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Model verification and validation

Numerical computer codes for ice sheet flow emerge from two stages
of effort:

specification of a continuum model (nonlinear PDEs)
modeling errors arise from not solving the right equations →
assessment of modeling errors is called model validation.

the numerical approximation of the model (because of the
difficulty of solving the above PDEs exactly)
numerical errors arise from not solving the equations right →
assessment of numerical errors is called model verification.
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Ways to verify the ice sheet models
intercomparison of models - measuring differences among
various models’ results on the sets of simplified geometry
benchmark tests.
• compares models on variety of tests that resemble real ice sheet

geometries;
• provides a set of standards for a modelers;
• examples: EISMINT I, EISMINT II, Ross Ice shelf, ISMIP-HOM,

ISMIP-HEINO, ISMIP-POLICE, MISMIP.

verification by exact solution - measuring differences between
model results and (may be artificially constructed) exact
solutions.
• allows modelers check correctness of a code and to estimate

magnitude of numerical errors on a given grid;
• allows to measure convergence of numerical methods;
• allows tests codes for a variety of cases including different

boundary conditions.
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Example of building a manufactured exact solution
(Bueler, 2006)

• completely made-up PDE:

∂u
∂t

=
∂2u
∂x2 + u2

is hard to find any exact solutions

• but one can find such for a slightly more general PDE:

∂u
∂t

=
∂2u
∂x2 + u2 + f (x, t) (1)

• for example, let u(x, t) = x3 + t; compute

f =
∂u
∂t

− ∂2u
∂x2 − u2 = 1− 6x−

(
x3 + t

)2

• with this f , equation (1) has u = x3 + t as solution.
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Verification of the SIA models

intercomparison of models
• EISMINT I - isothermal nonsliding ice flow (Huybrechts et al.,

1996)

• EISMINT II - thermocoupled nonsliding ice flow (Payne et al.,
2000)

verification by manufactured exact solutions
• isothermal nonsliding SI (Halfar 1983, Bueler et al 2005)

• thermocoupled nonsliding SI (Bueler et al 2005)
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Shallow Ice Approximation (SIA)

Reference: K. Hutter, Theoretical
Glaciology. Dordrecht,
Kluwer Academic
Publishers, 1983.

Assumptions: Longitudinal and
transverse stresses are
neglected.

Numerics: Quasi-2D model – 1
degree of freedom per
node.

Conclusion: Valid only for an ice
mass with a small
aspect ratio (ice
thickness << ice
horizontal dimensions) Figure: Force Balance for

Shallow-Ice Approximation
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Ice Sheet Equations of the SIA
conservation of mass

ht = M −∇ · (Ūh) (2)

get velocity in SIA by vertically-integrating this:

Ū(z) = −2(ρg)n|∇h|n−1∇h
∫ z

b

(
h− ξ

A(T∗)

)n

dξ + Ū(b) (3)

conservation of energy

ρcp (Tt + Ū · ∇T) = k∇2T + (σxz, σyz) ·
∂Ū
∂z

(4)

where Ū is vertically averaged horizontal velocity.
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EISMINT II (European Ice Sheet Modeling Initiative)
• intercomparison of 10 ice-sheet

models on a series of
experiments.

• a circular ice sheet is used and
steady states and responses to
stepped changes in climate are
investigated.

• Exp. A: starting from zero ice, ice
accumulation/ablation rate and
ice-surface temperature are fixed
as functions of geographical
position:

M(x, y) = min

[
Mmax, Sb

(
Rel −

√
(x− xsummit)2 + (y− ysummit)2

)]
Tsurface(x, y) = Tmin + ST

√
(x− xsummit)2 + (y− ysummit)2

where Mmax is the maximum accumulation rate; Rel is a distance from the summit (xsummit, ysummit) where the accumulation

rate becomes zero; Sb is the gradient of accum. rate change with horizontal distance; Tmin is the minimum surface temperature;

ST is the gradient of air temperature change with horizontal distance.
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EISMINT: Experiment A

• wide range of results;

• how to estimate
magnitude of numerical
errors for a particular
model?

Figure: Predicted Steady-state basal
temperatures in Exp. A (from
EISMINT II)12
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EISMINT: Experiment B

• Use as initial condition
the final steady-state ice
sheet of Exp. A
(constant
Tmin = 238.15K) and

• surface temperature
experiences 5K warming
(Tmin = 243.15K).

Figure: from EISMINT II: Time
series of thickness and basal
temperature13
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EISMINT: Experiment F

• Use as initial condition
the final steady-state ice
sheet of Exp. A
(constant
Tmin = 238.15K) and

• surface temperature
experiences 15K cooling
(Tmin = 223.15K)

• Are the spokes (in exp.
F) just numerical errors?
No, they reflect a
sensitivity of the
continuum equations to
perturbation in some
geometry/temperature
regimes (Bueler,
Hindmarsh).

Figure: Predicted Steady-state basal
temperatures in Exp. F (from EISMINT
II) 14
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Verification of the SIA model using manufactured
solution (Bueler)

Exact solution to thermocoupled SIA

h, T chosen (circular ice caps like EISMINT)−→ compute accumulation, velocity, etc. which satisfy all equations.

Exact solution formulas

h(r, t) = h(r) + φ(r)γ(t), T(r, t, z) = T(r)
ν(t, r) + h(r, t)

ν(t, r) + z
, where

h(r) =
h0(

1− 1
n

) n
2n+2

[(
1 +

1
n

)
s− 1

n
+ (1− s)1+ 1

n − s1+ 1
n

] n
2n+2

,

φ(r) = cos2
(

π(r − 0.6L)
0.6L

)
, γ(r) = Arsin

(
2πt
tp

)
,

ν(t, r) =
kT(r)
2G

(
1 +

√
1 + 4

h(t, r)G
kT(r)

)
, s = r/L.
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Verification of the SIA model using manufactured
solution (Bueler)

Exact solution to thermocoupled SIA

h, T chosen (circular ice caps like EISMINT)−→ compute accumulation, velocity, etc. which satisfy all equations.

Useful for

• calculation of numerical errors (h and T) and

• measuring convergence rate under grid refinement
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Higher-order (HO) and full-Stokes (FS) 3-D models
Reference: F. Pattyn, Investigating the

stability of subglacial lakes with a
full-Stokes ice-sheet model, ...
2008.
R.C.A.Hindmarsh, A numerical
comparison of approximation to
the Stokes equations used in ice
sheet and glacier modeling, ...
2004.

Assumptions: Higher-order – variational
stresses are neglected,
full-Stokes – all stresses are
included.

Numerics: Higher-order – 2D models;
full-Stokes – 3D models.

Conclusion: Better predictions but
computationally intensive.

Figure: Force Balance
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Verification of the full-Stokes and HO models

intercomparison of models
• ISMIP-HOM - isothermal flow (Pattyn et al, 2008)

verification by exact solution
• quasi-analytical solutions for the 1-st order approximation

equations (Blatter 1995)

• analytical solutions for transient 2-D flow (Hutter 1980, Hutter
1983)

• 3-D solution of the linearized 0-th order problem (Gudmundsson
2003)

• manufactured solutions of a steady-state isothermal 2-D and 3-D
flow (Fastook and Sargent)
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ISMIP-HOM

• Intercomparison of 28 full-Stokes and HO models.

• 6 experiments (2-D and 3-D geometries): 5 - steady-state
(Glen-type flow law), 1 - time-dependent (constant viscosity);

• 1 experiment with data from Haut Glacier d’Arolla;

• Isothermal ice mass;

• Periodic lateral boundary conditions.
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ISMIP-HOM: Experiment B

• 2-D: steady-state ice flow over a rippled
bed;

• Boundary conditions: frozen bed,
stress-free surface, periodic lateral;

• The surface elevation and the bed
topography are defined as:

s(x, y) = −x · tanα,

b(x, y) = s(x, y)− 1000+ 500 sin(ωx),

where ω = 2π/L, L is the ice length.
Figure: Experiment B - from
Pattyn, 2008.
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ISMIP-HOM: Conclusions (from Pattyn, 2008)

• Benchmarks work better for longer
length scales than for smaller;

• However, interesting features appear at
smaller length scales (L = 5): distinction
between FS and HO models;

• Differences between models are due to
either physical approximations or
numerical problems/inaccuracies.

FS verification

Figure: Experiment B: clear
distinction in behavior between
HO and FS models (Pattyn,
2008).
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Steady-state isothermal 2-D flowline model
conservation of mass

∂u
∂x

+
∂w
∂z

= 0, (5)

kinematic boundary conditions

u(x, s(x))
ds
dx

− w(x, s(x)) = ȧ, (6)

u(x, b(x))
db
dx

− w(x, b(x)) = 0, (7)
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Steady-state isothermal 2-D flowline model
conservation of momentum

∂
(
2µ∂u

∂x + p
)

∂x
+

∂
(
µ
(

∂u
∂z + ∂w

∂x

))
∂z

= 0, (8)

∂
(
µ
(

∂w
∂x + ∂u

∂z

))
∂x

+
∂
(
2µ∂w

∂z + p
)

∂z
= ρg, (9)

boundary conditions
• stress-free surface;
• frozen bed or sliding bed;
• lateral bc: periodic or Dirichlet.

constitutive relation (Glen’s ice flow law)

µ =
B
2

(
1
2

(
∂u
∂z

+
∂w
∂x

)2

− ∂u
∂x

∂w
∂z

) 1−n
2n

, (10)
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Derivation of a manufactured exact solution
Let’s assume that in the domain s(x) > b(x):

w(x, z) = u(x, z)
(

db
dx

s− z
s− b

+
ds
dx

z− b
s− b

)
− ȧ

z− b
s− b

. (11)

then
1 kinematic boundary conditions are satisfied and
2 conservation of mass equation is reduced to the equation of one

variable u(x, z):

∂u
∂x

+
∂u
∂z

(
db
dx

s− z
s− b

+
ds
dx

z− b
s− b

)
+ u

ds
dx −

db
dx

s− b
− ȧ

s− b
= 0. (12)

This equation has a solution:

u(x, z) =
1

s(x)− b(x)
ϑ

(
z− b(x)

s(x)− b(x)

)
+

ȧx
s(x)− b(x)

, (13)

where ϑ is an arbitrary function of one variable.
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Satisfying the conservation of momentum equation
and the stress-free surface boundary conditions

Substitution of the manufactured solution to the conservation of
momentum equations and the surface boundary conditions will result
in additional terms in the PDEs:

conservation of momentum

∂
(
2µ∂u

∂x + p
)

∂x
+

∂
(
µ
(

∂u
∂z + ∂w

∂x

))
∂z

= Σx, (14)

∂
(
µ
(

∂w
∂x + ∂u

∂z

))
∂x

+
∂
(
2µ∂w

∂z + p
)

∂z
− ρg = Σz, (15)

boundary conditions
• stress-free surface bc (add an artificial term to the RHS);

• frozen bed bc – satisfied automatically;

• periodic side bc – satisfied automatically.
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Verification of the FS model using manufactured
solution

Let’s, for simplicity, assume that function ϑ is as follows:

ϑ(x) = xλ + cb, (16)

where λ ≥ 2 and cb ≥ 0 are constants; cb = 0 for frozen-bed
solutions; then

Exact solutions are

u(x, z) =
1

s(x)− b(x)

(
z− b(x)

s(x)− b(x)

)λ

+
cb

s(x)− b(x)
,

w(x, z) = u(x, z)
(

∂b
∂x

s− z
s− b

+
∂s
∂x

z− b
s− b

)
where s(x) and b(x) are the ice surface elevation and bed topography
curves.
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Verification of the FS model using manufactured
solution: EISMINT Experiment B type solution

If surface elevation and bed topography are defined as in Exp. B of
ISMIP-HOM:

s(x, y) = −x · tanα,

b(x, y) = s(x, y)− 1000+ 500 sin(ωx),

then the horizontal and vertical velocities are as follows:

28



university-logo

Verification of the FS using manufactured solution:
How realistic is the solution?

• conservation of mass flux: q = hu = 1 is
satisfied:

for z = b, u(x, b) = 0, w(x, b) = 0;

for z = s, u(x, s) =
1

s− b
=

1
h
, w(x, s) =

ds
dx

h
.

• This anti-correlated relationship
between u and h is consistent with the
simulation of a Exp. B in ISMIP-HOM by
all flowline full-Stokes models. Figure: Surface horizontal

velocity.
Experiment B, EISMINT
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Verification of the FS using manufactured solution

Summary:

• Manufactured analytical solutions for 2-D steady-state isothermal
flowline models are derived:

• variable viscosity;
• solutions can be specified for different surface and bed

geometries;
• solutions are periodic;
• solutions are easy to use.

• Similar manufactured solutions derived for 3-D full-Stokes ice
flow model.
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Thank you for your attention!
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