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The bigger picture

The paper and pulp industry

produces up to 50 Mt lignin by-

products annually, yet these

material streams are still being

used as low-value fuel. While the

lignin to vanillin process is already

industrially implemented, there is

a significant gap regarding the

catalytic valorization of such

depolymerization mixtures to

well-defined, industrially relevant

products and, consequently,

important applications. Here, we

show a robust catalytic strategy

that allows conversion of lignin

oxidation mixtures to an
SUMMARY

The demand for high-performance materials is increasing, and most of
thesematerials are petrol based. Therefore, thedevelopment of highly
efficientandselective catalyticmethods thatallowaccess to industrially
relevant polymerbuildingblocks fromcomplex biomass depolymeriza-
tionmixtures is essential. Here, we report on a robust catalytic strategy
to obtain the industrially relevant 4,40-methylenebiscyclohexanamine
(MBCA) from lignin oxidationmixtures and its use for constructing fully
bio-based polybenzoxazines. The strategy consists of two challenging
catalytic steps: 1) the funneling of lignin-derived bisphenol mixtures
into 4,40-methylenebiscyclohexanol (MBC) and 2) the highly selective
amination ofMBCwith ammonia to obtainMBCA. The renewable poly-
benzoxazines were prepared fromMBCA and phenolic lignin platform
chemicals. The most promising, cured poly (S-MBCA), shows high glass
transition temperature Tg of 315�C, outstanding thermal stability
(T10% = 400�C), and good storage modulus (E0

25�C = 3.8 GPa), which is
competitive with commercial resins.
industrially highly relevant

diamine, 4,40-
methylenebiscyclohexanamine

(MBCA), and describe high-

performing and fully bio-based

polybenzoxazines with properties

competitive with the already

industrially utilized high-

performance resins (e.g., by

Huntsman) based on this diamine.

The demand for high-

performance and bio-based

materials is expected to markedly

increase. Therefore, novel waste-

to-value chains such as those

presented in this work will be of

interest for a future bio-based

economy.
INTRODUCTION

The demand for high-performance materials in many industries (such as the aviation,

automobile, and construction industries) is expected to markedly increase in the

coming decades; however, the vast majority of these materials are still petroleum

derived.1,2 There is high demand for renewable alternatives, preferably sourced

from biomass waste streams.3–7 The paper and pulp industry produces approxi-

mately 50 Mt lignin annually as a side product.8 While the alkali oxidation of such

lignin by-products is already industrially implemented,9–11 there is still a large gap

between such depolymerization efforts and accessing well-defined industrially rele-

vant products and, consequently, important applications.

Aliphatic diamines are omnipresent in the fine chemicals and polymer industry.12–14

Thus, the development of sustainable catalytic methodologies to obtain these from

renewable resources,15–17 especially by challenging direct amination with

ammonia,18–22 is an attractive target. It is especially important to establish industri-

ally relevant waste-to-value chains,23 which enable the efficient conversion of

biomass depolymerization mixtures into well-defined chemical building blocks.24–27

Due to its unique structural features,28 4,40-methylenebiscyclohexanamine (MBCA)

is an interesting diamine building block for the production of high-performance

polymers.29–36 Here, we describe a robust catalytic strategy suitable to transform

crude, pre-purified lignin depolymerization mixtures typically produced by the pa-

per and pulp industry,9–11,37–40 into MBCA in high overall yield. The approach
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Figure 1. From lignin oxidation mixtures to industrially relevant diamine and high-performance polybenzoxazine resin

(A) A well-known process for the production and purification of aldehydes (lignin to vanillin process).

(B) The reduction of model phenolic S, G, H aldehydes to corresponding S, G, H phenolic alcohols mixture over Pd/Al2O3 catalyst.

(C) Acid catalyzed coupling of S, G, H phenolic alcohols with phenol to deliver a mixture of BHH, BGH, and BSH over Amberlyst 15 catalyst.

(D) Catalytic funneling of BHH, BGH, and BSH bisphenols mixture to single MBC diol over Raney nickel catalyst.

(E) Catalytic direct amination of MBC diol into MBCA diamine over Raney nickel catalyst.

(F) Mannich condensation of MBCA, sesamol, and paraformaldehyde to give benzoxazine monomer S-MBCA.

(G) Thermally induced ring-opening polymerizations to provide fully bio-based poly (S-MBCA).
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described here allows for converting mixtures of aldehydes into a single aliphatic

diol MBC, and subsequently diamine MBCA, using commercially available catalysts

and widely accessible and/or potentially bio-derived reagents, such as phenol24 and

ammonia, without the need for extensive purification procedures (Figure 1). The

developed sequence consists of (1) hydrogenation using Pd/Al2O3 as catalyst;41

(2) electrophilic aromatic substitution promoted by Amberlyst 15;42 (3) selective

Raney nickel-catalyzed funneling via demethoxylation/hydrogenation to methylene-

biscyclohexanol (MBC); and (4) the direct amination of MBC with ammonia via the

hydrogen-borrowing strategy, in near-perfect MBCA selectivity.

Starting from MBCA and potentially lignin-derived16,43,44 or naturally occurring45–47

phenol derivatives, fully bio-based high-performance polybenzoxazines of novel com-

positions were synthesized. The use of sesamol (S) has proven to be themost promising,

as the cured S-MBCA afforded outstanding thermal performance (Tg of 315�C and T10%
of >400�C) andgoodmechanical strength (Eʹ= 3.8GPa at 25�C), which is competitive or

better than currently developed petrol-based or other bio-based polybenzoxazine

resins using vanillin-,48 guaiacol (G)-,49,50 eugenol (E)-,51,52 cardanol-,53,54 and cellu-

lose-derived furfuryl amine50,55–57 as building blocks.
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RESULTS AND DISCUSSION

The alkaline oxidation of softwood lignosulfonate to vanillin, industrially imple-

mented by Borregaard,9–11 gives a product mixture consisting of predominately

phenolic vanillin up to 7.2 wt % yield based on lignin58,59 and smaller amounts of sy-

ringaldehyde, 4-hydroxybenzaldehyde, ketones, and carboxylic acids depending on

the use of oxidants, pH, catalysts, temperature, and lignin natural origin.59 When

hardwood lignosulfonate is used instead of softwood, for example, Eucalyptus (man-

ufactured by Borregaard and Sappi),9–11 the aldehyde yield increases at the expense

of vanillin selectivity, and a more complex mixture of phenolic aldehydes (syringal-

dehyde: 16.1 wt %, vanillin 4.5 wt %, and a small amount of 4-hydroxybenzaldehyde)

is obtained.60 These aldehyde mixtures can be isolated from the crude lignin depo-

lymerization oil by bisulfitation with NaHSO3
40,61 and subsequent precipitation.

However, further separation of the individual components would be very tedious

and economically unfeasible, due to similar chemical-physical properties.40 None-

theless, either vanillin or aldehyde mixtures should serve as excellent starting

material for the production of value-added industrially relevant chemicals, especially

for input into the fine chemicals16,62 and polymer sectors.63

Here, we have aimed to develop a strategy to access single symmetric diol and

diamine from vanillin or phenolic aldehyde mixtures (shown in Figure 1). This strat-

egy builds upon the knowledge that benzyl alcohols are prone to rapid dehydration

and subsequent aromatic electrophilic substitution reactions with phenol.42 Thus,

the crude aldehyde mixtures from lignin oxidation could be turned into a mixture

of benzyl alcohols upon a simple hydrogenation step, and subsequently produce

a mixture of functionalized bisphenols upon coupling with phenol. Based on our

earlier investigations,64 our assumption was that the catalytic funneling of such

bisphenol mixtures to the single aliphatic diol MBC would be highly efficient.

Moreover, MBC may serve as a precursor for the industrially important diamine

MBCA if an appropriate catalytic strategy for direct coupling with ammonia can be

found.

Thus, the two most challenging steps in the proposed strategy depicted in Figure 1

are the catalytic funneling of the mixture of bisphenol derivatives into the single

aliphatic diol MBC and its subsequent amination. Therefore, these two steps were

more extensively studied, as detailed below.
Catalytic funneling of functionalized bisphenols

Firstly, the catalytic defunctionalization/funnelingmethodology was established, us-

ing the model compound 4-(4-hydroxybenzyl)-2-methoxyphenol (BGH) obtained by

acid-mediated coupling of vanillyl alcohol and phenol, following literature proced-

ures42 (see supplemental information 1.1). Inspired by the pioneering work of Ri-

naldi, on highly efficient transfer hydrogenation of biomass-derived phenolic sub-

strates65–67 and our previous investigation regarding the catalytic funneling of

lignin-derived phenols to aliphatic diols,64 we investigated the demethoxylation/hy-

drogenation of BGH under transfer hydrogenation conditions using isopropanol at

140�C for 3 h (Table 1). Isopropanol, in combination with Raney nickel has shown su-

perior catalytic activity in hydrogen transfer reactions, compared with other simpler

alcohols, methanol or ethanol, which may be easily sourced from renewables (see

Notes S1 and S2).64–67 Indeed, among the tested catalysts, Raney nickel exhibited

excellent hydrogen transfer ability, with full conversion of BGH and close to 80%

selectivity of MBC obtained as a mixture of isomers of cis-cis:cis-trans:trans-trans

(10:43:47), characterized by 1H NMR, 13C NMR, and 2D HSQC (Figures S24–S36).
1468 Chem Catalysis 1, 1466–1479, December 16, 2021



Table 1. Catalytic demethoxylation and hydrogenation of BGH to MBC over various heterogeneous metal catalystsa

Entry Metal loading (wt %) Catalyst
Conversionb

(%)

Selectivity (%) b
Yieldc

(%)MBC 1A 2A 3A 4A 5A 6A

1 65 Ni/SiO2-Al2O3 – – – – – – – – –

2 5 Pd/Al2O3 19.1 0 44.4 – – – – – –

3 5 Ru/Al2O3 49.1 1.9 91.9 – – 6.1 – – 0.9

4 5 Ru/C 36.7 7.9 92.1 – – – – – 2.9

5 R89 Raney Ni 100 79.2 2.6 4.9 – 3.8 3.8 5.6 79.2 (76.4) c

Note: no side products produced by aldol condensation of acetone were observed.
aReaction conditions: 0.5 mmol BGH, 100 mg catalyst, 15 mL isopropanol, 140�C, 3 h, 10 mg dodecane.
bConversion, selectivity and yield was determined by GC-FID.
cGC yield in parentheses was determined by calibration curve using dodecane as internal standard. MBC was obtained as mixture of isomers (cis-cis:cis-trans:-

trans-trans) with the ratio of 10:43:47, quantified by 1H-NMR (Figure S33).
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In addition to the target product MBC, other partly defunctionalized intermediates

1A, 2A, 3A, and 4A, or fully defunctionalized side products 5A and 6A, were de-

tected. Noble metal catalyst Pd/Al2O3 showed only 20% BGH conversion and

44% selectivity to 1A, while Ru catalysts displayed more than 90% 1A selectivity

using Ru/Al2O3 and Ru/C as catalyst, at moderate conversions and minimal MBC

yield.

Experiments at lower temperature 110�C–130�C (Figure 2A) or shorter reaction

time (Figure 2B) revealed the dominance of the two earlier products 1A and 4A,

originating from the partial hydrogenation of BGH to 1A, followed by demethox-

ylation of 1A to 4A and its subsequent hydrogenation to target MBC. This deme-

thoxylation prior to the aromatic ring hydrogenation sequence is in line with our

earlier investigations.64 Intermediate 3A was present in very small quantities,

revealing a rapid demethoxylation step. The relatively small quantities of 5A and

6A68,69 have shown that total deoxygenation is not a major concern in this system

(Figure 2C); nonetheless, the existence of these side products is reason for lower

product yield at all reaction temperatures. Further increasing the reaction temper-

ature has seen a sharp decrease of the intermediates 1A, 4A, and 3A, while the

amount of 2A remained relatively constant, suggesting a very slow demethoxyla-

tion once the aromatic ring is saturated, thereby pointing toward another hurdle

to achieving full product selectivity. Hence, the highest MBC yield was identified

as 85% at 150�C for 3 h.

Due to its magnetic properties, Raney nickel can be easily isolated by means of a

magnet, as reported earlier.65–67 Thus, a series of recycling experiments (Figure S55)

were performed at 150�C for 3 h, showing good reusability, and ICP measurements

indicated no obvious Ni leaching (Table S3).

Further work focused on investigating the reactivity of other bisphenols, featuring one to

four methoxy groups (Figure 3; Table S3). This provides a good orientation for the selec-

tion of an appropriate reaction partner when using benzyl alcohol mixtures for making
Chem Catalysis 1, 1466–1479, December 16, 2021 1469



Figure 2. Catalytic demethoxylation/hydrogenation of BGH to MBC over Raney nickel catalyst

Reaction conditions: (A) 0.5 mmol BGH, 100 mg wet Raney nickel catalyst, 15 mL isopropanol, 110�C–150�C, 3 h, 10 mg dodecane.

(B) 0.5 mmol BGH, 100 mg wet Raney nickel catalyst, 15 mL isopropanol, 150�C, 0–450 min, 10 mg dodecane. Red square symbol stands for MBC yield.

Black star symbol stands for BGH conversion. Selectivity and conversion were determined by GC-FID. Yield was determined by calibration curve using

dodecane as internal standard.

(C) Proposed reaction network for defunctionalization of BGH.
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the desired bisphenol derivatives. As expected, theMBC yield depended on the degree

ofmethoxylation of the bisphenols, with 4,4’-methylenediphenol (BHH) showing highest

MBC yield and 4,4’-methylenebis(2,6-dimethoxyphenol) (BSS) lowest (95% versus 65%).

Furthermore, interestingly, a higher reactivity was achieved starting from 4-(4-hydroxy-

benzyl)-2,6-dimethoxyphenol (BSH) (84%) as opposed to 4,4’-methylenebis(2-methoxy-

phenol) (BGG) (73.3%). Interestingly, two types of lignin-derived building blocks b-1 and

b-b were also converted into the corresponding diols, with the isolated yields of 72.7%

and 68.9%, respectively (Figures S56–S63).

Next, the demethoxylation/hydrogenation of a model mixture of BHH, BGH, and

BSH with a molar ratio of 2:2:1 was investigated under optimized reaction con-

ditions. All three bisphenols were successfully converted into a single product,

MBC diol, in 87.4% yield, showing highly successful chemical funneling.

Conversion of an aldehyde mixture to a single MBC diol

Next, we explored the possibility to get MBC from aldehyde mixtures, mimicking

those originating from alkali lignin oxidation, based on the reaction sequence shown

in Figures 1 and 4. Beside the catalytic funneling step investigated above, an
1470 Chem Catalysis 1, 1466–1479, December 16, 2021



Figure 3. Catalytic demethoxylation and hydrogenation of lignin-derived bisphenols over Raney nickel catalyst

Reaction conditions: 0.5 mmol substrate, 100 mg Raney nickel catalyst, 15 mL isopropanol, 10 mg dodecane.

(a) Molar ratio; GC yield was determined using calibration curve and dodecane as internal standard. (b) Yield was determined by GC-FID. Isolated yield

in parentheses.
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appropriate method to access the desired bisphenol derivatives by electrophilic ar-

omatic substitution was developed. Given the results of catalytic funneling in Fig-

ure 3, phenol was chosen as appropriate coupling partner because it can be sustain-

ably produced from birch lignocellulose in 20 wt % yield (based on lignin content),24

and the reaction results in bisphenol derivatives with at least one phenol moiety lack-

ing further -OCH3 substitution. First, the reactivity of vanillyl alcohol (G-OH), syringic

alcohol (S-OH), and 4-hydroxybenzylalcohol (H-OH) in neat phenol was assessed

and the reaction conditions optimized (see supplemental information and Table

S1 for more details). Next, a mixture comprising 1 mmol vanillin (152 mg),

0.5 mmol syringaldehyde (91 mg), and 0.5 mmol 4-hydroxybenzaldehyde (61 mg)

was subjected to hydrogenation (5 bar H2, 30 mL ethanol, overnight) over 30 mg

of Pd/Al2O3 to smoothly deliver a mixture of vanillyl alcohol (G-OH), syringic alcohol

(S-OH), and 4-hydroxybenzylalcohol (H-OH), in an excellent, 94.8% yield (292 mg)

(Figures S64A and S64B). Subsequently, the benzyl alcohol mixture was subjected

to reaction in neat phenol over Amberlyst 15. During optimizations, it was found

that at least 10 equivalents of phenol are necessary to achieve excellent selectivity

and avoid the formation of trimers and oligomers, as evident from GPC (Figure S53).

As a result, a mixture of p-p0/m-p0-bisphenols (BHH, BGH, and BSH, total 363 mg)

was obtained in a high, 78.9% yield (Table S1; Figure S64C). After recycling of resid-

ual phenol (1.54 g) by distillation in vacuum (105�C at 1 mPa for 1 h), the mixture was

subjected to the Raney nickel-catalyzed demethoxylation/hydrogenation protocol

at 160�C for 6 h, to give m-p0/p-p0-MBC isomers (264 mg) (m-p0:p-p0 = 15:85), in

an overall yield of 62.3% based on the aldehyde mixture. In addition, 44 mg of 6A

(dodecahydro-1H-fluorene), a C13 cyclic hydrocarbon (Figure S64D), was obtained

as a side product, which has favorable properties (density, 0.96 g/mL; freezing point,

258.0 K) to serve as jet fuel.68,69 To provide a clear overview regarding the amount of

lignin and phenol required for the production of desired amount of MBC, starting

from various lignin and wood species, please refer to Notes S3 and S4.
Chem Catalysis 1, 1466–1479, December 16, 2021 1471



Figure 4. A catalytic strategy for the production of MBC from aldehyde mixture (modeling the lignin to vanillin process)

Step 1: 0.5 mmol 4-hydroxybenzaldehyde, 0.5 mmol syringaldehyde, and 1 mmol vanillin, 30 mg Pd/Al2O3, 5 bar H2, 30 mL ethanol, RT, overnight.

Step 2: 150 mg Amberlyst 15 catalyst, 1.8 g phenol (188 mg, theoretical amount), 60�C, 1 h.

Step 3: 500 mg Raney nickel catalyst, 30 mL isopropanol, 160�C, 6 h.

Yields were quantified based on original aldehydes mixture by parallel experiments under the same reaction conditions (overall yield [%] = mass of the

obtained products/theoretical mass of obtained products by complete conversion of original aldehydes mixtures).
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Highly selective catalytic amination of the diol MBC to diamine MBCA

The direct coupling of aliphatic alcohols with ammonia is an attractive prospect to

produce primary amines.70–73 Here, we set out to realize the catalytic diamination

of MBC directly to MBCA via the waste-free hydrogen-borrowing methodology.

The reaction in question is particularly challenging, since excellent selectivity should

be achieved for both of the alcohol moieties and the symmetric diol may also un-

dergo dimerization via secondary amine formation. t-Amyl alcohol, in this case,

was selected because it has been successfully used as a solvent for amination reac-

tions, especially toward primary amines.70,74–75 In addition, in our previous work, we

found this solvent highly suitable in the direct amination of benzyl alcohols with

ammonia.70 Indeed, under the tested reaction conditions (170�C, for 18 h reaction

time, 7 bar NH3), summarized in Table 2, these products (7A and 8A) were clearly

visible, albeit in smaller quantities. Among the range of commercially available or

synthesized metal catalysts evaluated, Ni/PMO and Ni/g-Al2O3 were completely

inactive, while the Ni/SiO2-Al2O3 and Ni/SiO2 catalysts showed near identical cata-

lytic behavior, with 87% conversion of MBC and 50% selectivity to MBCA, while still

displaying a substantial amount of the mixed amine-alcohol product 7A. Fortu-

nately, a high selectivity toward the primary amine, MBCA, was achieved in almost

all cases, except with Ru/C (0.62%). Likely the increase of the partial pressure of

NH3 to 7 bar in our system, facilitated imine formation and suppressed the further

N-alkylation of MBCA with MBC.76

Excellent 98% conversion of MBC and 75.9% selectivity of MBCA were observed

with Ru/C as catalyst, although still displaying incomplete diamination. Gratifyingly,

using Raney nickel as catalyst, MBCA was obtained in near-perfect (99%) GC selec-

tivity and 96% isolated yield at 170�C, while other reaction temperatures were tested

as well (Figure 5B). We attribute the excellent selectivity to the ability of the catalyst

to facilitate the two key steps in the hydrogen-borrowing sequence: (1) high activity
1472 Chem Catalysis 1, 1466–1479, December 16, 2021



Table 2. Evaluation of commercially available heterogeneous and homemade nickel-based catalysts in the one-pot direct catalytic amination ofMBC

to MBCAa

Entry Metal loading (wt %) Catalyst
Conversionb

(%)

Selectivityb

(%)
Yieldc

(%)

MBCA 7A 8A

1 13 Ni/PMO – – – – –

2 10 Ni/g-Al2O3 – – – – –

3 65 Ni/SiO2-Al2O3 87.9 49.3 50.7 – 40.8

4 64 Ni/SiO2 87.4 50.1 49.9 – 41.2

5 5 Ru/C 98.0 75.9 23.0 0.62 70.5

6 R89 Raney Ni 100 99.0 – – 99.0 (96.0)
aReaction conditions: 0.5 mmol MBC (105 mg), 50 mg catalysts, 2.5 mL t-amyl alcohol, 170�C, 18 h, 7 bar NH3, 10 mg dodecane.
bConversion and selectivity were determined by GC-FID.
cGC yield was determined using calibration curve and dodecane as internal standard. (isolated yield).
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for alcohol dehydrogenation and (2) facile hydrogen transfer to the imine and

thereby rapid imine reduction (see also Note S2). After filtration and solvent

removal, the obtained crude MBCA was characterized by GC-FID (Figure S65), 1H

NMR, 13C NMR, 2D HSQC, and 2D COSY (Figures S66–S69). In addition, no obvious

nickel leaching was observed (Table S4) after four cycles, resulting in high reusability

(Figure S70).

Synthesis of fully bio-based polybenzoxazine resins from phenolic monomers

and MBCA

Next, MBCA was utilized as an aliphatic diamine building block to design fully bio-

based polybenzoxazine resins. The novel benzoxazine monomers S-MBCA, PG-

MBCA, G-MBCA, and E-MBCA were prepared through Mannich condensation of
Figure 5. Influence of different parameters on the direct amination of MBC to MBCA

(A) Influence of reaction time; conditions: 0.5 mmol MBC, 50 mg Raney nickel, 2.5 mL t-amyl alcohol,

170�C, 0.5–7 h, 7 bar NH3, 10 mg dodecane; Selectivity was determined by GC-FID

(B) Influence of reaction temperature; conditions: 0.5 mmol MBC, 50 mg Raney nickel, 2.5 mL t-amyl

alcohol, 140�C–170�C, 5 h, 7 bar NH3, 10 mg dodecane. Selectivity was determined by GC-FID.

Yield was determined by calibration curve using dodecane as internal standard. The red square

symbol stands for MBCA yield determined by calibration curve using dodecane as internal

standard. The dark green color stands for selectivity to MBCA. The light green color stands for

selectivity to 7A.

Chem Catalysis 1, 1466–1479, December 16, 2021 1473



Figure 6. Proposed reaction pathways toward fully biobased polybenzoxazines using lignin-derived monomers

Synthesis of fully bio-based benzoxazine monomers by coupling of the obtained MBCA with guaiacol, propyl guaiacol, or naturally occurring sesamol

and eugenol. Synthesis procedure performed either in ethanol as solvent or by solventless microwave irradiation.
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MBCA with formaldehyde and four different lignin-derived monophenols: S, propyl

guaiacol (PG),77 G-,78 and E,79 as shown in Figure 6. Detailed information on

possible sustainable sources of S being vanillin or HMF-derived 1,2,4-benzenetriol,

can be found in Note S5. Benzoxazines PG-MBCA, G-MBCA, and E-MBCA were ob-

tained by solventless microwave irradiation (output power of 200 W) at 80�C–100�C
for totally 15 min lead, followed by column chromatography, in 51.4%, 62.1%, and

59.7% isolated yield, respectively. Interestingly, S-MBCA could be obtained after

a simple filtration in an excellent isolated yield (98%) upon performing the synthesis

in ethanol. The obtained S-MBCA, PG-MBCA, G-MBCA, and E-MBCA were structur-

ally characterized by 1H NMR, 13C NMR, 2D HSQC, 2D COSY (Figures 7 and

S37–S52), and FTIR (Figure S74). For example, the 1H NMR spectrum (Figure S37)

of S-MBCA showed the characteristic signals of O-CH2-N and Ph-CH2-N,57 charac-

teristic for the benzoxazine ring at 4.89 and 3.96 ppm, respectively. The FTIR

characterization further confirmed the formation of the benzoxazine ring by

the absorbance bands observed at 930 cm�1 (oxazine ring stretching),80 at

1,147 cm�1 (C-N-C stretching),81 at 1,230 cm�1 (C-O-C stretching),81 and at

1,488 cm�1 (-CH2- bending of the methylenedioxy benzene of S.82

Secondly, these benzoxazine monomers were subjected to ring-opening polymeri-

zation by stepwise curing at 170�C–280�C to give poly (S-MBCA), poly (PG-MBCA),

poly (G-MBCA), and poly (E-MBCA). The ring-opening polymerization was

confirmed by the disappearance of the characteristic signal at 930 cm�1, which be-

longs to the benzoxazine ring. The thermal properties of these polybenzoxazines

were determined by Differential Scanning Calorimetry (DSC) (Figure S73) and Ther-

mogravimetric Analysis (TGA) (Figure S72); the results are summarized in Table 3.

The difference in thermal properties, to a certain extent, depended on the type of

lignin-derived phenolic monomers used. Poly (S-MBCA) showed the best thermal

stability, with T10% of 401�C, and its Tg (up to 315�C) was the highest as well, by Dy-

namic Mechanical Analysis (DMA) characterization. The mechanical properties of

poly (S-MBCA) were found to be excellent Eʹ = 3.8 GPa at 25�C, Eʹ = 2.7 GPa at

200�C (Figure S75). These values are comparable with the commercially available

polybenzoxazine resins, for example, those produced by Huntsman.83
1474 Chem Catalysis 1, 1466–1479, December 16, 2021



Figure 7. Proposed peak assignments for benzoxazine S-MBCA by 2D HSQC and 2D COSY NMR

measurements

100 stands for 10 cis-cis, cis-trans, while 1000 stands for 10 trans-trans, cis-trans.
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Conclusion

In conclusion, this work demonstrates the valorization of industrially relevant product

mixtures, originating from the lignin to vanillin process, into well-defined chemical

building blocks in excellent efficiency. The two, highly selective key catalytic steps

of the strategy are the catalytic funneling of bisphenol mixtures into MBC, and the

direct amination of MBC with ammonia (96% isolated yield of MBCA from pure

MBC). Notably, for both key steps, the commercially available Raney nickel catalyst

is most ideal, which underscores industrial relevance. Overall, the strategy enables

the efficient conversion of pre-purified mixtures of aldehydes from the lignin to

vanillin process, which can be subjected to reduction, coupling with phenol to a

mixture of bisphenols (and following the two mentioned catalytic steps), to well-

defined molecules in overall high efficiency.

Based on the MBCA building block, a green synthetic approach to obtain high-per-

formance polybenzoxazine resins is presented. These materials display outstanding

thermal resistance and good mechanical properties, which is highly relevant in a

future bio-refinery context, leading to economic and environmental benefits.

The novel catalytic upgrading method described here, which is capable of convert-

ing industrially relevant waste streams to single compounds with minimal purifica-

tion effort, will contribute to broadening the scope of future bio-refinery methods.

Moreover, given their waste- and solvent-free manner of preparation, excellent
Table 3. Mechanical and thermal properties of the prepared polybenzoxazine resinsa

Entry Polybenzoxazine Tm (�C)
Tp

a

(�C) Tg (�C) T5% (�C) T10% (�C)
Char yield b

(%) LOIc

1 poly (G-MBCA) – 246 157 298 336 12.1 22.3

2 poly (E-MBCA) – 259 144 285 332 19.1 25.1

3 poly (PG-MBCA) – 263 82 286 304 14.9 23.5

4 poly (S-MBCA) 141 213 315 365 401 12.5 22.5

5 poly (BPA-A)d – 232 173 325 350 29.0 29.1

6 poly (BPF-A)d – 236 162 306 – 46.0 35.9
aPolymerization temperature.
bChar yield: percentage residual mass left at 800�C.
cLOI = 17.5 + 0.4 (char yield).
dCommercial bisphenol A and bisphenol F-based polybenzoxazines, cured by aniline (A).84,85
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thermal and mechanical properties, and industrial relevance, the polybenzoxazines

obtained here are attractive examples for emerging bio-based polymers.
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