In-Network Quality Control of IP Camera Streams

<u>Csaba Györgyi¹</u>, Károly Kecskeméti¹, Péter Vörös¹, Sándor Laki¹, Géza Szabó²

¹ ELTE Eötvös Loránd University ² Ericsson Research

Motivation

Our Method

Background

- Software-Defined Networking
- The P4 Language
- Video Streams

Background: Software-Defined Networking

- Making the network behaviour programmable
- Separation of the Control Plane and Data Plane
 - The *data plane* is responsible for processing the individual networking packets.
 - The *control plane* updates the rules of the packet processing. (Relatively slow.)

Background: The P4 Language

- First introduced in 2014
- Domain-specific language, design for data planes
- Describe the processing of a single packet
- Define custom headers, fields
- Use custom match-action tables
- Many different targets: software switch, smartNIC, ASIC switch ...
- Main constraints:
 - No loops, no multiplication, ...
 - No string operations
 - Variable-length headers are usually hard to handle
 - Other target/architecture-specific constraints...

Background: The P4 Language

Background: Video Streams

- H.265
- A sequence of frames
 - I-frames
 - P-frames
 - (B-frames)
- Packetisation:
 - If a frame is too big, it can be split among multiple packets (fragmentation units)
 - A start and end bit helps to locate the frame boundaries.

Solution

- Overview
- Data Plane Design

Solution Overview

Data Plane Design

Video packets

- Parse H.265 frame and packetisation information: start bit, end bit, frame type.
- Map source address to a stream ID.
- Read current from *filtering_mode* register. (*KEEP_ALL, DROP_P_FRAMES*)
- Track if we are inside a P-frame using the start- and end bits inside the *is_p_frame* register.
- Drop the packets belonging to a P-frame if required.
- (Additional telemetry for observability.)

Status messages

- We assume a simple UDP-based communication containing the X and Y coordinates of the robot.
- Update the *filtering_mode* register based on the (X, Y) coordinates and the provided rules.
- Forward the packet as usual.

Evaluation

- Demo Setup
- Traffic Patterns
- Discussion on Deployability

Evaluation: Demo Setup

- Prototype implementation: PSA-eBPF P4 backend with NIKSS
- Hardware setup:
 - IP camera (Reolink RLC-810A)
 - P4 programmable hardware: PCEngines APU4d4 + PSA-eBPF
- Single-server setup
 - VLC+FFmpeg (4 streams)
 - PSA-eBPF (same as before)
- Single simulated robot

Total Loss = Intended Loss + Unintended Loss

Total Loss = Intended Loss + Unintended Loss

Total Loss = Intended Loss + Unintended Loss

Evaluation: Discussion on Deployability

- We use only 2 register arrays, and their size grows linearly with the number of streams.
- Filtering of P-frames is instantenious.
- Turning off the filtering is also instantaneous but the stream might only become distortion-free at the next I frame.
 - The frequency of I-frames can be configured.
 - The bounding boxes and rules can be adjusted.
- Can we use an Intel Tofino? Probably, but the use case does not require Tbps speed.

Summary and Future Work

- We build on the observation that not all video streams are required all the time in an industrial setup.
- We can leverage in-network computing and programmable data planes to safely reduce the frame rate of non-essential streams even when bandwidth is available.
- Future Work:
 - Investigate QoE metrics
 - How to efficiently encode rules using tables and registers?

Thank you for your attention!

Csaba Györgyi gycsaba96@inf.elte.hu

The research leading to these results has received funding from the European Commission thought the HORIZON 6G SNS JU DESIRE6G (G.A.101096466)