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Figure 1: WarpX in situ visualization with Ascent and VTK-m. The figure shows a laser-wakefield accelerator stage (left),
driven by a laser pulse (right) that travels to the bottom right. Iso-contours show the longitudinal electric field used in particle
acceleration. The scenario is modeled and visualized in a Lorentz-boosted reference frame [15–17]. If this was not in situ, the
authors would be able to transform to a different reference frame, add multiple light sources, cast hard and soft shadows, select
some iso-contours for semi-transparent representation, and would add more triangles to smooth the generated iso-contours.

ABSTRACT
Visualization of dynamic processes in scientific high-performance
computing is an immensely data intensive endeavor. Application
codes have recently demonstrated scaling to full-size Exascale ma-
chines, and generating high-quality data for visualization is con-
sequently on the machine-scale, easily spanning 100s of TBytes of
input to generate a single video frame. In situ visualization, the
technique to consume the many-node decomposed data in-memory,
as exposed by applications, is the dominant workflow. Although
in situ visualization has achieved tremendous progress in the last
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decade, scaling to system-size together with the application codes
that produce its data, there is one important question that we cannot
skip: is what we produce insightful and inspiring?

CCS CONCEPTS
•Human-centered computing→Visualization techniques;Vi-
sualization toolkits; • Computing methodologies → Rendering;
•Applied computing→ Physics; • Software and its engineering
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1 INTRODUCTION
In situ visualization is a tremendously powerful workflow to gener-
ate insight into the largest simulations run today. Recently, the 2022
Gordon Bell Prize-winning application WarpX [2] was used to run
in situ visualization on 552 nodes of the Frontier supercomputer [9].

Immediate visualization of simulation dynamics at scale, from
various camera angles, is powerful and helpful, providing answers
to domain-science questions such as: Is a simulation evolving as
planned? Are numerical options and resolution sufficiently set? Are
any hardware or software issues/bugs appearing at scale? Yet, the
scientifically most important question is: Does the visualization
develop insight?

Gaining scientific insight from simulations is a complex and it-
erative process, with domain scientists connecting existing theory,
empirical evidence and data from experiments and simulations.
Visualizations can produce qualitative and quantitative representa-
tions of the dynamics at play. These representations can solidify
understanding, guide the theoretical model building, help testing
approximations and assumptions. An attractive visualization does
help to communicate results and might inspire new scientific ideas.

Particularly for the latter part, domain scientists and audiences
will compare the quality of their visualization with the state-of-
the-art seen in everyday life: movies, games, advertising, etc. That
is a high bar, given photo-realistic capabilities in these industries
at high frame rates. Based on these expectations, can we produce
in situ visualizations of scientific data that can be awe-inspiring
and stimulate our minds? And - how much costs and/or scalabil-
ity penalty are we willing to trade for this in high-performance
computing?

2 SCALABLE METHODS WANTED
Many algorithms offered in contemporary visualization frame-
works [5, 6, 10, 12] are able to exploit some locality, e.g., by do-
main decomposing ray traces and iso-contour searches, composing
results later on [11]. Yet, advanced visualization techniques for cast-
ing shadows, tracing reflections, sorting collisions with objects, etc.
are notoriously non-local and are thus challenging for multi-GPU
implementations. Even volume-rendering more than one spatially
overlapping source is non-trivial to do in situ, since established
methods depend on a sampling technique that is hard to scale [8].
Additionally, many visualization techniques that scientists can use
on single-node implementations would be highly desirable as dis-
tributed implementations for in situ frameworks: Taking Figure 1 as
an example, if this was not in situ generated, the authors would add
multiple light sources, cast hard and soft shadows, select some iso-
contours for semi-transparent representation, and would smooth
the generated iso-contours, by adding additional triangles that in-
terpolate beyond the original resolution of the data source.

Consequently, there is a continued need for new, innovative,
scalable in situ visualization methods. Both fast, low-overhead and
higher-overhead (yet scalable), high-quality methods are needed.
With respect to scalability, maybe there are tricks one can lend
from other communities to generate artificial locality: occlude far-
from-focus parts with mist as in gaming, simplify shadow masks
and reflections, or aggressively exploit the adaptive resolution of

mesh-refined data sources. Additionally, successful in situ imple-
mentations and workflows can likely be enhanced and benefit from
evolution through standardization of APIs, vendor abstractions,
render scene control and data descriptions, e.g., [3, 13, 14].

3 SELECTED IN SITU VISUALIZATION NEEDS
Adding to the challenges of addressing expectations set from offline
rendering for in situ visualization, we surveyed the Beam, Plasma
& Accelerator Simulation Toolkit (BLAST) [1, 2, 4, 7] codes and
identified three selected needs specific to in situ visualization.

First, we noticed that domain scientists have to relearn how to
express rendering scene descriptions for each in situ tool. Standard-
ization is needed [13]. Another approach might be domain-specific
options in the simulation input language, automating the creation
of visualization-configuration templates with mostly defaulted op-
tions - ready to be configured further for details by the inclined
scientists when needed.

Second, video generation of iso-contours, glyphs (e.g., vectors
placed in space), etc. often create “flicker” effects for surfaces and
pointing of objects, simply based on the roughness of simulation
data and steps selected for visualization. Research into transitions
(or animations) between key/data frames with low memory over-
head for HPC could be beneficial to reduce such effects.

Third, we also identified a commonly used algorithmic and simu-
lation pattern for which in situ visualization would be ideally suited,
but are not aware of any implemented solution yet: rendering of
spatially-sliced data pipelines. In a large class of modeling codes,
efficient solutions can be calculated by splitting the 3D domain
over one axis. Instead of advancing the whole domain by an update,
algorithms update a slice of the domain, e.g., from the back to the
front of the 3D domain, and parallelize for the third spatial axis
in time. Without spatially sliced rendering tools, a large number
of algorithms and codes currently need to fall back to costly data
output to “reconstruct” the spatial data domain that is required at
once in offline visualization. Examples in laser-plasma and accel-
erator physics are the boosted frame technique [15–17] as shown
in figure 1 (a more meaningful representation would transform
slice-wise to the laboratory frame), the quasi-static method [1], or
representations in reference trajectory space instead of time and
space [4].

We believe addressing these challenges is timely and resulting in
situ visualization will provide insight and inspiration for scientists.
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