ceaseless 
change in  microstructure,
3fold enhancement of flow
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Water has the greatest diversity 
(polymorphism) of solid phases 
over all known substances:

•   2  amorphous phases
    (lacking crystalline structure)

•   16 crystalline phases 
    (ice Ih, Ic, II – XV)

Ih

3. Microscale processes beyond secondary creep 

Properties of H
2
0

Ice Ih possesses hexagonal symmetry 

• atomic packing factor: < 34% 
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Microstructure of ice Ih

• hexagonal symmetry

• concentration of molecules in basal planes

• weak O=O bonding in between basal planes 
  (”hard glide” along  pyramidal/prismatic planes)

• strong O=O bonding within the basal planes
  (”easy glide” along basal planes)

• c-axis: perpendicular to basal planes

c-axis
3. Microscale processes beyond secondary creep 

basal 
plane
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Microstructure of ice Ih

strong O=O bonding within the basal planes (”easy glide” along basal planes)

• slip resistance along basal planes is up to 60 times smaller than in other
  slip systems (210 K < T < 273.15 K)

• the ”deck of cards” analogy dates back to McConell (1891)

• slip along basal planes takes place via dislocation glide and is regarded 
  as the dominant deformation mechanism

3. Microscale processes beyond secondary creep 
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Dislocations and other imperfections: Hypothetical vs. real crystals

• Distribution of hydrogens in the oxygen lattice:    
  2 hydrogen nuclei close to any oxygen but only       
  one per joining line (Bernal-Fowler rule)
  Violation of these rules: point defects (Bjerrum) 

• Discontinuity/offset in the crystal structure:     
  line (1d) / plane (2d) /gross (3d) defects

  line defects (1d): dislocations
  
  dislocation density  ρ

d 
(total length of line 

  defect per unit volume [l-2]) evolves in time
  and can lead to  strain softening/hardening 
  behavior of  ice

3. Microscale processes beyond secondary creep 
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3. Microscale processes beyond secondary creep 

c-axis rotation under compression / tension

towards the axis of loading 

α
0 α

away from  the axis of loading 
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3. Microscale processes beyond secondary creep 

measuring c-axis rotation

thin sections under crossed polarizers

• crystals rotate incoming polarized light  
  depending on c-axis orientation

• differently oriented crystals appear with 
  different colors

• orientations are plotted in Schmidt diagrams

polygonizationgrain growth
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Classification of microscale deformation mechanisms

lattice mechanisms:       relate to the behavior of the crystalline structure 
                                       (c-axis evolution)

                                  ”fabric” 

boundary mechanisms:  act at the grain boundaries and relate to grain size
              (Grain boundary migration, nucleation, recovery, 
              polygonization, ....)

                                      ”texture”

             crystal-size dependent isotropic rheology: 
Barnes (1972), Goldsby & Kohlstedt (1997) 

3. Microscale processes beyond secondary creep 
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Homogenization of microscopic deformation within a RVE 

3. Microscale processes beyond secondary creep 

Consideration of basal glide alone during deformation:  

How to deal with geometric misfits occurring between neighboring crystals? 

• Taylor's hypothesis (1938, ”Plastic strain in metals”): 
  all crystals in an RVE suffer the same strain now discarded for polycrystalline ice

• Sachs' hypothesis (1928, ”Zur Ableitung einer Fliessbedingung” 
  [On the derivation of a yield criterion] ):
  all crystals in the RVE suffer the same stress

• VPSC (ViscoPlastic Self Contained; Castelnau, Duval, Lipenkov,... ~1996):
  combining Taylor and Sachs: stress equilibrium and strain compatibility 
  are recursively satisfied        difficulties when formulating a macroscopic flow law
                               not extendable to non-liner stress-deformation relations


