
Effectful Software Contracts (with Appendices)

CAMERON MOY, PLT @ Northeastern University, USA
CHRISTOS DIMOULAS, PLT @ Northwestern University, USA
MATTHIAS FELLEISEN, PLT @ Northeastern University, USA

Software contracts empower programmers to describe functional properties of components.When it comes to
constraining effects, though, the literature offers only one-off solutions for various effects. It lacks a universal
principle.This paper presents the design of an effectful contract system in the context of effect handlers. A key
metatheorem shows that contracts cannot unduly interfere with a program’s execution. An implementation
of this design, along with an evaluation of its generality, demonstrates that the theory can guide practice.

CCS Concepts: • Software and its engineering→ Semantics.

Additional Key Words and Phrases: effect handlers, software contracts

ACM Reference Format:
Cameron Moy, Christos Dimoulas, and Matthias Felleisen. 2024. Effectful Software Contracts (with Appen-
dices). Proc. ACM Program. Lang. 8, POPL, Article 88 (January 2024), 39 pages. https://doi.org/10.1145/3632930

1 CONTRACTS AND EFFECTS: UBIQUITOUS YET IGNORED
For many years, functional programming languages have included constructs for expressing and
checking higher-order behavioral contracts [Findler and Felleisen 2002; Keil and Thiemann 2015b;
Xu 2014; Xu et al. 2009]. With such contracts, programmers state function specifications and the
language’s runtime checks them.1 Concretely, a contract describes the promises a library makes
about exported values, and the expectations it imposes on uses [Meyer 1988, 1992]. Put differently,
contracts represent agreements between modules about values that flow from one to the other.

Although these contract systems deal with a wide range of functional properties, none can
systematically express properties concerning effects. For example, a library that parallelizes map
computations [Dean and Ghemawat 2008] should enforce—but often does not—that the function
argument to map is pure. Similarly, when a module exports a function that mutates a hash table, its
interface should promise client modules—but often cannot—that it modifies only the given table.

The literature is teeming with ad hoc solutions: affine contracts [Tov and Pucella 2010] to in-
teroperate with substructural type systems; framing contracts [Shinnar 2011] to limit mutation;
temporal contracts [Disney et al. 2011] to monitor protocols; authorization contracts [Moore et al.
2016] to enforce access control; size-change contracts [Nguyễn et al. 2019] to guarantee termina-
tion; trace contracts [Moy and Felleisen 2023] to check properties across multiple calls. All of these
systems use effects in contracts to constrain effects in code. No existing work supplies a unified
approach for doing so, however.
1The presentation here focuses on run-time checks, but some tools [Nguyễn et al. 2018; Xu 2012] can partially verify
higher-order contracts at compile time and generate residual run-time checks for unverified properties.

Authors’ addresses: Cameron Moy, PLT @ Northeastern University, Boston, Massachusetts, USA, camoy@ccs.neu.edu;
Christos Dimoulas, PLT @ Northwestern University, Evanston, Illinois, USA, chrdimo@northwestern.edu; Matthias
Felleisen, PLT @ Northeastern University, Boston, Massachusetts, USA, matthias@ccs.neu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/1-ART88
https://doi.org/10.1145/3632930

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

HTTPS://ORCID.ORG/0000-0002-4384-6351
HTTPS://ORCID.ORG/0000-0002-9338-7034
HTTPS://ORCID.ORG/0000-0001-6678-1004
https://doi.org/10.1145/3632930
https://orcid.org/0000-0002-4384-6351
https://orcid.org/0000-0002-9338-7034
https://orcid.org/0000-0001-6678-1004
https://orcid.org/0000-0001-6678-1004
https://doi.org/10.1145/3632930

88:2 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

This paper presents effect-handler contracts, a universal mechanism for expressing and moni-
toring properties of effectful code (Section 2). Its central contribution is a formal semantics of
effectful software contracts (Section 3). The model consists of a language where effectful opera-
tions are expressed in terms of effect requests and handlers [Plotkin and Pretnar 2009], not as
primitive operations; in the context of such a language, effect-handler contracts suffice to check a
broad class of constraints. An extension to the model (Section 4) formalizes dependent variants of
these contract forms. The model is carefully constructed to satisfy an erasure property (Section 5),
meaning that contracts cannot interfere with a program’s computation, other than signaling an er-
ror and stopping the world. It also satisfies blame correctness, meaning contracts correctly identify
components serving values that break the contract assertion.

A secondary contribution is an implementation based on this design. The implementation is
a standalone language within the Racket ecosystem [Felleisen et al. 2018] that has both effect
handlers and effect-handler contracts (Section 6). A thorough literature survey confirms that effect-
handler contracts subsume many existing constructs from prior work (Section 7).

2 EFFECT-HANDLER CONTRACTS, INFORMALLY
This section presents an effect-handler language that extends a functional core with constructs
for requesting effects, interpreting effects, and contracts governing effects. While adding ordinary
higher-order functional contracts to such a language is straightforward, extending it with contracts
on effects requires careful language design.

The first subsection presents the syntax of the model, while the second subsection illustrates
the semantics informally, using a series of code snippets that add up to a complete example.

2.1 Syntax and Informal Semantics
Themodel’s syntaxwill be presented in three steps: the untyped by-value 𝜆-calculus [Plotkin 1975];
an extension with functional contracts [Dimoulas and Felleisen 2011]; and an extension with effect
handlers [Plotkin and Pretnar 2009] that also includes syntax for contracts governing effects.

coRe
𝑒 ∈ Expr = 𝑥 | 𝑏 | 𝑓 | ⟨𝑒, 𝑒⟩ | if 𝑒 𝑒 𝑒 | 𝑒 𝑒
𝑏 ∈ Bool = true | false
𝑓 ∈ Fun = 𝑜 | 𝜆𝑥 .𝑒
𝑜 ∈ Op = fst | snd

𝑥,𝑦, 𝑧 ∈ Var
The functional coRe language comes with three built-in data types: Booleans, functions, and

pairs. They are eliminated by conditionals, application, and projections, respectively.

contRacts extends coRe
𝑒 ∈ Expr = . . . | 𝜅 | mon𝑘,𝑙𝑗 𝑒 𝑒

𝜅 ∈ Con = 𝑏 | 𝑓 | ⟨𝑒, 𝑒⟩ | 𝑒 −→ 𝑒

𝑗, 𝑘, 𝑙 ∈ Lab
The contRacts extension reinterprets the base data types as contracts. As a contract, true and

false accept and reject all values, respectively. Functions, when used as a contract, are predicates
that describe flat [Findler and Felleisen 2002] first-order constraints. A contract pair ⟨𝑒1, 𝑒2⟩ checks
the first component of a value pair with 𝑒1 and the second component with 𝑒2. A function contract
𝑒1 −→ 𝑒2 protects functions by checking that arguments satisfy 𝑒1 and results satisfy 𝑒2. A monitor
mon𝑘,𝑙𝑗 𝑒1 𝑒2 attaches the contract 𝑒1 to the value of 𝑒2 (the carrier). Labels 𝑗 , 𝑘 , and 𝑙 name the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

Effectful Software Contracts (with Appendices) 88:3

contract-defining, carrier-providing, and carrier-consuming parties, respectively. These labels are
used in error messages to blame the party responsible for a violation [Findler and Felleisen 2002].

effects extends contRacts
𝑒 ∈ Expr = . . . | handle𝑚 𝑒 with 𝑒 | do 𝑒
𝜅 ∈ Con = . . . | 𝑒 ▷𝑒 | ♢𝑒

𝑚 ∈ Mode = ▷ | ♢

The effects extension introduces two new pieces of syntax related to effect handlers: handle
and do. Evaluating do 𝑣 requests the effect described by 𝑣 . The evaluation of a request proceeds by
searching for the matching handler in the enclosing evaluation context and supplying it with 𝑣 .
Handlers come in two flavors:
• handle▷𝑒 with 𝑒ℎ is a main-effect handler. It interprets only effects performed by ordinary
code in the body expression 𝑒 using the handler 𝑒ℎ .
• handle♢ 𝑒 with 𝑒ℎ is a contract-effect handler. It interprets only effects performed by contract-
checking code in the body expression 𝑒 using the handler 𝑒ℎ .

Note.Two handler forms are needed to eliminate effect interference. If handle▷were to interpret
effects at the contract level, a contract could use this channel of communication to change the
outcome of a program. By interpreting effects at different levels with different handlers, contract
code cannot affect the result of a program. Thus, if a flat contract requests an effect via do 𝑣 , it is
not interpreted by a handle▷ form, even if it is the nearest enclosing handler.
Symmetrically, effect-handler contracts also demand two constructs, one per level. Both of these

forms monitor a function 𝑓 that may request effects:
• 𝑒1 ▷𝑒2 is a main-effect contract. It ensures that effects performed during the application of 𝑓
satisfy 𝑒1 and values received from the handler satisfy 𝑒2.
• ♢𝑒 is a contract-handler contract. It handles, using 𝑒 , effect requests during the application of
𝑓 that occur during the dynamic extent of a contract check.

2.2 Examples, Informally
The model suffices to establish essential metaproperties, but illustrating the ideas with such a
spartan syntax is too cumbersome. Hence, this section uses ML-like syntactic sugar to present
simple examples that illustrate the informal semantics of contracts, effect handlers, and effect-
handler contracts. For interesting examples, rather than synthetic ones, see Section 7.1.

Higher-Order Contracts. The RSA cryptographic algorithm is widely used for secure communi-
cation [Rivest et al. 1978]. Crucially, RSA relies on the difficulty of factoring prime numbers. Here
is the sketch of an RSA-key-generating function, using first-class contracts on a higher-order func-
tion to describe the primality constraint:

let p_gen_c = is_unit −→ ⟨is_prime, is_prime⟩
let k_gen_c = is_unit −→ ⟨is_key, is_key⟩
let rsa_c = p_gen_c −→ k_gen_c

let rsa : rsa_c = elided

The contract on rsa, attached with a colon, tells the reader that rsa is a function that accepts a
pair-of-primes-generating thunk and returns a key-pair-generating thunk. Contracts are first-class
values and can be defined using let. The · −→ · combinator protects functions by composing an
argument contract and a result contract. Furthermore, unlike a type for such a function, contracts
can employ user-defined predicates, e.g., is_prime, to check the validity of arguments and results.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

88:4 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

If the runtime discovers a contract violation—possibly in a distant client module—an error is
signaled identifying the violated contract and blaming the responsible party. Given an invalid
p_gen function—say, one that does not generate primes—the contract system identifies the source
of the violation like this:

> let bad_p_gen () = ⟨3, 4⟩
> rsa bad_p_gen ()

rsa: contract violation

expected: is_prime

given: 4

blaming: bad_p_gen

(assuming the contract is correct)

Note. Effect-handler contracts on their own are about safety properties; they do not suffice
to establish security properties. Abstractions that enforce security can be built on top of effect-
handler contracts (Section 6.3).

Main-Effect Handlers. A key requirement of RSA is that the generated prime numbers are ran-
dom. To generate random primes, there must be some way to generate ordinary random numbers.
A pseudorandom number generator (PRNG) is a deterministic algorithm for generating numbers
with properties similar to truly random numbers. The interface to most PRNGs is effectful: gener-
ating a random number causes the PRNG’s internal state to change.

In a language with effect handlers, a PRNG function collaborates with an effect handler via
effect-request messages to realize state changes [Pretnar 2015]:

data gen = Gen

let rand () = do Gen

let prng_h req kont =

match req with

| Gen → 𝜆s.kont (prng_extract s) (prng_next s)

| _ → 𝜆s.kont (do req) s

let run_with_prng thk seed =

(handle▷(let r = thk () in 𝜆_.r) with prng_h) (prng_init seed)

Consider the run_with_prng function. Given a thunk and a random seed, it runs the thunk in a
context that makes random-number generation available. To provide this service, run_with_prng
applies the thunk inside handle▷ with prng_h, an effect handler that interprets requests for gen-
erating a random number. This handler function takes two arguments: the requested effect and a
continuation that reifies the computation between the origin of the effect request and the handler.2
When thk needs a random number, it applies rand, which in turn, issues a do Gen effect re-

quest. The handler of a request packages up the request (Gen) and the delimited continuation to
give the handler function. Once the handler function receives these values, it constructs a 𝜆 that,
when given the PRNG state, invokes the continuation (kont) with the next random number. The
context then applies this function to the PRNG state. If some other effect is requested, the handler
propagates the request to an outer handler. Propagation works by applying the continuation to a

2Effect handlers come in two flavors: deep [Cartwright and Felleisen 1994; Plotkin and Pretnar 2009] and shallow [Hiller-
ström and Lindley 2018]. In the deep setting, the delimited continuation includes the handler itself; in the shallow one, it
does not. The handle▷ form uses the deep flavor.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

Effectful Software Contracts (with Appendices) 88:5

renewed request. Since do req is not a value, the call-by-value semantics ensures that the request
is handled before the continuation is resumed.

As a reminder, effect composition is a key benefit of using an effect-handler-based language
instead of a language with primitive effects. Since an effect-handler language expresses effects
uniformly, it is straightforward to reinterpret them, too. In particular, a programmer can replace
or supplement the default PRNG provided by run_with_prng, without changing the computation
(thk) at all. For example, here is a handler that biases random numbers toward extreme values by
squaring them:

let bias_h req kont =

let bias x = if req = Gen then x * x else x in

kont (bias (do req))

let run_with_bias thk = handle▷ thk () with bias_h

Assuming the original generator produces reals in [0, 1], this new handler can be composed with
the original PRNG to yield a biased generator:

run_with_prng (𝜆_.run_with_bias (𝜆_.rand ())) 0

Main-Effect Contracts. In the presence of I/O effects, the contract for rsa does not suffice. A
program may accidentally (or intentionally) use a prime-generating function that reveals more
information than desired:

let bad_p_gen_v2 () =

let ⟨p, q⟩ = elided in

do (Write "secret.txt" p); ⟨p, q⟩
In this snippet, the prime-generating function writes the secret prime 𝑝 to a file and thus com-
promises the RSA key. A contract for rsa should prohibit the use of effectful arguments such as
bad_p_gen_v2.
With main-effect contracts, expressing this restriction is straightforward:
let p_gen_c_v2 = p_gen_c ⊓ (is_gen ▷ is_real)

This revised contract is a conjunction; the⊓ combinator applies each of the two conjuncts, one after
another. Consequently, the prime-generating function must satisfy both. While the first conjunct
is the original p_gen_c contract, the second one describes a constraint on effects. In this example,
is_gen ▷ is_real ensures that effect requests satisfy is_gen, and that the handler passes only
values to the continuation if they satisfy is_real. Since is_gen returns true only for Gen, but not
Write, a use of bad_p_gen_v2 signals the desired contract violation.3

Main-effect contracts are active only during the dynamic extent of the protected function, and
not at any other point. Consider the following handler:

let printer_h req kont =

match req with

| Gen -> let res = do Gen in

do (Write "secret.txt" res);

kont res

| _ -> kont (do req)

let run_with_printer thk = handle▷ thk () with printer_h

3This example assumes that data generates a tag-checking predicate, such as is_gen, for each variant.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

88:6 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

This handler intercepts all random number requests and writes them to the filesystem. In the same
way as bad_p_gen_v2, this handler can be used to expose information:

run_with_prng (𝜆_.run_with_printer (𝜆_.rsa p_gen)) 0

However, this program does not result in a contract violation even when the contract of the prime-
generating function is p_gen_c_v2. When the prime-generating function requests a random num-
ber, evaluation moves to the body of the handler printer_h, which is outside the prime genera-
tor’s dynamic extent. Therefore is_gen ▷ is_real is no longer active when printer_h writes to
the filesystem.

The above behavior is by design; it is critical for assigning correct blame. Recall that a contract
establishes an agreement between a client and server module. According to p_gen_c_v2, the p_gen
function is responsible only for ensuring that its code does not perform forbidden effects directly,
or indirectly by calling other functions. Client code, including the code that calls p_gen and the code
that handles the legitimate effects p_gen performs, is not restricted by this part of the contract. In
other words, blaming p_gen_c_v2would be wrong even though printer_hwrites to the filesystem;
it would violate the blame correctness property (Section 5.3).

Contract-Effect Handlers. The p_gen_c_v2 contract guarantees that the thunk always receives a
real from the PRNG handler in response to its requests, but gives no assurance that these reals
are even somewhat random. A PRNG function that always returns 1

2 does not cause an error, but
yields a useless prime generator. Statistical tests exist to detect faulty PRNGs [Bassham et al. 2010];
a contract can employ such tests to detect obviously bad PRNG implementations.

Consider the simple-minded test that ensures two consecutive random numbers are different:
data check = Check is_real

let rec diff_h prev req =

match req with

| Check cur → ⟨prev = cur, diff_h cur⟩
| _ → ⟨do req , diff_h prev⟩

let run_with_diff_check thk = handle♢ thk () with (diff_h 0)

When executed via run_with_diff_check, contracts can use this test to determine whether the
generated random number differs from the previously generated one. The handle♢ form is a re-
stricted handler that interprets effects requested in the dynamic extent of a contract check. It does
not get to directly invoke the delimited continuation of the effect request; instead, the handler
function is expected to return a pair of values: the effect result and a new handler to replace the
current one. Critically, handle♢ affects only contract-checking code because it can transfer values
only to contract code.

Note.This restriction is similar to that of a runner [Ahman and Bauer 2020] where, informally, a
handler may invoke the continuation at most once in tail position. Here, the handler must invoke
the continuation exactly once in tail position.

Direct access to the delimited continuationwould permit tamperingwith the program result and
would thus allow interference between program code and contract code. For example, a handler
could ignore the continuation completely and return an arbitrary value.
Despite its limitations, handle♢ is still quite useful. Adapting p_gen_c_v2 yields a contract with

the desired test:
let diff_real x = is_real x && do (Check x)

let p_gen_c_v3 = p_gen_c ⊓ (is_gen ▷ diff_real)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

Effectful Software Contracts (with Appendices) 88:7

Here, diff_real requests an effect whose purpose is to check whether the latest argument to a
function differs from the most recent one. With this contract, and its corresponding effect handler
installed, a PRNG that always returns 1

2 signals a contract error.
The p_gen_c_v3 example illustrates why contracts themselves may need to perform effects.

Moreover, these effects cannot be locally encapsulated within the contract. In this example, state
should persist across multiple calls to the prime-generating function. If the state was locally con-
tained to p_gen_c_v3, then subsequent invocations of the prime-generating function would reset
the state.This approach would allowmore faulty PRNGs to pass the contract. More broadly, locally
encapsulated effects do not suffice to express many of the systems described in Section 7.

Contract-Handler Contracts. Suppose, for unit testing, the author of rsa wants to use a prede-
termined pool of numbers for random generation, instead of a PRNG. As such, it is important that
the number of times a program requests a random number does not exceed the length of the pool.
Thus, the contract needs to keep track of this information:

data remaining = Remaining

let rec rem_h k req =

match req with

| Remaining → ⟨k, rem_h (k - 1)⟩
| _ → ⟨do req , rem_h k⟩

let has_rem req = not (is_gen req) || (do Remaining) > 0

let pool_c k = (is_unit −→ is_any) ⊓ (has_rem ▷ is_real) ⊓ ♢(rem_h k)

let run_with_pool (xs : is_list) (thk : pool_c (length xs)) = elided

Like diff_h in the previous example, rem_h is a contract-effect-handler function. It stores the
number of values remaining in the random number pool. Instead of being installed directly using
handle♢, it is installed by pool_c. Specifically, the contract-handler contract ♢(rem_h k) installs
the function rem_h k using handle♢. As such, run_with_pool executes thk in a context where the
Remaining effect is interpreted by rem_h initialized with the size of the pool.
On its own, a contract-handler contract cannot signal a violation. Rather, it supports other con-

tracts that can. Here, that check happens in the ▷ conjunct of pool_c. When the thk requests a
random number, has_rem checks if there are still numbers left in the pool. If so, the request is
forwarded. Otherwise, an error is raised.

Note.Theorder of conjuncts in pool_c is relevant. Since has_rem requires that the rem_h handler
is installed, it must come earlier in the list of conjuncts than ♢(rem_h k). The⊓ combinator applies
contracts left-to-right. Thus, the right-most conjunct creates the outermost wrapper.

3 A FORMAL MODEL OF EFFECT HANDLER CONTRACTS
Defining a semantics amounts to defining an evaluation function that maps programs to answers.
Specifying such a function with a reduction relation provides an easy way to prove metatheo-
rems. Following tradition, the specification starts with an extension of the model’s syntax to an
evaluation syntax (Section 3.1). Next, the presentation of the reduction relation consists of three
subsections, corresponding to the three layers of syntax (Sections 3.2 to 3.5). The reduction rules
for contracts differ a bit from conventional definitions—namely, flat contracts have cascading be-
havior where, instead of just a Boolean, they can return any arbitrary contract that is then applied.
This difference and its purpose are examined in detail (Section 3.6).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

88:8 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

3.1 Evaluation Syntax
The evaluation syntax extends the grammar of expressions and defines the set of values:

effects (eval) extends effects
𝑒 ∈ Expr = . . . | mark𝑘,𝑙𝑗 𝑣 𝑒 | err𝑘𝑗
𝑣 ∈ Val = 𝑏 | 𝑓 | ⟨𝑣, 𝑣⟩ | 𝑣 −→ 𝑣 | 𝑣 ▷𝑣 | ♢𝑣

Expressions include marks and errors, which can arise during evaluation but cannot be expressed
in written programs. The expression mark𝑘,𝑙𝑗 𝑣𝜅 𝑒 states that effects requested by 𝑒 , and their fulfill-
ment, must satisfy contract 𝑣𝜅 . In other words, effect requests “passing through” the mark must
satisfy the contract. These marks are installed by main-effect contracts.

Next comes the grammar of evaluation contexts. The reduction relation requires three different
kinds of evaluation context, each with a different role:
• 𝐸▷ is the set ofmain-executing contexts containing regular code that is handled with handle▷.
• 𝐸♢ is the set of contract-executing contexts describing the dynamic extent of contract code
that is handled with handle♢.
• 𝐸 is the set of unrestricted contexts, which is the union of the (disjoint) sets 𝐸▷ and 𝐸♢.

Here are the elements of the grammar that are shared between each kind of evaluation context:
effects (eval) extends effects
𝐸 ∈ Ctx = ⟨𝐸, 𝑒⟩ | ⟨𝑣, 𝐸⟩ | if𝐸 𝑒 𝑒 | 𝐸 𝑒 | 𝑣 𝐸 | handle𝑚 𝐸 with 𝑣 | do𝐸 | 𝐸 −→ 𝑒

| 𝑣 −→ 𝐸 | 𝐸 ▷𝑒 | 𝑣 ▷𝐸 | ♢𝐸 | mon𝑘,𝑙𝑗 𝑣 𝐸 | mark𝑘,𝑙𝑗 𝑣 𝐸

𝐸▷ ∈ Ctx▷ = the above mutatis mutandis
𝐸♢ ∈ Ctx♢ = the above mutatis mutandis

And here are the elements that differ between the evaluation contexts:
effects (eval) extends effects
𝐸 ∈ Ctx = . . . | □ | mon𝑘,𝑙𝑗 𝐸 𝑒 | handle𝑚 𝑒 with 𝐸

𝐸▷ ∈ Ctx▷ = . . . | □ | | handle▷𝑒 with 𝐸▷

𝐸♢ ∈ Ctx♢ = . . . | | mon𝑘,𝑙𝑗 𝐸 𝑒 | handle♢ 𝑒 with 𝐸 | handle▷𝑒 with 𝐸♢

Contract code executes in two syntactic positions: 𝑒𝜅 in mon𝑘,𝑙𝑗 𝑒𝜅 𝑒 , and 𝑒ℎ in handle♢ 𝑒 with 𝑒ℎ .
While the former is clear, the latter might be a surprise. Recall the purpose of handle♢: it interprets
effect requests that originate in contract code. By implication, 𝑒ℎ may receive and execute higher-
order values originating from contract code. Therefore, it must be considered contract code.
The definition of evaluation contexts reflects this reasoning. In particular, 𝐸▷ omits productions

of the shape mon𝑘,𝑙𝑗 𝐸▷𝑒 and handle♢ 𝑒 with 𝐸▷, while 𝐸♢ omits the production for □. This restriction
on 𝐸♢ ensures that fully formed 𝐸♢ contexts contain either mon𝑘,𝑙𝑗 𝐸 𝑒 or handle♢ 𝑒 with 𝐸.

Finally, formulating the reduction rules and the evaluator requires two more definitions:
effects (eval) extends effects

𝑈 ∈ unhandled = {𝐸1 | 𝐸1 ≠ 𝐸2 [handle𝑚 𝐸𝑚3 with 𝑣ℎ]}
𝑠 ∈ stuck = {𝐸 [𝑣 𝑓 𝑣] | 𝑣 𝑓 ∉ Fun}

∪ {𝐸 [𝑜 𝑣] | 𝛿 (𝑜, 𝑣) is undefined}
∪ {𝐸 [do 𝑣] | 𝐸 ∈ unhandled}
∪ {𝐸 [handle♢ 𝑒 with 𝑣ℎ] | 𝑣ℎ ≠ ⟨𝑣𝑎, 𝑣𝑏⟩, 𝑣ℎ ≠ 𝑓 }

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

Effectful Software Contracts (with Appendices) 88:9

An unhandled evaluation context lacks a handler for any effect requests that may originate from
an expression plugged into the hole. The set of stuck expressions describes those to which no
reduction rule applies, i.e., they are not in the domain of the reduction relation. Examples are the
application of non-functions to values or an effect request in the hole of an unhandled context.
Instead of dealing with stuck expressions in the reduction relation, the evaluator is defined to
produce a sensible error when the reduction relation (transitively) reduces to a stuck expression.

The next three subsections present the one-step reduction relation for complete programs using
evaluation contexts [Felleisen et al. 2009; Felleisen and Hieb 1992]. The evaluator is defined by the
reflexive-transitive closure of the union of these relations.

3.2 Core Reduction Rules

if-tRue 𝐸 [if 𝑣 𝑒1 𝑒2] ↦−→ 𝐸 [𝑒1] if 𝑣 ≠ false

if-false 𝐸 [if false 𝑒1 𝑒2] ↦−→ 𝐸 [𝑒2]
app-lambda 𝐸 [(𝜆𝑥.𝑒) 𝑣] ↦−→ 𝐸 [𝑒 [𝑣/𝑥]]

app-op 𝐸 [𝑜 𝑣] ↦−→ 𝐸 [𝛿 (𝑜, 𝑣)]

𝛿 (𝑜, 𝑣) =
{
𝑣1 if𝑜 = fst, 𝑣 = ⟨𝑣1, 𝑣2⟩
𝑣2 if𝑜 = snd, 𝑣 = ⟨𝑣1, 𝑣2⟩

Fig. 1. Core Reduction Rules

Figure 1 displays the core reduction rules, which are entirely standard [Plotkin 1975]. Conditionals
and applications of 𝜆 are reduced in the expected manner. A 𝛿 metafunction interprets primitive
operations [Barendregt 1981]; this choice renders the reduction relation easily extensible.

3.3 Contract Reduction Rules

mon-tRue 𝐸 [mon𝑘,𝑙𝑗 true 𝑣] ↦−→ 𝐸 [𝑣]

mon-false 𝐸 [mon𝑘,𝑙𝑗 false 𝑣] ↦−→ 𝐸 [err𝑘𝑗]

mon-flat 𝐸 [mon𝑘,𝑙𝑗 𝑓 𝑣] ↦−→ 𝐸 [mon𝑘,𝑙𝑗 (𝑓 𝑣) 𝑣]

mon-paiR 𝐸 [mon𝑘,𝑙𝑗 ⟨𝑣1, 𝑣2⟩ 𝑣] ↦−→ 𝐸 [err𝑘𝑗] if 𝑣 ≠ ⟨𝑣3, 𝑣4⟩

gRd-paiR 𝐸 [mon𝑘,𝑙𝑗 ⟨𝑣1, 𝑣2⟩ ⟨𝑣3, 𝑣4⟩] ↦−→ 𝐸 [⟨mon𝑘,𝑙𝑗 𝑣1 𝑣3, mon
𝑘,𝑙
𝑗 𝑣2 𝑣4⟩]

mon-fun 𝐸 [mon𝑘,𝑙𝑗 (𝑣1 −→ 𝑣2) 𝑣] ↦−→ 𝐸 [err𝑘𝑗] if 𝑣 ∉ Fun

gRd-fun 𝐸 [mon𝑘,𝑙𝑗 (𝑣1 −→ 𝑣2) 𝑓] ↦−→ 𝐸 [𝜆𝑥 .mon𝑘,𝑙𝑗 𝑣2 (𝑓 (mon𝑙,𝑘𝑗 𝑣1 𝑥))]

Fig. 2. Contract Reduction Rules

Figure 2 presents the rules governing contract monitors. Following Dimoulas and Felleisen [2011],
mon𝑘,𝑙𝑗 𝑒𝜅 𝑒 monitors the value of 𝑒 with the contract expression 𝑒𝜅 . The reduction of many contract

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

88:10 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

expressions is specified via two related rules, prefixed with mon and gRd, respectively. A mon rule
checks a first-order property of the carrier. In this model, checking first-order properties amounts
to checking whether the top-level shape of the carrier value is the expected one. For example,
mon-fun checks whether the carrier is a function. A gRd rule assumes the shape check is satisfied
and constructs a wrapper to check either higher-order (as in gRd-fun) or nested properties (as in
gRd-paiR).

The mon-tRue and mon-false rules immediately succeed and fail, respectively. When the con-
tract is a predicate 𝑓 , mon-flat applies the predicate to the carrier and uses the result as a contract.
Since true and false double as contracts, this cascading of checks works as expected. It is possible
to return non-Boolean contracts as well; Section 3.6 explains why this matters.
The gRd rules cover values that need “deep” checking. A pair of contracts distributes over a pair

of values. A function contract yields a wrapper value that checks the argument and result contract
when the wrapper is applied. The blame labels on the argument monitor are swapped since the
argument position of a function contract is contravariant [Findler and Felleisen 2002].

3.4 Effect-Handler Reduction Rules

handle 𝐸 [handle𝑚 𝑣 with 𝑣ℎ] ↦−→ 𝐸 [𝑣]
do▷ 𝐸 [handle▷𝐸▷[do 𝑣] with 𝑣ℎ] ↦−→ 𝐸 [𝑣ℎ 𝑒𝑣 (𝜆𝑥 .handle▷𝐸▷[𝑒𝑥] with 𝑣ℎ)]

if𝐸▷∈ unhandled
where 𝑒𝑣 = (↑𝐸▷) [𝑣], 𝑒𝑥 = (↓𝐸▷) [𝑥]

do-paiR♢ 𝐸 [handle♢ 𝐸♢ [do 𝑣] with ⟨𝑣1, 𝑣2⟩] ↦−→ 𝐸 [handle♢ 𝐸♢ [𝑣1] with 𝑣2]
if𝐸♢ ∈ unhandled

do-fun♢ 𝐸 [handle♢ 𝐸♢ [do 𝑣] with 𝑓] ↦−→ 𝐸 [handle♢ 𝐸♢ [do 𝑣] with (𝑓 𝑣)]
if𝐸♢ ∈ unhandled

↑ : Ctx→ Ctx ↓ : Ctx→ Ctx

↑□ = □
↑⟨𝐸, 𝑒⟩ = ↑𝐸
↑⟨𝑣, 𝐸⟩ = ↑𝐸

. . .

↑(mark𝑘,𝑙𝑗 (𝑣1 ▷𝑣2) 𝐸) = mon𝑘,𝑙𝑗 𝑣1 (↑𝐸)

↓□ = □
↓⟨𝐸, 𝑒⟩ = ↓𝐸
↓⟨𝑣, 𝐸⟩ = ↓𝐸

. . .

↓(mark𝑘,𝑙𝑗 (𝑣1 ▷𝑣2) 𝐸) = (↓𝐸) [mon
𝑙,𝑘
𝑗 𝑣2 □]

Fig. 3. Effect-Handler Reduction Rules

Figure 3 presents the reduction rules for effect handlers. When the body of any handler is a value,
the effect computation has run its course and the handler is eliminated. Otherwise, one of the do
rules may apply. The unhandled side condition in all of these rules ensures that only the inner-
most handler is matched with an effect request. Note how do▷ and do♢ use the special evaluation
contexts from Section 3.1 to ensure that the requested effect (do 𝑣) originates from either main-
program code or contract code.

The do▷ rule specifies main-program handlers as deep. Concretely, the handler is applied to the
effect request and a delimited continuation that includes the handler itself. The evaluation context

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

Effectful Software Contracts (with Appendices) 88:11

𝐸▷ may contain marks deposited by main-effect contracts. Two metafunctions, ↑ and ↓, collect
the contracts for main-effect requests and their fulfillment, respectively. Plugging the raw effect
request 𝑣 into the context created by ↑ produces an expression that performs all of the necessary
contract checks. The same goes for 𝑥 and ↓.
Note that the blame labels flip for ↓. The return value, given to the continuation, comes from a

handler, which exists in the context of an effect request. As such, swapping the labels is necessary
so that blame assignment points to the party that violated the contract [Dimoulas et al. 2011].
By contrast, the do-paiR♢ and do-fun♢ rules specify handlers that have no control over the

continuation. Furthermore, two rules are needed to distinguish the two contract cases, analo-
gous to the rules for Boolean contracts and predicate contracts. Specifically, the handler 𝑒ℎ in
handle♢ 𝑒 with 𝑒ℎ can reduce to either a function or a pair:
• In do-paiR♢, the first component is plugged into the evaluation context, which is the contin-
uation of the effect request, and the second component becomes the next handler.
• In do-fun♢, the function is applied to the effect request with the expectation that this new
contract expression eventually reduces to a pair. Like mon-flat, this rule ensures that con-
tract code is always executed in one syntactic position.

3.5 Effect-Handler Contract Reduction Rules

mon-handle▷ 𝐸 [mon𝑘,𝑙𝑗 (𝑣1 ▷𝑣2) 𝑣] ↦−→ 𝐸 [err𝑘𝑗] if 𝑣 ∉ Fun

gRd-handle▷ 𝐸 [mon𝑘,𝑙𝑗 (𝑣1 ▷𝑣2) 𝑓] ↦−→ 𝐸 [𝜆𝑥.mark𝑘,𝑙𝑗 (𝑣1 ▷𝑣2) (𝑓 𝑥)]

maRK 𝐸 [mark𝑘,𝑙𝑗 𝑣𝜅 𝑣] ↦−→ 𝐸 [𝑣]

mon-handle♢ 𝐸 [mon𝑘,𝑙𝑗 (♢𝑣ℎ) 𝑣] ↦−→ 𝐸 [err𝑘𝑗] if 𝑣 ∉ Fun

gRd-handle♢ 𝐸 [mon𝑘,𝑙𝑗 (♢𝑣ℎ) 𝑓] ↦−→ 𝐸 [𝜆𝑥.handle♢ (𝑓 𝑥) with 𝑣ℎ]

Fig. 4. Effect-Handler Contract Reduction Rules

Finally, Figure 4 presents the reduction rules governing both kinds of effect-handler contract. The
mon rules ensure that the carriers are functions; if not, they signal a violation. If the carriers are
functions, the contracts act in a higher-order manner via gRd-handle▷ and gRd-handle♢.
The gRd-handle▷ rule simply installs a mark that constrains effects performed in 𝑓 . Actually

checking these contracts is delegated to do▷. Once the dynamic extent of a mark expression is over,
the mark itself can be eliminated via the maRK rule.

The gRd-handle♢ rule wraps the carrier in a contract-effect handler, where 𝑣ℎ becomes the
handler function. As such, 𝑣ℎ also becomes contract-checking code.

3.6 On the Importance of Cascading Contracts
Flat contracts in this model generalize the ones from the literature to allow cascading. In particular,
a flat contract can return any contract, not just a Boolean. Generalizing flat contracts in thismanner
is highly useful. Take affine contracts [Tov and Pucella 2010]. An affine contract guarantees that
a function is called at most once by keeping track of how many times the function has previously
been called. It does so with mutable state.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

88:12 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

let 𝑥
𝑛−⊸ 𝑦 =

𝜆_.let r = do (Ref n) in

((unused/c r) ⊓ x) −→ y

let unused/c r =

𝜆_.if is_zero (do (Get r)) then

false

else

do (Update r (𝜆n.n - 1)); true

let run_with_mut_refs thk = handle♢ thk () with elided

Fig. 5. Affine Contract via Cascading

Figure 5 shows the code for a contract that allows a function to be called at most 𝑛 times. The
run_with_mut_refs function grants contract code the ability to create, read from, and write to mu-
table references. Accordingly, the 𝑥 𝑛−⊸ 𝑦 contract specifies a function 𝑥 −→ 𝑦 that can be called
at most 𝑛 times. This property is maintained by allocating a reference containing the remaining
number of calls permitted. Each time the function is applied, the number contained inside this
reference is decremented.

The 𝑥
𝑛−⊸ 𝑦 contract is a flat contract, not a function contract. When applied to a function,

𝑥
𝑛−⊸ 𝑦 ignores its argument (the function itself) and allocates a cell initialized with 𝑛; then it

returns a function contract. Due to the cascading behavior, this allocation happens exactly once
for each carrier whose monitor enforces the “call at most 𝑛 times” constraint. Without cascading,
this kind of contract is not expressible [Felleisen 1991] in terms of existing contract forms.

4 DEPENDENT CONTRACTS
The contract forms considered thus far cannot deal with dependencies. For example, the result part
of a function contract might have to depend on the actual argument.

This section extends the model with dependency: both traditional dependent function contracts,
written as 𝑒1 =⇒ 𝑒2, and new dependent main-effect contracts, written as 𝑒1 ▶ 𝑒2. Formally, the
syntax is extended as follows:

dependent (eval) extends effects (eval)
𝜅 ∈ Con = . . . | 𝑒 =⇒ 𝑒 | 𝑒 ▶ 𝑒

𝑣 ∈ Val = . . . | 𝑣 =⇒ 𝑣 | 𝑣 ▶ 𝑣

𝐸 ∈ Ctx = . . . | 𝐸 =⇒ 𝑒 | 𝑣 =⇒ 𝐸 | 𝐸 ▶ 𝑒 | 𝑣 ▶ 𝐸

𝐸▷ ∈ Ctx▷ = the above mutatis mutandis
𝐸♢ ∈ Ctx♢ = the above mutatis mutandis

4.1 Dependent Function Contracts
Recall the run_with_pool function from Section 2.2. This function takes two arguments: a list of
numbers (xs) and a thunk (thk). The contract on thk is pool_c (length xs), which depends on
the first argument. As is, the model cannot express this dependency because gRd-fun does not
communicate the argument value to the result contract.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

Effectful Software Contracts (with Appendices) 88:13

Dependent contracts have an extensive history in the literature [Blume and McAllester 2006;
Findler and Blume 2006; Greenberg et al. 2010].The “indy” semantics, due to Dimoulas et al. [2011],
is now accepted as standard:

mon-dep-fun 𝐸 [mon𝑘,𝑙𝑗 (𝑣1 =⇒ 𝑣2) 𝑣] ↦−→ 𝐸 [err𝑘𝑗] if 𝑣 ∉ Fun

gRd-dep-fun 𝐸 [mon𝑘,𝑙𝑗 (𝑣1 =⇒ 𝑣2) 𝑓] ↦−→ 𝐸 [𝜆𝑥 .let𝑥 𝑗 = mon
𝑙, 𝑗
𝑗 𝑣1 𝑥 in

let𝑥𝑘 = mon𝑙,𝑘𝑗 𝑣1 𝑥 in

mon𝑘,𝑙𝑗 (𝑣2 𝑥 𝑗) (𝑓 𝑥𝑘)]

Instead of being a result contract, as in a normal function contract, 𝑣2 is a function that produces
a result contract when given the argument. In the contractum, 𝑣2 is applied not directly to the
argument 𝑥 . Doing so would be the “lax” semantics [Findler and Felleisen 2002]. For indy, 𝑣2 is
applied to 𝑥 protected by the argument contract. This is because 𝑣2 itself may violate the contract.
To reflect this possiblity, the client blame label on 𝑥 𝑗 is 𝑗 , the contract-defining party. Otherwise,
this rule is the same as gRd-fun.

Note. Moy and Felleisen [2023] observe that, under certain circumstances, dependent function
contracts can duplicate effects. They present a solution to this problem that stages contract effects.
Since the purpose of this section is to convey the essence of dependent contracts, the model here
does not include the complexity of staged contract effects. However, the solution is orthogonal to
this formalism and could be readily adopted.

4.2 Dependent Main-Effect Contracts
Dependency can also arise in main-effect contracts. Consider a random-number-generating effect
Gen k that yields a random integer between 0 and 𝑘 inclusive. Guaranteeing that the random
number is within bounds requires dependency:

data gen = Gen is_integer

let is_in_range req =

match req with

| Gen upper → 𝜆r.(0 <= r) && (r <= upper)

| _ → 𝜆_.false

let rand_c = is_gen ▶ is_in_range

In this example, is_in_range matches on the effect request itself to determine the greatest valid
random number. This number, given the name upper, is used to construct a predicate that ensures
the generated number is within bounds.

Formalizing dependent main-effect contracts requires a few adjustments to the original seman-
tics. First, two additional rules are needed to reduce monitors containing dependent main-effect
contracts. These are analogous to the ones for ordinary main-effect contracts:

mon-handle▶ 𝐸 [mon𝑘,𝑙𝑗 (𝑣1 ▶ 𝑣2) 𝑣] ↦−→ 𝐸 [err𝑘𝑗] if 𝑣 ∉ Fun

gRd-handle▶ 𝐸 [mon𝑘,𝑙𝑗 (𝑣1 ▶ 𝑣2) 𝑓] ↦−→ 𝐸 [𝜆𝑥.mark𝑘,𝑙𝑗 (𝑣1 ▶ 𝑣2) (𝑓 𝑥)]

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

88:14 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

Second, the ↓metafunction must be extended to permit dependencies:

↓ : Val × Ctx→ Ctx

𝑣 ↓□ = □

𝑣 ↓⟨𝐸, 𝑒⟩ = 𝑣 ↓𝐸
𝑣 ↓⟨𝑣1, 𝐸⟩ = 𝑣 ↓𝐸

. . .

𝑣 ↓(mark𝑘,𝑙𝑗 (𝑣1 ▷𝑣2) 𝐸) = (𝑣 ↓𝐸) [mon
𝑙,𝑘
𝑗 𝑣2 □]

𝑣 ↓(mark𝑘,𝑙𝑗 (𝑣1 ▶ 𝑣2) 𝐸) = (𝑣 ↓𝐸) [mon𝑙,𝑘𝑗 (𝑣2 𝑒) □]

where 𝑒 = mon
𝑘,𝑗
𝑗 𝑣1 ((↑𝐸) [𝑣])

With this revision, ↓ has access to the raw effect request 𝑣 . When a mark contains a dependent
contract, it must generate the wrapper needed for the effect response. To do so, it applies 𝑣2 to
𝑒 , where 𝑒 is the protected effect request. In a lax semantics, 𝑒 = (↑𝐸) [𝑣]. For indy, 𝑒 must also
protect 𝑣 with 𝑣1 where the client label is the contract-defining party 𝑗 .
Finally, given this adapted metafunction, the do▷ rule must be adjusted accordingly:

do▷ 𝐸 [handle▷𝐸▷[do 𝑣] with 𝑣ℎ] ↦−→ 𝐸 [𝑣ℎ 𝑒𝑣 (𝜆𝑥.handle▷𝐸▷[𝑒𝑥] with 𝑣ℎ)]
if𝐸▷∈ unhandled
where 𝑒𝑣 = (↑𝐸▷) [𝑣], 𝑒𝑥 = (𝑣 ↓𝐸▷) [𝑥]

Here, 𝑒𝑥 uses the updated metafunction (highlighted) with the raw effect request 𝑣 supplied.

5 SEMANTIC PROPERTIES
At this point, defining a partial evaluation function, also known as an evaluator, is straightforward:

dependent (pRoof) extends dependent (eval)

𝑝 ∈ Prog = {𝑒 | 𝑒 is closed}
𝑎 ∈ Ans = 𝑏 | opaque | err𝑘𝑗 | err◦•

eval : Prog→ Ans

eval(𝑒) =

𝑏 if 𝑒 ↦−→∗ 𝑏
opaque if 𝑒 ↦−→∗ 𝑣, 𝑣 ∉ Bool
err𝑘𝑗 if 𝑒 ↦−→∗ 𝐸 [err𝑘𝑗]
err◦• if 𝑒 ↦−→∗ 𝑠

Programs, i.e. closed expressions, are the input to the evaluator. Answers are the output of the
evaluator. If a program reduces to a Boolean, the answer is the same Boolean. All other values yield
the opaque token.4 This behavior matches that of most REPLs where function values are printed as
an opaque symbol. Two kinds of error can occur during execution: contract errors, which produce
err𝑘𝑗 , and language errors,5 which produce err◦•.

4For simplicity, the function turns pairs into opaque, too.
5In essence, such errors are violations of the runtime system’s contracts.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

Effectful Software Contracts (with Appendices) 88:15

5.1 Well-Definedness
Following convention, the first theorem states two properties that ensure the sanity of the reduc-
tion relation. Specifically, eval is a partial function because the reduction relation relates each pro-
gram to at most one answer. Programs where eval is undefined are exactly those with unbounded
reduction sequences.

Theorem 5.1 (Functional Evaluation). Two facts about the evaluator hold:
(1) The eval relation is a partial function.
(2) If 𝑒 is a program, then either (i) eval(𝑒) is defined or (ii) the reduction sequence starting with

𝑒 is unbounded.

PRoof. See Appendix B. □

5.2 Erasure
The key property of interest for the model is contract erasure. Contracts serve one purpose, namely,
to detect violations of specifications. Therefore, the output of a correct program should not de-
pend on the presence or absence of contracts. In short, contracts must not interfere with program
execution—other than possibly signaling an error. Non-interference in the presence of effects is
critical for modular reasoning [Oliveira et al. 2012].
Stating the erasure theorem requires defining an erasure functionℰ for contract monitors:

ℰ : Expr→ Expr

ℰ(𝑏) = 𝑏

ℰ(𝑥) = 𝑥

ℰ(𝜆𝑥.𝑒) = 𝜆𝑥.ℰ(𝑒)
· · ·
ℰ(mon𝑘,𝑙𝑗 𝑒𝜅 𝑒) =ℰ(𝑒)
ℰ(handle♢ 𝑒 with 𝑒ℎ) = handle♢ℰ(𝑒) withℰ(𝑒ℎ)

ℰ+ : Expr→ Expr

ℰ+ (𝑏) = 𝑏

ℰ+ (𝑥) = 𝑥

ℰ+ (𝜆𝑥.𝑒) = 𝜆𝑥.ℰ+ (𝑒)
· · ·
ℰ+ (mon𝑘,𝑙𝑗 𝑒𝜅 𝑒) =ℰ+ (𝑒)
ℰ+ (handle♢ 𝑒 with 𝑒ℎ) =ℰ+ (𝑒)

Theorem 5.2 (Erasure). If eval(𝑒) = 𝑏 then eval(ℰ(𝑒)) = 𝑏.

PRoof. The proof of erasure proceeds by a simulation argument with the following simulation:

𝜆𝑥. 𝑓 𝑥 ∼ 𝑓

handle♢ 𝑒 with 𝑒ℎ ∼ handle♢ �̃� with 𝑒ℎ

handle♢ 𝑒 with 𝑒ℎ ∼ �̃�
mon𝑘,𝑙𝑗 𝑒𝜅 𝑒 ∼ �̃�

mark𝑘,𝑙𝑗 𝑣 𝑒 ∼ �̃�
· · ·

By convention, a metavariable with a tilde such as �̃� is in simulation with its plain counterpart 𝑒 .
See Appendix C for details. □

Technically, non-termination is the one contract effect that can affect a program’s behavior. So
long as contracts contain code in a Turing-complete language, this effect is unavoidable. As stated,
Theorem 5.2 holds because the antecedent rules out non-terminating contracts.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

88:16 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

While the syntax design already clarifies that there are two separate, disjoint levels of effect
handling, the proof forTheorem 5.2 confirms this claim. Additionally, main code cannot be serviced
by contract-effect handlers. A small adjustment to the erasure function, defined above asℰ+, makes
it possible to state the claim formally.

Corollary 5.3 (No Effect Interference). If eval(𝑒) = 𝑏 then eval(ℰ+ (𝑒)) = 𝑏.

PRoof. Follows directly from the proof of Theorem 5.2. □

Establishing the erasure theorem is straightforward in a pure setting, yet difficult to achieve
in a language with effects. Ensuring erasure means contract code must not interfere with the
main program directly or indirectly via effects. A language with effect-handler contracts poses the
additional problem of having to grant contract code the right to interact with effects, while also
imposing constrains on such interactions.

A physicist would describe the model as being in an “unstable equilibrium;” an author of a
types textbook would use the word “brittle” and compare the design to the Hindley-Milner al-
gorithm for type inference. Directly put, designing a language semantics that satisfies contract
erasure demands balancing expressive power with preventing interference. The model presented
here achieves this delicate balance, as the theorem and Section 7 show. Limiting the expressive
power any further makes programming inconvenient and would neglect existing use cases. How-
ever, experiments adding more power to the model show that many extensions violate erasure.

For example, consider a naive design where the reduction relation for handlers merges the two
levels of effect handling:

𝐸 [handle 𝐸𝑘 [do 𝑣] with 𝑣ℎ] ↦−→ 𝐸 [𝑣ℎ 𝑣 (𝜆𝑥.handle 𝐸𝑘 [𝑥] with 𝑣ℎ)] if𝐸𝑘 ∈ unhandled
Instead of restricting the evaluation context in the body of the handler, this rule uses the unre-
stricted context 𝐸𝑘 . Such a rule violates contract erasure as the following program demonstrates:

handle (mon𝑘,𝑙𝑗 (do false) true) with 𝜆𝑥 .𝜆𝑦𝑘 .𝑥
The original program evaluates to false, but erasing the contract yields a variant whose value is
true. Similarly, modifying do▷ to use 𝐸, or modifying do-fun♢ to give direct access to the contin-
uation, both result in erasure violations as they produce a rule equivalent to the one above.

Introducing “main-handler contracts” like so

𝐸 [mon𝑘,𝑙𝑗 (▷𝑣ℎ) 𝑓] ↦−→ 𝐸 [𝜆𝑥 .handle▷ (𝑓 𝑥) with 𝑣ℎ]
also violates erasure. Here is a counterexample:

handle▷ ((mon𝑘,𝑙𝑗 (▷ (𝜆𝑦.𝜆𝑧𝑘 .false)) (𝜆𝑥 .do𝑥)) true) with 𝜆𝑦.𝜆𝑧𝑘 .𝑦
Again, the original program evaluates to false, while its erased variant yields true. In short, gRd-
handle♢ cannot be generalized.

5.3 Blame Correctness
Thefinal property to consider is blame correctness, that is, whether a failingmonitor assigns blame
to the component that serves a faulty value. In the context of themodel, the do▷ reduction deserves
particular attention. Like the rule for monitoring first-class functions, the reduction for main-effect
handling switches the order of blame labels as it pushes the relevant contracts down the handler’s
continuation (𝑣 ↓𝐸▷). The question is—as it was for the original work on higher-order (dependent)
function contracts [Findler and Felleisen 2002]—whether this switch is correct. As Dimoulas et al.
[2011] show, the answer is a blame correctness theorem.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

Effectful Software Contracts (with Appendices) 88:17

By now, the strategy for proving blame correctness is reasonably standard. The first step is to
introduce ownership labels on expressions, values, and evaluation contexts. Intuitively, an expres-
sion |𝑒 |𝑙 denotes that the owner of 𝑒 is component 𝑙 .

The second step is to adjust the reduction relation so that ownership changes when a value
crosses from one component to another. Crossing may either add or drop a label from a value.
The reduction drops a label when the crossing involves a contract check, meaning the value is
vetted and “absorbed” by a new host component. A blame label is added when the crossing does
not involve a check, meaning the value becomes co-owned by several distinct components. It is
critical that the ownership labels do not affect the semantics proper.

The third and final step is to show that when a monitor is about to check a value, the latest
ownership label of the value is the same one that the monitor uses to assign blame.

Theorem 5.4 (Blame Correctness). For all 𝑒 , if 𝑙𝑜 ; ∅ ⊢ 𝑒 and 𝑒 ↦−→∗𝑜 𝐸 [mon𝑘,𝑙𝑗 𝑣𝜅 𝑣], then 𝑣 = |𝑣 ′ |𝑘 .

PRoof. The proof uses the standard subject-reduction technique [Curry and Feys 1958; Wright
and Felleisen 1994] and a consistency judgment for the ownership annotations.The judgment 𝑙 ; Γ ⊢
𝑒 says that 𝑒 is well-formed if its owner is 𝑙 , given an environment Γ that maps variables to their
owners. Importantly, if a program is well-formed under the default owner 𝑙𝑜 , then for anymonitors
it contains, the owner of the carrier matches the server label of the monitor. Subject reduction
shows that this consistency is preserved across reduction sequences, and hence, if a monitor check
fails, blame is assigned to the correct component. See Appendix D for the full proof. □

The labeled reduction semantics is indeed equivalent to the unlabeled one after erasing owner-
ship labels (𝒪(·)) from the first one.

Proposition 5.5 (Ownership Erasure). For all labeled 𝑒 , 𝑒 ↦−→∗𝑜 𝑒′ if and only if𝒪(𝑒) ↦−→∗ 𝒪(𝑒′).

Note.The stronger complete monitoring property states that all channels of communication be-
tween components can be monitored using contracts [Dimoulas et al. 2012]. The presented model
does not satisfy complete monitoring. As Section 7 explains, the intent of effect-handler contracts
is to be a low-level mechanism for implementing other constructs. Complete monitoring is more
relevant to prove for these higher-level contract systems, not the low-level target.

6 EFFECT RACKET
Rapidly moving from amodel to a full-fledged programming language calls for (1) a programmable
production-level language with (2) linguistic constructs for realizing effect handlers easily and (3) a
well-developed higher-order contract system. Racket is such a language [Felleisen et al. 2018; Find-
ler and Felleisen 2002; Flatt and PLT 2010; Flatt et al. 2007]. This section presents effect/racket, a
language with effect handlers and a full contract system (Section 6.1). Following the precedent of
typed/racket, the language is implemented as a library [Tobin-Hochstadt et al. 2011] (Section 6.2).
The language implementation validates that themodel can be realized.Therefore, it may help guide
implementers of other effect-handler languages.

6.1 The Language, By Example
This section is organized like Section 2.2, but uses different examples to keep things interesting.

Main-Effect Handlers. As an introductory example, consider implementingML’s first-class muta-
ble references using effect handlers. References come with a ref constructor and two elimination
forms: ref-get and ref-set. In effect/racket, each form demands the declaration of a corre-
sponding effect: one for allocating a reference cell, one for getting its value, and yet another for

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

88:18 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

#lang effect/racket

(effect ref (v))

(effect ref-get (r))

(effect ref-set (r v))

;; Store → Service

(define (ref-service store)

(handler

;; Creates a reference

[(ref init)

(define-values (r new-store) (store-allocate store init))

(with ((ref-service new-store))

(continue* r))]

;; Returns a reference's value

[(ref-get r)

(continue (store-get store r))]

;; Sets a reference's value

[(ref-set r v)

(with ((ref-service (store-set store r v)))

(continue* (void)))]))

(a) Program
> (with ((ref-service empty-store))

(define r (ref 0))

(ref-set r (add1 (ref-get r)))

(ref-get r))

1

(b) REPL

Fig. 6. Mutable References with effect/racket

assigning to a cell. Declaring an effect makes the effect name available both for requesting the
effect and, within a handler, interpreting the effect.

Figure 6a displays the code for both the effect declarations and the effect handler. The handler
function, dubbed a service for references, comes with three clauses, one per declared effect; all
other effects are propagated automatically. Furthermore, the handler form binds two identifiers to
delimited continuations: continue, for resuming in a deep manner; and continue*, for resuming
in a shallow manner. Otherwise, the handler function uses standard techniques for implementing
a store in this setting [Cartwright and Felleisen 1994; Pretnar 2015].

Any language in the Racket ecosystem, including effect/racket, is easily equipped with a read-
eval-print loop (REPL). By running the effect/racket program, the definitions of effects and ser-
vices become available for interactive experimentation. Figure 6b shows how to install the handler
function using the with form. In the context of this with expression, it is now possible to allocate
a numeric reference cell, to increase its value by 1, and then to retrieve this value.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

Effectful Software Contracts (with Appendices) 88:19

Main-Effect Contracts. Suppose a programmer wishes to write a library function that guaran-
tees a frame condition. To make this concrete, the function guarantees that it manipulates only a
specific, given reference cell during the dynamic extent of any call. A good name for this contract
would be mutates-only/c, and here is how the library’s interface would state that guarantee:

(provide

(contract-out

[ref-restore

;; Runs (f r), restores the content of r, and

;; returns the value of r that f stores there.

(->i ([r ref?]

[f (and/c (mutates-only/c r)

(-> ref? any/c))])

[result any/c])]))

The function contract is a standard indy dependent contract [Dimoulas et al. 2011] that governs
two arguments—r and f—and promises nothing about its result. The new part is the contract for f,
which says that (1) f is a function from a reference cell to any value and (2) it may mutate only r.

The frame contract is a rather straightforward instance of a main-effect contract:

(define (mutates-only/c r-ok)

(define (effect-ok? e)

(match e

[(ref-set r _) (equal? r r-ok)]

[_ true]))

(->e effect-ok? any/c))

The mutates-only/c function takes a reference cell as an argument and returns a main-effect con-
tract that permits only writing to the given cell and no other one. The two-part ->e contract (i.e.,
· ▷ ·) tells a reader that requested effects must satisfy the effect-ok? predicate and that values
returned by the handler can be anything. According to effect-ok?, any write effect must be to a
reference cell that is equal to r-ok. All other effects are permitted.

Contract-Effect Handlers. Equipped with reference cells, it is now possible to transliterate the
affine-function contract from Section 3.6 into running code. Figure 7 shows the implementation of
−⊸ as a contract exported from a library.
Since the contract relies on reference cells at the contract level, it is mandatory to lift the service

from the main level to the contract level; see Figure 7 (lines 26–34). The contract-handler form
does not make the delimited continuation available; instead, each armmust return a pair of values:
the value to be supplied to the delimited continuation, and a new handler to be installed around
the continuation.

Using ref-contract-service, both −⊸ and unused? can be defined using Racket’s existing con-
tract library, with reference effects performed as needed; see Figure 7 (lines 12–24). As in Sec-
tion 3.6, −⊸ must use cascading to allocate a reference for affine functions at the right time; the
presented code realizes this constraint using the self/c combinator, which when protecting a car-
rier v, applies a function to v and uses the result to protect v—just like flat contracts in the model.
Here, the function given to self/c returns the expected function contract. For −⊸, the value v is
not needed and is discarded.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

88:20 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

1 #lang effect/racket

2

3 (provide

4 ;; Store → Service

5 ;; Service to be installed for uses of −⊸.

6 ref-contract-service

7

8 ;; Natural Contract Contract → Contract

9 ;; Returns a contract for a function that is called at most n times.

10 −⊸)

11

12 (define (−⊸ n dom cod)

13 (self/c

14 (𝜆 _

15 (define r (ref n))

16 (->i ([x dom])

17 #:pre () (unused? r)

18 [result cod]))))

19

20 (define (unused? r)

21 (define m (ref-get r))

22 (cond

23 [(zero? m) false]

24 [else (ref-set r (sub1 m)) true]))

25

26 (define (ref-contract-service store)

27 (contract-handler

28 [(ref init)

29 (define-values (r new-store) (store-allocate store init))

30 (values r (ref-contract-service new-store))]

31 [(ref-get r)

32 (values (store-ref store r) (ref-contract-service store))]

33 [(ref-set r v)

34 (values (void) (ref-contract-service (store-set store r v)))]))

Fig. 7. Affine-Function Contracts with effect/racket

Contract-Handler Contracts. A function is reentrant if it can call itself recursively, directly or indi-
rectly. A contract-handler contract can check for non-reentrancy by prohibiting recursive calls dur-
ing a function’s dynamic extent. Implementing such a constraint requires both a contract-handler
to mark the dynamic extent of a function call and a contract-handler contract:

(effect non-reentrant? ())

(define non-reentrant-service

(contract-handler

[(non-reentrant?)

(values false non-reentrant-service)]))

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

Effectful Software Contracts (with Appendices) 88:21

The contract for a non-reentrant function f installs this handler, like thus:

1 (provide

2 (contract-out

3 [f (and/c

4 (with/c non-reentrant-service)

5 (->i ([l vector?])

6 #:pre () (non-reentrant? #:fail true)

7 [result vector?]))]))

When a client applies f, the precondition requests a non-reentrant? effect (line 6). If this returns
false, the functionmay already be running; otherwise, the #:fail option, which provides a default
value if no matching handler is installed, returns true. Once the precondition check passes, the
second wrapper sets up a contract-handler contract (line 4) using with/c (i.e., ♢ ·). Thus, if f were
to call itself, the contract prohibits it because the installed non-reentrant-service supplies false.

6.2 The Implementation, An Overview
The implementation of effect/racket consists of about 1,100 lines of code.Most of these lines com-
pose elements from existing libraries. For example, effect handlers themselves are implemented
as thin wrappers around Racket’s existing library of delimited control operators [Flatt et al. 2007].
Other pieces of the implementation ensure that Racket’s effectful primitive operations are inac-
cessible to programs in effect/racket. After all, a main-effect contract would be meaningless if
certain primitive effects cannot be reinterpreted.

One critical aspect of the implementation concerns the key assumption of the model in Sec-
tion 3, which demands that handlers can detect whether an effect request originates from within
main code or contract code. Formally, this idea is encoded via special evaluation contexts; see Sec-
tion 3.1. As it turns out, Racket’s contract system already provides a mechanism for determining
whether code is executing inside a contract [Andersen et al. 2018]. Specifically, contracts set up
continuation marks [Clements et al. 2001] that delineate contract-specific code from user code.
Thus, the implementation of the effect handler forms inspect the delimited continuation and look
for this mark to determine whether the effect should be handled. As a result, effect/racket does
not necessitate any modifications to Racket’s contract system.

As a language in Racket’s ecosystem, effect/racket inherits the module system too, which
raises the interoperability issue. Indeed, the preceding examples already rely on themodule system,
showing that effect/racket modules can export functions with effectful software contracts. In
addition to full interoperability with other effect/racket modules, the language has a shallow
form of interoperability with plain Racket modules. Following the terminology of Matthews and
Findler [2007], the interoperability uses a first-order natural, higher-order lump-embedding; first-
order values can freely flow from an effect/racket module to a foreign module and back; in
contrast, higher-order values are wrapped in an opaque structure so they become unusable.

In summary, the implementation effort reveals that the addition of effectful software contracts
to an effect-handler language is rather straightforward, with the exception of effect stratification.
Assuming the erasure property is desirable, an implementer must add a mechanism that demar-
cates the dynamic extent of contract-checking code.

6.3 Restricting Handlers
As presented, handlers have unlimited access to interpose and reinterpret all effects. This means
library authors have no guarantee about how their effects are interpreted. Others have recognized

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

88:22 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

this lack of abstraction safety and have proposed solutions, especially in typed settings [Biernacki
et al. 2017; Brachthäuser et al. 2022; Leijen 2013; Xie et al. 2020; Zhang and Myers 2019].
An alternative design can rectify this problem easily. Racket gives programmers the ability to

attach metadata to continuations via continuation marks [Clements and Felleisen 2004; Flatt and
Dybvig 2020]. To prevent other parties from arbitrarily tampering with this information, the lan-
guage only permits access to continuation marks via keys. Racket also uses this mechanism to
limit how much of the continuation a program can capture and abort [Felleisen 1988; Flatt et al.
2007; Sitaram and Felleisen 1990]. These keys are first-class unforgeable values. If a module does
not export its key, then no other party can view or update the information associated with that
key. To prevent interception, a module can just keep a key internal. Effectively, a key is a capabil-
ity [Dennis and Van Horn 1966].

Instead of an arbitrary match pattern, a handler could be restricted to explicitly provide a set of
“effect keys” that it can interpret. Similarly, main-effect contracts would have to include a set of
effect keys instead of an arbitrary predicate over all effect requests.

There is a downside to this approach; it eliminates a useful class of contracts such as those for
purity. A contract that guarantees purity must, by definition, be able to interpose on all effects.
This includes effects that are kept hidden. Unsurprisingly, there is a trade-off between security
and expressiveness.

If desired, though, this kind of restriction can be built on top of effect/racket; the language
is flexible and can serve as foundation upon which other abstractions can be constructed. Thus,
language implementors can choose the design that fits their situation.

7 EVALUATION AND RELATEDWORK
The introduction of this paper claims that effect-handler contracts are a universal mechanism. An
evaluation of such a claim must show that the model and its full-scale implementation cover all
existing work.6 Additionally, such related research must be analyzed and systematically compared.
As such, this section consists of two pieces: (1) an evaluation of effect-handler contracts with
respect to a survey of existing literature; and (2) a summary of each piece of related research and
how it compares to this paper.

7.1 Analysis
Table 1 presents an overview of the existing literature. It explicates the many overlapping prob-
lems that various papers address. Rows correspond to existing pieces of literature, and columns
correspond to properties that at least one system can express.

A concise description of these properties follows:
allow call A function may be called only during the dynamic extent of another function.
exceptions Only specified exceptions may be raised during a function call. This property is the

dynamic analogue to Java’s checked exceptions.
fRaming Mutations are restricted to specified memory locations.
ghost state Values are associated with a mutable reference that is used to check conformance

with a protocol.
must call A function must be called during the dynamic extent of a call to another function.
non-ReentRant A function must not call itself recursively.
puRe No effects—other than non-termination and error signals—are permitted.

6Effect-handler contracts subsume only the low-level contract aspects of existing work—nothing more. All of these papers
build sophisticated systems on top of these low-level constructs. These contributions are orthogonal to, and not subsumed
by, effect-handler contracts.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

Effectful Software Contracts (with Appendices) 88:23

Table 1. Detailed Comparison Matrix

al
lo
w

ca
ll

ex
ce
pt
io
ns

fR
am

in
g

gh
os
t
st
at

e
mu

st
ca

ll
no

n-
Re
en

tR
an

t
pu

Re
Re
st
Ri
ct

ed
ef
fe
ct

te
Rm

in
at

io
n

un
io
n
co

nt
Ra

ct
s

Chalin et al. [2006] • • • • •
Tov and Pucella [2010] •

Shinnar [2011] • • • •
Disney et al. [2011] • • • • •

Keil and Thiemann [2015a] •
Scholliers et al. [2015] • • •

Moore et al. [2016] • • • •
Dimoulas et al. [2016] • • •

Bañados Schwerter [2016] • • •
Williams et al. [2018] •
Nguyễn et al. [2019] •

Moy and Felleisen [2023] • • • • •
Effect-Handler Contracts • • • • • • • • • •

RestRicted effect Effects are restricted at a fine-grained level.
teRmination A function call must terminate. Specifically, a call graph keeps track of changes to

the size of arguments.
union contRacts Given a set of contracts, guarantee that a value always satisfies at least one

those contracts. Checking the union of flat contracts is easy, but checking the union of higher-
order contracts relies on state to keep track of violations and assign blame.

Most papers illustrate these properties with a plethora of examples, all of which can be imple-
mented in effect/racket.

The cells of the table have the following roughmeaning. A • indicates that the presented contract
framework supports this property. Note that the number of • columns do not indicate anything
about the “power” of the presented system. It merely means that a paper with fewer • entries may
focus on a narrower set of properties. Also, these papers differ in other, significant ways that are
not communicated by the • markings.

The effect/racket language can faithfully express all but one existing contract.This exception
is the computational contract [Scholliers et al. 2015] that prohibits a function from being called
during the dynamic extent of a call to another function. Effect-handler contracts can achieve this
behavior as long as the excluded function comes with a contract that enables the system tomonitor
it; if not, this contract is impossible to realize without invasive monitoring techniques. For details,
see the next subsection.

7.2 Related Work
The Java Modeling Language (JML) [Chalin et al. 2006] is a specification language for stating and
verifying properties of objects in Java. It encompasses a broad range of features including asser-
tions, class invariant statements, frame conditions, purity constraints, termination constraints, and

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

88:24 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

ghost state declarations—just to name a few. Property checking takes place in one of two modes:
static deductive verification (DV) or dynamic runtime-assertion checking (RAC). Some properties,
such as termination, can be checked only using DV. JML differs from higher-order contract sys-
tems in three major ways. First, properties are described using a restrictive set of “well-defined”
terms, a limitation compared to contracts written with ordinary constructs. Second, JML supports
only first-order properties. Finally, JML lacks a blame assignment component, meaning developers
are on their own when a contract check fails.

Tov and Pucella [2010]’s research on interoperability between a language with a substructural
type system and one with a plain structural type system relies on an affinity check for function
arguments. Specifically, the boundary employs a run-time check to ensure that a function argu-
ment is affine, meaning it can be applied at most once. This check uses a mutable Boolean field
associated with each function value, i.e. ghost state, which indicates whether a function has been
applied. Dimoulas et al. [2016] also use ghost state. They define a general-purpose DSL that uses
ghost state to check protocol conformance. As described in Section 3.6, contract-effect handlers
can easily introduce and manipulate ghost state.

For interoperability, a languagewith a sound gradual type-and-effect system relies on a run-time
enforcement mechanism to restrict the effects performed by untyped code.The contracts for such a
language are formulated in terms of two primitive operations [Bañados Schwerter et al. 2014]: has
(for checking the privileges granted by the current context) and restrict (for restricting privileges
of an expression). In the effect-handler language, these primitives are just main-effect contracts.
Shinnar [2011] takes some of the constructs from JML, in particular framing contracts, and

adapts them to Haskell. The implementation uses delimited checkpointing to keep track of state.
A delimited checkpoint is a snapshot of memory captured using software transactional memory
(STM). Framing contracts can detect and restrict writes to transactional references by comparing
memory snapshots. Shinnar proves erasure for a limited model of Haskell with delimited check-
points. This work is similar to those pieces of research [Findler and Felleisen 2001; Strickland et al.
2012] that consider erasure for only a few restricted effects.

Disney et al. [2011]’s higher-order temporal (HOT) contracts and Moy and Felleisen [2023]’s
trace contracts check properties of sequences of argument and return values for functions and
methods. While the two differ in many respects, from the perspective of effectful software con-
tracts they fall into the same class of extended higher-order contracts. Describing constraints over
sequences amounts to a writing a predicate that “folds over” the sequence incrementally, storing
intermediate state in a mutable reference. As such, contract-effect handlers can supply the needed
mutable references to such contracts. Indeed, Disney et al. [2011] present some examples that
are more directly expressed using effect-handler contracts than HOT contracts. For example, their
HOT contract for non-reentrancy does not suffice in the presence of control effects, whereas an
effect-handler-contract implementation of the same property is robust.
Scholliers et al. [2015]’s computational contracts instantiate aspect-oriented programming for

the contract world. Critically, such contracts can prohibit or enforce that a function 𝑓 is called
in a particular dynamic extent. Due to the intrusiveness of aspect-oriented programming, compu-
tational contracts do not require that 𝑓 is aware of the contract. Indeed, without aspect-oriented
programming or a similarly invasive mechanism, there is no way to interpose on function applica-
tions in a dynamic extent, which is why the effect-handler language cannot fully realize this form
of checking.
Moore et al. [2016]’s authorization contracts enforce access control with contracts about granted

privileges. Specifically, authorization contracts can capture, check, and restore access privileges
via an authority environment that records such privileges. Moore et al. [2016]’s model is essen-
tially a variant of contract-handler contracts topped off with a DSL for authorization management.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

Effectful Software Contracts (with Appendices) 88:25

Effectful contracts alone do not implement any of the security aspects of the system. However, au-
thorization contracts could be built on top of contract-handler contracts given the secure design
described in Section 6.3.

Nguyễn et al. [2019] provide a run-time check for termination by monitoring the size-change
property (SCP) of functions dynamically. Any diverging function must exhibit an SCP violation,
causing a contract violation. They turn this run-time check into a static one, using existing con-
tract verification techniques [Nguyễn et al. 2018]. To guarantee termination, they use continuation
marks to store size-change information on the stack. Contract-handler contracts can be used to
store the same information.

While the literature on higher-order contracts tends to mention intersection and union con-
tracts, implementing these in general is a serious challenge. Indeed, Racket rejects or/c contracts
if the disjuncts are not “first-order distinguishable.” Several researchers [Freund et al. 2021; Keil
and Thiemann 2015a; Williams et al. 2018] have studied this problem, and all come to the conclu-
sion that effects are needed. For example, Williams et al. [2018] use a mutable blame state to keep
track of contract violations. A contract-effect handler can be used to implement this blame state.
Moreover, erasure guarantees that such an implementation does not have adverse effects on a pro-
gram’s result. This property is critically important because even benign-looking contract effects
can have unintended consequences. Such a phenomenon has been observed in practice [Lazarek
et al. 2020, Section 6.1].

8 IGNORED NO LONGER
In the real world, developers use contracts with effects; in papers, researchers study how to employ
effects in contracts. What has been lacking is a general framework for combining contracts and
effects. As a result, existing extensions solve specific problems and do not generalize.

This paper offers the first general model of effectful software contracts. As such, it synthesizes
a model of effect handlers with a model of contracts. In this combination, contracts can check
effects, contracts can request effects, and contracts can handle contract-requested effects. Yet, since
contracts should not affect the main program—other than signal violations—the model is designed
to avoid interference between contract-level effects and main-level code. Hence, in addition to
well-definedness and blame correctness, the model satisfies an erasure theorem.

Beyond theoretical explorations, the formalism also provides guidance for implementation ef-
forts. A fully faithful implementation, effect/racket, exists as a standalone language within the
Racket ecosystem. This language demonstrates that the design can be realized. It is an open ques-
tion how to modify an existing contract system to support all of the model’s expressive power in
a backwards compatible manner. Still, the theory can serve as a roadmap for others who wish to
combine effects and contracts in a principled way. And, as effect handlers go mainstream [Chan-
drasekaran et al. 2018], the theory may find many more practical uses.

ACKNOWLEDGMENTS
This work was supported by NSF grant SHF 2116372. The authors would like to thank: Robby
Findler, for help with Racket’s contract system; participants of the NII Shonan Meeting 203 on
effect handlers, for their insightful questions and discussions; and the anonymous POPL reviewers,
for their comments and suggestions.

DATA AVAILABILITY STATEMENT
An archival version of the software and appendices associated with this paper can be found at:
https://zenodo.org/records/10129040.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

https://zenodo.org/records/10129040

88:26 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

REFERENCES
Danel Ahman and Andrej Bauer. 2020. Runners in Action. In European Symposium on Programming (ESOP). https://doi.

org/10.1007/978-3-030-44914-8_2
Leif Andersen, Vincent St-Amour, Jan Vitek, and Matthias Felleisen. 2018. Feature-Specific Profiling. Transactions on

Programming Languages and Systems (TOPLAS). https://doi.org/10.1145/3275519
Felipe Bañados Schwerter. 2016. Side Effects Take the Blame. In Software Language Engineering (SLE). https://doi.org/10.

1145/2997364.2997381
Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. 2014. A Theory of Gradual Effect Systems. In International

Conference on Functional Programming (ICFP). https://doi.org/10.1145/2692915.2628149
Hendrik Pieter Barendregt. 1981. The Lambda Calculus. North-Holland Publishing Co.
Lawrence E. Bassham, Andrew L. Rukhin, Juan Soto, James R. Nechvatal, Miles E. Smid, Elaine B. Barker, Stefan D. Leigh,

Mark Levenson, Mark Vangel, David L. Banks, Nathanael Alan Heckert, James F. Dray, and San Vo. 2010. A Statistical
Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. Technical Report. National
Institute of Standards and Technology. https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final.

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2017. Handle with Care: Relational Interpretation
of Algebraic Effects and Handlers. In Principles of Programming Languages (POPL). https://doi.org/10.1145/3158096

Matthias Blume and David McAllester. 2006. Sound and Complete Models of Contracts. Journal of Functional Programming
(JFP). https://doi.org/10.1017/S0956796806005971

Jonathan Immanuel Brachthäuser, Philipp Schuster, Edward Lee, and Aleksander Boruch-Gruszecki. 2022. Effects, Capa-
bilities, and Boxes: From Scope-Based Reasoning to Type-Based Reasoning and Back. In Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA). https://doi.org/10.1145/3527320

Robert Cartwright and Matthias Felleisen. 1994. Extensible Denotational Language Specifications. InTheoretical Aspects of
Computer Software (TACS). https://doi.org/10.1007/3-540-57887-0_99

Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. 2006. Beyond Assertions: Advanced Specification and
Verification with JML and ESC/Java2. In Formal Methods for Components and Objects. https://doi.org/10.1007/11804192_
16

Sivaramakrishnan Krishnamoorthy Chandrasekaran, Daan Leijen, Matija Pretnar, and Tom Schrijvers. 2018. Algebraic
Effect Handlers go Mainstream (Dagstuhl Seminar 18172). Dagstuhl Reports. https://doi.org/10.4230/DagRep.8.4.104

Stephen Chang, Eli Barzilay, John Clements, and Matthias Felleisen. 2011. From Stack Traces to Lazy Rewriting Sequences.
In Proc. Implementation and Application of Functional Languages. https://doi.org/10.1007/978-3-642-34407-7_7

John Clements and Matthias Felleisen. 2004. A Tail-Recursive Machine with Stack Inspection. In Transactions on Program-
ming Languages and Systems (TOPLAS). https://doi.org/10.1145/1034774.1034778

John Clements, Matthew Flatt, and Matthias Felleisen. 2001. Modeling an Algebraic Stepper. In European Symposium on
Programming (ESOP). https://doi.org/10.1007/3-540-45309-1_21

H.B. Curry and R. Feys. 1958. Combinatory Logic, Volume I. North-Holland, Amsterdam.
Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing on Large Clusters. Communications of

the ACM (CACM). https://doi.org/10.1145/1327452.1327492
Jack B. Dennis and Earl C. Van Horn. 1966. Programming Semantics for Multiprogrammed Computations. Communications

of the ACM (CACM). https://doi.org/10.1145/365230.365252
Christos Dimoulas and Matthias Felleisen. 2011. On Contract Satisfaction in a Higher-Order World. Transactions on

Programming Languages and Systems (TOPLAS). https://doi.org/10.1145/2039346.2039348
Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and Matthias Felleisen. 2011. Correct Blame for Contracts: No

More Scapegoating. In Principles of Programming Languages (POPL). https://doi.org/10.1145/1926385.1926410
Christos Dimoulas, Max S. New, Robert Bruce Findler, and Matthias Felleisen. 2016. Oh Lord, Please Don’t Let Contracts

Be Misunderstood (Functional Pearl). In International Conference on Functional Programming (ICFP). https://doi.org/10.
1145/2951913.2951930

Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Complete Monitors for Behavioral Contracts. In
European Symposium on Programming (ESOP). https://doi.org/10.1007/978-3-642-28869-2_11

Tim Disney, Cormac Flanagan, and Jay McCarthy. 2011. Temporal Higher-Order Contracts. In International Conference on
Functional Programming (ICFP). https://doi.org/10.1145/2034773.2034800

Matthias Felleisen. 1988. The Theory and Practice of First-Class Prompts. In Principles of Programming Languages (POPL).
https://doi.org/10.1145/73560.73576

Matthias Felleisen. 1991. On the Expressive Power of Programming Languages. Science of Computer Programming. https:
//doi.org/10.1016/0167-6423(91)90036-W

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. 2009. Semantics Engineering with PLT Redex. MIT Press.
Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay, JayMcCarthy, and Sam Tobin-

Hochstadt. 2018. A Programmable Programming Language. Communications of the ACM (CACM). https://doi.org/10.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

https://doi.org/10.1007/978-3-030-44914-8_2
https://doi.org/10.1007/978-3-030-44914-8_2
https://doi.org/10.1145/3275519
https://doi.org/10.1145/2997364.2997381
https://doi.org/10.1145/2997364.2997381
https://doi.org/10.1145/2692915.2628149
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final
https://doi.org/10.1145/3158096
https://doi.org/10.1017/S0956796806005971
https://doi.org/10.1145/3527320
https://doi.org/10.1007/3-540-57887-0_99
https://doi.org/10.1007/11804192_16
https://doi.org/10.1007/11804192_16
https://doi.org/10.4230/DagRep.8.4.104
https://doi.org/10.1007/978-3-642-34407-7_7
https://doi.org/10.1145/1034774.1034778
https://doi.org/10.1007/3-540-45309-1_21
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/365230.365252
https://doi.org/10.1145/2039346.2039348
https://doi.org/10.1145/1926385.1926410
https://doi.org/10.1145/2951913.2951930
https://doi.org/10.1145/2951913.2951930
https://doi.org/10.1007/978-3-642-28869-2_11
https://doi.org/10.1145/2034773.2034800
https://doi.org/10.1145/73560.73576
https://doi.org/10.1016/0167-6423(91)90036-W
https://doi.org/10.1016/0167-6423(91)90036-W
https://doi.org/10.1145/3127323
https://doi.org/10.1145/3127323

Effectful Software Contracts (with Appendices) 88:27

1145/3127323
Matthias Felleisen and Robert Hieb. 1992. The Revised Report on the Syntactic Theories of Sequential Control and State. In

Theoretical Computer Science. https://doi.org/10.1016/0304-3975(92)90014-7
Robert Bruce Findler and Matthias Blume. 2006. Contracts as Pairs of Projections. In Functional and Logic Programming

(FLP). https://doi.org/10.1007/11737414_16
Robert Bruce Findler and Matthias Felleisen. 2001. Contract Soundness for Object-Oriented Languages. In Object-Oriented

Programming, Systems, Languages and Applications (OOPSLA). https://doi.org/10.1145/504311.504283
Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-Order Functions. In International Conference on

Functional Programming (ICFP). https://doi.org/10.1145/581478.581484
Matthew Flatt and R. Kent Dybvig. 2020. Compiler and Runtime Support for ContinuationMarks. In Programming Language

Design and Implementation (PLDI). https://doi.org/10.1145/3385412.3385981
Matthew Flatt and PLT. 2010. Reference: Racket. Technical Report PLT-TR-2010-1. PLT Design Inc. https://racket-lang.org/

tr1/.
Matthew Flatt, Gang Yu, Robert Bruce Findler, and Matthias Felleisen. 2007. Adding Delimited and Composable Control

to a Production Programming Environment. In International Conference on Functional Programming (ICFP). https://doi.
org/10.1145/1291151.1291178

Teodoro Freund, Yann Hamdaoui, and Arnaud Spiwack. 2021. Union and Intersection Contracts Are Hard, Actually. In
Dynamic Languages Symposium (DLS). https://doi.org/10.1145/3486602.3486767

Martin Gasbichler and Michael Sperber. 2005. Integrating User-Level Threads with Processes in Scsh. Higher-Order and
Symbolic Computation. https://doi.org/10.1007/s10990-005-4879-2

Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. 2010. Contracts Made Manifest. In Principles of Program-
ming Languages (POPL). https://doi.org/10.1145/1706299.1706341

Daniel Hillerström and Sam Lindley. 2018. Shallow Effect Handlers. In Asian Symposium on Programming Languages and
Systems (APLAS). https://doi.org/10.1007/978-3-030-02768-1_22

Matthias Keil and Peter Thiemann. 2015a. Blame Assignment for Higher-Order Contracts with Intersection and Union. In
International Conference on Functional Programming (ICFP). https://doi.org/10.1145/2784731.2784737

Matthias Keil and Peter Thiemann. 2015b. TreatJS: Higher-Order Contracts for JavaScripts. In European Conference on
Object-Oriented Programming (ECOOP). https://doi.org/10.4230/LIPIcs.ECOOP.2015.28

Lukas Lazarek, Alexis King, Samanvitha Sundar, Robert Bruce Findler, and Christos Dimoulas. 2020. Does Blame Shifting
Work. In Principles of Programming Languages (POPL). https://doi.org/10.1145/3371133

Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. 2001. The Size-Change Principle for Program Termination. In
Principles of Programming Languages (POPL). https://doi.org/10.1145/360204.360210

Daan Leijen. 2013. Koka: Programming with Row-Polymorphic Effect Types. Technical Report MSR-TR-2013-79. Microsoft
Research. https://www.microsoft.com/en-us/research/publication/koka-programming-with-row-polymorphic-effect-
types/.

Jacob Matthews and Robert Bruce Findler. 2007. Operational Semantics for Multi-Language Programs. In Principles of
Programming Languages (POPL). https://doi.org/10.1145/1498926.1498930

Bertrand Meyer. 1988. Object-Oriented Software Construction. Prentice Hall.
Bertrand Meyer. 1992. Applying “Design by Contract”. Computer. https://doi.org/10.1109/2.161279
Scott Moore, Christos Dimoulas, Robert Bruce Findler, Matthew Flatt, and Stephen Chong. 2016. Extensible Access Control

with Authorization Contracts. In Object-Oriented Programming, Systems, Languages and Applications (OOPSLA). https:
//doi.org/10.1145/2983990.2984021

Cameron Moy and Matthias Felleisen. 2023. Trace Contracts. Journal of Functional Programming (JFP).
Phúc C. Nguyễn, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn. 2018. Soft Contract Verification for Higher-

Order Stateful Programs. In Principles of Programming Languages (POPL). https://doi.org/10.1145/3158139
Phúc C. Nguyễn,Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn. 2019. Size-Change Termination as a Contract.

In Programming Language Design and Implementation (PLDI). https://doi.org/10.1145/3325984
Bruno C. D. S. Oliveira, Tom Schrijvers, and William R. Cook. 2012. MRI: Modular Reasoning About Interference in

Incremental Programming. Journal of Functional Programming (JFP). https://doi.org/10.1017/S0956796812000354
Gordon Plotkin. 1975. Call-by-name, call-by-value and the 𝜆-calculus. Theoretical Computer Science. https://doi.org/10.

1016/0304-3975(75)90017-1
Gordon Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In European Symposium on Programming (ESOP).

https://doi.org/10.1007/978-3-642-00590-9_7
Matija Pretnar. 2015. An Introduction to Algebraic Effects and Handlers. In Mathematical Foundations of Programming

Semantics (MFPS). https://doi.org/10.1016/j.entcs.2015.12.003
R. L. Rivest, A. Shamir, and A. Adleman. 1978. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.

In Communications of the ACM (CACM). https://doi.org/10.1145/359340.359342

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

https://doi.org/10.1145/3127323
https://doi.org/10.1145/3127323
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1007/11737414_16
https://doi.org/10.1145/504311.504283
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/3385412.3385981
https://racket-lang.org/tr1/
https://racket-lang.org/tr1/
https://doi.org/10.1145/1291151.1291178
https://doi.org/10.1145/1291151.1291178
https://doi.org/10.1145/3486602.3486767
https://doi.org/10.1007/s10990-005-4879-2
https://doi.org/10.1145/1706299.1706341
https://doi.org/10.1007/978-3-030-02768-1_22
https://doi.org/10.1145/2784731.2784737
https://doi.org/10.4230/LIPIcs.ECOOP.2015.28
https://doi.org/10.1145/3371133
https://doi.org/10.1145/360204.360210
https://www.microsoft.com/en-us/research/publication/koka-programming-with-row-polymorphic-effect-types/
https://www.microsoft.com/en-us/research/publication/koka-programming-with-row-polymorphic-effect-types/
https://doi.org/10.1145/1498926.1498930
https://doi.org/10.1109/2.161279
https://doi.org/10.1145/2983990.2984021
https://doi.org/10.1145/2983990.2984021
https://doi.org/10.1145/3158139
https://doi.org/10.1145/3325984
https://doi.org/10.1017/S0956796812000354
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1016/j.entcs.2015.12.003
https://doi.org/10.1145/359340.359342

88:28 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

Christophe Scholliers, Éric Tanter, andWolfgang De Meuter. 2015. Computational Contracts. Science of Computer Program-
ming. https://doi.org/10.1016/j.scico.2013.09.005

Avraham Ever Shinnar. 2011. Safe and Effective Contracts. Ph. D. Dissertation. Harvard University.
Dorai Sitaram and Matthias Felleisen. 1990. Control Delimiters and Their Hierarchies. Lisp and Symbolic Computation.

https://doi.org/10.1007/BF01806126
T. Stephen Strickland, SamTobin-Hochstadt, Robert Bruce Findler, andMatthew Flatt. 2012. Chaperones and Impersonators:

Run-Time Support for Reasonable Interposition. In Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA). https://doi.org/10.1145/2384616.2384685

Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and Matthias Felleisen. 2011. Languages as
Libraries. In Programming Language Design and Implementation (PLDI). https://doi.org/10.1145/1993316.1993514

Jesse A. Tov and Riccardo Pucella. 2010. Stateful Contracts for Affine Types. In European Symposium on Programming
(ESOP). https://doi.org/10.1007/978-3-642-11957-6_29

Jack Williams, J. Garrett Morris, and Philip Wadler. 2018. The Root Cause of Blame: Contracts for Intersection and Union
Types. InObject-Oriented Programming, Systems, Languages and Applications (OOPSLA). https://doi.org/10.1145/3276504

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and Computation.
https://doi.org/10.1006/inco.1994.1093

Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström, Philipp Schuster, and Daan Leijen. 2020. Effect Han-
dlers, Evidently. In International Conference on Functional Programming (ICFP). https://doi.org/10.1145/3408981

Dana N. Xu. 2012. Hybrid Contract Checking via Symbolic Simplification. In Partial Evaluation and Program Manipulation
(PEPM). https://doi.org/10.1145/2103746.2103767

Dana N. Xu. 2014. Dynamic Contract Checking for OCaml. http://gallium.inria.fr/~naxu/research/camlcontract.pdf.
Dana N. Xu, Simon Peyton Jones, and Koen Claessen. 2009. Static Contract Checking for Haskell. In Principles of Program-

ming Languages (POPL). https://doi.org/10.1145/1480881.1480889
Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-Safe Effect Handlers via Tunneling. In Principles of Programming

Languages (POPL). https://doi.org/10.1145/3290318

A PROOF SYNTAX

dependent (pRoof) extends dependent (eval)
𝑡 ∈ Ter = 𝑣 | err𝑘𝑗

𝑟 ∈ Redex = if 𝑣 𝑒 𝑒 | 𝑣 𝑣 | mon𝑘,𝑙𝑗 𝑣 𝑣 | handle𝑚 𝑣 with 𝑣 | handle𝑚 𝐸𝑚 [do 𝑣] with 𝑣

B FUNCTIONAL EVALUATION PROOF
Theorem 5.1 (Functional Evaluation). Two facts about the evaluator hold:
(1) The eval relation is a partial function.
(2) If 𝑒 is a program, then either (i) eval(𝑒) is defined or (ii) the reduction sequence starting with

𝑒 is unbounded.

PRoof. These facts are established by a few lemmas.
(1) By Lemma B.1.
(2) By interleaved application of Lemma B.3 and Lemma B.4.

□

Lemma B.1 (Deterministic Reduction). If 𝑒 ↦−→ 𝑒′ and 𝑒 ↦−→ 𝑒′′ then 𝑒 = 𝑒′′.

PRoof. By Lemma B.2, every reducible expression can be decomposed into a unique evaluation
context and a unique redex. Inspecting the reduction relation, each pair of rules is disjoint. In
particular, do and eRR-do are kept disjoint by the definition of unhandled. Additionally, there
is only one way for do to apply to a given expression; it applies to only the innermost handler
because of the side condition that 𝐸▷∈ unhandled. □

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

https://doi.org/10.1016/j.scico.2013.09.005
https://doi.org/10.1007/BF01806126
https://doi.org/10.1145/2384616.2384685
https://doi.org/10.1145/1993316.1993514
https://doi.org/10.1007/978-3-642-11957-6_29
https://doi.org/10.1145/3276504
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/3408981
https://doi.org/10.1145/2103746.2103767
http://gallium.inria.fr/~naxu/research/camlcontract.pdf
https://doi.org/10.1145/1480881.1480889
https://doi.org/10.1145/3290318

Effectful Software Contracts (with Appendices) 88:29

Lemma B.2 (Unique Decomposition). For 𝑒 ∈ Expr, either 𝑒 ∈ Ter or there exists unique evalu-
ation context 𝐸 and unique redex 𝑟 such that 𝑒 = 𝐸 [𝑟].

PRoof. By structural induction on 𝑒 .
Case 𝑒 = 𝑏.

Booleans are terminal, so 𝑒 ∈ Ter.
Case 𝑒 = if 𝑒𝑔 𝑒𝑡 𝑒𝑓 .

The inductive hypothesis applied to 𝑒𝑔 yields three cases. If 𝑒𝑔 ∈ Val then 𝐸 = □ and 𝑟 = 𝑒 . If
𝑒𝑔 = err𝑘𝑗 then 𝐸 = if□ 𝑒𝑡 𝑒𝑓 and 𝑟 = 𝑒𝑔. Otherwise, 𝑒𝑔 = 𝐸𝑔 [𝑟], in which case 𝐸 = if𝐸𝑔 𝑒𝑡 𝑒𝑓 .

Otherwise.
The remaining cases are similar to one of the above. □

Lemma B.3 (Progress). If 𝑒 is closed then either 𝑒 ∈ Ter or 𝑒 ↦−→ 𝑒′.

PRoof. By Lemma B.2, either 𝑒 ∈ Ter or 𝑒 can be decomposed into a unique evaluation context
and a unique redex. Suppose 𝑒 = 𝐸 [𝑟]. Conclusion follows by cases on 𝑟 . □

Lemma B.4 (Preservation). If 𝑒 is closed and 𝑒 ↦−→ 𝑒′ then 𝑒′ is closed.

PRoof. By cases on 𝑒 ↦−→ 𝑒′. □

C ERASURE PROOF

∼ ⊆ Ctx▷ × Ctx▷

handle♢ 𝐸▷ with 𝑒ℎ ∼ handle♢ 𝐸▷ with 𝑒 if 𝐸▷ ∼ 𝐸▷

handle♢ 𝐸▷ with 𝑒ℎ ∼ 𝐸▷ if 𝐸▷ ∼ 𝐸▷

mon𝑘,𝑙𝑗 𝐸▷𝑒𝑐 ∼ 𝐸▷ if 𝐸▷ ∼ 𝐸▷

mark𝑘,𝑙𝑗 𝑣 𝐸▷ ∼ 𝐸▷ if 𝐸▷ ∼ 𝐸▷

· · ·

Fig. 8. Simulation on Contexts

Theorem 5.2 (Erasure). If eval(𝑒) = 𝑏 then eval(ℰ(𝑒)) = 𝑏.

PRoof. By Lemma C.1, let �̃� =ℰ(𝑒) where 𝑒 ∼ �̃� . It suffices to show that �̃� ↦−→∗ 𝑏. By induction
on 𝑒 ↦−→∗ 𝑏.
Case 𝑒 = 𝑏.

Booleans are preserved by the simulation so �̃� = 𝑏, hence �̃� ↦−→∗ 𝑏.
Case 𝑒 ↦−→+ 𝑏.

By Lemma C.2, 𝑒 ↦−→+ 𝑒′ ↦−→∗ 𝑏 and �̃� ↦−→∗ 𝑒𝑖 ≃ 𝑒′ for 𝑒′ ∼ 𝑒′. The inductive hypothesis
yields that 𝑒′ ↦−→∗ 𝑏. Thus, �̃� ↦−→∗ 𝑒𝑖 ≃ 𝑒′ ↦−→∗ 𝑏 implies �̃� ↦−→∗ 𝑏. □

Lemma C.1 (Erasure Inclusion). For all 𝑒 ∈ Expr, 𝑒 ∼ℰ(𝑒).

PRoof. By induction on 𝑒 . □

Lemma C.2 (Simulation). If 𝑒 ↦−→+ 𝑣 then for all �̃� there exists 𝑒′, 𝑒′ such that 𝑒 ↦−→+ 𝑒′ ↦−→∗ 𝑣
and �̃� ↦−→∗ 𝑒′.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

88:30 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

PRoof. Since 𝑒 evaluates to a value, not an error, that means 𝑒 = 𝐸 [𝑒𝑟] ↦−→ 𝐸 [𝑒𝑐] for some
evaluation context 𝐸 and expressions 𝑒𝑟 , 𝑒𝑐 .
Suppose 𝐸 ∉ Ctx▷, or equivalently 𝐸 = 𝐸♢. Assume too that 𝐸♢ [𝑒𝑟] ∼ 𝑒 𝑗 . By Lemma C.3, 𝐸♢ [𝑒𝑐] ∼

𝑒 𝑗 as needed. Otherwise, take 𝐸 = 𝐸▷. By cases on 𝐸▷[𝑒𝑟] ↦−→ 𝐸▷[𝑒𝑐].

Case 𝐸▷[if 𝑣 𝑒𝑡 𝑒𝑓] ↦−→ 𝐸▷[𝑒𝑡], 𝑣 ≠ false.
By Lemma C.7, 𝐸▷[𝑒𝑟] ∼ 𝐸▷[if �̃� 𝑒𝑡 𝑒𝑓] for 𝑒𝑡 ∼ 𝑒𝑡 . Since ∼ preserves non-false values,
𝐸▷[if �̃� 𝑒𝑡 𝑒𝑓] ↦−→ 𝐸▷[𝑒𝑡]. By Lemma C.8, 𝐸▷[𝑒𝑡] ∼ 𝐸▷[𝑒𝑡]. All of the remaining cases use
Lemma C.7 and Lemma C.8 in a similar way.

Case 𝐸▷[(𝜆𝑥 .𝑒) 𝑣] ↦−→ 𝐸▷[𝑒 [𝑣/𝑥]].
By Lemma C.9.

Case 𝐸▷[handle▷𝑣 with 𝑣ℎ] ↦−→ 𝐸▷[𝑣].
Let �̃� = 𝐸▷[handle▷ �̃� with 𝑣ℎ]. Then �̃� ↦−→ 𝐸▷[�̃�] as needed.

Case 𝐸▷[handle♢ 𝑣 with 𝑣ℎ] ↦−→ 𝐸▷[𝑣].
If �̃� = 𝐸▷[handle♢ �̃� with 𝑒ℎ] then �̃� ↦−→ 𝐸▷[�̃�]. If �̃� = 𝐸▷[�̃�] already then no step is needed.

Case 𝐸▷[handle▷𝐸▷
𝑘
[do 𝑣] with 𝑣ℎ] ↦−→ 𝐸▷[𝑣ℎ 𝑣𝑑 (𝜆𝑥.handle▷𝐸▷𝑘 [𝑒𝑐] with 𝑣ℎ)].

By Lemma C.4 and Lemma C.5.
Case 𝐸▷[handle♢ 𝐸♢

𝑘
[do 𝑣] with ⟨𝑣𝑑 , 𝑣ℎ⟩] ↦−→ 𝐸▷[handle♢ 𝐸♢

𝑘
[𝑣𝑐] with 𝑣ℎ].

By Lemma C.3.
Case 𝐸▷[handle♢ 𝐸♢

𝑘
[do 𝑣] with 𝑓] ↦−→ 𝐸▷[handle♢ 𝐸♢

𝑘
[do 𝑣] with (𝑓 𝑣𝑑)].

Follows directly from the simulation.
Case 𝐸▷[mon𝑘,𝑙𝑗 true 𝑣] ↦−→ 𝐸▷[𝑣].

Let �̃� = 𝐸▷[�̃�] for 𝑣 ∼ �̃� . Since 𝐸▷[𝑣] ∼ 𝐸▷[�̃�] that implies 𝐸▷[𝑣] ∼ �̃� .
Case 𝐸▷[mon𝑘,𝑙𝑗 false 𝑣] ↦−→ 𝐸▷[err𝑘𝑗].

Contradiction since err𝑘𝑗 does not evaluate to a value.
Case 𝐸▷[mon𝑘,𝑙𝑗 𝑓 𝑣] ↦−→ 𝐸▷[mon𝑘,𝑙𝑗 (𝑓 𝑣) 𝑣].

Let �̃� = 𝐸▷[�̃�] for 𝑣 ∼ �̃� . Since 𝐸▷[mon𝑘,𝑙𝑗 (𝑓 𝑣) 𝑣] ∼ 𝐸▷[�̃�] that implies 𝐸▷[mon𝑘,𝑙𝑗 (𝑓 𝑣) 𝑣] ∼ �̃� .
Case 𝐸▷[mon𝑘,𝑙𝑗 (𝑣𝑑 =⇒ 𝑣𝑐) 𝑓] ↦−→ 𝐸▷[𝜆𝑥 .].

This step produces an expression that is still in simulation with �̃�:

𝐸▷[𝜆𝑥.] = 𝐸▷[𝜆𝑥 .let𝑥 𝑗 = mon
𝑙, 𝑗
𝑗 𝑣𝑑 𝑥 in

let𝑥𝑘 = mon𝑙,𝑘𝑗 𝑣𝑑 𝑥 in

mon𝑘,𝑙𝑗 (𝑣𝑐 𝑥 𝑗) (𝑓 𝑥𝑘)]

∼ 𝐸▷[𝜆𝑥.let𝑥 𝑗 = 𝑥 in

let𝑥𝑘 = 𝑥 in

𝑓 𝑥𝑘]
≃ 𝐸▷[𝜆𝑥. 𝑓 𝑥]
≃ 𝐸▷[𝑓]
= �̃�

Case 𝐸▷[mon𝑘,𝑙𝑗 (𝑣𝑑 ▶ 𝑣𝑐) 𝑓] ↦−→ 𝐸▷[𝜆𝑥 .mark𝑘,𝑙𝑗 (𝑣𝑑 ▶ 𝑣𝑐) (𝑓 𝑥)].
Thus, �̃� = 𝐸▷[𝑓], and 𝑒′ = 𝐸▷[𝑓] ∼ 𝐸▷[𝜆𝑥 . 𝑓 𝑥] ∼ 𝐸▷[𝑓].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

Effectful Software Contracts (with Appendices) 88:31

Case 𝐸▷[mark𝑘,𝑙𝑗 (𝑣𝑑 ▶ 𝑣𝑐) 𝑣] ↦−→ 𝐸▷[𝑣].
Thus, �̃� = 𝐸▷[�̃�], and 𝑒′ = 𝐸▷[𝑣] ∼ 𝐸▷[�̃�].

Case 𝐸▷[mon𝑘,𝑙𝑗 (♢𝑣ℎ) 𝑓] ↦−→ 𝐸▷[𝜆𝑥.handle♢ (𝑓 𝑥) with 𝑣ℎ].
Thus, �̃� = 𝐸▷[𝑓], and 𝑒′ = 𝐸▷[𝜆𝑥.handle♢ (𝑓 𝑥) with 𝑣ℎ] ∼ 𝐸▷[𝜆𝑥. 𝑓 𝑥] ∼ 𝐸▷[𝑓].

Otherwise.
The remaining cases are similar to one of the above. □

Lemma C.3 (Diamond Irrelevance). If 𝐸♢ [𝑒𝑠] ∼ �̃� then 𝐸♢ [𝑒𝑡] ∼ �̃� .

PRoof. There are only two situations that can occur during evaluation:
Case 𝐸♢ = 𝐸▷[mon𝑘,𝑙𝑗 𝐸 𝑒𝑐].

Therefore, 𝐸♢ [𝑒𝑠] = 𝐸▷[mon𝑘,𝑙𝑗 𝐸 [𝑒𝑠] 𝑒𝑐] ∼ 𝐸▷[𝑒𝑐] = �̃� . For the same reason, 𝐸♢ [𝑒𝑡] ∼ �̃� .
Case 𝐸♢ = 𝐸▷[handle♢ 𝑒𝑏 with 𝐸].

Similar to the above. □

Lemma C.4 (Push Empty). If 𝐸 ∼ 𝐸 then 𝑣 ↓𝐸 = □.

PRoof. By induction on 𝐸 ∼ 𝐸. □

Lemma C.5 (Pull Empty). If 𝐸 ∼ 𝐸 then ↑𝐸 = □.

PRoof. By induction on 𝐸 ∼ 𝐸. □

Lemma C.6 (Unhandled Preservation). If 𝐸▷∈ unhandled then 𝐸▷∈ unhandled.

PRoof. By induction on 𝐸▷ ∼ 𝐸▷. □

Lemma C.7 (Simulation Decomposition). If 𝑒 ∼ �̃� and 𝑒 = 𝐸▷[𝑒𝑠] for 𝑒𝑠 ∉ Val, then exists 𝐸▷
and 𝑒𝑠 such that �̃� = 𝐸▷[𝑒𝑠] where 𝐸▷ ∼ 𝐸▷ and 𝑒𝑠 ∼ 𝑒𝑠 .

PRoof. By induction on 𝑒 ∼ �̃� . □

Lemma C.8 (Simulation Composition). If 𝐸▷ ∼ 𝐸▷ and 𝑒 ∼ �̃� , then 𝐸▷[𝑒] ∼ 𝐸▷[�̃�].

PRoof. By induction on 𝐸▷ ∼ 𝐸▷. □

Lemma C.9 (Substitution). If 𝑒 ∼ �̃� and 𝑣 ∼ �̃� then 𝑒 [𝑣/𝑥] ∼ �̃� [�̃�/𝑥].

PRoof. By induction on 𝑒 ∼ �̃� . □

D BLAME CORRECTNESS
D.1 Syntax with Ownership

dependent (annotated) extends dependent (eval)
𝑒 ∈ Expr = . . . | |𝑒 |𝑙
𝑓 ∈ Fun = . . . | |𝑓 |𝑙
𝑣 ∈ Val = . . . | |𝑣 |𝑙
𝐸 ∈ Ctx = . . . | |𝐸 |𝑙

𝐸▷ ∈ Ctx▷ = . . . | |𝐸▷|𝑙
𝐸♢ ∈ Ctx♢ = . . . | |𝐸♢ |𝑙

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

88:32 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

D.2 Ownership Metafunctions

↑𝑜 : Ctx→ Ctx

↑𝑜□ = □

↑𝑜 ⟨𝐸, 𝑒⟩ = ↑𝑜𝐸
↑𝑜 ⟨𝑣, 𝐸⟩ = ↑𝑜𝐸

. . .

↑𝑜 |𝐸 |𝑙 = | (↑𝑜𝐸) |𝑙

↑𝑜 (mark𝑘,𝑙𝑗 (𝑣𝑑 ▷𝑣𝑐) 𝐸) = mon𝑘,𝑙𝑗 𝑣𝑑 (↑𝑜𝐸)

↑𝑜 (mark𝑘,𝑙𝑗 (𝑣𝑑 ▶ 𝑣𝑐) 𝐸) = mon𝑘,𝑙𝑗 𝑣𝑑 (↑𝑜𝐸)

↓𝑜 : Val × Ctx→ Ctx

𝑣↓𝑜□ = □

𝑣↓𝑜 ⟨𝐸, 𝑒⟩ = 𝑣↓𝑜𝐸
𝑣↓𝑜 ⟨𝑣 ′, 𝐸⟩ = 𝑣↓𝑜𝐸

. . .

𝑣↓𝑜 |𝐸 |𝑙 = (𝑣↓𝑜𝐸) [|□|𝑙]
𝑣↓𝑜 (mark𝑘,𝑙𝑗 (𝑣𝑑 ▷𝑣𝑐) 𝐸) = (𝑣↓𝑜𝐸) [mon

𝑙,𝑘
𝑗 𝑣𝑐 □]

𝑣↓𝑜 (mark𝑘,𝑙𝑗 (𝑣𝑑 ▶ 𝑣𝑐) 𝐸) = (𝑣↓𝑜𝐸) [mon𝑙,𝑘𝑗 𝑣𝑐 𝑒 □]

where 𝑒 = mon
𝑘,𝑗
𝑗 𝑣𝑑 ((↑𝑜𝐸) [𝑣])

↑−𝑜 : Ctx→ Ctx

↑−𝑜 □ = □

↑−𝑜 ⟨𝐸, 𝑒⟩ = ↑−𝑜 𝐸
↑−𝑜 ⟨𝑣, 𝐸⟩ = ↑−𝑜 𝐸

. . .

↑−𝑜 |𝐸 |𝑙 = | (↑−𝑜 𝐸) |𝑙

↓−𝑜 : Ctx→ Ctx

↓−𝑜 □ = □

↓−𝑜 ⟨𝐸, 𝑒⟩ = ↓−𝑜 𝐸
↓−𝑜 ⟨𝑣, 𝐸⟩ = ↓−𝑜 𝐸

. . .

↓−𝑜 |𝐸 |𝑙 = (↓−𝑜 𝐸) [|□|𝑙]

𝑂𝑢𝑡𝑒𝑟𝑜 : Ctx→ Lab

𝑂𝑢𝑡𝑒𝑟𝑜□ = 𝑙𝑜

𝑂𝑢𝑡𝑒𝑟𝑜 ⟨𝐸, 𝑒⟩ = 𝑂𝑢𝑡𝑒𝑟𝑜𝐸

𝑂𝑢𝑡𝑒𝑟𝑜 ⟨𝑣, 𝐸⟩ = 𝑂𝑢𝑡𝑒𝑟𝑜𝐸

. . .

𝑂𝑢𝑡𝑒𝑟𝑜 |𝐸 |𝑙 = 𝑙𝑜

𝑂𝑢𝑡𝑒𝑟𝑜 (mon𝑘,𝑙𝑗 𝐸 𝑒) = 𝑙

𝑂𝑢𝑡𝑒𝑟𝑜 (mon𝑘,𝑙𝑗 𝑣 𝐸) = 𝑙

𝑂𝑢𝑡𝑒𝑟𝑜 (mark𝑘,𝑙𝑗 (𝑣𝑑 ▷𝑣𝑐) 𝐸) = 𝑙

𝐼𝑛𝑛𝑒𝑟𝑜 : Ctx × Lab→ Lab

𝐼𝑛𝑛𝑒𝑟𝑜 (□, 𝑙) = 𝑙

𝐼𝑛𝑛𝑒𝑟𝑜 (⟨𝐸, 𝑒⟩, 𝑙) = 𝐼𝑛𝑛𝑒𝑟𝑜 (𝐸, 𝑙)
𝐼𝑛𝑛𝑒𝑟𝑜 (⟨𝑣, 𝐸⟩, 𝑙) = 𝐼𝑛𝑛𝑒𝑟𝑜 (𝐸, 𝑙)

. . .

𝐼𝑛𝑛𝑒𝑟𝑜 (|𝐸 |𝑙 , 𝑙 ′) = 𝑙

𝐼𝑛𝑛𝑒𝑟𝑜 (mon𝑘,𝑙𝑗 𝐸 𝑒, 𝑙 ′) = 𝑗

𝐼𝑛𝑛𝑒𝑟𝑜 (mon𝑘,𝑙𝑗 𝑣 𝐸, 𝑙 ′) = 𝑘

𝐼𝑛𝑛𝑒𝑟𝑜 (mark𝑘,𝑙𝑗 (𝑣𝑑 ▷𝑣𝑐) 𝐸, 𝑙
′) = 𝑘

𝒪 : Expr→ Expr

𝒪𝑥 = 𝑥

𝒪𝑏 = 𝑏

𝒪⟨𝑒1, 𝑒2⟩ = ⟨𝒪𝑒1,𝒪𝑒2⟩
. . .

𝒪(|𝑒 |𝑙) = 𝒪𝑒

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

Effectful Software Contracts (with Appendices) 88:33

D.3 Syntactic Sugar

𝑙 = 𝑙1 . . . 𝑙𝑛
←−−−−−
𝑙1 . . . 𝑙𝑛 = 𝑙𝑛 . . . 𝑙1

|𝑒 |𝑙1 ...𝑙𝑛 = | . . . |𝑒 |𝑙1 . . . |𝑙𝑛

| |𝑒 | |𝑙1 ...𝑙𝑛 = |𝑒 |𝑙1 ...𝑙𝑛 where 𝑒 ≠ |𝑒′ |𝑙

𝑙1 ≻ 𝐸 ≻ 𝑙2 ⇔ 𝑂𝑢𝑡𝑒𝑟𝑜𝐸 = 𝑙1 ∧ 𝐼𝑛𝑛𝑒𝑟𝑜 (𝐸, 𝑙𝑜) = 𝑙2

D.4 Annotated Reduction Rules

if-tRue 𝐸 [if 𝑣 𝑒1 𝑒2] ↦−→𝑜 𝐸 [𝑒1] if 𝑣 ≠ false

if-false 𝐸 [if false 𝑒1 𝑒2] ↦−→𝑜 𝐸 [𝑒2]
app-lambda 𝐸 [| (𝜆𝑥 .𝑒) |𝑙1 ...𝑙𝑛 𝑣] ↦−→𝑜 𝐸 [|𝑒 [|𝑣 |𝑙𝑙𝑛 ...𝑙1/𝑥] |𝑙1 ...𝑙𝑛] where 𝑙𝑜 ≻ 𝐸 ≻ 𝑙

app-op 𝐸 [| |𝑜 | |𝑘 | |𝑣 | |𝑙] ↦−→𝑜 𝐸 [| |𝛿 (𝑜, 𝑣) | |𝑙]
handle 𝐸 [handle𝑚 𝑣 with 𝑣ℎ] ↦−→𝑜 𝐸 [𝑣]

do▷ 𝐸 [handle▷𝐸▷[do 𝑣] with 𝑣ℎ] ↦−→𝑜 𝐸 [𝑣ℎ 𝑣𝑑 (𝜆𝑥.handle▷𝐸▷[𝑒𝑐] with 𝑣ℎ)]
if𝐸▷∈ unhandled
where 𝑣𝑑 = (↑𝑜𝐸▷) [𝑣], 𝑒𝑐 = (𝑣↓𝑜𝐸▷) [𝑥]

do-paiR♢ 𝐸 [handle♢ 𝐸♢ [do 𝑣] with ⟨𝑣𝑑 , 𝑣ℎ⟩] ↦−→ 𝐸 [handle♢ 𝐸♢ [𝑣𝑐] with 𝑣ℎ]
if𝐸♢ ∈ unhandled
where 𝑣𝑐 = (↓−𝑜 𝐸▷) [𝑣𝑑]

do-fun♢ 𝐸 [handle♢ 𝐸♢ [do 𝑣] with 𝑓] ↦−→ 𝐸 [handle♢ 𝐸♢ [do 𝑣] with (𝑓 𝑣𝑑)]
if𝐸♢ ∈ unhandled
where 𝑣𝑑 = (↑−𝑜 𝐸▷) [𝑣]

mon-tRue 𝐸 [mon𝑘,𝑙𝑗 | |true| |
𝑙 𝑣] ↦−→𝑜 𝐸 [𝑣]

mon-false 𝐸 [mon𝑘,𝑙𝑗 | |false| |
𝑙 𝑣] ↦−→𝑜 𝐸 [err𝑘𝑗]

mon-flat 𝐸 [mon𝑘,𝑙𝑗 𝑓 𝑣] ↦−→𝑜 𝐸 [mon𝑘,𝑙𝑗 (𝑓 𝑣) 𝑣]

mon-paiR 𝐸 [mon𝑘,𝑙𝑗 ⟨𝑣𝑎, 𝑣𝑏⟩ 𝑣] ↦−→𝑜 𝐸 [err𝑘𝑗] if 𝑣 ≠ ⟨𝑣𝑐 , 𝑣𝑑⟩

gRd-paiR 𝐸 [mon𝑘,𝑙𝑗 ⟨𝑣𝑎, 𝑣𝑏⟩ | |⟨𝑣𝑐 , 𝑣𝑑⟩| |
𝑙] ↦−→𝑜 𝐸 [⟨| |mon𝑘,𝑙𝑗 𝑣𝑎 𝑣𝑐 | |𝑙 , | |mon𝑘,𝑙𝑗 𝑣𝑏 𝑣𝑑 | |𝑙 ⟩]

mon-fun 𝐸 [mon𝑘,𝑙𝑗 (𝑣𝑑 −→ 𝑣𝑐) 𝑣] ↦−→𝑜 𝐸 [err𝑘𝑗] if 𝑣 ∉ Fun

gRd-fun 𝐸 [mon𝑘,𝑙𝑗 (𝑣𝑑 −→ 𝑣𝑐) 𝑓] ↦−→𝑜 𝐸 [𝜆𝑥 .mon𝑘,𝑙𝑗 𝑣𝑐 (𝑓 (mon𝑙,𝑘𝑗 𝑣𝑑 𝑥))]

mon-dep-fun 𝐸 [mon𝑘,𝑙𝑗 (𝑣𝑑 =⇒ 𝑣𝑐) 𝑣] ↦−→𝑜 𝐸 [err𝑘𝑗] if 𝑣 ∉ Fun

gRd-dep-fun 𝐸 [mon𝑘,𝑙𝑗 (𝑣𝑑 =⇒ 𝑣𝑐) 𝑓] ↦−→𝑜 𝐸 [𝜆𝑥 .mon𝑘,𝑙𝑗 𝑣𝑐 (mon𝑙, 𝑗𝑗 𝑣𝑑 𝑥) (𝑓 (mon𝑙,𝑘𝑗 𝑣𝑑 𝑥))]

mon-handle▷ 𝐸 [mon𝑘,𝑙𝑗 (𝑣𝑑 ▷𝑣𝑐) 𝑣] ↦−→𝑜 𝐸 [err𝑘𝑗] if 𝑣 ∉ Fun

gRd-handle▷ 𝐸 [mon𝑘,𝑙𝑗 (𝑣𝑑 ▷𝑣𝑐) 𝑓] ↦−→𝑜 𝐸 [𝜆𝑥 .mark𝑘,𝑙𝑗 (𝑣𝑑 ▷𝑣𝑐) (𝑓 𝑥)]

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

88:34 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

mon-handle▶ 𝐸 [mon𝑘,𝑙𝑗 (𝑣𝑑 ▶ 𝑣𝑐) 𝑣] ↦−→𝑜 𝐸 [err𝑘𝑗] if 𝑣 ∉ Fun

gRd-handle▶ 𝐸 [mon𝑘,𝑙𝑗 (𝑣𝑑 ▶ 𝑣𝑐) 𝑓] ↦−→𝑜 𝐸 [𝜆𝑥 .mark𝑘,𝑙𝑗 (𝑣𝑑 ▶ 𝑣𝑐) (𝑓 𝑥)]

maRK 𝐸 [mark𝑘,𝑙𝑗 𝑣𝜅 𝑣] ↦−→𝑜 𝐸 [𝑣]

mon-handle♢ 𝐸 [mon𝑘,𝑙𝑗 (♢𝑣ℎ) 𝑣] ↦−→𝑜 𝐸 [err𝑘𝑗] if 𝑣 ∉ Fun

gRd-handle♢ 𝐸 [mon𝑘,𝑙𝑗 (♢𝑣ℎ) 𝑓] ↦−→𝑜 𝐸 [𝜆𝑥 .handle♢ (𝑓 𝑥) with |𝑣ℎ | 𝑗]

D.5 Ownership Well-formedness

𝑙 ; Γ ⊢ 𝑏 𝑙 ; Γ ⊎ 𝑥 : 𝑙 ⊢ 𝑥
𝑙 ; Γ ⊢ 𝑒1 𝑙 ; Γ ⊢ 𝑒2

𝑙 ; Γ ⊢ ⟨𝑒1, 𝑒2 ⟩
𝑙 ; Γ ⊎ 𝑥 : 𝑙 ⊢ 𝑒
𝑙 ; Γ ⊢ 𝜆𝑥.𝑒 𝑙 ; Γ ⊢ 𝑜

𝑙 ; Γ ⊢ 𝑒1 𝑙 ; Γ ⊢ 𝑒2 𝑙 ; Γ ⊢ 𝑒3
𝑙 ; Γ ⊢ if𝑒1 𝑒2 𝑒3

𝑙 ; Γ ⊢ 𝑒1 𝑙 ; Γ ⊢ 𝑒2
𝑙 ; Γ ⊢ 𝑒1 𝑒2

𝑙 ; Γ ⊢ 𝑒1 𝑙 ; Γ ⊢ 𝑒2
𝑙 ; Γ ⊢ handle𝑚 𝑒1 with 𝑒2

𝑙 ; Γ ⊢ 𝑒
𝑙 ; Γ ⊢ do𝑒

𝑙 ; Γ ⊢ 𝑒1 𝑙 ; Γ ⊢ 𝑒2
𝑙 ; Γ ⊢ 𝑒1 −→ 𝑒2

𝑙 ; Γ ⊢ 𝑒1 𝑙 ; Γ ⊢ 𝑒2
𝑙 ; Γ ⊢ 𝑒1 =⇒ 𝑒2

𝑙 ; Γ ⊢ 𝑒1 𝑙 ; Γ ⊢ 𝑒2
𝑙 ; Γ ⊢ 𝑒1 ▷𝑒2

𝑙 ; Γ ⊢ 𝑒1 𝑙 ; Γ ⊢ 𝑒2
𝑙 ; Γ ⊢ 𝑒1 ▶ 𝑒2

𝑙 ; Γ ⊢ 𝑒
𝑙 ; Γ ⊢ ♢𝑒

𝑙 ; Γ ⊢ err𝑘𝑗

𝑗 ; Γ ⊢ 𝑒1 𝑘 ; Γ ⊢ 𝑒2
𝑙 ; Γ ⊢ mon𝑘,𝑙𝑗 𝑒1 |𝑒2 |𝑘

𝑗 ; Γ ⊢ 𝑒1 𝑘 ; Γ ⊢ 𝑥
𝑙 ; Γ ⊢ mon𝑘,𝑙𝑗 𝑒1 𝑥

𝑗 ; Γ ⊢ 𝑒1 𝑘 ; Γ ⊢ 𝑒2 𝑘 ; Γ ⊢ 𝑒3
𝑙 ; Γ ⊢ mon𝑘,𝑙𝑗 𝑒1 |𝑒2 |𝑘 𝑒3

𝑗 ; Γ ⊢ 𝑒1 𝑘 ; Γ ⊢ 𝑒2
𝑙 ; Γ ⊢ mark𝑘,𝑙𝑗 𝑒1 |𝑒2 |𝑘

𝑗 ; Γ ⊢ 𝑒1 𝑘 ; Γ ⊢ 𝑒2 𝑘 ; Γ ⊢ 𝑒3
𝑙 ; Γ ⊢ mark𝑘,𝑙𝑗 𝑒1 |𝑒2 |𝑘 𝑒3

𝑘 ; Γ ⊢ 𝑒
𝑙 ; Γ ⊢ |𝑒 |𝑘

D.6 Theorems, Key Lemmas and their Proofs
Theorem 5.4 (Blame Correctness). For all 𝑒 , if 𝑙𝑜 ; ∅ ⊢ 𝑒 and 𝑒 ↦−→∗𝑜 𝐸 [mon𝑘,𝑙𝑗 𝑣𝜅 𝑣], then 𝑣 = |𝑣 ′ |𝑘 .

PRoof. Direct consequence of Lemma D.1 and Lemma D.3. □

Lemma D.1 (Well-formedness Preservation). For all 𝑒 such that 𝑙𝑜 ; ∅ ⊢ 𝑒 , if 𝑒 ↦−→∗𝑜 𝑒′ then
𝑙𝑜 ; ∅ ⊢ 𝑒′.

PRoof. By induction on the length of 𝑒 ↦−→∗𝑜 𝑒′ using Lemma D.2 for the inductive step. □

LemmaD.2 (One-StepWell-formedness Preservation). For all 𝑒 such that 𝑙𝑜 ; ∅ ⊢ 𝑒 , if 𝑒 ↦−→𝑜 𝑒
′

then 𝑙𝑜 ; ∅ ⊢ 𝑒′.

PRoof. By case analysis on the reduction rules for ↦−→𝑜 . For most rules:

(1) By assumption, 𝑒 , the left-hand side of the arrow, is well-formed and Lemma D.3 yields that
the redex is well-formed.

(2) By inversion of the corresponding last inference rule in the derivation of well-formedness
for the redex, we derive that the various sub-expressions of the redex are also well-formed.

(3) By (1), (2), and the relevant inference rules for well-formedness, the result of the reduction
of the redex is well-formed.

(4) By Lemma D.4, placing that last expression in the evaluation context gives a well-formed
expression 𝑒′.

In addition to the above steps:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

Effectful Software Contracts (with Appendices) 88:35

• For rule app-lambda, at step 3, use Lemma D.5 to establish the well-formedness of the body
of the function after substitution.
• For rule do▷, after step 2, 𝑙 ; ∅ ⊢ 𝐸▷[do 𝑣] where 𝑙𝑜 ≻ 𝐸 ≻ 𝑙 . Without loss of generality, let
𝑙 ≻ 𝐸▷ ≻ 𝑙 ′. By Lemma D.3, 𝑙 ′; ∅ ⊢ do 𝑣 , and hence, 𝑙 ′; ∅ ⊢ 𝑣 . Lemma D.6 and 𝑙 ′; ∅ ⊢ 𝑣 yields
𝑙 ; ∅ ⊢ 𝑣𝑑 . From Lemma D.7 and 𝑙 ; {𝑥 : 𝑙} ⊢ 𝑥 , it follows that 𝑙 ′; {𝑥 : 𝑙} ⊢ 𝑒𝑐 , which from
Lemma D.4 entails 𝑙 ; {𝑥 : 𝑙} ⊢ 𝐸▷[𝑒𝑐]. The rest of the proof for this case proceeds with the
general step 4 from above.
• For do-paiR♢, after step 2, 𝑙 ; ∅ ⊢ 𝐸♢ [do 𝑣] where 𝑙𝑜 ≻ 𝐸 ≻ 𝑙 . Without loss of generality, let
𝑙 ≻ 𝐸♢ ≻ 𝑙 ′. From LemmaD.3, it follows that 𝑙 ′; ∅ ⊢ do 𝑣 , and hence, 𝑙 ′; ∅ ⊢ 𝑣 . From LemmaD.9
and 𝑙 ′; ∅ ⊢ 𝑣 , 𝑙 ; ∅ ⊢ 𝑣𝑐 , which from Lemma D.4 entails 𝑙 ; ∅ ⊢ 𝐸▷[𝑣𝑐]. The rest of the proof for
this case proceeds with the general step 4 from above.
• For do-fun♢, after step 2, 𝑙 ; ∅ ⊢ 𝐸▷[do 𝑣] where 𝑙𝑜 ≻ 𝐸 ≻ 𝑙 . Without loss of generality, let
𝑙 ≻ 𝐸▷ ≻ 𝑙 ′. By Lemma D.3, 𝑙 ′; ∅ ⊢ do 𝑣 , and hence, 𝑙 ′; ∅ ⊢ 𝑣 . Lemma D.8 and 𝑙 ′; ∅ ⊢ 𝑣 yields
𝑙 ; ∅ ⊢ 𝑣𝑑 . The rest of the proof for this case proceeds with the general step 4 from above.

□

LemmaD.3 (Well-Formed Expressions Decompose toWell-formed Expressions). For all 𝑒1
such that 𝑙1; Γ ⊢ 𝑒1, if 𝑒1 = 𝐸 [𝑒2], 𝑒2 ≠ |𝑒3 |𝑙 and 𝑙1 ≻ 𝐸 ≻ 𝑙2 then 𝑙2; Γ ⊢ 𝑒2.

PRoof. By induction on the structure of E. □

Lemma D.4 (Replacement in Context Preserves Well-formedness). For all 𝑒1 and 𝑒2 such
that 𝑙1; Γ ⊢ 𝑒1 and 𝑙2; Γ ⊢ 𝑒2, if 𝑒1 = 𝐸 [𝑒3], 𝑒3 ≠ |𝑒4 |𝑙 and 𝑙1 ≻ 𝐸 ≻ 𝑙2 then 𝑙1; Γ ⊢ 𝐸 [𝑒2]

PRoof. By induction on the structure of E and Lemma D.3. □

Lemma D.5 (Substitution PreservesWell-formedness). For all 𝑒 and 𝑣 such that 𝑙 ; Γ⊎𝑥 : 𝑙 ⊢ 𝑒
and 𝑙 ; ∅ ⊢ 𝑣 , 𝑙 ; Γ ⊢ 𝑒 [𝑣/𝑥].

PRoof. By induction on the structure of e. □

Lemma D.6 (Pull Preserves Well-formedness). For all 𝑒 and 𝑣 such 𝑙 ; ∅ ⊢ 𝑒 and 𝑙 ′; ∅ ⊢ 𝑒 , if
𝑒 = 𝐸 [𝑒1], 𝑒1 ≠ |𝑒2 |𝑙1 and 𝑙 ≻ 𝐸 ≻ 𝑙 ′ then 𝑙 ; ∅ ⊢ (↑𝑜𝐸) [𝑣]

PRoof. By induction on the structure of 𝐸. □

Lemma D.7 (Push Preserves Well-formedness). For all 𝑒 and 𝑒′ such 𝑙 ; ∅ ⊢ 𝑒 and 𝑙 ; Γ ⊢ 𝑒′, if
𝑒 = 𝐸 [𝑒1], 𝑒1 ≠ |𝑒2 |𝑙1 , 𝑙 ≻ 𝐸 ≻ 𝑙 ′ and 𝑙 ′; ∅ ⊢ 𝑣 then 𝑙 ′; Γ ⊢ (𝑣↓𝑜𝐸) [𝑒′]

PRoof. By induction on the structure of 𝐸 using Lemma D.6 for the case where 𝐸 is of the form
mark𝑘,𝑙𝑗 (𝑣𝑑 ▶ 𝑣𝑐) 𝐸′. □

Lemma D.8 (Pull-Minus-Marks PreservesWell-formedness). For all 𝑒 and 𝑣 such 𝑙 ; ∅ ⊢ 𝑒 and
𝑙 ′; ∅ ⊢ 𝑒 , if 𝑒 = 𝐸 [𝑒1], 𝑒1 ≠ |𝑒2 |𝑙1 and 𝑙 ≻ 𝐸 ≻ 𝑙 ′ then 𝑙 ; ∅ ⊢ (↑−𝑜 𝐸) [𝑣]

PRoof. By induction on the structure of 𝐸. □

Lemma D.9 (Push-Minus-Marks Preserves Well-formedness). For all 𝑒 and 𝑒′ such 𝑙 ; ∅ ⊢ 𝑒
and 𝑙 ; Γ ⊢ 𝑒′, if 𝑒 = 𝐸 [𝑒1], 𝑒1 ≠ |𝑒2 |𝑙1 and 𝑙 ≻ 𝐸 ≻ 𝑙 ′ then 𝑙 ′; Γ ⊢ (↓−𝑜 𝐸) [𝑒′]

PRoof. By induction on the structure of 𝐸. □

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

88:36 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

Proposition 5.5 (Ownership Erasure). For all labeled 𝑒 , 𝑒 ↦−→∗𝑜 𝑒′ if and only if𝒪(𝑒) ↦−→∗ 𝒪(𝑒′).

PRoof. By induction on the length of 𝑒 ↦−→∗𝑜 𝑒′ for one direction, and the length of 𝒪(𝑒) ↦−→∗
𝒪(𝑒′) for the other. □

E PARAMETER CONTRACTS IN RACKET
Integrating effectful software contracts with a natively imperative language poses a steeper chal-
lenge than adding them to an effect-handler language. It remains an open question whether a
complete integration is possible without major changes to the existing language. In this spirit,
this section presents a backwards-compatible extension to Racket’s existing contract system that
covers contract-handler contracts only.7

E.1 Parameter Contracts, By Example
As prior examples have demonstrated, contract effects essentially ensure that contracts can set up,
and refer to, markings of dynamic extent in a declarative manner. Racket programmers deal with
dynamic extent via parameters [Gasbichler and Sperber 2005]. A parameter is a value container
that can store a different value for the duration of the dynamic extent of an expression’s evaluation;
no matter how this evaluation proceeds, the original value is placed back into the parameter when
the dynamic extent ends (even via an exception or continuation jump).The Racket implementation
of parameters uses the already-mentioned continuation marks [Clements et al. 2001].
Given this context, an extension to the contract system should enable contracts to set and refer to

parameters, turning ad hoc contract effects into (almost) declarative specifications.This is precisely
the purpose of parameter contracts. The remainder of this section illustrates this point with two
examples: contracts for generator yielding and contracts for function termination.

Generator and Yield. A generator is a procedure that may call the one-argument yield proce-
dure in its dynamic extent. When it does so, the evaluation of the generator is suspended and the
value handed to yield becomes the result of the generator. Once the generator is called again, its
evaluation resumes the (hidden) suspension until the next call to yield.
Here is a simplistic example of a generator that produces all even natural numbers:
(define evens

(generator/f

(𝜆 ()

(for ([k (in-naturals)])

(yield (* 2 k))))))

A generator is created by passing a thunk to the generator/f function.
The key constraint is that yield should be invoked only in the dynamic extent of the thunk.

Without effectful contracts, such a constraint is documented informally and checked using inter-
spersed defensive checks.

A parameter contract can express this constraint on the generator interface:
(provide

(contract-out

[generator/f

(->i ([thunk (->i () #:param in-gen? true any/c)]) [result generator?])]

[yield

(->i ([v any/c]) #:pre (in-gen?) [result any/c])]))

7This extension is available in the released version of Racket (as of 8.8).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

Effectful Software Contracts (with Appendices) 88:37

Parameter contracts tend to come in pairs: a #:param clause in an ->i contract sets up the context
and a precondition clause checks the context for the relevant information. In this example, the ->i
contract on the thunk handed to generator/f ensures that the in-gen? parameter is set to true

when the thunk is run. Symmetrically, yield checks the value of this parameter in its precondition
to ensure that it is called in the dynamic extent of a call to the thunk.

Termination. The literature on static analysis occasionally relies on termination checking, and
such checks often encode the size-change property (SCP) [Lee et al. 2001]. Nguyễn et al. [2019]
present an ad hoc contract for checking this property. Roughly, the contract keeps track of a call
graph that includes information about non-descending paths.

A parameter contract can express this termination contract directly. It uses parameters to update
the call graphs:

(define-syntax (total-> stx)

(syntax-parse stx

[(_ arg-ctc ... res-ctc)

#:with (param ...) (generate-temporaries #'(arg-ctc ...))

#'(self/c

(𝜆 _

(define CG (make-parameter empty-call-graph))

(->i ([param arg-ctc] ...)

#:pre (graph-update CG (list param ...))

#:param G (graph-update CG (list param ...))

[result res-ctc])))]))

The total-> macro produces a termination contract. Its pieces are the argument and result
contracts; its result is an ->i contract.

As with affine contracts, self/c is used to create the CG parameter at an appropriate time. This
parameter initially contains the empty call graph. When called, the total-> contract’s precondi-
tion first checks whether updating the call graph with the new arguments would violate the SCP.
If so, graph-update returns false and the program signals a contract violation. Otherwise, the
#:param option extends the call graph with the new information about the arguments.
Here is how this contract may be used in practice:

(define ack

(invariant-assertion

(total-> integer? integer? integer?)

(𝜆 (m n)

(cond

[(= 0 m) (+ 1 n)]

[(= 0 n) (ack (- m 1) 1)]

[else (ack (- m 1) (ack m (- n 1)))]))))

The invariant-assertion construct attaches a contract to a function that is checked for all calls,
including recursive calls. In this case, the assertion promises, and checks, that the recursive ack

function terminates on whatever arguments it is given.

E.2 Parameter Contracts Implementation, An Overview
The modification of Racket’s contract system consists of about 230 lines of code in the implemen-
tation of the ->i combinator. Like effect/racket, the modification takes advantage of Racket’s

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

88:38 Cameron Moy, Christos Dimoulas, and Matthias Felleisen

Table 2. Summary Evaluation (Full ✓, Partial ∼, None ×)

Effect-Handler Contracts Parameter Contracts
Chalin et al. [2006] ✓ ∼

Tov and Pucella [2010] ✓ ×
Shinnar [2011] ✓ ×

Disney et al. [2011] ✓ ∼
Keil and Thiemann [2015a] ✓ ×

Scholliers et al. [2015] ∼ ∼
Moore et al. [2016] ✓ ✓

Dimoulas et al. [2016] ✓ ×
Bañados Schwerter [2016] ✓ ×

Williams et al. [2018] ✓ ×
Nguyễn et al. [2019] ✓ ✓

Moy and Felleisen [2023] ✓ ∼

existing libraries; but because the contract system is one of the more foundational pieces of the
Racket implementation, the extension cannot exploit abstractions from high-level layers.

Key is Racket’s expressive support for proxy values [Strickland et al. 2012]. Proxy values are able
to maintain expected invariants, such as equality between the original value and the proxy. Im-
portantly, procedure proxies already support manipulating continuation marks upon application.
The patch to ->i takes advantage of a special internal value that serves as the continuation-mark
key for all parameterizations [Flatt and Dybvig 2020]. The value of this key is a mapping between
parameters and their assignments. Another internal function updates this mapping. When the
#:param option is set, the modified ->i contract generates code that installs an updated value for
the parameter continuation-mark key. When the #:param option is missing, the contract does not
generate this code. In short, parameter contracts are a pay-as-you-go construct.

Like effect/racket, the modification of Racket’s contract system can guide the effort of others
to add parameter contracts to an existing contract system. If the underlying language comes with
a mechanism like continuation marks, the effort is straightforward. Otherwise, the implementer
may wish to consider adding a continuation-mark mechanism, because it has proven useful in
different ways [Chang et al. 2011; Clements and Felleisen 2004; Clements et al. 2001; Flatt and
Dybvig 2020].

E.3 Comparing Effect-Handler and Parameter Contracts
Table 2 summarizes how the two implementations deal with the properties present in the literature.
Like Table 1, rows correspond to existing pieces of literature; columns, though, correspond to
the two implementations. Keep in mind that the effect-handler language is not Racket but a new
language that implements the model faithfully; parameter contracts extend the existing Racket
contract library with a partial realization of the model.

The cells of Table 2 are marked with ✓, ×, or ∼. A ✓ in the table indicates that the implementa-
tion is able to faithfully express the contracts presented in the respective paper. A ∼ mark means
that the implementation can check the property with caveats. Finally, an × admits a failure; the
implementation is not able to express the contracts presented in the corresponding paper.

As mentioned in Section 7.1, effect/racket can completely express all but one of the contracts
present in the literature. By contrast, the column for parameter contracts shows a lack of expres-
sive power in the revised contract library. While the library can still express—to some degree—half

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

Effectful Software Contracts (with Appendices) 88:39

of the existing constructs, it certainly cannot cover the whole terrain. In other words, this column
raises the research question of how an existing contract library could implement the model faith-
fully and thus become a universal framework.

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 88. Publication date: January 2024.

	Abstract
	1 Contracts and Effects: Ubiquitous Yet Ignored
	2 Effect-handler contracts, informally
	2.1 Syntax and Informal Semantics
	2.2 Examples, Informally

	3 A Formal Model of Effect Handler Contracts
	3.1 Evaluation Syntax
	3.2 Core Reduction Rules
	3.3 Contract Reduction Rules
	3.4 Effect-Handler Reduction Rules
	3.5 Effect-Handler Contract Reduction Rules
	3.6 On the Importance of Cascading Contracts

	4 Dependent Contracts
	4.1 Dependent Function Contracts
	4.2 Dependent Main-Effect Contracts

	5 Semantic Properties
	5.1 Well-Definedness
	5.2 Erasure
	5.3 Blame Correctness

	6 Effect Racket
	6.1 The Language, By Example
	6.2 The Implementation, An Overview
	6.3 Restricting Handlers

	7 Evaluation and Related Work
	7.1 Analysis
	7.2 Related Work

	8 Ignored No Longer
	Acknowledgments
	References
	A Proof Syntax
	B Functional Evaluation Proof
	C Erasure Proof
	D Blame Correctness
	D.1 Syntax with Ownership
	D.2 Ownership Metafunctions
	D.3 Syntactic Sugar
	D.4 Annotated Reduction Rules
	D.5 Ownership Well-formedness
	D.6 Theorems, Key Lemmas and their Proofs

	E Parameter Contracts in Racket
	E.1 Parameter Contracts, By Example
	E.2 Parameter Contracts Implementation, An Overview
	E.3 Comparing Effect-Handler and Parameter Contracts

