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Abstract

Climate change is making oceans warmer and more acidic. Under these condi-
tions phytoplankton can produce harmful algal blooms which cause rapid oxygen
depletion and consequent death of marine plants and animals. Some species are
even capable of releasing toxic substances endangering water quality and human
health. Monitoring of phytoplankton and early detection of harmful algal blooms is
essential for protection of marine flaura and fauna. Recent technological advances
have enabled in-situ plankton image capture in real-time at low cost. However,
available phytoplankton image databases have several limitations that prevent the
practical usage of artificial intelligent models. We present a pipeline for integration
of heterogeneous phytoplankton image datasets from around the world into a uni-
fied database that can ultimately serve as a benchmark dataset for phytoplankton
research and therefore act as an important tool in building versatile machine learn-
ing models for climate adaptation planning. A machine learning model for early
detection of harmful algal blooms is part of ongoing work.

1 Introduction

Climate change is causing progressive warming, acidification, and de-oxygenation of oceans[8].
These conditions produce Harmful Algae Blooms (HAB) and diminish the ability of marine fish
and plants to survive, thereby endangering the entire marine ecosystem. Excessive proliferation of
phytoplankton species causes HABs and may produce hazardous toxins, adversely affecting human
health and economic activity. Phytoplankton monitoring and early detection of HABs are vital for
protecting marine life, restoring oceans, and developing climate-resilient economies.

Artificial intelligence (AI) is widely used in image-based classification of phytoplankton species
[9, 14]. AI models in turn need to be trained on in-situ phytoplankton images that are sufficiently
representative in terms of volume and variety to support early detection and monitoring of HABs.
Currently there is no unified database that fulfills this need. Over time, a number of databases have
emerged, however they are heterogeneous in multiple ways, e.g. they may capture different types of
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phytoplankton species from different parts of the world. Hence, there is an imperative need for data
integration and standardization.

Additionally the quality of images can vary across databases. The image resolution in some datasets
is too low to extract distinct features in detail [10]. Most public datasets comprise gray-scaled images
hence lack RGB representations that typically retain more details on phytoplankton characteristics.
Public image databases also do not necessarily cover target phytoplankton species for in-situ ap-
plications (e.g. aquaculture farms). For instance, the WHOI database, the world’s largest plankton
classification database, includes over 3.4 million expert-labeled low-resolution gray-scaled images
across 70 classes [13]. The RGB image dataset PMID2019 has higher-resolution images, but it only
includes 10,819 labeled images for 24 distinct classes [10]. For reliable and representative machine
learning models suitable for real-world application, a unified, benchmark database of sufficient
quality, variety, and volume is required.

1.1 Proposed Solution and Climate Impact

This work presents an approach towards developing a pipeline for integration and standardization of
image databases. The key output is a geographically representative, unified, labeled phytoplankton
database.

The proposed pipeline is generic and can be applied widely for curation of real-world data from
natural environments. It can support training of AI models such as those for early detection of HAB
outbreaks, ultimately contributing to climate resilience and adaptation efforts.

2 Methodology

Aquaculture sites from Brazil, South Africa, Ireland, Argentina and Scotland have provided a list
of target phytoplankton species considering the organisms usually encountered in local monitoring
campaigns. The list is organized by genus to support research on public databases and further AI
development (Figure 1).

Figure 1: Target phytoplankton organisms within aquaculture farms of Brazil, South Africa, Argentina,
Ireland, South Africa and Scotland. The information is organized by genus.

Recent articles (from 2017 onwards) covering the construction of phytoplankton datasets or image-
based models for phytoplankton classification have been studied. The availability of images for each
target phytoplankton genus is analyzed in each cited or provided database. The images are organized
by genus for further integration.
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2.1 Data Integration Pipeline

The proposed methodology uses the most comprehensive public dataset (WHOI) as basis for data
processing. Output data are gray-scaled images of fixed size. Phytoplankton organisms are represented
at a fixed scaled considering expected size ranges within target genus. Figure 2 illustrates the data
integration pipeline.

Figure 2: Pipeline for dataset integration. Gray operations represent auxiliary processing. Target
Size (TS) is a random selected value between minimum and maximum expected size of each
phytoplankton specie. TP represents the target pixel size considering an output scale E (µm/pixel).

Although image scale varies within public datasets, the proposed pipeline maintains consistent size
among target phytoplankton genus. It considers a fixed output scale (E) for the integrated dataset.
For each image, a target size (TS [µm]) is randomly selected considering minimum and maximum
expected sizes of each genus.

Image regions properties are considered to enable consistent output representation. The major axis
length (OP ) is defined as the number of pixels between the extreme points of longest line along the
length of a phytoplankton organism. It is used to determine the ratio coefficient (R = TP ÷ OP )
necessary to represent the phytoplankton organisms at a target size in pixels (TP ) and fixed scale
(E). The ratio coefficient is used to resize the image and maintain size consistency.

Some datasets provide framed images for further usage. The pipeline removes it considering
automatically detected image regions. The bounding box of the region with biggest area is considered
for frame removal. The Matlab software is used to employ the proposed integration pipeline. Output
images are organized in a file system at genus-level to support further development of AI models.

3 Results and Discussions

Fourteen public phytoplankton image datasets were identified from the literature. Tables 1 and 2
summarize the complete list of public databases, main characteristics and the number of images
provided for each target phytoplankton genus. Figure 4 illustrates some image examples of distinct
databases to showcase the data variability.

Some databases (29%) do not contain genus-level images for any target phytoplankton. Figure 3
illustrates the coverage (i.e. the percentage of genus variety contained in the database) and the average
number of images within represented genus for each dataset. The most comprehensive one (Ocean
data center) encompassed 54% of target genus with an average of 38 images per not empty class.

Most databases (79%) covered only up to 50% of target phytoplankton genus with an average of 94
images per genus. A significant class imbalance was therefore identified within each database. It
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Figure 3: Number of images (A) and Coverage (B) within original and integrated databases. Coverage
was measured as the percentage of target phytoplankton genus with at least one image. The number
of images is presented as the average and standard deviation of the number of images within covered
genus.

reflects natural imbalances within the aquatic environment on which dominant species are imaged
more frequently than rare taxa.

The integrated dataset yielded by the proposed pipeline covered 89% of target phytoplankton genus
with an average of 7,400 images per genus. It has succeeded on data integration towards a more
representative and suitable dataset for aquaculture applications. However, it still struggled with class
imbalance since only 57% of target phytoplankton genus achieved at least 20 images. The proposed
pipeline considered gray-scaled characteristic of most public databases. It may be basis for new
data integration pipelines towards colorful, comprehensive and representative phytoplankton image
databases for in-situ applications.

The dataset curation design embedded a standardized mechanism for label-assignment so that the
dataset can be used efficiently for machine learning modeling. The output phytoplankton images
were organized at genus-level to support the development of AI models suitable for in-situ monitoring
programs within aquaculture farms.

4 Conclusions

In this paper an image database integration pipeline was presented, which resulted in a unified,
benchmark database covering all publicly available phytoplankton images with an increased coverage
from an average of 26% to 89% considering species in the natural marine environment. It can serve as
an important tool in building versatile machine learning models for planning protection and resilience
of marine ecosystems in the face of climate change. Data quality assessment, and application to early
detection machine learning models is part of ongoing work.
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Figure 4: Images of some phytoplankton species identified in six different public databases.

Table 1: Image-based databases for phytoplankton modeling and the number of images for target
species within aquaculture farms. No target phytoplankton images were encountered for the dabases
Kaggle [3], PlanktonSet [7], ISIIS [11] and VPR [15]

Item WHOI [16] ASLO [5] ADIAC Mini
PPlankton [17]

Vyhledávání
[6]

Representation Gray Scale Gray Scale Gray Scale RGB RGB
Genus Number of Images

Alexandrium 0 0 0 0 0
Anabaena 0 0 0 0 19
Azadinium 0 0 0 0 0

Centric 0 0 0 0 0
Chaetoceros 45594 300 0 70 9

Cilliates 11613 300 0 0 0
Dinophysis 295 0 0 70 5

Euglena 542 300 0 0 14
Fragilaria 0 0 20 0 24
Gonyaulax 3 0 0 0 1

Karenia 0 0 0 0 0
Katodinium 0 0 0 0 1

Leptocylindrus 101375 0 0 0 0
Lingulodinium 0 0 0 0 0

Mesodinium 0 0 0 0 0
Nematodinium 0 0 0 0 0

Nodularia 0 0 0 0 18
Paralia 413 0 1 0 0
Pennate 4766 0 300 0 0

Prorocentrum 2590 0 0 0 5
Protoceratium 0 0 0 0 0

Pseudo-nitzschia 3220 300 0 0 0
Rhizosolenia 30.554 300 0 70 4
Scrippsiella 0 0 0 0 0
Skeletonema 12.323 300 0 70 6
Tetraselmis 0 0 0 0 0

Thalassiosira 11.025 300 5 0 0
Tripos 0 0 0 0 15

Coverage 46.43% 28.57% 10.71% 14.29% 42.86%
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Table 2: Image-based databases for phytoplankton modeling and the number of images for target
species within aquaculture farms. No target phytoplankton images were encountered for the dabases
Kaggle [3], PlanktonSet [7], ISIIS [11] and VPR [15]

Item COPEPEDIA [2] PMID2019 [10] Algae
Vision [1] kpabg [12]

Ocean
data

center [4]
Representation Gray Scale Gray Scale RGB RGB RGB

Genus Number of Images
Alexandrium 0 0 0 0 11

Anabaena 0 0 0 29 0
Azadinium 0 0 0 0 0

Centric 0 0 0 0 0
Chaetoceros 300 0 70 0 7

Cilliates 300 0 0 0 0
Dinophysis 0 0 70 0 7

Euglena 300 0 0 0 0
Fragilaria 0 20 0 0 2
Gonyaulax 0 0 0 0 7

Karenia 0 0 0 0 6
Katodinium 0 0 0 0 0

Leptocylindrus 0 0 0 0 4
Lingulodinium 0 0 0 0 12

Mesodinium 0 0 0 0 0
Nematodinium 0 0 0 0 0

Nodularia 0 0 0 10 3
Paralia 0 1 0 0 0
Pennate 300 0 0 0 0

Prorocentrum 0 0 0 0 8
Protoceratium 0 0 0 0 1

Pseudo-nitzschia 300 0 0 0 6
Rhizosolenia 300 0 70 0 2
Scrippsiella 0 0 0 0 0
Skeletonema 300 0 70 0 7
Tetraselmis 0 0 0 0 0

Thalassiosira 300 5 0 0 11
Tripos 0 0 0 0 0

Coverage 28.57% 10.71% 14.29% 7.14% 53.57%
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