
PIACERE Integrated Development Environment
Eliseo Villanueva

Prodevelop SL
evillanueva@prodevelop.es

Ismael Torres
Prodevelop SL

itorres@prodevelop.es

Eneko Osaba
TECNALIA, Basque Research and

Technology Alliance (BRTA)
eneko.osaba@tecnalia.com

Sergio Canzoneri
DEIB, Politecnico di Milano

sergio.canzoneri@mail.polimi.it

Andrea Franchini
DEIB, Politecnico di Milano
andrea.franchini@polimi.it

Lorenzo Blasi
Hewlett Packard Italiana s.r.l

lorenzo.blasi@hpe.com

ABSTRACT
This article presents a model-driven engineering (MDE) integrated
development environment (IDE) to assist the DevSecOps (Develop-
ment Security and Operations) process. This tool has been devel-
oped within the PIACERE H2020 project, which proposes a frame-
work composed of a set of tools developed to support all phases
of the DevSecOps life cycle including modeling, test/validation,
build/generate, deployment, operate and modeling. PIACERE IDE
is an Eclipse based tool, that acts as the front-end for this frame-
work, and plays a key role in integrating other PIACERE tools. The
IDE allows developers to access the different tools in a simple and
unified way.

CCS CONCEPTS
• Software and its engineering; • Software notations and tools;
• Development frameworks and environments; • Integrated
and visual development environments;

KEYWORDS
IDE (integrated development environment), DevSecOps, Eclipse,
IaC (Infrastructure as Code)
ACM Reference Format:
Eliseo Villanueva, Ismael Torres, Eneko Osaba, Sergio Canzoneri, Andrea
Franchini, and Lorenzo Blasi. 2023. PIACERE Integrated Development Envi-
ronment. In 3rd Eclipse Security, AI, Architecture and Modelling Conference on
Cloud to Edge Continuum (ESAAM 2023), October 17, 2023, Ludwigsburg, Ger-
many. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3624486.
3624507

1 INTRODUCTION
The interest in automating the deployment of cloud solutions and
their integration with a DevOps methodology has been a growing
topic of interest in recent years. However, the heterogeneity of
technologies and software development methods in use remains a
challenge for researchers and practitioners. Moreover, security is
often not taken into consideration throughout the whole process.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESAAM 2023, October 17, 2023, Ludwigsburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0835-0/23/10. . . $15.00
https://doi.org/10.1145/3624486.3624507

The PIACERE Project [1] tries to solve the previous challenge
providing tools, methods, and techniques to enable most organiza-
tions to fully embrace the IaC (Infrastructure as Code) approach,
through the DevSecOps philosophy [2]. PIACERE tools enable the
automation of deployment, configuration, and monitoring tasks.
PIACERE solution consists of an integrated DevSecOps framework
(Figure 1) to develop, verify, release, configure, execute, and moni-
tor infrastructure as code. In addition, the proposed solutions are
cloud vendor independent, allowing solutions to be deployed on
the most relevant cloud providers today. The PIACERE project ends
in November 2023, so the tools presented may still undergo some
modifications and improvements, although they are expected to be
minimal.

The pivotal tool of the project is the IDE, it supports the different
DevSecOps activities using a single integrated environment and
reduces the learning curve for new teams.

In the PIACERE project a novel DevSecOps Modelling Language
(DOML), has been developed to hide the specificities and technical-
ities of the current solutions. Moreover, PIACERE also provides a
ICG (Infrastructural Code Generator) tool to translate this DOML
language into source files for different existing IaC languages [3, 4].
With the combination of these tools, the time needed for creating
infrastructural code for complex applications will be reduced by
increasing the productivity

1.1 DOML: DevSecOps Modelling Language
The aim of these tools is to provide the DevSecOps teams the tools
and environments to simulate, package, release and configure an
optimized deployment of the IaC.

DOML [5] is an end-user declarative language enabling the mod-
elling of provisioning, deployment, and configuration of complex
infrastructural software. It aims at describing cloud applications
that are agnostic of the specificities and technicalities of the differ-
ent providers and current Infrastructure-as-Code tools, and it has
been designed to be easy to read and write for non-expert users.

A DOML model can then be translated into executable
Infrastructure-as-Code languages, thanks to the PIACERE ICG tool:
currently, supported languages include Terraform for provisioning
and Ansible for configuring the infrastructure.

DOML provides several modelling perspectives in a multi-layer
approach. An application can be described in four layers: application
layer, abstract infrastructure layer, concrete infrastructure layer
and optimization layer. The separation between the abstract and
the concrete layer, allows developers to describe the structure of
the cloud applications in an abstract manner, mapping the different

62

https://doi.org/10.1145/3624486.3624507
https://doi.org/10.1145/3624486.3624507
https://doi.org/10.1145/3624486.3624507
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624486.3624507&domain=pdf&date_stamp=2023-10-17

ESAAM 2023, October 17, 2023, Ludwigsburg, Germany Eliseo Villanueva et al.

Figure 1: PIACERE Framework overview.

software components to the infrastructure elements, enabling the
usage of different concretizations, even on different providers, to
match one particular deployment.

Moreover, DOML is meant to be extensible: the set of exten-
sion mechanisms that allow users to create new concepts from the
existing ones takes the name of DOML-E.

As for the internal structure, DOML consists of a metamodel
and a syntax. The metamodel was built on top of Eclipse Model-
ing Framework (EMF), relying on the Emfatic textual syntax to
generate an Ecore metamodel. Thanks to the usage of Emfatic, the
metamodel is easier to handle and the process to modify it, defining
new concepts or extending the existing ones, is simpler.

The syntax was developed starting from the metamodel, using
the Eclipse Xtext framework. However, in order for it to be more
flexible and suitable for the purpose of translating models into
Infrastructure-as-Code languages, the syntax was not automati-
cally generated from the Ecore using the Xtext wizard; instead, it
was written in a custom manner, still maintaining a strong align-
ment with the metamodel. Thanks to the usage of Xtext, users are
provided with an editor (incorporated in the IDE) which guides
them in the building of syntactically correct models, through code
completion suggestions and error warnings.

Finally, Xtext also provides the tools to convert DOML models to
an XML-based format, named DOMLX, which is used as an internal
representation of DOML for most of the PIACERE tools. Such a
serialized representation of models’ data structures allows the tools
to be independent of the specific syntax used to generate a model,
leading to a more flexible approach to updating DOML.

By the end of the project, the reverse conversion from DOMLX
to DOML format will be supported, allowing the transformation of
DOML models from an older version of the language to a newer
one, thus guaranteeing backward compatibility.

2 PIACERE DESIGN TIME TOOLS
PIACERE tools operate in two different scenarios: design time and
run time. In this article, only the design time tools will be discussed,

as they are the ones that allow the user to model, validate, optimize,
and generate their IaC and have it ready for deployment.

2.1 IDE: Integrated development environment
The IDE, as mentioned above, allows developers to access all PI-
ACERE tools. The development of this Integrated Development
Environment has been carried out using consolidated tools such
as Eclipse EMF that allow a simple integration of models such as
those required by the DOML language (integrated via plug-in) and
allow the use of REST APIs in an easy way to integrate some of the
tools in the IDE.

The Eclipse IDE has been customized with suitable plug-ins that
integrate the execution of the different tools, in order to minimize
learning curves and simplify adoption. Not all tools are integrated in
the same way. Several integration patterns, focusing on the Eclipse
plugin architecture, have been defined. Thanks to the different
integration patterns applied, there is independence between the IDE
and the integrated tools, facilitating their decoupling and allowing
them to be updated very quickly without the need to release a new
version of the IDE.

A new section (Figure 2) in the preferences menu has also been
created for the PIACERE Project, where the different access parame-
ters to the API endpoints of each of the tools can be easily modified.
PIACERE Tools are accessible through the PIACERE Tools menu
(Figure 3) by right-clicking on the different files in the workspace.

2.2 VT: Verification Tools
The Verification Tools of PIACERE consists of two static analysis
tools: the DOML Model Checker and the IaC Security Inspector.

The DOML Model Checker is used at design time to validate
DOML models and verifying their consistency and correctness. The
verification results are presented in a user-friendly interface with
details on the issue source and suggestions on how to solve it.

The IDE communicates with it through a REST API, leveraging
the DOMLX format, an XMI file containing all the elements and
relationships specified in DOML. Using the ECORE metamodel, it

63

PIACERE Integrated Development Environment ESAAM 2023, October 17, 2023, Ludwigsburg, Germany

Figure 2: PIACERE Preferences menu section.

Figure 3: PIACERE contextual Menu.

is possible to access the DOML model in external tools, through
libraries such as PyEcore.

The Model Checker is powered by the Z3 Theorem Prover de-
veloped by Microsoft Research and was built with Python and
deployed in the PIACERE infrastructure as a container.

Users can further customize the checks that Model Checker runs
via a domain specific language that allows them to exclude certain
requirements (should they cause issue with a specific configuration),
enable optional ones, and even write new requirements.

Another feature present in the Model Checker is a tool to check
the compatibility with selected cloud service providers, ensuring
that certain configurations are supported (e.g.: operating systems,
architectures, keypair algorithms) and all the minimum required
elements are present. The results are presented as a compatibility
matrix.

The IaC Security Inspector is used to ensure the safety of the
IaC code generated from DOML after the design phase, through
an expansive suite of checks. A set of these checks cover syntactic
problems of the languages used various IaC tools (i.e.: Terraform,
TOSCA, Ansible...) such as typos and exposed secrets, like hard-
coded passwords; another set of checks instead focuses on ensuring

that IaC component and their dependencies are not affected by
vulnerabilities.

The IaC Security Inspector receives the IaC as input and returns
the list of vulnerabilities such as configuration errors, warnings,
and suggestions as output.

Both tools receive DOMLX as input and produce their output as
JSON (useful for inserting the Model Checker in a larger process as
an automated step, such as the PIACERE Self-Healing, in the case
of the DOML Model Checker) or HTML, which can be displayed to
the user with a clean and human-readable UI.

2.3 IOP: PIACERE Optimizer Infrastructure
The main basis of the optimization problem formulated in the
project is comprised by a service which must be deployed, and
a catalogue of infrastructural elements (IEC). Thus, the main goal
is to find the most appropriate IaC configuration to be deployed on
the most suitable infrastructural elements that optimally meets the
predefined restrictions.

Thus, the principal responsibility of the IOP tool is to find the
optimum infrastructure to be deployed considering the data pro-
vided as input. This data must be introduced using the previously
detailed DOMLmodelling language, and it should contain two main
aspects: the objectives to optimize, and the requirements that the
solution must meet.

On the one hand, the objectives considered by the current version
of the IOP are i) the cost, ii) the availability, and iii) the performance
of the overall deployment. On the other hand, seven different re-
quirements can be deemed by the optimizer: i) a maximum cost for
the overall configuration, ii) a minimum performance, iii) a mini-
mum availability, iv) a minimum memory for each of the elements
deployed, v) restrict the provider for the selected elements, vi) re-
strict the region for the elements, and vii) to establish the amount
of elements to deploy.

With all this information, the IOP resorts to the well-known
NSGA-II [6] and NSGA-III [7] multiobjective algorithms for con-
ducting the matchmaking of the infrastructure. Thus, the IOP suc-
cess if these artificial intelligence optimization methods can provide
the user with the optimized deployment configuration. For this pur-
pose and considering that the problem to solve is a multiobjective
one, several solutions are offered and ranked by the IOP to the user.

Finally, within PIACERE, the IOP is employed into two different
contexts: the initial deployment of the service, and the redeploy-
ment once it is already running. Thus, the IOP has a different role
depending on whether it is called from the Design Time phase or
the Run Time phase:

• The IOP in the Design Time: in this phase, the IOP is called
from the PIACERE IDE. In this regard, and once the input
DOML is composed, the IOP service can be called from the
IDE just pushing the right click of the mouse over the DOML
file and selecting PIACERE -> Optimize DOML. Once the
optimization is conducted, the service offers the ranked solu-
tions, which are subsequently use by the ICG for generating
the IaC.

• The IOP in the Run Time: in this phase, the IOP is part of the
self-healing process, and it is called once the system detects
that a re-deployment is needed.

64

ESAAM 2023, October 17, 2023, Ludwigsburg, Germany Eliseo Villanueva et al.

Figure 4: ICG Architecture.

2.4 ICG: Infrastructural Code Generator
The ICG tool (Figure 4) can be seen as a DOML compiler that
generates executable IaC code. A parser extracts all the needed in-
formation from the input DOMLX model, creating an Intermediate
Representation, and the code generation plugins create the output
IaC code in multiple languages, depending on the activity to be
automated. For example, Terraform code is created for provisioning
virtual machines and network, and Ansible or Docker Compose
code for deploying applications on the provisioned infrastructure.

ICG can be used either as command line tool, to be easily used
in manual testing or CI/CD pipelines, or as containerized service
that exposes a REST API. This API is used to integrate it in the IDE.

Multiple target platforms are supported in the last version of
ICG. The generated IaC code can create infrastructure on cloud
providers, such as AWS andAzure, but also on premise in Openstack
or VSphere environments.

ICG generates IaC code using templates. The provided library
includes templates for virtual machines, networks, subnets, security
groups (firewalls) and autoscaling groups (based on load balancing).

Being based on templates, ICG can be easily extended to support
new target platforms (e.g., GCP) or additional resources (e.g., switch
or dbms), by adding the corresponding templates. Another possible
extension is to add a new target IaC language (e.g., Kubernetes), but
this is slightly harder, as it involves not only providing templates,
but also writing (in Python) a new code generation plugin.

The last version of the ICG can also integrate custom code pro-
vided by the user. The new ICG API accepts in input a zip package
including both the DOMLx model and a directory tree with a pre-
defined structure, containing custom IaC code, e.g., an Ansible
playbook. The ICG output integrates the given custom code in the
generated structure, with the additional configuration needed to
execute it. This functionality allows the user to reuse existing code
assets (for this we also call the input directory with custom IaC
code as “asset folder”).

A further functionality just added to the ICG is the creation,
in every output package, of a Gaia-X self-description [8] for the
generated code. This allows the generated IaC to be uploaded as a
potentially executable service in a Gaia-X repository.

3 CONCLUSIONS
The overall objective of the IDE is to become the main gateway for
all developers interested in adopting and following the proposed
methodology for deploying DevSecOps applications.

The improvements brought using the IDE to develop applica-
tions are: Easy to use IDE, Support for all phases of the software
development cycle, Integration with other quality tools.

The full version includes the integration of all the tools specified
in the PIACERE project objectives. In addition, the use of the tool
has been validated by 3 different use cases in environments of
various kinds such as safety on IoT in 5G, public administration,
and maritime infrastructures.

ACKNOWLEDGMENTS
This work was supported by the European Union under the H2020
Research and Innovation Programme (PIACERE, grant agreement
no: 101000162).

REFERENCES
[1] “PIACERE Project,” [Online]. Available: https://piacere-project.eu/.
[2] J. Alonso, R. Piliszek and M. Cankar, “Embracing IaC through the DevSecOps

philosophy: Concepts, challenges, and a reference framework,” IEEE Software,
Special issue: Special Issue on Infrastructure-as-Code Unleashed, pp. 56-62, 2023.

[3] G. Nedeltcheva, A. De La Fuente Ruiz, L. Orue-Echevarria Arrieta, N. Bat and L.
Blasi, “Towards Supporting the Generation of Infrastructure as Code Through
Modelling Approaches – Systematic Literature Review,” in IEEE 19th International
Conference on Software Architecture Companion (ICSA-C)., Hawaii, 2022.

[4] M. Chiari, M. De Pascalis andM. Pradella, “Static Analysis of Infrastructure as Code:
a Survey,” in 2022 IEEE 19th International Conference on Software Architecture
Companion (ICSA-C)., Hawaii.

[5] M. Chiari, B. Xiang, G. Nedeltcheva, E. Di Nitto, L. Blasi, D. Benedetto and L.
Niculut, “DOML – A New Modelling Approach To Infrastructure-as-Code,” in 35th
International Conference on Advanced Information Systems Engineering (CAiSE
2023), Zaragoza, 2023.

65

https://piacere-project.eu/

PIACERE Integrated Development Environment ESAAM 2023, October 17, 2023, Ludwigsburg, Germany

[6] K. Deb, S. Agrawal, A. Pratap and T. Meyarivan, “A fast elitist nondominated
nondominated sorting genetic algorithm for multi-objective optimization: NSGA-
II,” in Parallel Problem Solving from Nature PPSN VI: 6th International Conference,
Paris, 2000.

[7] K. Deb and H. Jain, “An evolutionary many-objective optimization,” IEEE trans-
actions on evolutionary algorithm using reference-point-based nondominated

sorting approach, part I: solving problems with box constraints, vol. 18, no. 4, pp.
577-601, 2013.

[8] “Self-Description of Resources, Service Offerings and Participants within Gaia-
X Ecosystems,” Gaia-X, 2022. [Online]. Available: https://gaia-x.eu/wp-content/
uploads/2022/08/SSI_Self_Description_EN_V3.pdf.

66

https://gaia-x.eu/wp-content/uploads/2022/08/SSI_Self_Description_EN_V3.pdf
https://gaia-x.eu/wp-content/uploads/2022/08/SSI_Self_Description_EN_V3.pdf

	Abstract
	1 INTRODUCTION
	1.1 DOML: DevSecOps Modelling Language

	2 PIACERE DESIGN TIME TOOLS
	2.1 IDE: Integrated development environment
	2.2 VT: Verification Tools
	2.3 IOP: PIACERE Optimizer Infrastructure
	2.4 ICG: Infrastructural Code Generator

	3 CONCLUSIONS
	Acknowledgments
	References

