

 Grant Agreement number: 101092696
 Topic: HORIZON-CL4-2022-DATA-01

D11: CODECO Basic Operation and Open Toolkit v1.0

Work package WP3 – CODECO Basic Operation components and Toolkit

Internal number D3.1

Task Tasks 3.1, 3.2, 3.3, 3.4, 3.5, 3.6

Due date 31.10.2023

Submission date 31.10.2023

Dissemination Type PUBLIC

Deliverable leaders and
editors

ICOM (Nikos Psaromanolakis, Vasileios Theodorou)

Contributing Partners FOR (Rute C. Sofia, Dalal Ali); ICOM (Nikos Psaromanolakis,
Maria Eleftheria Vlontzou, Andreas Akarepis, Vasileios
Theodorou); ATH (Lefteris Mamatas, George Koukis, Ioanna
Kapetanidou); SIE (Harald Müller); I2CAT (Rizkallah Touma,
Alejandro Espinosa); UPRC (Efterpi Paraskevoulakou,
Panagiotis Karamolegkos); TID (Alejandro Muniz da Costa,
Luis Contreras Murillo); UC3M (Borja Nogales Dorado), UPM
(Alberto del Rio Ponce); Almende (Andries Stam); RHT (Josh
Salomon, Simone Ferlein-Reiter); IBM (Luis Garcia-Erices,
Peter Urbanetz), INO (Vitor Vieira); UGOE (Xiaoming Fu);
INTRA (John Soldatos, Dorine Matzakou); ATOS (Ignacio
Prusiel Mariscal);

Version 1.0

Reviewer 1 FOR (Rute C. Sofia)

Funded by the Swiss Federal Government

HE CODECO D11: CODECO Basic Operation components
and Toolkit v1.0
Grant Agreement nr: 101092696

2

Project Partners

Affiliated Entities

HE CODECO D11: CODECO Basic Operation components
and Toolkit v1.0
Grant Agreement nr: 101092696

3

Executive Summary

This report is an integral part of the CODECO deliverable D11 - CODECO Basic Operation
Components and Toolkit v1.0. D11 consists of this report and an early CODECO software
release consisting of components of the CODECO open source "Basic Operation Toolkit v1.0”,
available in the CODECO Eclipse GitLab repository. This first open source software toolkit will
be fully released in June 2024 (month 18 of CODECO) and will provide the CODECO
framework operational support for a cluster.

D11 and the software developed is a product of the work under development in CODECO
WP3 (CODECO Basic Operation and Toolkit v1.0) and is a direct result of the work developed
in T3.6 (Open Edge-Cloud Toolkit Development), the task focusing on the implementation and
testing of the CODECO Toolkit based on the software components developed in Tasks 3.1 to
3.5.

Keywords: Edge-Cloud continuum; orchestration; Kubernetes; AI/ML; network; data;
compute; context-awareness.

Document Revision History:

Version Date Description of change List of contributors(s)

v0.1 31.07.2023 Proposal for a global ToC Nikos Psaromanolakis

v0.2 11.08.2023 Revised Proposal for a global ToC WP3 Task leaders

v0.3 05.09.2023 Revised Proposal for a global ToC Nikos Psaromanolakis

v0.4 13.10.2023 First contributions by some partners ICOM, UPRC, I2CAT, UPM

v0.5 18.10.2023 Added more contributions ICOM, UPRC, I2CAT, UPM,
FOR, SWM, ATH, RHT, TID

v0.6 19.10.2023 Updated contributions ICOM, UPRC, I2CAT, UPM,
FOR, SWM, ATH, RHT, TID,
UC3M

v0.7 20.10.2023 Updated contributions All partners

v0.8 24.10.2023 Updated contributions All partners

v0.9 25.10.2023 Review and update contributions All partners

v0.91 27.10.2023 Update contribution, release to
internal reviewers

All partners

v0.92 29.10.2023 Updated contributions based on
internal reviewers’ comments

Nikos Psaromaolakis (ICOM),
Rute C. Sofia (FOR), Ioanna
Kapetanidou (ATH)

v0.93 30.10.2023 Internal review, updated contributions
based on comments

Nikos Psaromaolakis (ICOM),
Maria Eleftheria Vlontzou
(ICOM), Rizk Allah Touma
(I2CAT)

v1.0 31.10.2023 Final review and formatting by
Coordinator

Rute C. Sofia (FOR)

Disclaimer

The information, documentation, and figures available in this deliverable have been developed
by the Horizon Europe CODECO project consortium, under the European Union grant
Agreement number 101092696. The content does not necessarily reflect the views of the
European Commission. The European Commission is not liable for any use that may be made
of the information contained herein.

Copyright notice: © 2023 - 2025 CODECO Consortium

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/

HE CODECO D11: CODECO Basic Operation components
and Toolkit v1.0
Grant Agreement nr: 101092696

4

Table of Contents

Executive Summary .. 3
1 Introduction .. 9

1.1 Document Scope .. 9
1.2 Dependencies ... 10
1.3 Document Structure .. 10

2 CODECO Architectural Design and Operational Workflow ... 10
2.1 CODECO Architecture and Components Summary .. 10
2.2 CODECO Workflow Example, Single Cluster .. 14

2.2.1 Creating an Application Deployment with CODECO ... 14
2.2.2 CODECO Support during Cluster Runtime ... 14

3 Specification and Implementation of CODECO Components 15
3.1 ACM: Automated Configuration Management ... 15

3.1.1 Component Description .. 15
3.1.2 Application Model description ... 17
3.1.3 Sub-components’ Specification and Implementation ... 19
3.1.4 Next Cycle features .. 21

3.2 PDLC: Privacy-preserving Decentralised Learning and Context-awareness 21
3.2.1 Component Description .. 21
3.2.2 Sub-components’ Specification and Implementation ... 23
3.2.3 Next Cycle features .. 43

3.3 NetMA: Network Management and Adaptation .. 43
3.3.1 Component Description .. 43
3.3.2 Sub-components’ Specification and Implementation ... 44
3.3.3 Next Cycle Features ... 59

3.4 MDM: Metadata Manager ... 59
3.4.1 Component Description .. 59
3.4.2 Sub-components‘ Specification and Implementation ... 60
3.4.3 Next Cycle features .. 68

3.5 SWM: Scheduling and Workload Migration ... 68
3.5.1 Component description ... 68
3.5.2 Sub-components features specification, Inputs & Outputs 68
3.5.3 Next Cycle features .. 69

4 Experimentation Assisted Developments ... 69
4.1 CODECO Synthetic Data Generators ... 69

4.1.1 Component Description .. 69
4.1.2 Component Specification and Implementation Aspects 70

4.2 Facility Porting Artifacts ... 74
4.2.1 EdgeNet Testbed .. 74

5 Continuous Integration, Testing, Deployment Preparation and Releasing 79
5.1 Testing Methodology ... 79
5.2 Deployment Preparation and Releasing .. 80

5.2.1 Deployment and CI/CD Methodology .. 80
5.2.2 Integration Testbed Environment .. 81

6 Summary: Current Status and Next Steps .. 84
7 References .. 86
Annex I – CODECO Cross-Layer Metrics .. 87
Annex II – Release Versioning .. 90
Annex III – Automating software builds, testing, packaging, and deployment 93

HE CODECO D11: CODECO Basic Operation components
and Toolkit v1.0
Grant Agreement nr: 101092696

5

List of Figures

Figure 1. The CODECO K8s framework and its components. ... 11
Figure 2. CODECO and its components and interfaces. ACM and SWM reside on the control

plane (master node); MDM, PDLC and NetMA reside on the worker nodes (service plane).
 .. 13

Figure 3. ACM and sub-components: High-level overview with interfaces described in Table
1. ... 16

Figure 4: simplified CODECO Application Model representation. .. 17
Figure 5. Example for a finer-grained definition of the CODECO Application Model. 18
Figure 6: Snippets of a potential structure for the CODECO Application Model. 19
Figure 7. CODECO usage scenarios (via ACM). ... 19
Figure 8. PDLC high-level architecture and interfaces. .. 22
Figure 9. PDLC sub-components and their interactions with other CODECO components. 22
Figure 10. UML Sequence diagram of PDLC-CA. ... 27
Figure 11. PDLC UML sequence diagram of interactions between the RL model classes. .. 32
Figure 12: Plot of k8s-worker-3 memory usage timeseries extracted from the Synthetic Data

Generator. .. 36
Figure 13. Plot of the STGNN model is actual and forecasted memory usage values for ‘k8s-

worker-3’ node. .. 37
Figure 14. PDLC UML Sequence diagram of GNN models. .. 37
Figure 15. PDLC A3C UML sequence diagram. .. 39
Figure 16: UML diagram for the PDLC MLOps sub-component. ... 43
Figure 17. NetMA high-level architecture. ... 44
Figure 18. NetMA Network Exposure UML Diagram. .. 47
Figure 19. NetMA, network performance probe UML sequence diagram. 49
Figure 20: NetMA MEC Enablement UML diagram. .. 52
Figure 21. Secure Connectivity design for the initial phase. .. 53
Figure 22. UML diagram of performance metrics collection by LPM module. 59
Figure 23. MDM sub-components and APIs to other components. 60
Figure 24. Interaction between MDM subcomponents. .. 66
Figure 25. Data Traffic Generator’s flow and its interaction with the respective CODECO

components and its functionality. ... 73
Figure 26. CODECO-component Controller sequence diagram (in this figure: ACM controller).

 .. 73

file://///VBoxSvr/fortiss/Projects/2023/CODECO-internal/CODECO_Deliverable_D11_31102023_v1_FINAL.docx%23_Toc149671517
file://///VBoxSvr/fortiss/Projects/2023/CODECO-internal/CODECO_Deliverable_D11_31102023_v1_FINAL.docx%23_Toc149671517
file://///VBoxSvr/fortiss/Projects/2023/CODECO-internal/CODECO_Deliverable_D11_31102023_v1_FINAL.docx%23_Toc149671519
file://///VBoxSvr/fortiss/Projects/2023/CODECO-internal/CODECO_Deliverable_D11_31102023_v1_FINAL.docx%23_Toc149671526
file://///VBoxSvr/fortiss/Projects/2023/CODECO-internal/CODECO_Deliverable_D11_31102023_v1_FINAL.docx%23_Toc149671526
file://///VBoxSvr/fortiss/Projects/2023/CODECO-internal/CODECO_Deliverable_D11_31102023_v1_FINAL.docx%23_Toc149671530
file://///VBoxSvr/fortiss/Projects/2023/CODECO-internal/CODECO_Deliverable_D11_31102023_v1_FINAL.docx%23_Toc149671535

HE CODECO D11: CODECO Basic Operation components
and Toolkit v1.0
Grant Agreement nr: 101092696

6

List of Tables
Table 1: ACM interfaces to other CODECO components. ... 16
Table 2: Status of PDLC interfaces to other CODECO components. 23
Table 3: PDLC-CA code summary. ... 24
Table 4: Scripts included in I2CAT contribution. .. 28
Table 5: Examples on how to use RL code. .. 31
Table 6: NetMA interfaces to other CODECO components. .. 44
Table 7: NetMA Network Exposure sub-component code summary. 45
Table 8: NetMA MEC Enablement sub-component code summary. 50
Table 9: Status of the CODECO proposed experimental and integration framework. 81
Table 10: First proposed structure of cluster types to dimension the CODECO shared-Cloud

space. .. 82
Table 11: Type of nodes envisioned for the CODECO Cloud-based multi-cluster environment

dimensioning. ... 83
Table 12: Examples for minimum system requirements, different K8s technologies. 83
Table 13: CODECO Application Model Attributes, spec, and status. 87
Table 14: Minimum subset of CODECO user parameters to be collected in ACM and used in

the orchestration. ... 88
Table 15: Minimum subset of CODECO data observability parameters to be collected in MDM

and used in the orchestration. .. 88
Table 16: Minimum subset of CODECO networking parameters to be collected in NetMA and

used in the orchestration. ... 89
Table 17. CODECO subcomponents & Assisted Developments (Open Source) releasing

versions. .. 90

HE CODECO D11: CODECO Basic Operation components
and Toolkit v1.0
Grant Agreement nr: 101092696

7

List of Acronyms
Acronym Meaning

A3C Asynchronous Advantage Actor-Critic

A3T-GCN Attention-Temporal Graph Convolution Network

ACM Automated Configuration Manager

AI Artificial Intelligence

ALTO Application-Layer Traffic Optimization

AP Access Point

API Application Programming Interface

APOC Awesome Procedures on Cypher

AR Augmented Reality

ARM Advanced RISC Machines

BGP Border Gateway Protocol

CA Context-awareness

CD Compute Domain

CDN Content Delivery Network

CI/CD Continuous Integration/ Continuous Deployment

CLI Command Line Interface

CNI Container Network Interface

CODECO Cognitive, Decentralised Edge-Cloud Orchestration

CP Customer Premises

CPU Central Processing Unit

CR Custom Resource

CRD Custom Resource Definition

DL Decentralised Learning

DEV Developer

DL Deep Learning

DQN Deep Queue Learning

DQN Deep Q Network

EC European Commission

EN Edge Node

ETSI European Telecommunication Standards Institute

FaaS Function as a Service

FIDO Fast Identity Online

FL Federated Learning

GCN Graph Convolution Network

GNNs Graph Neural Networks

GRU Gated Recurrent Unit

GUI Graphical User Interface

HE Horizon Europe

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IP Intellectual Property

IP Internet Protocol

JSON Javascript Object Notation

K8s Kubernetes

KCP Kubernetes like Control Plane

KPI Key Performance Indicator

L2 Layer 2

L2S-M Link-Layer Secure connectivity for Microservice platforms

L3 Layer 3

LAN Local Area Network

LLDP Link Layer Discovery Protocol

LPM L2S-M Performance Measurements

LSTM Long-Short Term Memory

HE CODECO D11: CODECO Basic Operation components
and Toolkit v1.0
Grant Agreement nr: 101092696

8

Acronym Meaning

MARL Multi-Agent Reinforcement Learning

MDM Metadata Manager

MEC Multi-access Edge computing

MGR Infrastructure Manager

ML Machine Learning

MLOps Machine Learning Operations

MSE Mean Squared Error

ND Network Domain

NetMA Network Management and Adaptation

NN Neural Network

OAS OpenAPI Specification

OCM Open Cluster Management

OS Operating System

PDLC Privacy-preserving Decentralised Learning and Context-awareness

PLS Programmable Link-layer Switches

PPO Proximal Policy Optimization

PPO Proximal Policy Optimisation

QoE Quality of Experience

QoS Quality of Service

REST Representational State Transfer

RFC Request for Comments

RL Reinforced Learning

RPC Remote Procedure Call

SCCO Single Cluster Connectivity Orchestrator

SDK Software Development Kit

SDN Software Defined Network

SLICES Scientific Large Scale Infrastructure for Computing/Communication Experimental
Studies

STGNN Spatio-Temporal Graph Neural Network

SWM Scheduling and Workload Migration

TEE Trusted Execution Environment

T-GCN Temporal Graph Convolutional Network

UI User Interface

UML Unified Modelling Language

VXLAN Virtual eXtensible Local Area Network

YAML YAML Ain't Markup Language

Acknowledgements
We thank all CODECO Partners involved in WP3 for the commitment and involvement in the
development of Deliverable D11.

HE CODECO D11: CODECO Basic Operation components
and Toolkit v1.0
Grant Agreement nr: 101092696

9

1 Introduction
CODECO WP3 has been developing the CODECO open source framework since M1 and will
continue until M18 (June 2024). The work of the WP includes the selection of appropriate open
source tools (based on the architecture defined in WP2 and published in month 6 of the project,
Deliverable D9 [1]), implementation and testing. The basic CODECO operation concerns the
different proposed modules that can support the development of a flexible, cognitive, and self-
organising edge cloud based on a single cluster environment. In WP3, tasks 3.1 to 3.5 deal
with the CODECO components and their respective interfaces to other CODECO components
and to the user as defined in D9. Task 3.6 deals with the overall system integration and is
orthogonal to all WP3 tasks.

D11 - CODECO Basic Operation Components and Toolkit v1.0 is a deliverable consisting of
this report and an early version of the first open source CODECO toolkit (Basic Operation
Toolkit). This early version, produced after nine months of work, allows early developers to
start experimenting with some components of CODECO. Thus, D11 is an intermediate
deliverable of CODECO, developed in the context of CODECO WP3 (CODECO Basic
Operation and Toolkit v1.0) and is a result of the work developed in T3.6 (Open Edge-Cloud
Toolkit Development), the task focusing on the implementation and testing of the CODECO
toolkit based on the software components developed in Tasks 3.1 to 3.5.

The work discussed in D11 has been based on an Agile methodology, where CODECO
components and their sub-components were developed while the CODECO architecture was
being defined (rf. to D9, released in M9).

D11 aim is twofold. Firstly, to facilitate the development, integration, and deployment of the
CODECO framework following an incremental approach, which will allow the coordination of
the work of the consortium members belonging to different organisations as well as external
developers, as CODECO offers open source code, and reduce the complexity of the project.
Secondly, to allow access by early developers to a partial release of the CODECO Basic
toolkit, following the guidelines for the development of a robust open source community.

1.1 Document Scope
As explained, D11 contains an intermediate version of the open source CODECO Basic
Operation Toolkit and an explanation of its software design. This deliverable will be updated
to a final version in June 2024. This deliverable provides:

• An explanation of the CODECO integration framework and implementation procedures
for the CODECO Basic Operation Toolkit.

• A description of the tools adopted to support the defined implementation workflow; coding
guidelines that can optimise the developer’s coding effort and time, installation
instructions, and tools/ programming languages used as the basis for technology
development in the context of the CODECO project.

D11 is composed of the following parts:

• This report (software companion report).

• The early release of parts of the CODECO Basic Operation Toolkit available via the
CODECO Eclipse Gitlab1.

1 https://gitlab.eclipse.org/eclipse-research-labs/codeco-project

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project

HE CODECO D11: CODECO Basic Operation components
and Toolkit v1.0
Grant Agreement nr: 101092696

10

• A private report (CONFIDENTIAL) covering the overall specification and software for the
CODECO component SWM, which is currently undergoing an open source release
process2.

1.2 Dependencies
D11 has the following dependencies:

• D9 - CODECO Technological Guidelines, Reference Architecture, and Initial Open source
Ecosystem Design intermediate version. D9 provides the overall CODECO reference
architecture and explains decisions in terms of open source tooling being used in
CODECO [1].

1.3 Document Structure
This report is structured as follows:

• Section 1 introduces the overall deliverable scope, structure, and components.

• Section 2 provides a summary of the CODECO architectural design and highlights the
sub-components that are being released in this deliverable.

• Section 3 provides the companion reporting for the use of the existing code, detailed per
sub-component.

• Section 4 covers additional software artifacts, such as data generators, that have been
developed to assist the use of CODECO.

• Section 5 describes the continuous system testing and the deployment framework that
has been set in T3.6 to assist the overall project, as well as the released version of each
subcomponent/ feature developed in the first implementation cycle of CODECO.

• Section 6 concludes the document.

• Annex I provides a list of CODECO defined metrics.

• Annex II provides the listing of the current CODECO sub-component release versioning,
including URLs for the open source code, and URLs for the respective Docker images.

• Annex III describes the automated process implemented in CODECO for building, testing,
and providing the code.

2 CODECO Architectural Design and
Operational Workflow

This section provides a summary of the status of the current design of the CODECO
architectural framework, to assist the reader in understanding the software developed to date.
Details on the architectural design, components, and interfacing within CODECO are provided
with more detail in D9 [1] and are therefore not repeated in this deliverable. The terminology
used, compatible with Kubernetes (K8s), has already been described in D9.

2.1 CODECO Architecture and Components Summary
An underlying assumption in CODECO is that next-generation Internet applications are now
based on microservice architectures, where their components are typically containerised. The
deployment of applications in the edge cloud is managed by container orchestrators such as
K8s, tools that provide partially automated support for the setup and lifecycle management of
containerised applications. Tasks handled by orchestrators include configuring, scheduling,

2 This process is internal to partner SIE and is expected to be completed until December 2023.

HE CODECO D11: CODECO Basic Operation components
and Toolkit v1.0
Grant Agreement nr: 101092696

11

and deploying containers; checking container availability; scaling the system to balance
application workloads across the entire infrastructure; allocating resources to the various
containers and monitoring their health; and enabling communication exchanges between
containers. Figure 1 provides a high-level representation of the CODECO components.
CODECO is a software-based orchestration framework interoperable with K8s that aims at
providing support to a next generation of container orchestrators which can adapt and learn,
developing a proper reaction and adaptation.

Figure 1. The CODECO K8s framework and its components3.

The only interface of CODECO to the user, as shown, is the ACM component, which focuses
on supporting application setup and runtime from the far edge to the cloud, considering the
input provided by the user. ACM installs the entire CODECO infrastructure and the respective
integration points between users and applications, where the user in CODECO is of type DEV
(application developer) or MGR (cluster manager). ACM takes care of the overall CODECO
configuration, the acquisition of new nodes, and the interaction with non-K8s systems.
Furthermore, ACM relies on Prometheus and integrates a CODECO monitoring framework,
currently focused on infrastructure monitoring (data, network, computation) based on
application requirements and still under development. ACM is therefore co-located with the
control plane of the K8s (master nodes).

The CODECO MDM component provides data workflow observability to the other CODECO
components, treating data as an integral part of the application workload, and integrating data
observability perspectives from different categories, e.g., application perspective, system
perspective, network perspective, at different points in the CODECO operational workflow.

SWM handles the scheduling and rescheduling of the application workload, based on the
CODECO Application Model (supported by ACM and provided by the user during application
setup), based on the novel data-compute-network approach proposed by CODECO.

3 The NetMA sub-component “network state management” has been previously named “network state forecasting” in CODECO
D9. As this component integrates a monitoring and a forecasting component, the consortium has agreed to change its name.

HE CODECO D11: CODECO Basic Operation components
and Toolkit v1.0
Grant Agreement nr: 101092696

12

The currently available approach for handling placement decisions relies on a solver4 which
in the future is expected to provide an optimal match between application requirements and
available resources (computational, network, data). SWM is also a control plane component,
co-located with ACM and the K8s control plane, in master nodes.

PDLC is at the heart of the CODECO orchestration. Based on the infrastructure data collected
by ACM (via Prometheus), NetMA, and MDM, PDLC has two functions. Firstly, it provides an
aggregated cost view of a specific target performance profile for the available infrastructure
which can be used by other components and is currently being considered in SWM to further
define the optimal workload placement. Secondly, it provides an estimate on the overall
system stability based on privacy-preserving decentralised learning approaches. PDLC is
currently envisaged to operate on both K8s master and worker nodes.

NetMA provides the network awareness to CODECO and handles also secure connectivity
across Pods. For this purpose, NetMA exposes networking parameters that are relevant to do
an optimal workload placement via the ALTO protocol [2]. For the connectivity, NetMA handles
the SDN to K8s interaction via the L2S-M open source solution5. Its sub-component Network
State Management handles network monitoring, and also receives network forecasting
provided by PDLC.

Monitoring of the overall infrastructure from different perspectives is supported by different
CODECO components:

• NetMA monitors the networking infrastructure.

• MDM monitors the data infrastructure.

• ACM monitors the system (computational nodes) infrastructure.

Each CODECO component is based on a modular approach, integrating different sub-
components that are expected to be built as one or more independent (dockerized) micro-
services. The overall interaction between the CODECO components is illustrated in Figure 2,
considering as starting point the CODECO operation within a single cluster deployment (M1-
M18 of CODECO). In the figure, the following aspects are to be considered:

• We have highlighted the sub-components and interfaces that are available in this early
release of code. Green means that the sub-component/interface is available; orange
means that we have released partial code or a proof-of-concept for a sub-component; red
means that there is no code available yet.

• For the case of SWM, the available components are only accessible by the CODECO
consortium; the open source release is expected until December 2023.

• I-comp1-comp2-X describes components from CODECO component 1 to CODECO
component 2. For instance, I-MDM-PDLC-1 means that an interface from MDM to PDLC
of type Input, Output, or bi-directional is being conceived.

4 The current context-aware scheduling approach embodied in SWM is based on background work by partner Siemens. The
derivative of this background work is under an OSS release process, which is expected to be concluded in December 2023. A
private report on SWM is available for the Consortium and EC.
5 https://github.com/Networks-it-uc3m/L2S-M

https://github.com/Networks-it-uc3m/L2S-M

HE CODECO D9: Technological Guidelines,
Reference Architecture, and Initial Open-source Ecosystem Guidelines
Grant Agreement nr: 101092696

13

Figure 2. CODECO and its components and interfaces. ACM and SWM reside on the control plane (master node); MDM, PDLC and NetMA
reside on the worker nodes (service plane).

HE CODECO D11: CODECO Basic Operation components and
Toolkit
Grant Agreement nr: 101092696

14

2.2 CODECO Workflow Example, Single Cluster
This section has been adapted from D9 and aims at providing the reader with the latest
updates on the CODECO operational workflow.

2.2.1 Creating an Application Deployment with CODECO
DEV is a user deploying an application consisting of multiple micro-services (multiple Docker
images) across the far Edge to the Cloud. DEV downloads CODECO from the CODECO
Eclipse GitLab and follows the instructions to set up ACM. ACM performs cluster sizing based
on the CODECO Application Model (YAML file) provided to user DEV during application
deployment setup. In this file, user DEV defines aspects such as desired Quality of Service
(QoS), Quality of Experience (QoE), or other desired performance levels for CODECO, based
on specific questions provided in a future ACM User Interface (UI). The current attributes
considered in the CODECO Application Model are provided in Annex I Table 14. Based on
the specific parameters (representing the application requirements), ACM builds the CODECO
Application Model and makes it available to all CODECO components.

ACM also handles the complete K8s setup (e.g., namespace, databases, secrets) and makes
the information available to other K8s components as needed. For example, metadata
information, schema, can be passed to MDM (rf. to Figure 2, I-ACM-MDM-2). Application
requirements derived from the CODECO Application Model, e.g., dedicated CPU, required
bandwidth, are made available to SWM (rf. to Figure 2, I-ACM-SWM-1) and to PDLC (rf. to
Figure 2, I-ACM-PDLC-1), for instance.

The exposure of requirements and application/user information also triggers the operation of
each CODECO component. PDLC defines the processes for activating the sensing and
(decentralised learning) processes for the cluster. SWM makes a request to PDLC to obtain
the initial weights to be considered for scheduling optimisation (I-PDLC-SWM-1). NetMA
triggers the definition of the network overlay when it receives the initial deployment from SWM
(I-SWM-NET-1).

After activation, PDLC regularly obtains, via available Custom Resources (CR)/Custom
Resource Definitions (CRD (I-ACM-PDLC-1,2), metadata provided by MDM (data metrics),
ACM (user aspects and application constrains, i.e., the CODECO Application Model), NetMA
(network metrics); performs an initial multi-level objective estimation based on the user
selected target profiles, and stores the output on a PDLC CRD, making it available to ACM,
which may trigger adjustments to the initial setup process.

In parallel, three components start monitoring different metrics. NetMA captures network
metrics at node, link and path level and exposes this information via specific CRs that are
accessible to all components and used by PDLC and ACM.
Similarly, MDM captures data aspects (e.g., data compliance), generates a knowledge graph
and also provides the output as an MDM CR.
ACM captures user preferences and eventually behaviour, which may be useful for adapting
the overall K8s infrastructure at a later stage.

2.2.2 CODECO Support during Cluster Runtime
Once the setup is complete, CODECO enters the cluster management phase (application
runtime support), targeting the user MGR. During this phase, the proposed application
(CODECO application workload) has been set up and is running on several containers (1
cluster), 1 or more pods per worker node. PDLC periodically receives data from MDM (I-MDM-
PDLC-1); from NetMA and ACM (I-ACM-PDLC-1) and feedback from SWM regarding the

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

15

placement of the application workload (I-SWM-PDLC-1). Based on this, PDLC periodically
evaluates the proposed system performance targets (e.g., greenness, service latency)
provided by Bob during application setup, and provides a cost combination per infrastructure
element via a CR (I-PDLC-ACM-2). If there is a need for cross-layer redistribution of the
application workload, this step triggers a request from ACM to all CODECO components. In
this case, PDLC passes a behaviour estimate to SWM (I-PDLC-SWM-2) via a specific CR;
SWM starts the workload placement process. Once the process is complete, SWM passes
feedback to PDLC (I-SWM-PDLC-1). This will not be an explicit interface; instead, feedback
will be provided via specific SWM CRs (currently ApplicationGroup, Application,
AssignmentPlan).
ACM handles the status to the user MGR, based on the Prometheus CODECO monitoring
architecture.

3 Specification and Implementation of
CODECO Components

This section provides an overview of the initial specification of the CODECO components
based on deliverable D9 and derived from the initial nine months of the project.
The aim is to describe the components, their inputs and outputs, their pre-requisites, as well
as their functionalities, to support the reader in understanding the current code release.

3.1 ACM: Automated Configuration Management

3.1.1 Component Description
As a quick introduction and a quick overview, the ACM is based on the Open Cluster
Management (OCM)6 community-driven project which is the upstream project for Red Hat
Advanced Cluster Management7. In CODECO, its operation considers three main aspects that
address the integration of CODECO across the entire Edge-Cloud infrastructure:

• Integration points between users and applications. Mechanisms for users (e.g., user
DEV) to control and change configuration of the applications.

• The CODECO configuration. A user request during application deployment setup or
application runtime implies activation and eventual configuration of CODECO
components.

• Cluster/federated cluster configuration. The user in this case (e.g., user MGR) handles
the K8s infrastructure. A specific change to the CODECO configuration may imply the
need to reinstall or reconfigure a cluster.

Figure 3 depicts ACM and its sub-components with interfaces that will need to be
implemented, i.e., some technologies will need to be extended to support the planned
CODECO components and APIs.

6 https://open-cluster-management.io/

7 https://www.redhat.com/en/technologies/management/advanced-cluster-management

https://open-cluster-management.io/
https://www.redhat.com/en/technologies/management/advanced-cluster-management

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

16

Table 1: ACM interfaces to other CODECO components.

ID Description Type Direction Component
released?

I-ACM-PROM Integration of the CODECO metrics into
Prometheus

CRD Bi-directional Not yet
available

I-ACM-MDM-1 Data collection from CRDs of other
components, to be used in the MDM
integration of the CODECO MDM operator.

CRD Bi-directional Partially

I-ACM-MDM-2 Integration of additional data types To be defined Input

I-ACM-PDLC-1 Integration of CA derived metrics into
Prometheus

CRD Input Partially

I-ACM-PDLC-2 Use of CRDs from other components by
PDLC

CRD Output

I-ACM-NET-1 Integration of the NetMA CRD/CR(s) and
respective operator(s)

CRD Input Partially

I-ACM-SWM-1 Integration of the SWM controller-manager
(CRD/CR(s) via K8s API)

CR via K8s
API (REST)

Bi-directional Not yet
available

The ACM initial sub-components are:

• OCM.. is used to enable end-to-end visibility and control (i.e., control-plane functionality)
across K8s-based clusters. OCM will be used to provide the main ACM functionality, and
it will be extended to provide support and visibility of the newly added CODECO
components (shown at the bottom of Figure 3).

• K8s API extensibility and CRD/CRs. As a mechanism provided by K8s to extend its
functionality and provide native access to new components, it is going to be used to
provide native K8s APIs to the CODECO framework.

• Monitoring: Different CODECO components (ACM, NetMA, MDM) collect parameters
that will be used to assist in a more flexible schedule, compute, network, and data
awareness.

• Automated configuration via Knative and Ansible. We will use Knative when we need
scalable stateless functions that can be easily scaled-in and -out upon load change and
Ansible to support deployment management. This is usually a requirement for many
stream processing and event-driven functions.

• Control plane for independent/isolated clusters – There are multiple open source
technologies handling this problem (e.g., KCP8) and CODECO’s choice is yet to be
decided. Here, the aim is to consider mobile environments where intermittent connectivity
may prevent the registration of a cluster to the OCM Hub.

8 https://github.com/kcp-dev/kcp#-kcp

Figure 3. ACM and sub-components: High-level overview with interfaces described in Table 1.

https://github.com/open-cluster-management-io/OCM
https://kubernetes.io/docs/concepts/extend-kubernetes/
https://github.com/kcp-dev/kcp#-kcp
https://github.com/kcp-dev/kcp#-kcp

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

17

• Far Edge integration, via lightweight K8s distributions (e.g., K3s or Microshift). CODECO
addresses the support of clusters with embedded devices at the far Edge, potentially
mobile.

• Integration towards non-K8s systems. ACM supports connectivity towards non-k8s
nodes via Flotta, to provide the connection of containerized workload to other K8s
clusters.

• Secure deployment. The secure onboarding of new cyber-physical systems at the Edge
is handled via ACM, based on tools such as FIDO and TEE.

• Hierarchical control plane. Via Hypershift, ACM supports a separation of the control
plane into a centralized cluster (Cloud or Edge) and considering that remote worker nodes
are being deployed at the Edge.

3.1.2 Application Model description
As the ACM is an important integration point for the CODECO platform and applications, one
of its main tasks is to provide and manage the CODECO Application Model. The CODECO
Application Model was defined in CODECO D9 [1] and is a model for the QoS/QoE
requirements of an application. A simplified model for the management of the CODECO
Application Model by ACM is shown in Figure 4 , where it can be seen that an application has
some generic application level attributes (such as name and QoS) and a composition of other
supporting micro-services that, together, are used by the application. We use this structure to
get input about the application requirements (QoS/QoE), and to report the status of the
application to the users. For instance, and as represented in Figure 4, the ApplicationModel
provides information for the sizing and locations of the pods (e.g., avgUsedResources and
location) as well. However, there are some dependencies between the micro-services and
consequently, between the pods that support the application deployment. Therefore, providing
additional information about these relations will be relevant to ensure a successful
deployment. A few aspects that may be interesting to consider are, for instance, affinity
between pods (e.g., specify the location (node) for a group of pods in the cluster), application
requirements (e.g., the co-location of two micro-services is important), or network performance
requirements between micro-services. The more detailed the entity model (these are still
without full details of all attributes) the better description and the relation details among the
micro-services CODECO can have.

Figure 4: simplified CODECO Application Model representation.

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

18

A more detailed view of the proposed CODECO Application Model is provided in in Figure 5.

This model with additional attributes will be used in the CODECO Application model as the
API model. Figure 6 provides an example on how the respective YAML file, based on the
translation of the entity model in Figure 5 (without the state, which is output of the system and
without the restrictions on the network between micro-services).

apiVersion: codeco.he-codeco.eu/v1alpha1

kind: CodecoApp

metadata:

 labels:

 app.kubernetes.io/name: codecoapp2

 app.kubernetes.io/instance: codecoapp-sample

 app.kubernetes.io/part-of: codecoapp-operator

 app.kubernetes.io/managed-by: kustomize

 app.kubernetes.io/created-by: codecoapp-operator

 name: codecoapp-sample

spec:

 name: My CODECO App

 qosclass: Dev

 codecoapp-msspec: [

 {

 name: "CODECO micro service 1",

 podspecname: "MicroService1",

 required-resources: {
 cpu: “2“,

Figure 5. Example for a finer-grained definition of the CODECO Application Model.

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

19

 mem: “120G“,
 nwbandwidth: “10M“

 }

 },

 {

 name: "CODECO micro service 2",

 podspecname: "MicroService2",

 required-resources: {
 cpu: “1.5“,
 mem: “80G“,
 nwbandwidth: “20M“

 }

 },

]

Figure 6: Snippets of a potential structure for the CODECO Application Model.

3.1.3 Sub-components’ Specification and Implementation

3.1.3.1 OCM - K8s control plane

3.1.3.1.1 Usage Scenario

Figure 7 shows the two common user scenarios, application deployment (user DEV) and K8s
infrastructure (platform) configuration (user MGR). These scenarios have a lot in common
since application deployment may end up with the need to perform platform configuration, and
platform configuration may impact application deployment (e.g., move workloads between
clusters). Both scenarios start with CRD changes that are processed by the respective ACM
controller and the result is propagated to the clusters across the Edge-Cloud continuum. This
diagram hides the CODECO components (PDLC, NetMA, MDM, and SWM) since these
components are hidden from the user and their interface starts with ACM. For technical
readers, the ACM controller component in the middle stands for the controllers of all the
CODECO platform components.

Figure 7. CODECO usage scenarios (via ACM).

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

20

3.1.3.1.2 Selected Technologies

• Multi-cluster management. Based on OCM (to be developed during the second phase
of CODECO, M18-M36).

• K8s API extensions via CRD/CRs and respective operators.

• Prometheus9 and exporters such as Kubernetes-based Efficient Power Level Exporter,
Kepler10 as well as new Prometheus operators to support new monitoring plugins from
the different CODECO components, supporting the integration of new K8s metrics.

• Knative11 to support serverless deployment of containerized applications.

• K3s12, Microshift13 Lightweight K8s distributions.

• Flotta14. Integration with non-K8s far Edge nodes.

• Fast Identity Online (FIDO) or Trusted Execution Environments (TEE). Secure
onboarding of devices.

• Hypershift15. Fast provisioning of K8s clusters on remote worker nodes.

• Ansible16 to support the automated deployment of CODECO.

3.1.3.1.3 Pre-requisites

In terms of hardware or software, ACM will require a lab environment with at least a cluster
installed, e.g., a K8s-based cluster. This cluster needs to be dimensioned to have enough
resources to accommodate the ACM component installation, which will also include the whole
CODECO platform with all its sub-components. There are no additional software or hardware
necessary if not those already specified for CODECO, since ACM is the main integration point
to enable the CODECO platform and its features.

3.1.3.1.4 Installation Guide

The ACM is the integration point towards the user, it is also in charge of the system installation
- the user can install the whole CODECO framework by installing the CODECO meta-operator
(which is part of the ACM), where this process triggers the installation of the whole CODECO
system on the cluster to be managed and configured. See Figure 7 to visualize the interaction
of different user types with CODECO. For example, user MGR can deploy (or configure, as
illustrated) the CODECO platform.

Currently the installation is CLI-based only and will support the installation of all the
components in one command. In the future we plan to use the Operator Hub model (a kind of
app store for operators) which allows an operator to install multiple components according to
the dependencies and provides a GUI for the installation.
The installation steps available in the CODECO Gitlab are summarized as follows:

• A container image of the operator should be built and pushed into an image repository
(such as docker hub, quay.io and others) – this is a prerequisite and typically will be done
in a different timeline than the installation. The ACM operator is available in Docker Hub.

• Add the namespace “codecoapp-operator-system” to the cluster.

• Install the CRD “codecoapps.codeco.he-codeco.eu” on the cluster.

• Install all the roles and role bindings required for the operator to work – two important
roles are:

9
https://prometheus.io/

10 https://sustainable-computing.io/
11 https://knative.dev
12 https://k3s.io/
13 https://github.com/openshift/microshift
14 https://project-flotta.io/
15 https://github.com/openshift/hypershift
16 https://www.ansible.com/

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/acm
https://hub.docker.com/r/hecodeco/acm-controller
https://prometheus.io/
https://sustainable-computing.io/
https://knative.dev/
https://k3s.io/
https://github.com/openshift/microshift
https://project-flotta.io/
https://github.com/openshift/hypershift
https://www.ansible.com/

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

21

o codecoapp-editor-role – Used for users that can read and edit the spec part of
the CRD and read the status part.

o codecoapp-operator-role – Used by the operator itself and can read and edit
both the spec part and the status part.

• Deploy/modify the controller manager (a generic k8s component) with information about
the CODECO operator.

• Deploy the controller image (the container) on the cluster.

• Installs the other CODECO components (SWM. NetMA , MDM, PDLC) according to their
installation scripts.

3.1.3.1.5 Inputs & Outputs

ACM gets as input:

• The CODECO Application Model.

• Input from other CODECO components (rf. to Figure 6).

ACM has as output:

• The ACM UI, where state concerning the “status” section of the Application Model will be
provided.

• Platform resource status (via Prometheus).

• Information about application status (e.g., runtime failures derived from the K8s selected
infrastructure)

The ACM exposed APIs (the CODECO APIs) are declarative APIs following the K8s
methodology. The CODECO Application Model described above is used for both input and for
output of the application APIs – for input it represents the desired state of the application, and
for the output it will also include some information about resource usage (e.g., average CPU
usage, memory usage and energy consumption in a specific time window), as well as the
current application configuration and deployment details.

3.1.4 Next Cycle features
The following expected features are presented in order of priority, from most to least:

• A full definition of the CODECO Application Model, its input and output, the overall logic
of using the model in CODECO in interaction with other components.

• The completion of all sub-components missing, namely, the integration of ACM with the
CODECO monitoring architecture (Prometheus) and the completion of the sub-
component automated and secure deployment.

• The integration of the CODECO monitoring architecture (Prometheus operator)

• Interfaces to the other components. We expect to start with the interfacing to-from MDM
and to-from SWM.

3.2 PDLC: Privacy-preserving Decentralised Learning
and Context-awareness

3.2.1 Component Description
PDLC as the heart of the CODECO cognitive orchestration is shown in Figure 8, and consists
of two sub-components: PDLC-CA (Context-awareness) and PDLC-DL (privacy preserving
Decentralised Learning).

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

22

Figure 8. PDLC high-level architecture and interfaces.

The PDLC-CA sub-component is responsible for generating actionable context information
and performance profiling based on the performance goal(s) selected by the user DEV during
application deployment setup, based on cross-layer data provided by other components
(NetMA, MDM, ACM). Its output is currently provided in the form of a node ranking associated
with the desired performance optimisation (e.g. desired greenness or resilience). The
generated output is provided in a CRD format that can be used as input to other PDLC
subcomponents and other CODECO components. It is currently envisaged that the output of
this sub-component will be used by the SWM.

The subcomponent PDLC-DL goes a step further in adding intelligence to the CODECO
framework, using the raw data collected by PDLC-CA to train decentralised privacy preserving
learning models to provide forecasts and predictions about the future behaviour of
infrastructure nodes and deployed applications. In the future, it will supplement this raw data
with the performance profiles generated by PDLC-CA as input to the models it provides.
PDLC-DL will also develop MLOps pipelines that select the most appropriate model for the
different objectives highlighted by the DEV user in the deployment setup.
The PDLC sub-components provided in the CODECO GitLab public repository and their
interactions with other PDLC components are shown in Figure 9. Given that the
subcomponents are not based on pre-existing background software, their full integration will
be finalized in future releases of the CODECO framework. This will include communication
between PDLC-CA and PDLC-DL as well as the integration of the PDLC-DL models with the
developed MLOps pipeline, which is provided as an independent sub-component with the
current release.

Figure 9. PDLC sub-components and their interactions with other CODECO components.

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

23

On the other hand, PDLC interfaces to other components are shown in Table 2, where we
also detail the status of implementation in this early release of the CODECO open source
Basic Operation toolkit.

Table 2: Status of PDLC interfaces to other CODECO components.

ID Description Type Direction Status

I-PDLC-ACM-1 Obtaining data collected by other CODECO
components and made available via CRs of
those components.

CRs Input Partially
implemented

I-PDLC-ACM-2 Output of the combined infrastructure view,
via a PDLC CR

CR Output Available

I-MDM-PDLC-1 Data collected by CODECO MDM Knowl
edge
graph
, e.g.,
graph
DB

Input Not available

I-PDLC-SWM-
1,2

PDLC will set attributes of custom resources
of the infrastructure model, which are used
by SWM to influence the placement decision
for workloads. This can relate to combined
costs (I-PDLC-SWM-1) or to behaviour
estimation (I-PDLC-SWM-2). Currently, the
relevant custom resources are Endpoint,
NetworkLink, NetworkNode, NetworkPath.
PDLC can also make use of the QoS
Scheduler extensions.

CR Output Available

I-SWM-PDLC-1 PDLC will be able to know about
scheduling/placement decisions of SWM by
accessing the AssignmentPlan CR

CR Input Available

I-NET-PDLC-1 NetMA asks infrastructure element
estimation from PDLC-DL

CR Output Not available

3.2.2 Sub-components’ Specification and Implementation

3.2.2.1 PDLC-CA

The current version of PDLC-CA is focused on single cluster operation. It relies on inputs from
other CODECO components (e.g., computational parameters such as CPU, memory; network
parameters such as bandwidth, latency, link energy; data metrics such as data compliance,
data size) and from Prometheus. The existing parameters are combined to serve a selected
performance profile, such as optimising the Kubernetes infrastructure for greenness or resili-
ence. The performance profile, which is currently defined statically in the code, will be an at-
tribute of the CODECO application model selected by the user DEV during the deployment of
an application.

Currently, PDLC-CA relies on simple heuristics to rank existing nodes based on the selected
target profile and considering a combination of available data. The output of PDLC-CA is made
available in the form of a CRD to the distributed learning subcomponent of PDLC, and also to
other components of CODECO, such as SWM. PDLC-CA interacts with PDLC-DL and pro-
vides the performance profile node costs to SWM.

3.2.2.1.1 Usage Scenario

For this early release, PDLC-CA integrates the sub-components PDLC-PP (performance
profile cost computation) and PDLC-DP (data processing) as a whole. The proposed usage

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/tree/main?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/tree/main?ref_type=heads

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

24

considers the application of PDLC-CA on a single cluster which can be set up with any
available tool. The current code provides the possibility to experiment PDLC-CA with minikube
or with KinD, with a variable number of nodes, and provides an example for two specific target
profiles: greenness and resilience, providing directions on how a developer can create new
heuristics for other potential performance profiles.

The main purpose of this early release version is to show how to build aggregate node costs
based on node, network, data attributes obtained from accessible CODECO CRDs.

PDLC-CA has been set to consider as input the CODECO synthetic data generator (rf. to
4.1.1). The user can therefore set different clusters and test PDLC-CA in standalone mode;
and then use the generated output (CRD and csv format) to interact with other CODECO
components. PDLC-DL can also use the generated CRD as input. The files are presented in
Table 3.

Table 3: PDLC-CA code summary.

File Function

apply_controllers.sh Installs PDLC-CA in the cluster

delete_controllers.sh Removes PDLC-CA from the cluster

extractor.py Data processor, used by combiner.py. Gets CRDs
and creates a single data.csv with the input values
(scalar) to PDLC-CA

combiner.py Used to activate data processing and generate the
costs (calls extractor.py and ca_component.py)

ca_component.py has as input the CODECO Application Model
performance_profile and generates as output
an aggregated value for that profile, for each
node, based on CODECO NetMA, MDM, ACM
parameters being monitored.

ca.csv Output of PDLC-CA, generated by
crd_data_extraction.py

ca_controller/ PDLC-CA controller and respective yaml files.
crd_data_extraction/crd_data_extraction.py Creates the output in a csv format, by reading the

CA CRD.

It is currently possible to test two specific target profiles, which are provided as potential ex-
amples on how aggregated node costs based on a performance profile can be implemented.
The efficiency and performance of the heuristics have not yet been validated.

Greenness Profile (greenness(n)), focuses on helping to create an infrastructure with the
lowest possible energy consumption.

• Purpose: to select nodes that can contribute to achieve an infrastructure (for an
application group) that has the least energy expenditure possible.

• Rationale: the lower the node energy expenditure; the higher the available bandwidth;
the higher is the node greenness.

• Example: greeness(n)=((1-node_energy(n))/node_energy(n))*available_bandwidth(n), where n
is a suitable node and available_bandwidth(n) is the sum of available bandwidth on
egress links.

The parameters for the node are provided via ACM (Prometheus, node_energy); the availa-
ble_bandwidth (ibw and ebw) will be provided by the CODECO component NetMA.

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/apply-controller.sh?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/delete-controller.sh?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/extractor.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/combiner.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/ca-component.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/ca.csv?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/tree/main/ca_controller?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/tree/main/crd%20data%20extraction?ref_type=heads

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

25

Resilience Profile (resilience(n)), is focused on the selection of nodes that will maximise
the resilience of the infrastructure.

• Purpose: Nodes are weighted for their contribution to resilience of the selected
infrastructure

• Rationale: the higher the number of link failures associated with the node; the smaller
the node_degree; the lower is the resilience of the node

• Example: resilience(n)=node_net_failure*1/node_degree*sum_link_failure

The parameters are provided by ACM (node_degree) and NetMA (node_net_failure,
sum_link_failure).

3.2.2.1.2 Selected Technologies

PDLC-CA has been implemented in Python v3.0. Input and output are based on YAML (K8s
CRD).

3.2.2.1.3 Pre-requisites

Rf. to the README of the PDLC-CA code for a detailed list of requirements:

• A cluster needs to be set up. In our case, we provide how-tos that can be used with KinD
or minikube.

• The CODECO data generator needs to be installed and run on the cluster to generate a
data.csv (input) with the correct format.

3.2.2.1.4 Installation Guide

A detailed installation guide is available with the code of PDLC-CA.

1. Get the PDLC-CA code.

git clone git@gitlab.eclipse.org:eclipse-research-labs/codeco-project/privacy-
preserving-decentralised-learning-and-context-awareness-pdlc/context-
awareness/pdlc-pp.git

2. Set up a Kubernetes cluster.

In this release, we provide examples on how to set a cluster with KinD or minikube.

With Kind:

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/README.md?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/tree/main?ref_type=heads

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

26

With minikube:

3. Get data from your cluster.

PDLC-CA will use data collected by the CODECO components NetMA (network metrics);
MDM (data workflow metrics); ACM (application and user metrics), by running the CODECO
synthetic data generator on your cluster (https://gitlab.eclipse.org/eclipse-research-
labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-
datasets/synthetic-data-generator) to be able to retrieve metrics that is used as inputs to the
PDLC-CA component.

4. Deploy the PDLC-CA controllers in your cluster.

5. Generate aggregated costs based on a given performance profile.

Based on a cluster monitored data, the PDLC-CA component creates a CRD and also a ca.csv
file with the computed node costs. For this, as input the following options are currently
available. To check the node cost metric extracted from the CA CRD, run the following
commands on the 'crd ca_crd_extractor' directory:

The python script runs continuously to fetch the most recent updates to the CRD, until it is
forced to stop by a keyboard interrupt using CTRL + C. ca.csv then provides, for visualization,
the node(s) costs for the specific performance profile(s). The ca.yml holds the respective costs
as well.

3.2.2.1.5 Inputs & Outputs

• Input of PDLC-CA corresponds to CRDs provided by other CODECO components.
PDLC-CA transforms that input (CRD format) into a csv format (data.csv). Currently, you
can play with the provided data.csv (single cluster with one node) or with a data.csv
obtained with the CODECO data generator for your cluster (rf. to instructions on the
readme or in Section 3.2.2.1.4).

• Output of PDLC-CA is provided in a CRD format and also, for the purpose of testing and
visualization, in the ca.csv file.

chmod -R 777 .

./apply-controller.sh

pip3 install -r requirements_e.txt

python3 ca_crd_extractor.py

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/ca.csv?ref_type=heads

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

27

3.2.2.1.6 UML Diagram

Figure 10. UML Sequence diagram of PDLC-CA.

3.2.2.2 PDLC-DL (Model Selection and Training)
In this release of the CODECO toolkit, the PDLC-DL sub-component consists of three
independent models that perform different objectives:

1. Reinforcement Learning Model: provides node recommendations to allocate
applications with the objective of balancing CPU and RAM usage amongst all
available cluster nodes. Detailed in Section 3.2.2.2.1

2. Graph Neural Network Models: provide predictions for the values of the monitored
metrics of a cluster’s nodes, currently CPU and RAM. Detailed in Section 3.2.2.2.2.

3. Model-based Multi-agent Reinforcement Learning Models: provide a
decentralized environment that enables multiple agents to interact and learn from their
experiences. Detailed in Section 3.2.2.2.3.

The integration, interaction and selection of these models will be handled by the MLOps
pipeline described in Section 3.2.2.4, in a future release of CODECO.

3.2.2.2.1 Reinforcement Learning Models

3.2.2.2.1.1 Usage Scenario

This usage scenario refers to a fully functional training environment that provides the user with
an implementation of the CODECO infrastructure as a gymnasium environment, which
includes a Reinforcement Learning (RL) agent that focuses on balancing CPU and RAM usage
amongst all available cluster nodes and keeping the number of pods without being allocated
at a minimum. Furthermore, we provide the user with the ability to train and monitor this agent
with two RL algorithms (Deep Queue Learning (DQN) and Proximal Policy Optimization
(PPO)). The model has been developed with a clear objective in mind, that being the ability to
easily expand the model in the future with PDLC-CA parameters and make it use-case
adaptative. Furthermore, it serves as a foundation for the future expansion to a multi-agent
implementation.

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/ICOM-GNNs?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/ICOM-GNNs?ref_type=heads

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

28

Additionally, Table 4 provides a summarized description of the python files for the PDLC-DL
model analysis performed by partner I2CAT (I2CAT_RL-model repository).

Table 4: Scripts included in I2CAT contribution.

File Function

requirements.txt Contains all the requirements for the program

codeco_env.py Gymnasium environment used in RL algorithms as the
problem representation.

data_generators.py Script that generates the node information and
prepares the data from UPRC.

data_preprocess.py Contains useful data preprocessing functions.

K8node_config.py Contains all the code related to the custom K8 node
representation.

main.py Main of the program, program launches from here.

training_controller.py Contains all code related to the training and inference
of the RL models.

config_train.ini Contains all the configuration needed for the training
of the RL model.

3.2.2.2.1.2 Selected Technologies

The initial PDLC-DL modelling and experimentation has been implemented in Python 3.10.9
using Gymnasium 17and Stable-baselines3 as key libraries. The full list of libraries can be
found in the requirements file that can be found with the code. The selected AI technique for
the first approach is a Deep RL model that focuses on distributing evenly the resource
consumption among nodes and to allocate all pods possible.

The programmed components are described next. It is worth remarking that this first approach
has been built with easy expansion in mind and as a foundation for the next steps in PDLC.

Creation of the Reinforcement Learning environment:
The CODECO Environment is created inheriting from the Gymnasium base Env, which has
been used to model the proposed RL problem and to, after creating an agent, to make it learn
to solve the modelled problem in the environment. To do this, the following aspects of the
problem were modelled (as functions Inherited from the base environment):

• Init: Function called when creating an environment, it initializes the state, the observation
and action space and all the auxiliar variables needed.

• Step: Function that simulates a step in the environment after using an action in it. It returns
a reward and the state of the system after being affected by the previous action.

• Reset: Function that resets the environment to its original state to restart training on it.

These are the key functions that need to be reimplemented. Some functions have been
created inside the environment to compute the workload of each node, update the resource
allocation, update the state, or compute the reward.

Modelling the problem as a Reinforcement Learning model:

Objective:
For this proof-of-concept, the selected performance target was to balance the load of all
working nodes in a K8s cluster, while minimizing the total number of pods that are not allocated
due to resource limitations. The importance that is given to these two objectives can be
balanced with two weights that control the computation of the workload (see reward).

17
https://gymnasium.farama.org/index.html

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/I2CAT-RL_model?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/blob/6d9ddecb33d0aa145193bcec4312bb7d13aa97bb/I2CAT-RL_model/requirements.txt
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/blob/main/I2CAT-RL_model/code/codeco_env.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/blob/main/I2CAT-RL_model/code/data_generators.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/blob/main/I2CAT-RL_model/code/data_preprocess.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/blob/main/I2CAT-RL_model/code/k8node_config.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/blob/main/I2CAT-RL_model/code/main.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/blob/main/I2CAT-RL_model/code/training_controller.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/blob/main/I2CAT-RL_model/config/config_train.ini?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/blob/main/I2CAT-RL_model/requirements.txt?ref_type=heads
https://gymnasium.farama.org/index.html

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

29

Environment (observation space):
The environment in this first approach is represented as the set of nodes and pods that form
a K8s cluster, and the resources that they are consuming, also, the resource request from the
pods are inside the observation space. The observation space has been proposed as the
resources requested by the allocation request (currently CPU and RAM), which, in the future,
will be derived from the CODECO Application Model, and the current node usage in terms of
CPU, RAM.

State:
As per the state, it is represented it as a snapshot of the system status in a given timestamp
where K8s can check the resource usage for all nodes and pods, in this timestamp, the CPU
and RAM usage for the pod that will be allocated and the current usage of the nodes in the
cluster are gathered. This can be represented as follows:

𝑆𝑡 = {(𝑝𝑖, 𝑛𝑗) ∨ 0 ≤ 𝑗 < 𝑛. 𝑛𝑜𝑑𝑒𝑠}𝑤ℎ𝑒𝑟𝑒:

𝑝𝑖 = {(𝑐𝑝𝑢𝑖, 𝑟𝑎𝑚𝑖)},
𝑛𝑗 = {(𝑐𝑝𝑢𝑗, 𝑟𝑎𝑚𝑗) ∨ 0 ≤ 𝑗 < 𝑛. 𝑛𝑜𝑑𝑒𝑠},

𝑖, 𝑗𝑍
Action space:
Each time an allocation request is received (in this case, once per allocation request and
timestamp) the pod is allocated to a new node, or it is kept the node that was previously
allocated (if there was a previous allocation). The concepts of being on hold or waiting to be
executed have been introduced. To represent a node that does not have an allocation, in the
model a ‘Fake’ node that can hold potentially all the pods in the system if they cannot be
allocated, the fake node is not considered when the workload is computed (see reward).

Reward:
To model the reward function, we focused on making a fully scalable, easily expandable
reward function that can be adapted depending on the use case that is being used while
training the model. To do so the function has been modelled by multiplying some metrics
depending on the given importance for the current use case. The current proof-of-concept
considers the modelling of two metrics. The idea is that metrics coming from PDLC-CA could
be included in this computation depending on the use case:

• Workload: this custom metric for PDLC-DL measures how stressed a K8s node is
comparison to other nodes. This metric works for comparisons between different K8s
nodes with different parameters and works as follows:

• If the resource allocation is correct, the workload for a node i includes its usage of CPU
and RAM, as it works by comparing percentages of use between parameters this can be
easily expandable to any capabilities that can be measured in % of use compared to its
maximum value. The formula to compute this metric is:

𝑊𝑖 = (𝑀𝑎𝑥𝐶𝑃𝑈𝑖
𝑈𝑠𝑒𝑑𝐶𝑃𝑈𝑖

⁄ ∗ 100 ∗ 𝑤𝑐) +

(𝑀𝑎𝑥𝑅𝐴𝑀𝑖 𝑈𝑠𝑒𝑑𝑅𝐴𝑀𝑖
⁄ ∗ 100 ∗ 𝑤𝑟)

𝑤ℎ𝑒𝑟𝑒: 𝑊𝑐 + 𝑊𝑟 = 1

• So, the minimum value for this metric is 0 and the maximum is 100, the metric represents
the % of usage of all the resources in that node, giving importance to each parameter
depending on configurable weights. Currently, the function only includes weights for the
CPU and RAM consumption, the idea is to expand this further in the future. Furthermore,
depending on the data there are cases in which a parameter may be harder to balance
than others, as allocating a pod implies reserving all the resources it requires in a node.

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

30

Once more parameters are included in the implementation, parameter weight will need to
be studied and optimized thoroughly per use case.

• Non_allocated_pods: this is a simple percentage that represents how many pods are not
currently allocated due to resource constraints.

Once the metrics are defined, the reward function can be defined as follows, where 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑
is the list containing the workload for all nodes:

𝑅𝑒𝑤𝑎𝑟𝑑 = − (𝑠𝑡𝑑(𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑) + (𝑛_𝑝𝑜𝑑𝑠 – 𝑛𝑜𝑛_𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑_𝑝𝑜𝑑𝑠)

Some parts of the reward are put in negative value as the algorithm will focus on maximizing
its value, and the objective is to minimize metrics in our system. In this case, the number of
allocated pods is also added as a positive reward to encourage pods being allocated as much
as possible.

3.2.2.2.1.3 Pre-requisites

• Input based on csv – the CODECO synthetic data generator needs to be installed and
used for this purpose.

• The model is adapted to work both with CPU and CUDA (GPU). It is highly recommended
that for larger datasets, a device compatible with CUDA is used in order to boost the
training times.

Apart from the required data, the testing environment should follow the following requirements,
some are mandatory, others are a recommendation:

• Having Python 3.10.2 or latest installed.

• It is recommended that the device has a GPU in order to accelerate the training
performance, the program is adapted to run on CPU, but if you do so, except high training
times when using a large number of steps.

• Some software to open .pdf files (results are stored in them).

• A code editor (e.g., VSCode) is highly recommended to change the behaviour of some
parts of the code if desired.

• A minimum of 8 GB of RAM and a good CPU are highly recommended if a GPU is not
available.

• If the program is installed using Docker, it is mandatory to have Docker installed.

3.2.2.2.1.4 Installation Guide

To install and set up the program, follow the steps provided in the respective git repository,
which are summarized next.

1. Clone the repository

 git clone git@gitlab.eclipse.org:eclipse-research-labs/codeco-project/privacy-preserving-
decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-
and-training.git

2. Create the testing environment
For this there are two options:

• Install the program using Docker image and the docker compose file:

 docker-compose up OR

• Create a python virtual environment, then install the requirements with:

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/blob/main/I2CAT-RL_model/README.md?ref_type=heads
mailto:git@gitlab.eclipse.org:eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training.git
mailto:git@gitlab.eclipse.org:eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training.git
mailto:git@gitlab.eclipse.org:eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training.git
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/blob/main/I2CAT-RL_model/docker-compose.yaml?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/blob/main/I2CAT-RL_model/requirements.txt?ref_type=heads

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

31

 pip install -r requirements.txt

• Use the python program from console:

 python main.py

Examples on how to use the program (if installed with docker, the command can be specified
in the docker-compose file provided) are provided in Table 5.

Table 5: Examples on how to use RL code.

Use case Training Inference

Normal use Python main.py
--use_mode=training

Python main.py
--use_mode=inference

Plot results Python main.py
--use_mode=training
--plot_results=True

Python main.py
--use_mode=inference
--plot_results=True

Generate new data and/or
node config

Python data_generators.py Python data_generators.py

Specify where to save model
(not default)

Python main.py
-- use_mode =training
save_models_path=”example”

Does not apply, no model
saved

3.2.2.2.1.5 Inputs & Outputs

This version of the implementation requires the following input data to work (already provided
but can be modified):

• .csv file that contains all the node configuration information, this file can be created with
the script data_generators.py.

• .csv file with the data pre-processed, you can find two examples already in the folder data.

• config.ini file that includes the configuration of some aspects of the model and training.

• Output CRD, where the proposed allocations will be written.

Data pre-processing
In a future version, the data processing in PDLC will be done by the sub-component PDLC-
DP. For the current version, the following pre-processing has been done:

• Convert the K8s CPU and RAM units to more concise and easier to read ones:
o CPU has been converted to relative usage (percentage of CPU where the

usage is divided by 100, expressing the number of CPU cores being used,
example= 0.5 cores or 3.4 cores). The conversion is based on the official k8s
documentation.

o RAM has been converted to MBs.

• The node usage monitoring data is not considered in this release, as the goal is to give
predictions of pod allocations, this adapts the input data to the current use case of this
first release.

• To give more flexibility, a script that generates random input node configurations (RAM,
CPU capacity) is provided. By doing so, we guarantee the portability of the implemented
model that can be tested with clusters of different node configurations and topologies.

Outputs:
The current release provides two outputs:

• Results visualizations with plots of the agent performance (training or inference) along
with a visualization of a simple greedy algorithm for comparison. The directory of these

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/blob/main/I2CAT-RL_model/data/node_info.csv?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/blob/main/I2CAT-RL_model/data/output_file.csv?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/blob/main/I2CAT-RL_model/config/config_train.ini?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/blob/main/I2CAT-RL_model/data/app1.yaml?ref_type=heads
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

32

plots is created automatically by the program. This output is optional and can be activated
using the corresponding command line argument defined in the readme file.

• Allocation proposals in the CRD file provided as input. This is done through an attribute
added to the SWM CRD that indicates how likely a pod should be allocated to a node.
For that purpose, a vector of size number of nodes for each pod that needs allocation is
used, and for each node the degree of certainty of the pod being allocated to it is given.

3.2.2.2.1.6 UML Diagram

Figure 11. PDLC UML sequence diagram of interactions between the RL model classes.

3.2.2.2.2 Graph Neural Network (GNN) Models

3.2.2.2.2.1 Usage Scenario

The current proof-of-concept integrates testing done with two Graph Neural Network (GNN)
models within the PDLC-DL subcomponent: a Spatio-Temporal Graph Neural Network
(STGNN) [3] and an Attention-Temporal Graph Convolution Network (A3T-GCN) [4]. The code
can be found in the ICOM-GNN repository.

The two GNN models can provide predictions for the monitored metrics of a cluster’s nodes.
Both models take as input historical timeseries data of each node (e.g., CPU or memory
usage), as well as information about the cluster’s topology, so that they can consider the
spatial, as well as the temporal dependencies of the nodes and provide predictions about the
aforementioned parameters in future timesteps. It is envisioned that these predictions will be
fed as input features to the RL models of PDLC-DL to enhance their performance and help
them provide an improved pod allocation plan to SWM. Additionally, the forecasted
parameters can be given as input to the ACM component, in order to provide insights about

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/blob/main/I2CAT-RL_model/README.md?ref_type=heads#arguments-accepted-by-the-program
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/blob/main/I2CAT-RL_model/data/app1.yaml?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/ICOM-GNNs?ref_type=heads

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

33

the nodes’ future resource usage and allow it to make more informed decisions and trigger
adjustments to the initial setup.

The key purpose of this approach is therefore to provide a forecasting on the usage of the K8s
infrastructure, to further assist the workload placement.

3.2.2.2.2.2 Selected Technologies

• Spatio-Temporal Graph Neural Network:
o NumPy (Numerical Python)18: an open source, widely used Python library that

provides computation functionalities and fast operations on multidimensional
array objects, mostly used in the model’s data preprocessing code.

o Pandas (Python Data Analysis)19: an open source Python library that uses
DataFrame and Series data structures for efficient and flexible data analysis
and manipulation, mostly used in the model’s data preprocessing code.

o TensorFlow20: an open source framework that provides tools and libraries for
the development of machine learning models, used in the development of the
model’s architecture.

• Attention-Temporal Graph Convolution Network:
o NumPy
o Pandas
o PyTorch21: an open source optimized tensor library for deep learning in Python,

used for the development of the model’s architecture.

The Spatio-Temporal Graph Neural Network can predict future values of nodes' metrics
based on historical observations, by modelling both spatial and temporal dependencies
among nodes. The nodes’ topology is mapped into a Graph structure and the model consists
of a Graph Convolution Layer and a Recurrent Neural Network layer. The Graph Convolution
Layer applies graph convolution to the input to get the nodes' representations over time, so
that for each time step, a node's representation is informed by its neighbours’ representations.
The Graph Convolution is calculated as:

ℎ𝑖
(𝑙+1)

= 𝜎 (𝑏(𝑙) + ∑
1

𝑐𝑖𝑗
ℎ𝑗

(𝑙)

𝑗∈𝑁(𝑖)

𝑊(𝑙))

where 𝑁(𝑖) is the set of neighbors of node 𝑖, 𝑐𝑖𝑗 is the product of the square root of node

degrees (i.e.,𝑐𝑖𝑗 = √|𝑁(𝑖)|√|𝑁(𝑗)|), and σ is an activation function.

The nodes' representations are computed by multiplying the input features by the node’s own
weight and then each node’s updated value is calculated by aggregating the neighbors'
representations and then multiplying the results by the node’s weight. The output of the layer
is computed by combining the nodes representations. Based on the input, the graph
convolution layer produces new tensor that captures the representations of nodes over time.
To process the nodes’ representations over time, a Recurrent Neural Network layer is utilized,
in this case a Long Short-Term Memory (LSTM) layer22.

Regarding A3T-GCN, this model is an extension of the Temporal Graph Convolutional
Network (T-GCN) model [3] and additionally uses an attention mechanism. T-GCN uses a
GCN for the spatial aggregation, in order to capture the topological structure of the data and

18 https://numpy.org/
19 https://pandas.pyd
20 https://www.tensorflow.org/
21 https://pytorch.org/
22 https://docs.dgl.ai/en/0.8.x/generated/dgl.nn.tensorflow.conv.GraphConv.html and https://github.com/keras-team/keras-io/

https://numpy.org/
https://pandas.pyd/
https://www.tensorflow.org/
https://pytorch.org/
https://docs.dgl.ai/en/0.8.x/generated/dgl.nn.tensorflow.conv.GraphConv.html
https://github.com/keras-team/keras-io/

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

34

a Gated Recurrent Unit (GRU), in order to capture the temporal features using the time series
with spatial features. The T-GCN model takes as input 𝑛 historical time series data to obtain

𝑛 hidden states (ℎ) that cover spatiotemporal information: {ℎ(𝑡 − 𝑛),···, ℎ(𝑡 − 1), ℎ(𝑡)}.

ℎ(𝑡) is calculated as ℎ𝑡 = 𝑢𝑡 ∗ ℎ(𝑡−1) + (1 − 𝑢𝑡) ∗ 𝑐𝑡, where 𝑢𝑡 at time 𝑡 is the update gate,

meaning the factor that controls the degree to which the previous status is brought into the
current status and 𝑐𝑡 is the memory content stored at time 𝑡. 𝑢𝑡 is defined as 𝑢𝑡 =
𝜎(𝑊𝑢[𝑓(𝐴, 𝑋𝑡), ℎ𝑡 − 1] + 𝑏𝑢), where 𝑓(𝐴, 𝑋𝑡) represents the graph convolution process, with 𝐴
being the adjacency matrix (graph) and 𝑋𝑡 being the input features at time 𝑡, and 𝑊, 𝑏

represent the weights and deviations of the training process respectively. Additionally, 𝑐𝑡 is
calculated as 𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐[𝑓(𝐴, 𝑋𝑡), (𝑟𝑡 ∗ ℎ𝑡 − 1)] + 𝑏𝑐), where 𝑟𝑡 corresponds to the reset
gate, which is used to control the degree of ignoring the previous status, and is calculated as
𝑟𝑡 = 𝜎(𝑊𝑟[𝑓(𝐴, 𝑋𝑡), ℎ𝑡 − 1] + 𝑏𝑟).

Moreover, an attention mechanism is utilized, in order to re-weight the influence of historical
values and to capture the data variation trends. The hidden states are given as input to the
attention model and the weight 𝑎(𝑡−𝑛),···, 𝑎(𝑡−1), 𝑎𝑡 of each hidden state is calculated by the

softmax function, using a multilayer perception. A weighted sum is used to calculate the
context vector that captures the variation information and for the output, the forecasting results
go through a fully connected layer23 [4].

3.2.2.2.2.3 Pre-requisites

• In terms of hardware both GNN models within PDLC-DL can support either a CPU or
GPU, if available, for improved performance.

• In terms of data the CODECO synthetic data generator is required and one has to run its
data extractor module.

• A cluster needs to be set up.

• In terms of software the pre-requisites are listed below for each model separately:
o Spatio-Temporal Graph Neural Network:

▪ python >= 3.7
▪ numpy==1.23.5
▪ pandas==2.0.3
▪ tensorflow==2.12.0
▪ keras==2.12.0

o Attention-Temporal Graph Convolution Network:
▪ python==3.7
▪ numpy==1.18.5
▪ pandas==1.1.4
▪ torch==1.6.0
▪ torch_geometric_temporal==0.40
▪ torch_geometric==1.7.0

3.2.2.2.2.4 Installation Guide

To install and run the GNN models of PDLC-DL the following steps are needed, after handling
all dependencies (create a cluster, generate data with the CODECO synthetic data generator).

23 https://www.kaggle.com/code/elmahy/a3t-gcn-for-traffic-forecasting

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator
https://www.kaggle.com/code/elmahy/a3t-gcn-for-traffic-forecasting

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

35

• Clone the CODECO PDLC-DL ICOM-GNN repository:

To run the STGNN model do the following steps:

• Navigate to the STGNN directory and install the requirements of the “requirements.txt”
file, where the pre-requisites mentioned in the previous subsection are listed.

• Run the Python code:

• The following CLI arguments can be used when running the model:

Alternatively, to run the model the following steps can be followed:

• Pull the model’s image for Docker Hub and run it with the commands described below.
The user should substitute the ‘path/on/host/to/write/predictions/csv/files’ and specify the
desired path to save the model’s output.

To run the A3T-GCN model follow the steps:

• Navigate to the A3T-GCN directory and install the requirements of the “requirements.txt”
file, where the pre-requisites mentioned in the previous subsection are listed.

git clone https://gitlab.eclipse.org/eclipse-research-
labs/codeco-project/privacy-preserving-decentralised-
learning-and-context-awareness-pdlc/decentralised-
learning/model-selection-and-training

cd STGNN

pip install -r requirements.txt

docker pull hecodeco/pdlc-dl-gnns-stgnn

docker run -v
/path/on/host/to/write/predictions/csv/files:/app/outputs
hecodeco/ pdlc-dl-gnns-stgnn

python3 main.py

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/ICOM-GNNs?ref_type=heads
https://hub.docker.com/r/hecodeco/pdlc-dl-gnns-stgnn

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

36

• Run the Python code:

The following CLI argument can be used when running the model:

Alternatively, to run the model the following steps can be followed:

• Pull the model’s image and run it with the commands described below. The user should
substitute the ‘path/on/host/to/write/predictions/csv/files’ and specify the desired path to
save the model’s output.

3.2.2.2.2.5 Inputs & Outputs

The two models take as input the ‘data.csv’ file produced by the CODECO synthetic data
generator, which includes timeseries data for a cluster’s node metrics. More details about the
data can be found in Subsection 4.1. Currently, for the models’ input, the metrics selected are
‘cpu’ and ‘memory’.

An example plot of a node’s (k8s-worker-3) memory usage timeseries is provided in Figure
12.

cd A3T-GCN

pip install -r requirements.txt

python3 main.py

Figure 12: Plot of k8s-worker-3 memory usage timeseries extracted from the Synthetic
Data Generator.

docker pull hecodeco/pdlc-dl-gnns-a3tgcn

docker run -v
/path/on/host/to/write/predictions/csv/files:/app/outputs
hecodeco/pdlc-dl-gnns-a3tgcn

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

37

Notice that for the example described, the cluster topology considered is the one provided by
default on the CODECO synthetic generator, based on its topology.json file.

Before being fed to the models, the input timeseries are processed by averaging the 3-second
intervals per minute and then sampling the 1-minute intervals every 5 minutes, thus providing
5-minute frequency timeseries as input to the models.

The models make predictions for each cluster node, based on 12-timestep historical
observations, for a 12 timestep forecasting horizon. The output is written in a
<node_name>.csv file for the predictions of every node. A plot of the STGNN model is actual
and forecasted memory usage values for ‘k8s-worker-3’ node is provided in Figure 13.

Figure 13. Plot of the STGNN model is actual and forecasted memory usage values for
‘k8s-worker-3’ node.

3.2.2.2.2.6 UML Diagram

Figure 14. PDLC UML Sequence diagram of GNN models.

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

38

3.2.2.2.3 Model-based Multi-agent Reinforcement Learning (MARL) Models

3.2.2.2.3.1 Usage Scenario

The A3C algorithm within the PDLC-DL, available in the PLDC repository MARL_A3C_UPM,
is designed to facilitate Multi-Agent Reinforcement Learning (MARL) in various contexts. Its
usage scenario includes training and deploying RL models in decentralized environments,
enabling multiple agents to interact and learn from their experiences while preserving privacy
and adaptability. MARL is one of the approaches in study in CODECO, to support the
decentralised learning, privacy-preserving requirements [1].
A potential relation of this component relates with the network forecasting mechanism to be
interfacing with NetMA, sub-component network management state.

3.2.2.2.3.2 Selected Technologies

The following technologies are utilized in the PDLC-DL component with the A3C algorithm:

• Python: The primary programming language used for implementing the A3C algorithm.

• TensorFlow: TensorFlow is employed as the deep learning framework for developing and
training the neural networks within the A3C algorithm.

• NumPy: NumPy is used for numerical computations and efficient data manipulation.

3.2.2.2.3.3 Prerequisites

In terms of hardware and software, the PDLC-DL component with the A3C algorithm has the
following pre-requisites :

• Hardware: The hardware requirements depend on the complexity of the reinforcement
learning tasks and the size of the neural networks used in the A3C algorithm. A CPU
with multiple cores or a GPU can significantly accelerate training.

• Software:
o Python > 3.5
o TensorFlow > 2.4

3.2.2.2.3.4 Installation Guide

Step-by-step installation guide for setting up the component are available in GitLab and
summarized as follows:

• Install Python.

• Create virtual environment.

python -m venv venv
source venv/bin/activate

• Install pre-requisites.

pip install -r requirements.txt

• Execute the model.

python agent.py --train --num-workers 1

3.2.2.2.3.5 Inputs & Outputs

Inputs:

• Environment Data: The algorithm takes environment data, which may include state
observations, rewards, and actions, as inputs.

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

39

• Configuration Parameters: Parameters that configure the A3C algorithm, such as learning
rates, discount factors, and neural network architectures.

• Communication Data: Configuration parameters for communication with other CODECO
components to retrieve information.

Outputs:

• Learned Policies: The A3C algorithm produces learned policies that determine agent
actions in response to states.

• Training Progress: Training metrics and logs, including reward curves and convergence
statistics.

3.2.2.2.3.6 UML Diagram

Figure 15. PDLC A3C UML sequence diagram.

3.2.2.3 PDLC-DL (MLOps)

3.2.2.3.1 Usage Scenario

The MLOps subcomponent of PDLC-DL will be responsible for the deployment and monitoring
of the PDLC-DL models. The current usage scenario regards the employment of an MLOps
workflow, which monitors two deployed models and ensures that the one which achieves the
best performance, is used for inference.

To show-case the benefits of this process and in order to provide a proof-of-concept scenario,
an MLOps pipeline has been created, where two instances of the timeseries forecasting
STGNN model of PDLC-DL are deployed, one using an LSTM layer for the temporal
aggregation and one using a GRU layer. The pipeline assesses the models’ performance on
the test set, selects the instance with the lowest Mean Squared Error (MSE) score and outputs
this model’s predictions. The MLOps pipeline consists of four components, one which
performs the data preprocessing, two components for training the two model instances and
one component that is responsible for evaluating and comparing the models’ performance and
selecting the best one, in order to output its predictions.

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

40

3.2.2.3.2 Selected Technologies

The MLOps pipeline and the components for each model instance have been developed using
Python programming language. The technologies used for the source code of the STGNN
model are listed in Subsection 3.2.2.2.2.2 (GNNs). The code of the MLOps pipeline is available
under the Privacy-preserving Decentralised Learning and Context-awareness - PDLC /
Decentralised Learning / MLOps repository of the CODECO GitLab (provided by ECL). The
rest of the technologies used for each model are listed next:

• Docker: Docker is an open platform for developing and running applications and was
used to containerize the code of each component of the MLOps pipeline.

• Kubeflow24: Kubeflow is an open source platform for machine learning and MLOps,
designed to work with any Kubernetes environment, while providing tools for automating
machine learning deployment, scaling, and management. It was utilized to deploy the
GNN models and run the created MLOps pipeline.

3.2.2.3.3 Pre-requisites

• Kubernetes: To run the code of the MLOps pipeline, it is necessary to have set up a
Kubernetes cluster.

• Kubeflow: Furthermore, Kubeflow must be installed and running. To get started with
Kubeflow installation the steps described in this link: https://charmed-
kubeflow.io/docs/get-started-with-charmed-kubeflow can be followed.

• KFP Compiler25: In order for a pipeline to be submitted for execution, it should be
compiled to YAML, using the KFP SDK compiler.

3.2.2.3.4 Installation Guide

In order to install and run the MLOps pipeline, the following steps must be followed through
the Kubeflow Dashboard:

• Run a Python server to serve the input files of the pipeline, by running the command:

Create an Experiment: An experiment should be created, in order to select and run
the given pipeline.

• Write experiment name: In the Experiment details section, the name and description
of the created experiment can be specified.

24 https://www.kubeflow.org/
25 https://kf-pipelines.readthedocs.io/en/latest/source/kfp.compiler.html

python -m http.server 8000

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/mlops
https://charmed-kubeflow.io/docs/get-started-with-charmed-kubeflow
https://charmed-kubeflow.io/docs/get-started-with-charmed-kubeflow
https://www.kubeflow.org/
https://kf-pipelines.readthedocs.io/en/latest/source/kfp.compiler.html

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

41

• By pressing “Next”, the “Start a run” page is displayed and the YAML file of a pipeline can

be selected.

• At this stage, the YAML file can be imported by choosing the respective file, naming it,
and pressing “Upload”.

• Now that the Pipeline and the Experiment with which the Run is associated are specified,
the user can start the “Run”.

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

42

• After the components (pods) are initialized and start running, the workflow is completed,
when all pods are in state “completed”.

3.2.2.3.5 Inputs & Outputs

The MLOps component of PDLC-DL, takes as input the Python code of each of the four
components, their Dockerfiles and respective .yml files, as well as the Python file that specifies
the pipeline by describing the input and output of each component, by referencing the
components’ .yml files. By compiling this file using the KFP Compiler, the final .yml file of the
pipeline is produced. The pipeline’s parameter specifying the input data file location is required
as well and is given as input, during the “Start Run” step, in the ‘Run parameters’ field.

After the pipeline is uploaded to Kubeflow and all components are completed, the output of
the pipeline is the MSE score of model instance, which achieved the best performance on the
test set.

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

43

3.2.2.3.6 UML Diagram

3.2.3 Next Cycle features

The PDLC next cycle features are presented per order of priorities, starting from the most
relevant one:

• Provide an end-to-end connected prototype of PDLC, fully integrating PDLC-CA and
PDLC-DP, completing all internal interfaces and all external interfaces.

• In PDLC-CA, explore further metric aggregation approaches, and validate different
approaches in terms of improvements that can be provided to the SWM scheduler, and
to other components.

• In PDLC-DL:
o Select the optimal model(s) to consider based on specific use-cases.
o Customize and refine the output generated by PDLC-DL and forwarded to

SWM to best suit the needs of the scheduler in that component; improve the
rewarding concept.

o Implement a preliminary MLOps pipeline that selects the best-suited model for
different objectives from the ones available.

3.3 NetMA: Network Management and Adaptation

3.3.1 Component Description
NetMA, illustrated in Figure 17, is an advanced network management and adaptation solution
designed to streamline the configuration of interconnections, enhancing the flexibility of Edge-
Cloud operations. It effectively addresses the integration of internetworking control, catering
to diverse network environments, including fixed, wireless, and cellular networks that are
anticipated to be managed by CODECO. Within CODECO, NetMA handles critical aspects
such as network softwarization, semantic interoperability, secure data exchange, predictive
behaviour, and integrated network capability exposure through standard-based mechanisms
and K8s APIs. Furthermore, AI/ML techniques are employed to glean insights from network
events, facilitating closed-loop automation and adaptive control.

Figure 16: UML diagram for the PDLC MLOps sub-component.

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

44

Figure 17. NetMA high-level architecture.

In the area of network softwarisation, NetMA focuses on providing Function-as-a-Service
(FaaS) to the Edge and automating network resource management to meet specialised
service requirements. It actively promotes the integration of diverse networking domains and
extends the physical reach of computing facilities, ensuring seamless semantic compatibility
between internetworking services. Table 6 provides a summary of the main interfaces with
other CODECO components, providing status on their implementation.

Table 6: NetMA interfaces to other CODECO components.

ID Description Type Direction Status

I-ACM-NET-1 Integration of the NetMA CRD/CR(s)
and respective operator(s)

CRD Input Partially
implemented

I-SWM-NET-1 Used to request NetMA to
perform QoS reservations. SWM
may perform requests for
reservations to NetMA, based on
the scheduling/placement
decisions. Furthermore, NetMA
may also handle network related
CRs (Endpoint, NetworkLink,
NetworkNode, NetworkPath) to
reflect network conditions.

CR Bi-
directional

Not yet
available

I-NET-PDLC-1 Request infrastructure estimation CR Bi-
directional

Not yet
available

3.3.2 Sub-components’ Specification and Implementation

3.3.2.1 Network Exposure

3.3.2.1.1 Usage Scenario

The network exposure sub-component of NetMA handles the exposure of CODECO
networking metrics to other CODECO components (e.g., ACM, SWM). The exposure will be

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

45

handled periodically and may also be handled on-demand. Internal NetMA components, such
as the Secure Connectivity component will also request specific data from this component.

The network exposure module is expected to provide state information at a link level, state
information at a path level. The current code provided in this early release is a proof-of-concept
which serves the purpose of demonstrating how information can be exposed. The initial subset
of networking parameters to be exposed in future versions of this module is provided in Annex
I, Table 16. These parameters are not yet used in the current available code of NetMA
sub-components.The proof-of-concept code files are summarized in Table 7.

Table 7: NetMA Network Exposure sub-component code summary.

File Function

alto_core.py Launches ALTO’s module and its required plug-ins.

api/web/alto_http.py HTTP API to receive requests.

topology_writer.py Saves locally the maps created. Used as a debugging tool.

topology_maps_generat
or.py

It synchronizes with the bgp speaker to receive topology information
and generates a networkx abstraction.

parsers/yang_alto.py

Provides context data and a uniformed format to the response

bgp/manage_bgp_spea
ker.py

It acts as a speaker, listening and exporting BGP information to us.

3.3.2.1.2 Selected Technologies

• Python v3.0

• ALTO (Application Layer Traffic Optimisation Protocol) [2].

• ExaBGP26, an open source solution Border Gateway Protocol (BGP) speaker
implementation in python, often used in SDN and network automation scenarios, to
advertise, withdraw or modify BGP routes.

3.3.2.1.3 Pre-requisites

• Hardware:
o The proof-of-concept provided in the CODECO GitLab can run in devices

holding at least 2 CPUs and 4GiB of Memory RAM.

• Software:
o Python 3
o K8s
o Software libraries mentioned in requirements.txt
o exaBGP.

3.3.2.1.4 Installation Guide

• Obtain the code at: Eclipse Research Labs / CODECO Project / Network Management
and Adaptation - NetMA / Network Exposure · GitLab, e.g.:

git clone git@gitlab.eclipse.org:eclipse-research-labs/codeco-project/network-
management-and-adaptation-netma/network-exposure.git

26 https://github.com/Exa-Networks/exabgp.

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/blob/main/alto_core.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/blob/main/api/web/alto_http.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/blob/main/topology_writer.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/blob/main/topology_maps_generator.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/blob/main/topology_maps_generator.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/blob/main/parsers/yang_alto.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/blob/main/bgp/manage_bgp_speaker.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/blob/main/bgp/manage_bgp_speaker.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/blob/main/requirements.txt?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure
https://github.com/Exa-Networks/exabgp

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

46

• In your local environment, launch a python virtual environment in order to avoid mixing
dependencies that could cause potential disagreements:

 python -m venv .venv && source ./.venv/bin/activate.

• Install all dependencies:

pip3 install -r requirements.txt.

• Start the module with:

python3 alto_code.py

In the documentation it will be included also a list of commands during the deployment of new
functionalities.

3.3.2.1.5 Inputs & Outputs

Input:
This module will receive two inputs: one from the network devices, providing topological
information, and other one from its clients to request for information. The first of the inputs is
right now a BGP message, as it is defined in the original ALTO IETF RFCs. In the context of
CODECO, new capabilities are expected to be developed, such as the support of LLDP for
building the inter-cluster network topology taking profit of the Layer-2 overlay connectivity
solution provided by L2S-M. The input for this module is provided in Annex I; Table 16.
In this early proof-of-concept, an API REST for ALTO protocol with the next URIs is available,
exemplifying how metrics could be exposed:

- 127.0.0.1:5000/ → Returns an index with all the services available.
- 127.0.0.1:5000/costmap → It returns a json with the costs map.
- 127.0.0.1:5000/networkmap → It returns a json with a map of the network.
- 127.0.0.1:5000/all/a/b → It returns all the disjuncts paths between A and B.
- 127.0.0.1:5000/best/a/b → It returns the optimal path to link A and B.

Output:
The output provided is currently the one defined in RFC7285. We have decided to use an API
REST as the consumption API due to the easy access that it provides from any other
technology and the easy translation to a future multi-cluster system.
However, in CODECO, the output is expected to also be made available via the NetMA
CRs/CRDs, to other components.

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

47

3.3.2.1.6 UML Diagram

Figure 18. NetMA Network Exposure UML Diagram.

3.3.2.2 Network State Management

3.3.2.2.1 Usage Scenario

This subcomponent was previously called Network State Forecasting. All the intelligence of
the CODECO architecture will be located inside PDLC component, so it was decided to swap
the name to Network State Management. This component focuses on monitoring network data
using a network performance probe. The probe is designed to measure various network
metrics through socket communication27, including bandwidth, throughput, latency, packet
loss rate, jitter, retransmission rate, and network interface statistics. Its usage scenarios
include:

• Real-time Network Monitoring: Continuously monitoring network metrics.

• On-Demand Network Measurement: Initiating network performance measurements
based on external triggers or user requests.

3.3.2.2.2 Selected Technologies

The Network State Management component employs the following technologies:

• Programming Language: Python is the primary programming language used for
implementing the network performance probe and forecasting algorithms.

• Socket Communication: Socket communication is used for gathering real-time network
metrics from network devices and servers.

27
 Pending to be evaluated by integrating with Docker containers.

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

48

The code for the network probe has been initially developed covering the mentioned metrics.
It can be found on the CODECO GitLab under Network Management and Adaptation,
specifically on Network State Management, and inside the folder Monitoring. In addition,
Docker image is present on project Docker hub.

3.3.2.2.3 Pre-requisites

The hardware requirements are typically minimal, and they depend on the scale and specific
network monitoring needs. A standard computer or server with network connectivity is
sufficient.
In terms software requirements, it must be configured or opened via a Web server like Apache
or Nginx, as port 80 is the default port for HTTP traffic. By default, on new machines, this port
is not open for communication.

3.3.2.2.4 Installation Guide

Step-by-step installation guide for setting up the component:

• Install Python.

• Create virtual environment.

o python -m venv venv
o source venv/bin/activate

• Install pre-requisites .

o pip install -r requirements.txt

• Execute the script locally.

o python network_probe.py --host 192.168.1.291 --port 80 --live --delay 15 --
bandwidth --latency --congestion –verbose

• Execute the script in Docker.

o docker run --name network-probe -d network-probe --verbose --host
192.168.1.291 --live --delay 15 --bandwidth --throughput --packet-loss --latency
--jitter –congestion

3.3.2.2.5 Inputs & Outputs

Inputs:

• Destination Host and Port: The probe receives information about the destination host,
namely, IP and port to establish communication and measure network performance
metrics. This information is used to target specific network endpoints for measurement.

• Monitored networking metrics: The probe accepts a list of network metrics that need
to be measured. This list typically includes metrics such as bandwidth, throughput,
latency, packet loss rate, jitter, retransmission rate, and network interface statistics, and
will be adjusted to the proposed CODECO list of parameters (rf. to Table 7).

• Data Communication Parameters: In addition to the networking metrics, the probe may
receive data communication parameters to interact with other components in the
CODECO project. These parameters can include information about the communication
protocol, message format, and endpoints for sending and receiving data.

Outputs:

• Network Performance Data: The network performance probe produces network
performance data, including the measured metrics. In this proof-of-concept, it is being

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management
https://hub.docker.com/r/hecodeco/netma-netmanagement

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

49

provided JSON. It will be served on the specific data communication repository, provided
as input. For CODECO, the output (whenever feasible) will be provided via CRDs.

3.3.2.2.6 UML Diagram

Figure 19. NetMA, network performance probe UML sequence diagram.

3.3.2.3 MEC Enablement

3.3.2.3.1 Usage Scenario

This sub-component brings to NetMA the possibility to integrate data derived from far Edge
devices and non-K8s systems, by providing an integration with the ETSI Multi-Access Edge
Computing (MEC) APIs28.

An example for a usage scenario is as follows. User DEV requests via the CODECO ACM the
installation of a distributed application holding several micro-services across the Edge-Cloud
continuum. The request contains info regarding the MEC APIs the application wants to use.
CODECO provides an optimal operational environment (cluster, multi-cluster) for the
application to run, placing the different micro-services across the far Edge-near Edge-Cloud.
CODECO allows the microservices that run on the far Edge to make use of the requested
MEC APIs that exist on MEC Platforms on specific near Edge nodes.

One such example can be the utilization of the MEC location API by a streaming service to
perform resource reassignment (e.g., channel bandwidth) to mobile users, depending on their
mobility state, in order to relief an overloaded antenna. This can be done by reducing the
resolution and thus the bandwidth being provided to mobile users assessing the service on a
mobile node, e.g., a car.

28 https://forge.etsi.org/rep/mec

https://forge.etsi.org/rep/mec

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

50

3.3.2.3.2 Selected Technologies

• Python 3.9.0: The coding language in which the ETSI MEC APIs are developed.

• Flask29: Flask is a micro Web framework written in Python. It is used for the development
of the web application that will support the MEC APIs

• MongoDB: A nonrelational database which stores the information that is used in the MEC
APIs.

The code for the location API has been partially developed and can be found on the
CODECO GitLab under Network Management and Adaptation – NetMA and mec-
enablement. Table 8 summarises the code.

Table 8: NetMA MEC Enablement sub-component code summary.

File Function

Controllers/distance_controller.py query_distance
Query information about distance from a user to a location or
between two users

Controllers/users_controller.py queries_users
Query location information about a specific UE or a group of
Ues

Controllers/zones_controller.py queries_zones
Query the information about one or more specific zones or a
list of zones.

Controllers/zones_controller.py queries_zone
Query information about a specific zone

Controllers/zones_controller.py queries_zone_access_points
Query information about a specific access point or a list of
access points under a zone

Controllers/subscriptions_controller.py create_distance_subscription
Creates a subscription for distance change notification

Controllers/subscriptions_controller.py retrieve_distance_subscriptions
Retrieves all active subscriptions to distance change
notifications

Controllers/subscriptions_controller.py create_area_subscription
Creates subscription to area notifications.

Controllers/subscriptions_controller.py create_zones_subscription
Creates a subscription to zone notifications

Controllers/subscriptions_controller.py create_users_subscription
Create subscription to UE location notifications.

3.3.2.3.3 Pre-requisites

Hardware Requirements

• Existence of Edge nodes

Software Requirements

• Python >= 3.9.0

• MongoDB

• Flask

29
 https://flask.palletsprojects.com/en/3.0.x/

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/tree/main?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/blob/main/controllers/distance_controller.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/blob/main/controllers/users_controller.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/blob/main/controllers/zones_controller.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/blob/main/controllers/zones_controller.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/blob/main/controllers/zones_controller.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/blob/main/controllers/subscriptions_controller.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/blob/main/controllers/subscriptions_controller.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/blob/main/controllers/subscriptions_controller.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/blob/main/controllers/subscriptions_controller.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/blob/main/controllers/subscriptions_controller.py?ref_type=heads
https://flask.palletsprojects.com/en/3.0.x/

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

51

3.3.2.3.4 Installation Guide

In order to run the code, all that needs to be done is to execute the command:

In order to build the image using docker, you have to run:

3.3.2.3.5 Inputs & Outputs

MEC Location swagger: Swagger UI (etsi.org). The outputs and more information can be
found here.

Inputs:
URL of the MEC API and relevant body/parameters (GET methods):

• /queries/distance

• gets the distance between 2 users/devices or between a user/device and a location:

• /queries/distance?address=sip%250_0&location=47.99%2C%2055.22

• /queries/users

• gets the info of all users in specific access points, zones, or with specific addresses(i.e.,
specific users). 3 lists are given, any of which can be empty.

• /queries/users?zoneId=zone05&accessPointId=AccessPoint0/queries/zones

• /queries/zones

• Query the information about one or more specific zones or a list of zones.

• /queries/zones?zoneId=zone05&zoneId=zone06

• queries/zones/{zoneId}

• Query information about a specific zone

• /queries/zones/zone01

• /queries/zones/{zoneId}/accessPoints

• Query information about a specific access point or a list of access points under a zone

• /queries/zones/zone08/accessPoints?accessPointId=AccessPoint0&accessPointId=Acc
essPoint3

Outputs:

• /queries/distance

• Τhe distance between 2 users/devices or between a user/device and a location

• /queries/users

• Τhe info of all users in specific access points, zones, or with specific addresses

• /queries/zones

• Τhe information about one or more specific zones or a list of zones

• queries/zones/{zoneId}

• Information about a specific zone

• /queries/zones/{zoneId}/accessPoints

• Information about a specific access point or a list of access points under a zone

cd mec-location
python app.py

sudo docker build -t meclocation:1.0.0 .

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/automation
https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/rep/mec/gs013-location-api/raw/master/LocationAPI.yaml#_blank

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

52

3.3.2.3.6 UML Diagram

Figure 20: NetMA MEC Enablement UML diagram.

3.3.2.4 Secure Connectivity

3.3.2.4.1 Usage Scenario

As indicated in [1], this sub-component serves as the primary connectivity mechanism within
the context of the project, and it is based on L2S-M30 [5]. Succinctly, L2S-M enables the
creation and management of virtual networks in microservices-based K8s platforms, allowing
workloads (or as they are commonly referred, pods) to have secure and isolated link-layer
networks. L2S-M achieves this virtual networking model through a set of programmable link-
layer switches (PLS) distributed across the platform, which form an overlay network relying on
IP tunnelling mechanisms (specifically, using virtual extensible LANs or VXLANs). This overlay
of programmable link-layer switches serves as the basis for creating virtual networks using
SDN.

To support the full programmable aspect of the overlay, L2S-M uses an SDN controller to
inject the traffic rules in each one of the switches, and to facilitate the implementation of
distributed traffic engineering mechanisms across the programmable data plane. For instance,
priority mechanisms could be implemented in certain services that are sensitive to latency
constraints.

For the first phase delineated within the context of the project, where one single cluster
scenario is considered, we have identified how to progress on the basis of L2S-M in order to
address the connectivity requirements of this phase. In particular, two main lines of progress
are contemplated: i) to collect information about the performance achieved by the overlay in
order to support the creation of virtual networks over it; and ii) to provide a CR/CRD type
interface to enable the interaction with the rest of the components defined in the CODECO
architecture. Figure 21 illustrates the design that has been defined to address the development
proposed by both lines.

30 https://github.com/Networks-it-uc3m/L2S-M

https://github.com/Networks-it-uc3m/L2S-M

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

53

This design considers a new module incorporated into L2S-M to address the first of the lines
mentioned above (i.e., collect performance overlay information), referred to as L2S-M
Performance Measurements (LPM). This module has been developed to flexibly and
automatically collect performance metrics of the connectivity provided by L2S-M within a single
K8s cluster. To achieve this, LPM conducts a comprehensive network performance profiling
of the overlay network, considering various network performance metrics (e.g., available
bandwidth, end-to-end delay, etc). Afterwards, LPM, facilitates the exposure of the collected
metrics through its LPM Collector component and via a dedicated HTTP endpoint within the
cluster. This allows the metrics to be visualized through any third-party application, such as
Grafana. Moreover, the design of this module also encompasses the potential for the easy
and agile inclusion of new, and tailored metrics. All the details concerning the development of
LPM are carefully elaborated in the CODECO repository.

On the other hand, it includes an additional module referred to as Single Cluster Connectivity
Orchestrator (SCCO) to provide the CR/CRD-type interface defined in the second line. With
respect to this latter, the development is currently in progress, as the consortium is evaluating
the parameters/requirements that this interface should support based on how the rest of the
components are expected to interact (in one or other employs the following technologies) with
the Secure Connectivity sub-component of NetMA.

Next, we outline an operational workflow where we present in a concise manner the usage
scenario:

1. L2S-M collects different overlay network performance metrics through the LPM
module (single cluster overlay information). This information is necessary for the
internal operations of L2S-M, as well as to provide it to the SWM component.

2. The sCCO discovers the overlay network topology leveraging the L2S-M SDN
controller and receives the performance metrics from the LPM Collector.

Figure 21. Secure Connectivity design for the initial phase.

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity/-/tree/main/LPM?ref_type=heads

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

54

3. Then, the sCCO uses its plugins to expose relevant information to other CODECO
components in the form of CRs. In particular, the overlay network topology, and its
performance metrics are provided to the SWM to determine the network path
selections.

4. In addition, the sCCO processes and handles requests (in the form of CRs) from other
CODECO components. For instance, the SWM requests the creation of a virtual
network to connect two different pods. The request specifies the network path to be
used and QoS demands through the appropriate CRs.

5. To create the network path, the sCCO installs at every PLS involved (through its control
network) the appropriate traffic-flow rules using its SDN controller.

6. The sCCO confirms the creation of the network path and the QoS demands. Eventual
QoS situations (e.g., link-congestion) are notified to SWM using the appropriate CR.

We want to note that LPM is an integral part of L2S-M that measures the performance metrics of
the overlay network for internal use. As commented above, these metrics will also be provided to
the SWM to aid in the network path selection. These overlay performance metrics, may be provided
to any monitoring component that requires them. In this case, the interface to provide this
information will need to be defined.

3.3.2.4.2 Selected Technologies

This NetMA sub-component employs the following technologies:

• K8s.

• L2S-M, which implements a K8s operator to enable link-layer virtual networking in
Kubernetes clusters.

• LPM, based on Prometheus and developed using the programming language Go.

3.3.2.4.3 Pre-requisites

Since L2S-M is a consolidated open source tool, which has its official repository31 where its
requirements as well as its installation guide are elaborated, from here on this section refers
to the new L2S-M module developed in this initial phase of the project. That is, the LPM
module. In this context, the pre-requisites of LPM are indicated next:

• An operational installation of L2S-M in a K8s cluster.

• The cluster must have at least two compute nodes to enable the performance
measurements to be carried out through the overlay that L2S-M creates over these
nodes.

3.3.2.4.4 Installation Guide

The following step-by-step guide assumes that the installation of the LPM module will be
performed in a K8s cluster consisting of three nodes, node-a, node-b, and node-c, where the
first of these nodes (i.e., node-a) implements the Kubernetes control plane. Within this
scenario, an LPM instance will be created in each of the available nodes, and an LPM Collector
instance in the node-a.

31
http://l2sm.io

http://l2sm.io/

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

55

NOTE: The content of the following guide, as well as the files referred to in the subsequent
commands, is further elaborated in the repository.

1. Clone the repository where all the LPM artifacts (software and configuration files) are
located:

git clone <url-secure-connectivy-repo>32

2. Deploy the LPM Collector within the cluster:

• Configure the targets in the Kubernetes configmap included in LPM/lpm-c/prometheus-
config.yaml with the aim of specifying the LPM instances endpoints from which metrics
should be collected. At this precise moment, the instances are not created yet, so that
the endpoints are yet to exist. Nevertheless, LPM Collector can still be configured by
pointing to the local DNS service. Example of the Prometheus ConfigMap:

• NOTE: The configuration example provided within the repository, the scraping interval is
set to 15 seconds, and three LPM instances are scrapped.

• Run the configuration file from the previous step:

 kubectl create -f LPM/lpm-c/prometheus-config.yaml

• Deploy the LPM Collector:

kubectl create -f LPM/lpm-c/operator.yaml

3. Create an L2S-M virtual network where the LPM instances are going to be connected

to conduct the overlay network performance analysis:

kubectl create -f LPM/lpm/network.yaml

32 https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-
connectivity.git

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity/-/tree/main/LPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity.git
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity.git

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

56

4. Generate a Kubernetes configmap file per LPM instance. In this scenario, since three
nodes are considered, we need three configuration files of this type. This configuration
file includes the metric to be measured with each of the nodes, and the interval of how
often they will be measured. For instance, the configuration in node-a is provided below
to profile the throughput, delay, and jitter metrics with the neighbor node-b every 10,
20 and 3 seconds, respectively.

5. Create the Kubernetes configmap resources related to the within the cluster from the

files generated in the previous step:

 kubectl create -f LPM/lpm/config/node-a-config.yaml
 kubectl create -f LPM/lpm/config/node-b-config.yaml

kubectl create -f LPM/lpm/config/node-c-config.yaml

6. Deploy the LPM instances:

• Write a yaml file with the deployment specifications for each instance (workload) that will
participate in the metrics collection. The following file may be used as a reference:

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

57

• Instantiate the LPM instances and their associated services:

 kubectl create -f LPM/lpm/deploy/node-a-deploy.yaml
 kubectl create -f LPM/lpm/deploy/node-b-deploy.yaml
 kubectl create -f LPM/lpm/deploy/node-c-deploy.yaml

• After each individual instance is deployed, the IP addresses must be manually assigned
through the interfaces. These should be configured according to the modules defined
configuration in step 4. In the provided example scenario, the IP address are allocated as
indicated next:

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

58

• IP Address of LPM instance at node-a: 10.0.2.2

• IP Address of LPM instance at node-b: 10.0.2.4

• IP Address of LPM instance at node-c: 10.0.2.6

• This IP configuration (e.g., the LPM instance running at node-a) can be done by
accessing to each instance and executing the following:

kubectl exec -it [node-a-pod-name] -- /bin/bash
ip link set net1 up
ip addr add 10.0.2.2/28 dev net1

Once the above steps have been completed, and all instances of the LPM module are active,
it is possible to access the HTTP endpoint provided by the LPM Collector component to obtain
the measured performance metrics.

3.3.2.4.5 Inputs & Outputs

As inputs, the LPM module has:

• A configuration file in the form of a K8s ConfigMap with information related to the
frequency that the LPM Collector is going to use to collect the metrics measured by each
of the LPM instances.

• A file specifying the deployment options of the LPM Collector component.

• A Kubernetes configmap for each of the LPM instances involved in the scenario.
Specifically, there will be an LPM instance for each of the nodes comprised within the
cluster. Each of these configuration files includes information regarding the performance
metrics to be measure, at which intervals, and the neighbours (i.e., LPM instances)
against which they are to be measured.

• A file specifying the deployment options for each of the LPM instances. Once again, there
will be one such file for each of those instances.

On the other hand, as outputs, the LPM offers an HTTP API where it is possible to retrieve the
performance values obtained for each of the configured metrics. This API is accessible from
the own cluster through the URL "http://prometheus:9090/metrics“ and offers such values
following the format represented represented next:

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

59

3.3.2.4.6 UML Diagram

Figure 22. UML diagram of performance metrics collection by LPM module.

3.3.3 Next Cycle Features
The next cycle features are provided by order of priority, starting by the most prioritary
features:

• Complete the different sub-components and realize their operation for a single cluster
environment, contemplating also challenges to face in multi-cluster environments.

• Integrate the initial proposed monitoring metrics of CODECO (rf. to Annex I, Table 16),
analyzing if they will be enough to serve the purpose of an optimal placement, in
alignment with the needs of SWM.

• Complete the interfaces to other components, starting by i) ACM; ii) SWM.

3.4 MDM: Metadata Manager

3.4.1 Component Description
The CODECO MDM component collects, links, and enriches metadata related with the
applications to be deployed across Edge-Cloud. This metadata assists in better characterizing
the application deployment across Edge-Cloud. MDM is therefore a CODECO component that
acts as a gateway between the data world (data workflow) and the K8s infrastructure
(compute).

MDM and its sub-components are illustrated in Figure 23. MDM collects metadata from any
“native system” that has information on the data, including data stores, catalogues, pipelines
that copy and transform data, use-case specific functions that analyse the data, or any other
relevant system. For this purpose, MDM relies on connector interfaces for each specific data
type (I-MDM-E-1).

request performance

metrics results

K8s control-
plane (L2S-M)

user/admin
LPM Collector

(LPM-C)
LPM

instance
Other LPM
instances

…
create LPM-C configmap

create LPM instances

configmaps

deploy LPM-C

deploy LPM instances

These steps complete
the configuration and
deployment of the LPM
components (LPM-C
and LPM instances) on
a cluster where L2S-M
supports connectivity

create L2S-M virtual

network

This virtual network is used by the
LPM module to conduct the
performance measurements

carry out performance

analysis

request performance

metrics results

provide measurements

provide measurements

This performance
analysis is based on
the configuration
established with
the LPM instance
configmaps

All the performance metrics collected by the
LPM-C are available through its HTTP endpoint

periodically

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

60

Figure 23. MDM sub-components and APIs to other components.

An MDM connector interfaces to a native data system or CRD and pushes metadata into a
knowledge graph through the native (internal) MDM API. By adding new connectors or
expanding the graph model, the system can be extended to collect any required metadata.
MDM is event-based, relying on Apache Kafka33. MDM relies on the Kafka event queue, a log
of metadata events that occur for an Edge-Cloud setting managed with CODECO. Events
describe changes that have happened and correspond to insert/update/delete of metadata
entities and relationships.

MDM materializes (subsets of) the event queue in the knowledge graph to meet the needs of
other CODECO components. MDM is implemented by three sub-components:

• MDM API: Implements the REST APIs that allow metadata to be pushed into the graph
database and the graph to be queried.

• Graph Database: Stores the metadata graph.

• Connectors: They gather metadata and push it into the Graph Database using the MDM
Controller APIs.

3.4.2 Sub-components‘ Specification and Implementation

3.4.2.1 Graph Database

3.4.2.1.1 Usage Scenario

The Graph Database is the backend storage of the MDM component. The metadata events
from all MDM connectors are consolidated here, making it possible for other components to
extract insights from the distributed system from a single pane of glass. It is of course possible
to request information by directly querying the database using cypher, but other than during
development or exploration of the metadata the MDM component is designed to offer this
functionality through the MDM API.

3.4.2.1.2 Selected Technologies

The graph database is implemented using Neo4j:

• Neo4j 4.434 or higher.

• Neo4j APOC35: APOC (Awesome Procedures on Cypher) is an add-on library for Neo4j
that provides hundreds of procedures and functions adding a lot of useful functionality.

33 https://kafka.apache.org/
34 https://neo4j.com/

35 https://neo4j.com/labs/apoc/

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb
https://kafka.apache.org/
https://neo4j.com/
https://neo4j.com/labs/apoc/

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

61

• Cypher Graph Query language36: Cypher is a declarative graph query language that
allows for expressive and efficient data querying in a property graph. It is the query
language for Neo4j and the language opencypher37 is based on.

• JSON Schema: It is used to define the entities, their properties, and relationships among
them in a language-independent manner. The schemas are available online38.

3.4.2.1.3 Pre-requisites

Detailed pre-requisites for running Neo4j in Kubernetes can be found from the vendor
directly39

For CODECO we use Neo4j’s Community Edition. Commercial utilization of Neo4j’s
Enterprise Edition may require a license from the vendor. Please see
https://neo4j.com/licensing/ for details.

3.4.2.1.4 Installation Guide

To install the Graph database we use the Helm chart provided by Neo4j. The following steps
are detailed in the online documentation in Git:

1. Set the following environment variables:

export MDM_NAMESPACE=mdm
export MDM_CONTEXT=docker-desktop

2. Add Neo4j’s Helm chart to the Helm repositories:

helm repo add neo4j https://helm.neo4j.com/neo4j

3. Update the yaml configuration file for your kubernetes environment (online version
neo4j-helm.yaml)

- set the neo4j.password for the database user neo4j
- define the volumes StorageClass if required
- adjust other parameters such as CPU and memory usage as required

4. Install the Helm chart:

helm --kube-context=$MDM_CONTEXT install mdm-neo4j -n $MDM_NAMESPACE
neo4j/neo4j-standalone -f ./deployment/neo4j-helm.yaml

3.4.2.1.5 Inputs & Outputs

The Graph database is fed metadata events from Kafka by the mdm-controller subcomponent
and offers a Cypher API to the mdm-api subcomponent. These interfaces are internal to MDM
and declared here only for completeness.

36 https://neo4j.com/developer/cypher
37 http://opencypher.org
38https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb/-
/tree/main/schemas/eu.codecohe?ref_type=heads
39 https://neo4j.com/docs/operations-manual/current/kubernetes/quickstart-standalone/prerequisites/

https://neo4j.com/licensing/
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb
https://helm.neo4j.com/neo4j
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api/-/blob/main/deployment/neo4j-helm.yaml?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api/-/blob/main/deployment/neo4j-helm.yaml?ref_type=heads
https://neo4j.com/developer/cypher
http://opencypher.org/
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb/-/tree/main/schemas/eu.codecohe?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb/-/tree/main/schemas/eu.codecohe?ref_type=heads
https://neo4j.com/docs/operations-manual/current/kubernetes/quickstart-standalone/prerequisites/

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

62

3.4.2.2 MDM Controller (APIs)

3.4.2.2.1 Usage Scenario

The MDM controller provides the APIs for other CODECO components to query the metadata
graph and for MDM connectors to provide metadata. The MDM Controller is thus a required
sub-component for all scenarios where metadata analysis is required for the CODECO use-
case. A selected set of MDM connectors depending on the use-case will provide metadata
that allows through this subcomponent, allowing other CODECO components like PDLC to
get summarize information about the systems and data in the form of parameters to models
that provide the best scheduling for a given workload.

3.4.2.2.2 Selected Technologies

The MDM metadata collection is materialized in data systems that make it convenient to
manage and exploit the metadata. The key technologies used in the current MDM Controller
implementation include:

• Apache Kafka: Distributed event store and stream processing.

• Apache ZooKeeper40, for the overall Kafka management and coordination (e.g.,
configuration information, naming, providing distributed synchronization).

• Python 3.9 or higher for the implementation of the APIs and the interaction with Kafka
and the Graph database.

• OpenAPI 3.0 as the standard for the REST API for both input and output

• Swagger as the mechanism to programmatically produce the REST API
implementation designs and their documentation.

3.4.2.2.3 Pre-requisites

No specific hardware requirements are needed to run the MDM Controller. The Graph
database component needs to be installed first.

3.4.2.2.4 Installation Guide

The Graph database needs to be installed first. After that, the order of installation of the MDM
Controller sub-components is important.

1. mdm-zookeeper: This is the MDM zookeeper sub-component, installed using
Helm from the Bitnami41 chart repository. This is required by the mdm-kafka sub-
component.

2. mdm-kafka: This is the MDM Kafka sub-component, installed using Helm from the
Bitnami chart repository. This is required by the mdm-ctrl sub-component.

3. mdm-controller: The MDM API Controller sub-component. Receives the
metadata events from Kafka and pushes them into the Graph database.

4. mdm-api: Implements the MDM REST API to the Graph database and connector
publication API.

Detailed installation information is provided in the MDM API GitLab repository:
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-
mdm/mdm-api/-/tree/main?ref_type=heads

40 https://zookeeper.apache.org/
41 https://github.com/bitnami/charts/tree/main/bitnami

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api/-/tree/main?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api/-/tree/main?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api/-/tree/main?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api/-/tree/main?ref_type=heads
https://zookeeper.apache.org/
https://github.com/bitnami/charts/tree/main/bitnami

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

63

When developing the MDM subcomponents, the docker build and push description provided
in the online documentation require providing the docker registry used to store the images.
This as well as the tag may change when new versions are developed. Assuming that the
mdm-api repository has been cloned locally and is the current directory:

• Install the MDM controller: If you need to change the tag of the docker image, or any other
value, provide it in your own YAML file.

cd mdm-controller

helm --kube-context=$MDM_CONTEXT -n $MDM_NAMESPACE install mdm-

controller ./mdm-controller/src/helm [-f my_values.yaml]

• Install the MDM API: If you need to change the tag of the docker image, or any other
value, provide it in your own YAML file.

cd mdm-api

helm --kube-context=$MDM_CONTEXT -n $MDM_NAMESPACE install mdm-api

./mdm-api/src/helm [-f my_values.yaml]

The Helm charts for the installation of the mdm-controller and mdm-api sub-components may
become available in the future from an online Helm repository.

3.4.2.2.5 Inputs & Outputs

Events consist of an event envelope and a payload. While the envelope structure is given by
MDM, the payload types are application specific. Payloads are either entities or relationships
with minimal restrictions on their structure, i.e., they need to contain a type and unique
identifier(s). Entities and relationships are defined in JSON schema for CODECO here:
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-
mdm/graphdb/-/tree/main/schemas/eu.codecohe?ref_type=heads

The MDM API is based on OpenAPI REST (OAS REST API) and integrates the following
endpoint groups:

• Publish which is the endpoint for connectors writing to the MDM.

• Events which is the endpoint to get events from MDM.

• Graph gets information by querying the data projection. Initially this would allow for
Cypher queries to be performed on the knowledge graph. If because of the experience
gained with partners the set of queries required for the CODECO operation can be
defined in a closed set, they can be incorporated to this API at a later stage.

• MDM is the system information endpoint for getting status and resets or other system
relevance functions.

All endpoints are protected and authorized usage enabled.

We provide here a summary of the APIs. The complete description is in swagger online

documentation in the Git repository:

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-

mdm/mdm-api/-/blob/main/mdm-api/src/python/templates/swagger.yaml?ref_type=heads

Note that the following API groups are not implemented, and responses will always be HTTP

status 200 (OK): Groups, Lookup, Registration, Schemas and Versions.

file:///F:/C:/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api/-/blob/main/mdm-controller/src/helm/values.yaml
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb/-/tree/main/schemas/eu.codecohe?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb/-/tree/main/schemas/eu.codecohe?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api/-/blob/main/mdm-api/src/python/templates/swagger.yaml?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api/-/blob/main/mdm-api/src/python/templates/swagger.yaml?ref_type=heads

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

64

Inputs:

• POST /publish/event: accept in the body a JSON structured event. The event payload

object could be an entity or relationship structure.

Event example:

{
"connector_edf_id": "80b09f2b-5c1c-4c3d-ab90-a17093512ba0",
"connector_type": "test connector",
"event_type": "upsert",
"timestamp": 1683145169,
"payload": {}
}

Payload examples:

Entity:

"payload": {
"json_schema_ref": "urn:hecodeco:compute:1.1.0",
"edf_id": "2cf4c537-eedc-4995-919c-c29b9b82e9b4",
"identifier": "364-FKE-835",
"country_code": "US",
"name": "TEST System",
"city": "Cleveland, OH"

}

Relationship:

"payload": {
"json_schema_ref": "urn:hecodeco:runs:1.1.0",
"from_edf_id": "2cf4c537-eedc-4995-919c-c29b9b82e9b4",
"to_edf_id": "a152ad23-ab23-1567-de23-cd34aa23ecab"

}

Outputs:

• GET /graph/entity/type: Get a JSON array of existing entity types in the metadata graph.

• POST /graph/entity/type/{entitytype}: Get a list of entities in the metadata graph

depending on the POST request JSON filter definition.

• GET /graph/entity/attributes/{entitytype}: Get a JSON array of all existing attributes in

the metadata graph for a given entity type.

• GET /graph/path/{edf_id}: Get the graph structure as a JSON object for an entity

identified by edf_id. As optional query parameter one can define the number of hops

(depth) around the entity that will be included in the resulting graph.

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

65

The response is currently formatted in a structure optimized for representation in a graphical

user interface.

{
"nodes": [
{
"id": 0,
"label": "string",
"object": {}
}
],
"relations": [
{
"from": 0,
"to": 0,
"label": "string",
"object": {}
}
]
}

• POST /graph/cypher: The POST request body accepts a plain text base CYPHER query.

The response will be the default JSON structure produced by the Graph database

(Neo4j). For example:

Request-body:

MATCH (a:compute)-[r]-(b) WHERE b.user_id = "Brandy.Neal@example.com" RETURN a as compute LIMIT 1

Response:

{
"identity": 4,
"labels": [
"compute",
"entity",
"visible"
],
"properties": {
"_domain": "default",
"identifier": "AFCF2B98D7",
"serialNumber": "none",
"city": "Zurich",
"ritssDataClassification": "RII unclassified (Non-Confidential)",
"_status": [],
"networkClassification": "General Internal Enterprise Network",
"country_code": "CH",
"update_time": "2023-04-24T07:54:41.596286000Z",
"entity_type": "compute",
"dataClassification": [
"Public"
],
"name": "srv-22",

mailto:Brandy.Neal@example.com

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

66

"connector_id": "d79df9ea-efac-360c-b7cc-2cf0de386100",
"exportClassification": "blue",
"edf_id": "523e2537-b717-34e0-b303-638b159d7fcb",
"_id": "523e2537-b717-34e0-b303-638b159d7fcb"
},
"elementId": "1"
}

• GET /mdm: Get the running version of the mdm-api sub-component.

• GET /mdm/state: Get the state of the different sub-components (neo4j/kafka/ctrl/etc)

• DELETE /mdm/clean: Delete all metadata in the MDM component. Use with caution,

only meant for development and testing purposes.

• GET /events/sse Server-Sent Events API-based filtered events from the serialized graph

queue in Kafka. This is meant for components that need to be notified of specific metadata

events as they happen, as opposed to gathering the current state from querying the

metadata graph at time intervals.

3.4.2.2.6 UML Diagram

The momentary interaction between the CODECO components and MDM and among the
MDM subcomponents is depicted in Figure 24.

Figure 24. Interaction between MDM subcomponents.

3.4.2.3 Connectors

3.4.2.3.1 Usage Scenario

Connectors send metadata to MDM in the form of events. Events are structured JSON
documents. An event contains the following elements:

• The event type, either “insert” or “delete”.

• An identifier that uniquely identifies the connector that issued the event.

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

67

• A timestamp.

• The payload, i.e., the metadata.

Metadata is sent as entities and relationships. MDM imposes a basic structure on both entities
and relationships to ensure that metadata can be stored as a graph. Entities must have a
globally unique identifier and a type. It is the task of the connector to assign these. In addition,
entities contain arbitrary numbers of attributes. The mandatory elements of a relationship are
source and target entity identifier as well as a type. Relationships do not carry attributes.
MDM does not define or enforce a static data model. Instead, the graph data model is defined
by the structure of the entities and relationships that are inserted into MDM.

Entities and relationships are defined in JSON schema for CODECO here:
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-
mdm/graphdb/-/tree/main/schemas/eu.codecohe?ref_type=heads

3.4.2.3.2 Selected Technologies

Connectors may be implemented in any programming language if they make metadata
available following the data model of the application framework (in this case CODECO’s) and
use the MDM Controller API conventions to make it available to the Graph database.
In the context of CODECO, though:

• Python 3.9 or higher is the preferred programming language, as it will allow the
connector developer to leverage the open source connector SDK.

• IBM Pathfinder SDK: Available at https://pypi.org/project/ibm-pathfinder-sdk , provides
YAML-based configuration and the base communication means for the connector to send
metadata events to the MDM API

3.4.2.3.3 Pre-requisites

MDM Connectors do not have any hardware requirements. The MDM Controller component
needs to be installed first so that connectors can send the metadata events.

3.4.2.3.4 Installation Guide

MDM Connectors are installed using Helm charts. The parameters required depend on the
source of metadata to be inspected by the connector, and thus cannot be listed extensively.
At a minimum, the following parameters need to be provide:

• pathfinder.url: The URL of the MDM API.

• pathfinder.kubernetesUrl: The Kube API of the Kubernetes cluster where the connector
runs.

For a complete list of parameters please refer to https://github.com/IBM/pathfinder-python-
sdk/blob/main/ibm_pathfinder_sdk/pathfinderconfig.py

3.4.2.3.5 Inputs & Outputs

MDM Connectors get input from the source of metadata inspected. The output is always
provided in the form of metadata events sent to the MDM API using the /publish/event POST
request. For CODECO, helper classes are provided for Python connectors here:
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-
mdm/connectors/-/blob/main/metadata-
model/src/main/python/mdmmodelclasses.py?ref_type=heads

This way connector developers can use the MDM CODECO metadata model directly by
instantiating these Python classes for entities and relationships.

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb/-/tree/main/schemas/eu.codecohe?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb/-/tree/main/schemas/eu.codecohe?ref_type=heads
https://pypi.org/project/ibm-pathfinder-sdk
https://github.com/IBM/pathfinder-python-sdk/blob/main/ibm_pathfinder_sdk/pathfinderconfig.py
https://github.com/IBM/pathfinder-python-sdk/blob/main/ibm_pathfinder_sdk/pathfinderconfig.py
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/connectors/-/blob/main/metadata-model/src/main/python/mdmmodelclasses.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/connectors/-/blob/main/metadata-model/src/main/python/mdmmodelclasses.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/connectors/-/blob/main/metadata-model/src/main/python/mdmmodelclasses.py?ref_type=heads

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

68

3.4.3 Next Cycle features
These are the features we are considering for the next cycle(s):

• Graph Database: The metadata-model used to store the metadata in the graph is to be

evolved from the initial version following the metadata needs of the use-cases and the

CODECO components.

• MDM API: There are several aspects we are considering as the next steps for the MDM

API, which are ordered following how the development would proceed:

1. Implement the graph queries that are found to be useful in the different use-case
scenarios as part of the API.

2. Develop a component that produces labels for Kubernetes artifacts that correspond to
the information gathered by the graph queries above.

3. Optionally or alternatively, implement an operator that makes parameters computed
from the metadata graph available as CRDs.

• Connectors API: We are to develop new connectors or assist the partners in creating
connectors for the specific metadata needs of the use-cases and the CODECO
components. How the user would automatically deploy the necessary (other than default)
connectors for the specific workload is also a topic for development.

3.5 SWM: Scheduling and Workload Migration

3.5.1 Component description
The current implementation of the CODECO SWM component handles the initial deployment,
monitoring, and potential migration of application workloads within a single cluster. This
implies assisting the efficient (low latency, lower energy consumption, data sensitivity, QoE)
placement of applications and their containers across the Edge-Cloud continuum, derived
from the information provided by PDLC (e.g., device and node availability; container centrality;
network characteristics). The SWM handles, for instance, the “best” placement (based on
context-awareness indicators) for the containerized components of an application to be
deployed in a cluster, dealing with dynamic properties of available infrastructure, including
physical/virtual machines as well as network nodes and links. Further, this placement shall be
dynamically adaptable, which implies achieving the efficient (low latency, lower energy
consumption, data sensitivity, QoE) migration of containerized micro-services of an
application, including their state, across Edge and Cloud, derived from the information
provided by PDLC (device and node availability; container centrality, network aspects).

For a further description of the functionality and external interfaces of SWM, please refer to
Deliverable D9, Subsection 2.4.3.

The SWM component of CODECO is currently undergoing an OSS release process by
partner Siemens. A version of the implemented code is currently only available to the
CODECO consortium and to the EC. The OSS version is expected to be released until
December 2023.

3.5.2 Sub-components features specification, Inputs &
Outputs

SWM consists of two subcomponents: The QoS Scheduler and the Workload Placement
Solver, which are described in more detail in the separate document D11.1.

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

69

Interaction with these subcomponents is done via k8s custom resources. The main interface
between the QoS Scheduler and the Workload Placement Solver is a gRPC interface
described via Protobuf.

3.5.3 Next Cycle features
First of all, the SWM implementation will be made publicly available as open source software.
The target date is end of December 2023.
Further extensions of the implemented functionality of SWM are:

• Extend and adapt current SWM custom resources (CRs) to accommodate input from
other CODECO components such as PDLC to influence scheduling and workload
migration decisions based on insights on system context and behaviour.

• Implement incremental scheduling (changing the scope of applications that are already
running)

• Implement workload migration (re-scheduling of applications that are already running,
triggered by changes in the environment, to keep the requested QoS).

4 Experimentation Assisted Developments

4.1 CODECO Synthetic Data Generators

4.1.1 Component Description
The true potential of data collection and analysis contributes to the creation of more accurate
and robust ML and DL models, leading to knowledge and experience-based decision
mechanisms. In the Edge-Cloud continuum area, the data collected from various
heterogeneous sources and compute nodes (when running applications) feed the ML and DL
models to facilitate the performance of predictive, prognostic, and clustering models, which
influence the proactive adaptation decisions to dynamically optimise the entire Edge-Cloud
ecosystem (e.g., reduce energy consumption, increase cluster availability, minimise latency).
A major problem in the Edge-Cloud continuum resource management domain is the limited
amount of data (or lack thereof) prior to application deployment and execution. To address
this issue, a synthetic benchmark data generator has been implemented in CODECO, which
currently provides output that is useful to other CODECO components.
In the future, it is expected that the data generator will also be able to receive input from
CODECO components such as NetMA, thus creating richer, synthetic data sets that are also
derived from realistic environments.

The metrics that are currently considered as input for this data generator are aligned with the
minimum subset of metrics under discussion in CODECO, provided in Annex I of this
deliverable, and based on the initial parameters debated in D9, Annex I.

Overall, the generator mimics the process of the cross-layer data collection from the CODECO
components (ACM, MDM, NetMA), and as output results in a consistent data format for further
analysis (D9 - Section 2.4.4.3.2.1 Data Availability Considerations). In order to evaluate the
functionality of the Data Generator, a custom application (sample) is employed, operating
within a default cross-architecture K8s cluster to generate the necessary data.

The CODECO data generator can be considered as an experimentation framework tool, to
assist CODECO components like PDLC, by enriching it with relevant data.

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

70

4.1.2 Component Specification and Implementation Aspects
The Data Generator is partitioned into two vital sub-components: the collector sub-component,
and the synthesizer sub-component which are working in parallel.

• The Collector: gathers values for already defined metrics for which no more calculations
are needed, based on the cross-layer attributes provided in Annex I, like CPU and
memory which belong to predefined metric categories that can be directly collected
through the monitoring engine. Currently, metrics that are already available in
K8s/Prometheus are fed to the data generator, as Prometheus is the basis for the
CODECO monitoring aspects and it constitutes a well-suited monitoring solution for Edge-
Cloud orchestration.

• The Synthesizer: Several of the defined provided metrics can be treated as composite
metrics, and thus cannot be acquired directly by the monitoring engine (Prometheus).
Features such as MDM-freshness (description: healthiness of the node based on data
freshness), ACM-node_failure (description failures over a time window -EMA-), ACM-
node_sec (description: level of security guaranteed by the node), etc., are not directly
retrievable, therefore the CODECO data generator adopts a logic that relies on custom
formulas adhering to specific logic to calculate these metrics. This logic will further be
explored in alignment with the data aggregation aspects under development in the
CODECO PDLC (PDLC-CA) component.

4.1.2.1 Communication aspects
The CODECO data generator is expected to get input of other components via CRDs. For
experimental use, the Data Generator employs the above mentioned CODECO components
as simulated elements, in order to provide the relevant metrics.
The Data Generator considers the Controllers, with one corresponding to each of the
CODECO components. These controllers are responsible for updating the CRs (which have
been defined in the CRDs). Specifically, during the Data Generator’s initialization, three CRDs
(acm-crd.yaml, netma-crd.yaml, mdm-crd.yaml) are created as well as three deployments with
proper roles (<codeco-component>-role.yaml and <codeco-component>-role-binding.yaml) to
view and list the respective K8s nodes. Moreover, CR objects of the created CRDs with create
and patch privileges are also created. The deployments represent the controllers which are:
a) ACM Controller which is responsible for delivering data related to ACM component; b) MDM
Controller which is responsible for delivering data observability metrics; c) NetMA Controller
which delivers the monitored networking parameters.

4.1.2.2 Selected Technologies
The Data Generator was built using the Python programming language (version: 3.10.6) and
YAML file format. The latter has been chosen for its compatibility with the Kubernetes (K8s)
ecosystem.

4.1.2.3 Prerequisites

Hardware Requirements

• At least a running cluster with nodes based on either AMD64 and/or ARM.

Software Requirements

• Python Libraries

o kubernetes==27.2.0
(The "kubernetes" Python library streamlines K8s cluster management,
resource control, automation, and integration for developers and operators)

o networkx==3.1

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/blob/main/acm-controller/acm-crd.yaml?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/blob/main/netma-controller/netma-crd.yaml?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/blob/main/mdm-controller/mdm-crd.yaml?ref_type=heads

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

71

(NetworkX Python library is used for analyzing and visualizing complex
networks, including graph creation, manipulation, and algorithms)

o requests==2.31.0
(The "requests" library in Python is used for making HTTP requests, enabling
interactions with web services and APIs)

• Tools:

o Prometheus

4.1.2.4 Installation Guide
The following is a step-by-step guide to the effective installation and operation of the CODECO
generator. This information is also available on the CODECO Eclipse GitLab repository
(Experimentation Framework and Demonstrations - > Data Generators and Datasets ->
Synthetic Data Generator). Pre-requisites are:

• A Kubernetes Cluster with minimum of two nodes. One of these nodes should serve as
the control-plane, while the others can act as worker node (The data traffic generator has
been implemented without having specific requirements related to hardware properties,
meaning that it can run in a k8s cluster including cross-architecture nodes e.g., AMD, ARM
etc).

• Prometheus Installed in the Kubernetes Cluster (with the specific manner as it is pro-
vided below)

• Assume the administrative role for the cluster, granting access to both the default
Namespace and Service Account.

NOTE: The content of the following guide is further elaborated in the ECL public repository

1. Prometheus Installation

o To use Prometheus, it is recommended to install it via the following repository (in order

to avoid potential issues):

https://github.com/prometheus-operator/kube-prometheus

o After navigating to the above GitHub repo, perform the following commands on a Ku-
bernetes Master (control-plane) to install:

Clone Repo

git clone https://github.com/prometheus-operator/kube-prometheus

Apply

kubectl apply --server-side -f manifests/setup

kubectl wait \

 --for condition=Established \

 --all CustomResourceDefinition \

 --namespace=monitoring

kubectl apply -f manifests/

2. Installing the Controllers

a) Before installing the respective codeco-component controllers, it is mandatory for the
user to specify his Cluster's Topology.

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/blob/main/mdm-controller/mdm-crd.yaml?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/tree/main?ref_type=heads
https://github.com/prometheus-operator/kube-prometheus
https://github.com/prometheus-operator/kube-prometheus

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

72

Regarding the cluster’s topology specification, a file namely netma-control-

ler/netma-controller-deployment.yaml must be accessed and in the field to-

pology.json , the user must specify his k8s cluster’s topology using the Node Names

and their perspective adjacency matrix (between which nodes is the connection estab-

lished). A very comprehensive example is provided the file: netma-controller/to-

pology.json. and a scenario is also provided in the documentation section (under

the section: Installing the Controllers/Information related to topology file).

b) The following commands must be run to use the installation script:

chmod -R 777 apply-controllers.sh

./apply-controllers.sh

3. Execute the Extractor

The extractor is not running within pods inside the K8s cluster. It resides in the control
plane and communicates with the controllers with are located within pods inside the
k8s cluster. In order to achieve the communication between the extractor and the con-
trollers, the Python library “kubernetes” (referred in the Subsection 4.1.2.3) is used to
establish a proper connection with the cluster.

a) To Execute the extractor and gather results you can run the following:

pip install -r requirements-v3.10.6.txt

python3 extractor.py mode=<mode>

Note:

▪ Regarding the above mentioned command, the mode can be either append or
write.

▪ For the first time of the execution, the user should use write mode to create a new

data.csv file.

▪ This parser (mode) is used to append new information on the data.csv file.

4.1.2.5 Input and Output
The data generator does not expect any input, the user only needs to follow the steps
described above. The output of the data generator is the production of synthetic data of a K8s
cluster, reflecting the production of values from the parameters described in Annex I. Due to
the fact that the data generator runs in a continuous loop, a file in comma separated value
(.csv) format is initially created and then updated with all relevant data provided by the
implemented CODECO component controllers.

4.1.2.6 Architecture Diagram & UML Diagram
Figure 25 provides a representation of the CODECO data generator workflow and interaction
with the models of each CODECO component.
Figure 26 provides a communication sequence for the end-to-end data workflow of the data
generator.

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/tree/main?ref_type=heads

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

73

Figure 25. Data Traffic Generator’s flow and its interaction with the respective CODECO
components and its functionality.

Figure 26. CODECO-component Controller sequence diagram (in this figure: ACM
controller).

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

74

4.2 Facility Porting Artifacts
A key objective of CODECO is the seamless integration of the developed assets with the
international EdgeNet42 experimental infrastructure, aiming to enable large-scale, real-world
experiments. As stated in CODECO deliverable D9, EdgeNet will “assist in the building of
experimentation and novel concepts by the research community utilizing CODECO
technologies in an open global testbed with single or multi-cluster domains”.

This section describes the progress made so far in enabling the integration of CODECO with
EdgeNet, as well as the initial efforts to explore the EdgeNet intrinsic features that are relevant
to our project and how they can potentially be leveraged to accommodate external
experimenters. To this end, we provide a set of preliminary examples along with stepwise
instructions on how to experiment over both the worldwide EdgeNet testbed, as well as a local
K8s cluster configured using the EdgeNet software.

To further facilitate EdgeNet-based experimentation in the future, CODECO envisions to
support a dedicated CODECO experiment controller (operator) that will allow for automatically
running experiments in CODECO’s experimental facilities (public cloud and partners’ testbeds,
EdgeNet or even alternative testbeds such as SLICES-SC43). This strategic approach will have
several advantages, including reproducible experimentation, minimal operational support,
capacity for large-scale deployment across various infrastructures etc.

4.2.1 EdgeNet Testbed

4.2.1.1 CODECO Namespace Setup
Currently, partner ATH (being the WP5 leader) has successfully registered with EdgeNet
testbed44 and established a dedicated CODECO namespace (athena-rc). Within this
namespace, partners and collaborators can be authorised by the namespace manager to
participate actively. Once access has been granted, each participant can download a
personalised configuration file (kubeconfig.cfg) that is subsequently used to allow deploying
and managing the available resources and the CODECO instances. This ensures streamlined
collaboration and efficient experimentation within the EdgeNet testbed infrastructure.
Moreover, other partners, such as FOR, are already interconnected with EdgeNet, providing
the possibility to explore multi-cluster environments across EdgeNet, in cooperation with ATH
and other partners.

4.2.1.2 Node contributions
EdgeNet offers to users the option to contribute their on-premises nodes while also to explicitly
select these specific nodes for experiments (by declaring this in the corresponding yaml
configuration file). As of now, CODECO partners have contributed with the following nodes:

• ATH, one VM node.

• FOR, one physical node with the capability to be interconnected to the CODECO
demonstrator cluster(s) in the fortiss IIoT Lab45.

4.2.1.3 EdgeNet Probing
Two designated demos have been developed and deployed over the EdgeNet testbeds, and
are available via the CODECO Eclipse repository (Experimentation Framework and

42 https://www.edge-net.org/

43 https://slices-sc.eu/

44 https://www.edge-net.org/

45 https://www.fortiss.org/en/research/fortiss-labs/detail/iiot-lab

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/edgenet-framework/-/tree/main/demo?ref_type=heads
https://www.edge-net.org/
https://slices-sc.eu/
https://www.edge-net.org/
https://www.fortiss.org/en/research/fortiss-labs/detail/iiot-lab

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

75

Demonstrations ->Edgenet Framework -> demos). These relate with demonstrating the
Selective Deployment functionality:

• In the first demo, EdgeNet selects some nodes from pre-specified geographic locations,
explicitly defined by a selector in the corresponding .yaml file, to run a simple CDN
service.

• In the second demo, based on the location-based node selection, as defined by the
selector in the .yaml file, EdgeNet selects nodes to ping a server or IP address, aiming to
generate traffic. This example highlights the potential use of EdgeNet as a benchmarking
tool for the CODECO use cases, i.e., setting up clients (around the globe) to test the
provided services.

The respective selector fields are illustrated in the next code snippet:

To run the demos, users should use the following guidelines:

Pre-requisites
For starters, users must:

• Create an EdgeNet account by signing up on the landing app46.
o In case of registering an institution to EdgeNet, an institutional email and

information should be provided for authorization purposes.

• Install kubectl47, the Kubernetes command-line interface.

• Register to a namespace.

• Acquire an up-to-date kubeconfig file - a configuration file - obtained from the landing app
Download my kubeconfig file tab after logging in to EdgeNet.

46 https://www.edge-net.org/pages/running-experiments.html

47 https://kubernetes.io/docs/reference/kubectl/overview/

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/edgenet-framework/-/tree/main/demo?ref_type=heads
https://www.edge-net.org/pages/running-experiments.html
https://kubernetes.io/docs/reference/kubectl/overview/

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

76

• Download the .yaml files - i.e cdnserviceexample.yaml and ping-me-example.yaml

from the EdgeNet framework subgroup of the ECL repository.

Users can also use the following terminal commands to print information on the EdgeNet
nodes:

Commands to get information on the EdgeNet nodes:

kubectl get nodes,vpnpeers,namespaces,subnamespaces,slices -o wide --

kubeconfig <mycfg.cfg> -n <athena-rc>

kubectl describe <node_name> --kubeconfig <mycfg.cfg> -n <athena-rc>

Finally, users can run the provided demos, like so:

Instructions to run demos:

• Apply the services:

o kubectl apply -f cdnserviceexample.yaml --kubeconfig <mycfg.cfg> -

n <athena-rc>

o kubectl apply -f ping-me-example.yaml --kubeconfig <mycfg.cfg> -n

<athena-rc>

• Connect to running pods:

o kubectl exec -it <cdn-server-podname> bash --kubeconfig <mycfg.cfg>

-n <athena-rc>

• Get the log output:

o kubectl logs <ping-source-podname> --kubeconfig <mycfg.cfg> -n

<athena-rc>

• For the ping-me-example case observe the pings from the pods through tcpdump:

o sudo tcpdump -i <eth0> icmp

4.2.1.4 Local EdgeNet Cluster
For the proof-of-concept provided in the CODECO GitLabour setup, ATH relied on a recent
EdgeNet update which made major improvements in the documentation and described the
deployment of EdgeNet features/CRDs independently within a user's K8s cluster environment.
During the setup effort, ATH contributed with minor bug fixes and improvements to the code
from the official EdgeNet GitHub repository, enhancing the overall functionality of the
infrastructure.

Based on the forked version of EdgeNet codebase48, ATH was able to test the EdgeNet
fundamental functionalities within our own K8s cluster environment. Specifically, we focused
on features/CRDs such as: i) Multi-provider: involving node contribution to the EdgeNet, and
ii) Multi-tenancy: encompassing user creation, tenant request/approval, role request/approval.
The Multi-tenancy functionalities are designed to serve different cluster management
purposes, enabling the utilization of a shared cluster environment.

48
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/edgenet-

framework/-/tree/main/edgenet

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/edgenet-framework/-/tree/main/edgenet?
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/edgenet-framework/-/tree/main/edgenet?

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

77

A step-by-step guide on how to create your local EdgeNet node based on our forked EdgeNet
version is provided next. In the current document, we will refer to the following link49 as
CODECO-EdgeNet repository and to the following link50 as CODECO-EdgeNet-node
repository.

Prerequisites
For starters, users must:

• Have a K8s cluster running with kubectl installed.

Then, users can create their local EdgeNet cluster based on the next steps:

Instructions to run:

1) Clone the CODECO-EdgeNet repository into the master node.

git clone https://gitlab.eclipse.org/eclipse-research-labs/codeco-

project/experimentation-framework-and-demonstrations/edgenet-frame-

work.git

2) In the Installation folder, users will find .sh and .yaml files.

ls edgenet-framework/installation

3) Create a vpnpeer.yaml file in both master and worker nodes, as depicted below:

4) Copy the vpnpeer.yaml of the worker node(s) into the master node.

5) Apply the copied yaml(s)
kubectl apply -f vpnpeer.yaml

6) Confirm the node(s) in the cluster.

kubectl get vpnpeers

4.2.1.4.1 EdgeNet User & Namespace Setup – Multi-tenancy
It is feasible to create a new “regular” user with limited rights in our local EdgeNet cluster and,
afterwards, assign them with roles and rights for various cluster management purposes.

1) Create a regular user running the create-user script which will create a username

whose name is the provided email and a respective namespace. In addition, a private

49https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/edgenet-
framework/-/tree/main/edgenet
50https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/edgenet-
framework/-/tree/main/node

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/edgenet-framework.git
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/edgenet-framework.git
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/edgenet-framework.git
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/edgenet-framework/-/tree/main/edgenet
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/edgenet-framework/-/tree/main/edgenet
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/edgenet-framework/-/tree/main/node/
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/edgenet-framework/-/tree/main/node/

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

78

key for the user will be created as well as a role-binding requests, a user certification

folder in the home directory and a configuration file.

- cd edgenet-framework/installation

- ./create-user.sh

2) One can identify the different rights of the “admin” and “regular user” by changing the

configuration file located in the kube directory of the master node and trying to observe

the cluster resources (e.g., pods).

- Rename the configuration files, or

- Add the --kubeconfig <config-user@gmail.com> -n <namespace> parameters

when executing the commands.

3) We can change the rights of the regular user (e.g., to observe the cluster resources)

by applying the appropriate yaml – e.g., make the regular user a tenant and approving

the request as admins, adding "approved: true" under the "spec" field.

- kubectl create -f tenantrequest.yaml --kubeconfig <config-

user@gmail.com> -n <namespace>
- kubectl edit tenantrequest.yaml

Note that when creating the tenant request regular users must use create and not apply

as they only have “write” and not “read” privileges.

4.2.1.4.2 Node contributions – Multi-provider

In order to contribute a node to the local EdgeNet cluster, a user should:
1) Copy the config-public file found in the .kube/ directory into the CODECO-EdgeNet

repository edgenet/configs/public_ehome.cfg:

- cat .kube/config-public
- pico edgenet/configs/public_ehome.cfg

2) Find the public key which was generated on the master node.

- cat .ssh/id_rsa.pub

3) Copy the publig key into the CODECO-EdgeNet-node repository in vars/edgenet-

codeco.yml and replace the last line named edgenet_ssh_public_key so any node

can be contributed and can join the cluster. The edgenet-codeco.yml is located under

the vars directory and contains the information illustrated in the following code snippet:

4) Establish a connection to the node intended to be contributed to the cluster e.g.

- ssh user@<IP.address>

5) Run the start.sh script which installs Ansible and runs the node ansible-playbook on

the target machines and automatically deploy an EdgeNet node.

- cd edgenet-framework/node

- ./start.sh

6) Confirm that the nodes joined the cluster (expected output shown below). Establish a

connection to the master node.

- kubectl get nodes -o wide

mailto:user@%3cIP.address

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

79

4.2.1.5 Source code
The EdgeNet related assets are available in the CODECO Eclipse repository (Experimentation
Framework and Demonstrations->EdgeNet Framework). In this GitLab subgroup, we have
included detailed instructions on how to create and experiment within the EdgeNet testbed
infrastructure as well as within a local EdgeNet cluster.

More specifically, we have released the developed demo examples created for CODECO and
some .yaml files defining resources to enable the utilization of a shared cluster, under the
‘demo’ and ‘tutorials’ directories, respectively. The ‘edgenet’, ‘node’ and ‘installation’
directories contain files necessary for the setting up a local EdgeNet cluster, as described in
Subsection 4.2.1.4.

To consolidate the comprehensibility of our contributions, we also provide specific
complementary videos that demonstrate the explored processes and functionalities.

5 Continuous Integration, Testing, Deployment
Preparation and Releasing

This section provides an overview on the CODECO methodology, environment and structure
that is being used for continuous integration, system testing and deployment preparation and
release, based on OSS practices.
The official CODECO repository is provided by partner Eclipse (CODECO Eclipse GitLab).
However, for testing, integration of the overall framework, the consortium agreed in addition
to consider the offered ICOM infrastructure, which has the capability to support continuous
integration with a high degree of automation, while it can be easily connected with GitLab
Runners, hosted within ICOM facilities too.

As described in this section, the process of work is as follows:

• CODECO partners upload their OSS contributions (sub-component level) to the official
CODECO repository, and in parallel, push the same code to the ICOM GitLab
environment in order to enable the CI/CD pipelines. In the later stage of the project, the
two repositories will be synchronized and therefore the partners will be able to push their
code only to the public CODECO repository.

• SIE, coordinating SWM (currently undergoing an OSS process) uploads its code directly
to the ICOM GitLab environment.

• The ICOM GitLab environment is used to support a continuous integration, assisting in a
faster deployment of all CODECO components and interfaces.

The overall process is described in the next subsections, where more details for the CI/ CD
procedures followed, are explained in ANNEX I.

5.1 Testing Methodology
CODECO adopted a continuous integration-system testing/deployment-release methodology,
to allow for an early release of results in the form of software. This methodology consists of
the following:

• Feature – Unit Testing. Unit testing involves testing individual internal CODECO sub-
components by simulating or mocking all of the other components in the framework. This
practice enables early detection of failures caused by changes in specific parts of the
code or functions. Developers conduct unit testing locally in their development

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/edgenet-framework/-/tree/main/demo?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/edgenet-framework/-/tree/main/demo?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/edgenet-framework/-/tree/main/demo?ref_type=heads
https://colab-repo.intracom-telecom.com/

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

80

environments, and these tests are also automatically invoked by the Continuous
Integration (CI) server. The development teams create the necessary job definitions for
use by the CI/CD server.

• Interfacing – Integration Testing. Integration testing verifies the proper functioning of a
service and its features by examining the seamless interaction of subsystems, while
simulating only other services. All CODECO components and sub-components need to
successfully pass the integration tests specified before releasing a new software version.
Development teams provide instructions on accessing their components' interfaces and
functionalities for testing purposes, as well instruction on how these components can be
deployed. Such tests triggered automatically by the Continuous Integration server for
components with updated dependencies.

• System testing, which involves deploying all components and assessing fundamental
features and user interactions. The purpose of system testing is to evaluate the
compliance of the integrated system with the specified requirements. CODECO
deployment and testing are also expected to be viable at a global scale by integrating
CODECO with EdgeNet. In this way, CODECO assets will be deployed in K8s clusters
comprising geographically-distributed nodes. Experimenters can explicitly define the
requirements of the K8s cluster on which they desire to deploy and test CODECO
components. Using the Selective Deployment feature (explained in Subsection 4.2),
EdgeNet will ensure that the nodes selection is performed in such a way that the
predefined requirements are met. In a later project stage, the system testing will be
enhanced by implementing a designated controller, which will allow for the automated
deployment of CODECO assets across the testbed infrastructure.

5.2 Deployment Preparation and Releasing

5.2.1 Deployment and CI/CD Methodology
As described and shown in Section 2, CODECO is being designed as a modular framework
with several components (currently five), and each CODECO component is consists of one or
more sub-components.

Each CODECO sub-component is encapsulated in a container image to be deployed
independently in the form of a K8s deployment object. In case it acts as a K8s controller, the
deployment of the container image also requires the application of the corresponding CRDs.
Containerisation allows applications to be packaged into containers, ensuring secure and
isolated execution. This facilitates portability across different computing environments,
regardless of the specific hardware and operating system used.

GitLab Runners have been set up by partner ICOM in the private CODECO GitLab repository,
which is used exclusively for unit and integration testing, while interacting directly with the CI
cluster. The code available in this private environment is first made available in the CODECO
Eclipse repository and then pushed to the private one, as the CI Cluster is only connected to
the private repo and at this stage of the project the two repositories (public and private) are
not synchronised.

In addition, within each CODECO subcomponent, a Dockerfile is provided to build the Docker
images of the CODECO services. Each CODECO subcomponent's Dockerfile is then used to
automatically build the images within Gitlab CI. Developers can configure the appropriate
gitlab-ci.yml files to automate the tasks of building, testing, packaging, and deploying artefacts
on the integration testbed K8s cluster. If any tests or builds fail, the CI server notifies the
relevant developer via email to resolve the issues. More information on this process is

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

81

provided in Appendix III. In addition, the GitLab container registry is used to share and rebuild
container images and perform automated deployment.

Container orchestration is done based on K8s. The K8s deployment YAML configuration files
(including Secret, Services, Volumes etc.) are managed by ICOM as the integration leader
(WP3, T3.6) with the help of each component’s development team. All partners participate in
the integration task (T3.6), with the exception of partner ECL.

Currently, when the code is uploaded (in each subcomponent) and all the tests are executed
successfully, a merge request is sent by the contributor to the sub-component leader (task
leader), to update the main branch of each project within CODECO public repo. At the end of
each implementation cycle, a new tag is created, and a new code version, utilizing the tag, is
published/ released, using only the code that is available in the “main” branch of each
CODECO subcomponent. Moreover, at the end of each implementation cycle, the images of
subcomponent are uploaded to CODECO DockerHub51. More details regarding the releasing
version of each subcomponent are offered in the table presented in Annex II.

5.2.2 Integration Testbed Environment
CODECO envisions in its working plan the integration into EdgeNet (rf. to Section 4.2) as one
of the environments that could provide support for large-scale, multi-cluster, multi-tenant
features. CODECO also envisions to create, in intersection with EdgeNet as far as possible,
a shared experimental infrastructure composed of different clusters provided by some
partners; eventually some connections to EdgeNet and: a Cloud-based shared environment
to assist in faster testing and performance validation. The experimental environments
envisioned in CODECO are summarised in Table 9. This section provides information on the
current status of the different integration environments.

Table 9: Status of the CODECO proposed experimental and integration framework.

Testbed
type

Target Status

Individual
clusters,
partner
facilities

To allow individual partners to
test CODECO in alignment with
the CODECO use-cases

Achieved. Individual partners have provided their
plans for setting up single cluster/multi-cluster
environments, and which could be interconnected
via a public infrastructure (e.g., EdgeNet, shared
Cloud space).

ICOM
private K8s
cluster

To allow for integration and
system tests of the overall
CODECO framework since an
early stage of the project

Achieved
ICOM has provided the cluster and performed the
required testing for the release of the CODECO
sub-components (early release CODECO Basic
Operation Toolkit v0.1)

Shared
Cloud-
space

Create a common environment
for integration and system
deployment, envisioning the
need to support multi-cluster,
multi-tenant environments.

Under development. Identification of the specific
deployment environment to consider (nodes and
respective features required) has been done;
consultation to services is ongoing, coordinated by
partner IBM

EdgeNet Assist in the exploitation of
CODECO, by integrating the
framework into a worldwide
testbed; take advantage of a
realistic multi-cluster multi-tenant
environment, interconnected
over the Internet

Under development. Partners can already
interconnect to EdgeNet, based on the
experiments performed by ATH. Next step is to
test interconnections via EdgeNet between
CODECO partners that have plans to use
EdgeNet (currently, ATH and FOR).

51 https://hub.docker.com/repositories/hecodeco

https://hub.docker.com/repositories/hecodeco

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

82

5.2.2.1 ICOM Private K8s Cluster
At the current stage of the project, ICOM K8s cluster is used for integration tests. As mentioned
in the previous subsection, GitLab Runners running at integration testbed K8s cluster provided
by ICOM, take charge of executing the CI/CD pipelines, as they described in the “gitlab-ci.yml”
file, to automate the procedures of testing, building, packaging and deployment. For the
resource monitoring of the cluster, K8s Dashboard,
Prometheus52 and Grafana53, are configured and utilized, providing valuable insights on the
health status of each CODECO component.

In detail, ICOM K8s cluster is consist of a single K8s node with the following characteristics,
ensuring that the hardware requirements of CODECO components can be fulfilled:

• Operating System: Ubuntu 20.04.3 LTS

• CPU: 2 x Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz

• Memory (RAM): 128GB

• Hard disks: Total Drives: 3 x 960GB, RAID 5

5.2.2.2 CODECO Cloud-based Shared Environment
Envisioning large-scale testing and also federated environments, the CODECO consortium is
building a Cloud-based shared space to assist further development in multi-cluster
environments. This environment will be used for integration testing and also for
demonstrations (third year of CODECO). The basic requirements for this shared space are as
follows:

• Multi-cluster environment (minimum of three types of clusters), with OCM/Openshift.

• Each cluster envisioned to have 1-3 control plane nodes; at least 2 worker nodes.

• Cloud-based service must ensure that nodes are in Europe.

• Possibility to interconnect local clusters supported by CODECO partners.

• Possibility to interconnect with EdgeNet.

The three types of clusters envisioned in this environment and summarised in Table 10 are as
follows:

• Cluster A (core cluster), based on single extremely powerful node.

• Cluster B (heterogeneous cluster), based on a mix of nodes.

• Cluster C (constrained cluster), based on many small nodes.

Table 10: First proposed structure of cluster types to dimension the CODECO shared-Cloud
space.

Cluster type Nodes Total Expected
Cores

Total Memory

Core One extremely large, capable of fitting the OCM
Hub and one managed cluster

64 512

Heterogeneous One large (master nodes); four medium nodes
(worker nodes with K0s, K3s, etc)

32 96

Constrained One medium (master nodes); 14 small nodes
(workers with K0s, K3s, etc).

18 44

The type of node is being dimensioned to ensure heterogeneity. For this, CODECO considers
a definition of small, medium, and large nodes as provided in Table 11.

52
https://prometheus.io/

53 https://grafana.com/

https://prometheus.io/
https://grafana.com/

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

83

Table 11: Type of nodes envisioned for the CODECO Cloud-based multi-cluster environment
dimensioning.

Node Type CPU cores RAM (GB)

Small 1-2 2-8

Medium 4-8 16-32

Large 16 32

Furthermore, as CODECO defined the use of heterogeneous K8s technologies, respecting
the principles of OSS use, Table 12 summarizes minimum system requirements that allow to
better dimension the multi-cluster environment.

Table 12: Examples for minimum system requirements, different K8s technologies.

K8s
technolo
gy

K8s
node
role

Minimum System Requirements Node
Type

 K8s
node
role

OSS CPU/vCPU RAM Disk (GB) Node
Type

OCM Master Red Hat Enterprise
Linux (RHEL) 7.5, or
RHEL Atomic Host
7.4.5 or later

4 CPU; 4
vCPU

16 GB 42 Medium

 Worker 1 vCPU 8 GB 32 Medium

 External
etcd

 20 Medium

 Ansible
controlle
r

 75 MB Small

Microshift Red Hat Enterprise
Linux
(RHEL) Extended
Update
Support (EUS) (9.2
or later)

- x86_64 or
aarch64
CPU
architecture
- 2 CPU
cores

2 GB 2 Small

K3s - RHEL9, Ubuntu,
openSUSE Leap,
Oracle
Linux, Rocky Linux
and SLES

-
RedHat/CentOSEnte
rprise Linux and
Raspberry Pi OS with
additional setup

- x86_64 or
armhf or
arm64/aarc
h64 or
s390x CPU
architecture

- 1 CPU
core

512 MB Small

5.2.2.3 CODECO – EdgeNet Environment
As already presented earlier, CODECO is expected to support also large-scale tests through
its integration with EdgeNet. In this context, an ATH-owned node that can be selected for
deployment has been contributed to the EdgeNet testbed and has the following
characteristics:

• Operating System: Ubuntu 22.04.3 LTS

• CPUs: 4

• Memory (RAM): 4 GB

• Ephemeral storage: 35.8 GB

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

84

6 Summary: Current Status and Next Steps
The CODECO Deliverable D11 presents the initial release of the CODECO toolkit's Basic
Operation Toolkit, which offers developers the opportunity to begin experimenting with certain
CODECO components.

In detail, D11 is the outcome of the efforts carried out in T3.6 (Open Edge-Cloud Toolkit
Development), which is focused on implementing and testing the CODECO toolkit, using
software components that are being developed across Tasks 3.1 to 3.5, based on the system
and CODECO components architecture presented in D9 [1], released in M9. Therefore, D11
is offered as an interim milestone within the CODECO project, developed as part of CODECO
WP3 (CODECO Basic Operation and Toolkit v1.0).

The work presented in D11 aimed to facilitate the development, integration, and deployment
of the CODECO framework following an incremental approach, by presenting tools adopted
to support the defined implementation workflow and integration framework, coding guidelines,
installation instructions, as well as inputs and outputs of each CODECO sub-component,
ensuring the coordination of the work between consortium members belonging to different
organizations and external developers.

Within D11, the implementation details of each CODECO subcomponent that is released in
the initial implementation cycle, to assist the reader in understanding the software developed
so far, are presented.

The next steps are as follows:

• concerning the CODECO OSS framework:
o An early release of the ACM component has been provided, along with the

current version of the CODECO Application Model, still under discussion.
o MDM APIs and their interconnection with a knowledge graph have been

provided.
o PDLC sub-components have been released. For the specific case of PDLC-

CA, the current early release allows the user DEV to play with different
performance targets, and to explore the possibility to consider aggregated
costs for nodes, For PDLC-DL, three independent DecL models that perform
different objectives are introduced, accompanied by the initial version of
MLOps procedures that will be followed within PDLC-DL sub-component.

o Within NetMA component, the first version of Secure Connectivity (L2S-M)
subcomponent is described, while Network Exposure, MEC Enablement and
Network State Forecasting subcomponents offered their initial implementation
details.

o For SWM, a confidential document is released, detailing the complete
specifications and software associated with the CODECO component SWM,
which is presently undergoing a process to become open source.

• The definition of a first sub-set of metrics (network, computational, data observability) that
can define a cluster and assist in scalable, privacy preserving, and efficient data
aggregation have been provided at an operational level, and integrated into the CODECO
synthetic data generator.

• In regard to CODECO experimentation:
o Improvements to EdgeNet, to allow the integration of CODECO in multi-cluster,

multi-tenant environments have been made available.
o The initial design of the CODECo shared Cloud experimental environment

have been provided.

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

85

• Concerning the automated and agile setup, deployment, testing, and releasing of
CODECO, the current methodology has been discussed.

The open source release parts of the CODECO Basic Operation Toolkit can be found in the
CODECO Eclipse Gitlab54, while the container images of the CODECO sub-components are
available in the CODECO DockerHub55.

Finally, upon the completion of WP3 in M18, a new updated deliverable introducing the second
(final) release of the CODECO toolkit for a single cluster environment will be released.

54 https://gitlab.eclipse.org/eclipse-research-labs/codeco-project
55 https://hub.docker.com/repositories/hecodeco

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project
https://hub.docker.com/repositories/hecodeco

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

86

7 References
[1] R. C. Sofia (Ed.), H. Müller, J. Solomon, R. Touma, L Garces Erice, L. Contreras Murillo,

D. Remon, A. Espinosa, J. Soldatos, N. Psaromanolakis, L. MAmathas, I. Kapetanidou, V.
Tsaoussidis, J. Martrat, I. Mariscal, P. Urbanetz, D. Dykemann, V. Theodorou, S. Ferlin-
Reiter, E. araskevoulakou, P. Karamolegkos. CODECO Deliverable D9 -Technological
Guidelines, Reference Architecture, and Initial Open source Ecosystem Design v1.0. DOI
10.5281/zenodo.8143859. June 2023.

[2] S. Shalunov, W. Room, R. Woundy, S. Previdi, S. Kiesel, R. Alimi, R. Penno, R. Y. Yang.
Application-Layer Traffic Optimization (ALTO) Protocol, IETF RFC 7285, Sep. 2014. doi:
10.17487/RFC7285.

[3] Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., ... & Li, H. (2019). T-gcn: A temporal
graph convolutional network for traffic prediction. IEEE transactions on intelligent
transportation systems, 21(9), 3848-3858.

[4] Bai, J., Zhu, J., Song, Y., Zhao, L., Hou, Z., Du, R., & Li, H. (2021). A3t-gcn: Attention
temporal graph convolutional network for traffic forecasting. ISPRS International Journal of
Geo-Information, 10(7). https://doi.org/10.3390/ijgi10070485.

[5] Gonzalez, L. F., Vidal, I., Valera, F., Martin, R., & Artalejo, D. (2023). A Link-Layer Virtual
Networking Solution for Cloud-Native Network Function Virtualisation Ecosystems: L2S-M.
Future Internet, 15(8), 274.

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

87

Annex I – CODECO Cross-Layer Metrics
This annex provides an aggregated perspective of the minimum sub-set of metrics for:

• The definition of a CODECO Application Model (QoS, QoE preferences from user DEV
concerning the application to be deployed across far Edge-Cloud), as

• The minimum subset of metrics currently expected to be collected by different
components (NetMA, MDM, ACM).

These metrics are currently the basis for the CODECO data generator and also in use as input
to other CODECO components, such as PDLC.

Table 13: CODECO Application Model Attributes, spec, and status.

ID (attribute) Description Type Min-Max How it is handled

spec

userid Identification of the user DEV
setting up an application.

Integer - Available in K8s, but should be
provided by other CODECO
components by ACM

usergroup Integer - Available in K8s, but should be
provided by other CODECO
components by ACM

QoS Preferred QoS level. A scale 1-5
is provided to the user and
converted to a desired QoS
model, e.g., Diffserv codepoints.

Integer 1,5 New

cpu Desired CPU usage (%). Integer 0,100 Taken from K8s

mem Desired memory Integer Taken from K8s

failure_tolerance Desired tolerance to
infrastructure failures. The user
selects a %

String 0,100 To be provided by CODECO.
Failure_tolerance is currently
computed in PDLC (sub-
component PDLC-CA) as an
aggregate metric that considers
parameters from the
computational infrastructure and
from the networking
infrastructure (NetMA)

energy_expenditure Maximum desired level of energy
expenditure for the overall K8s
infrastructure serving an
application group.

String 0,100 Energy expenditure of the
infrastructure is provided by
PDLC (PDLC_CA) based on
node expenditure (ACM,
Prometheus) and link/path
expenditure

security_level Desired level of security based
on a scale of 1-5

Integer 1,5 To be provided by CODECO,
ACM.

compliance_level expected level of compliance,
based on a scale of 1-5

Integer 1,5 Provided by MDM

Input_data_size Expected volume of input data for
the application. 0 implies no input
data. Expressed in the same
units as the mem.

Integer 0, Provided by MDM

Output_data_size Expected volume of output data
for the application. 0 implies no
output data. Expressed in the
same units as the mem.

Integer 0, Provided by MDM

status

cpu status on CPU usage for the
application/applicationgroup

 Provided by ACM
Provided by ACM

mem status on mem usage for the
application/applicationgroup

 Provided by PDLC to ACM,
based on data from NetMA,
ACM, MDM

failure_tolerance status on current infrastructure
failures

 Provided by PDLC to ACM,
based on data from NetMA,
ACM, MDM

energy_expenditure status on energy used to serve
the application

 Provided by PDLC to ACM,
based on data from NetMA,
ACM, MDM

portability status on the portability Provided by PDLC to ACM,

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

88

ID (attribute) Description Type Min-Max How it is handled

effectiveness based on data from NetMA,
ACM, MDM

Table 14: Minimum subset of CODECO user parameters to be collected in ACM and used in
the orchestration.

ID (attribute) Description Type CODECO components
relying on the metrics

cpu CPU represents compute
processing available on nodes and
is specified in units of K8s CPUs.
Limits and requests for CPU
resources are measured in cpu
units. In K8s, 1 CPU unit is
equivalent to 1 physical CPU core,
or 1 virtual core, depending on
whether the node is a physical
host or a virtual machine running
inside a physical machine. The
Linux Kernel provides the CPU
status

integer All, from K8s/Prometheus

mem MEM represents compute memory
available on nodes. Limits and
requests for memory are
measured in bytes. You can
express memory as a plain integer
or as a fixed-point number using
one of these quantity suffixes: E,
P, T, G, M, k. Note: Mebibyte (Mi):
1 MiB = 1.048 MB

integer All, from K8s/Prometheus

node_failure node failures averaged over a
specific time window (Exponential
moving average)

integer PDLC

node_energy Energy consumed by a node string PDLC

Table 15: Minimum subset of CODECO data observability parameters to be collected in
MDM and used in the orchestration.

ID (attribute) Description Type CODECO components
relying on the metrics

node_name identifier of the node in K8s string All

freshness Measuring the healthiness of a
node, to whether it is able to
ensure that new or updated data
of its existing workload is
processed in a timely fashion and
that the dataset grows in stable
specified size.

string

PDLC, SWM

compliance Data Compliance refers to the
desired adherence to regulations
and policies derived from
geographical zones regulation,
etc

string

PDLC, NetMA, ACM

portability How effective the application
workload performs in the current
node in comparison to a former
node.

string

PDLC, ACM, SWM

input_data_size The initial size of an application string PDLC

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

89

ID (attribute) Description Type CODECO components
relying on the metrics

data set (transient, non-transient)

output_data_size The current size of an application
data set (transient, non-transient)

string

PDLC

Table 16: Minimum subset of CODECO networking parameters to be collected in NetMA and
used in the orchestration.

ID (attribute) Description Type CODECO components
relying on the metrics

node_name Identifier of the node in K8s string All

link_id Identifier of the link of a node string SWM, PDLC

link_failure Number of failures of a link integer PDLC, used in PDLC to
compute a resilience factor

node_net_failure Sum of elink_failure and
link_failure

integer PDLC-CA used in PDLC to
compute a resilience factor

ebw Egress bandwidth for a node - sum
of bw for all Egress links on that
node

string PDLC, expected to be used
in target profile factors such
as greenness

ibw Ingress bandwidth for a node -
sum of bw for all ingress links on
that node

string SWM

uid_visits Number of visits from a UE (or
UID) to the node. May be relevant
in case of mobile environments,
UID visits to a node, for instance.
Can be based on nr of visits x
duration of visit.

string PDLC, e.g., for computing
node betweeness

geolocation location of the UE (geo-cordinates
translated to string)

string far Edge information, may be
useful for Edge selection
(e.g., CDN use-case); PDLC
and MDM may use this.

zone Associated to an inter or intra-
routing approach; inter, AS

string SWM may use; PDLC, MDM

node_degree In a network, the degree of a node
is defined as the sum of all edges
connected to it (later, ingress and
egress links)

integer PDLC requires for
betweeness, congestion and
eventually resilience factor
computation

latency average latency derived from elink
latency; can be based on RTT

string The network awareness
needs to consider also link
metrics, to allow for an
adequate deployment and
network adaptation

path_length Number of hops traversed;
Average Shortest Path Length

integer PDLC may use to compute
latency target; SWM

link_energy The average expenditure of
energy over a time window (EMA)
for a specific link

string PDLC, greenness

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

90

Annex II – Release Versioning
Table 17 provides a list of the current CODECO sub-components, URLs for open source code,
and images in Docker. The notation in the Table is as follows:

• C: CODECO component acronym.

• SC: Sub-component abbreviation.

• OSS: GitLab Repo URL for the open-source code.

• DH URL: URL for the respective Docker Hub image.

• Tag: Image tag.

Table 17. CODECO subcomponents & Assisted Developments (Open Source) releasing
versions.

C SC URL OSS DH URL Tag

ACM ACM
Oper
ator

https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/acm

https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/acm/-
/releases/v1.0.0

https://hub.docker.com/reposito
ry/docker/hecodeco/acm-
appoperator

hecodec
o/acm-
appoper
ator:1.0

PDLC
PDL
C-
CA

https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/privacy-
preserving-
decentralised-
learning-and-
context-
awareness-
pdlc/context-
awareness/pdlc-
pp

https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/privacy-
preserving-
decentralised-
learning-and-
context-
awareness-
pdlc/context-
awareness/pdlc-
pp/-
/releases/v1.0.0

https://hub.docker.com/reposito
ry/docker/hecodeco/pdlc-ca-
pp/general

hecodec
o/pdlc-
ca-
pp:1.0

PDL
C-DL

https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/privacy-
preserving-
decentralised-
learning-and-
context-
awareness-
pdlc/decentralis
ed-
learning/model-
selection-and-
training/-
/tree/main/MAR
L_A3C-
UPM?ref_type=
heads

https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/privacy-
preserving-
decentralised-
learning-and-
context-
awareness-
pdlc/decentralis
ed-
learning/model-
selection-and-
training/-
/releases/v1.0.0

https://hub.docker.com/reposito
ry/docker/hecodeco/pdlc-dl-
gnns-stgnn/general

heco-
deco/pdl
c-dl-
gnns-
stgnn:1.
0

https://hub.docker.com/reposito
ry/docker/hecodeco/pdlc-dl-
gnns-a3tgcn/general

hecodec
o/pdlc-
dl-gnns-
a3tgcn:1
.0

https://hub.docker.com/reposito
ry/docker/hecodeco/pdlc-i2cat-
rlmodel/general

hecodec
o/pdlc-
i2cat-
rlmodel:
1.0

https://hub.docker.com/reposito
ry/docker/hecodeco/pdlc-marl-
a3c

heco-
deco/pdl
c-marl-
a3c:1.0

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/acm
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/acm
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/acm
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/acm
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/acm
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/acm/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/acm/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/acm/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/acm/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/acm/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/acm/-/releases/v1.0.0
https://hub.docker.com/repository/docker/hecodeco/acm-appoperator
https://hub.docker.com/repository/docker/hecodeco/acm-appoperator
https://hub.docker.com/repository/docker/hecodeco/acm-appoperator
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/extractor.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/extractor.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/extractor.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/extractor.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/extractor.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/extractor.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/extractor.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/extractor.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/extractor.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/extractor.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/extractor.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/extractor.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/extractor.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/blob/main/extractor.py?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/context-awareness/pdlc-pp/-/releases/v1.0.0
https://hub.docker.com/repository/docker/hecodeco/pdlc-ca-pp/general
https://hub.docker.com/repository/docker/hecodeco/pdlc-ca-pp/general
https://hub.docker.com/repository/docker/hecodeco/pdlc-ca-pp/general
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/tree/main/MARL_A3C-UPM?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-preserving-decentralised-learning-and-context-awareness-pdlc/decentralised-learning/model-selection-and-training/-/releases/v1.0.0
https://hub.docker.com/repository/docker/hecodeco/pdlc-dl-gnns-stgnn/general
https://hub.docker.com/repository/docker/hecodeco/pdlc-dl-gnns-stgnn/general
https://hub.docker.com/repository/docker/hecodeco/pdlc-dl-gnns-stgnn/general
https://hub.docker.com/repository/docker/hecodeco/pdlc-dl-gnns-a3tgcn/general
https://hub.docker.com/repository/docker/hecodeco/pdlc-dl-gnns-a3tgcn/general
https://hub.docker.com/repository/docker/hecodeco/pdlc-dl-gnns-a3tgcn/general
https://hub.docker.com/repository/docker/hecodeco/pdlc-i2cat-rlmodel/general
https://hub.docker.com/repository/docker/hecodeco/pdlc-i2cat-rlmodel/general
https://hub.docker.com/repository/docker/hecodeco/pdlc-i2cat-rlmodel/general
https://hub.docker.com/repository/docker/hecodeco/pdlc-marl-a3c
https://hub.docker.com/repository/docker/hecodeco/pdlc-marl-a3c
https://hub.docker.com/repository/docker/hecodeco/pdlc-marl-a3c

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

91

C SC URL OSS DH URL Tag

MLO
Ps

https://colab-
repo.intracom-
telecom.com/col
ab-projects/he-
codeco/pdlc/pdl
c-dl/mlops

https://colab-
repo.intracom-
telecom.com/col
ab-projects/he-
codeco/pdlc/pdl
c-dl/mlops/-
/releases/v1.0.0

NetMA ME https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/network-
management-
and-adaptation-
netma/mec-
enablement

https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/network-
management-
and-adaptation-
netma/mec-
enablement/-
/releases/v1.0.0

https://hub.docker.com/reposito
ry/docker/hecodeco/netma-
mec-enablement

heco-
deco/net
ma-mec-
enable-
ment:1.0

NE https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/network-
management-
and-adaptation-
netma/network-
exposure

https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/network-
management-
and-adaptation-
netma/network-
exposure/-
/releases/v1.0.0

L2S-
M

https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/network-
management-
and-adaptation-
netma/secure-
connectivity

https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/network-
management-
and-adaptation-
netma/secure-
connectivity/-
/releases/v1.0.0

https://hub.docker.com/reposito
ry/docker/hecodeco/netma-
secconn-l2sm-operator/general

hecodec
o/netma-
secconn
-l2sm-
operator:
1.0

https://hub.docker.com/reposito
ry/docker/hecodeco/netma-
secconn-l2sm-ovs/general

hecodec
o/netma-
secconn
-l2sm-
ovs:1.0

https://hub.docker.com/reposito
ry/docker/hecodeco/netma-
secconn-l2sm-lpm/general

hecodec
o/netma-
secconn
-l2sm-
lpm:1.0

NSM https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/network-
management-
and-adaptation-
netma/network-
state-
management

https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/network-
management-
and-adaptation-
netma/network-
state-
management/-
/releases/v1.0.0

https://hub.docker.com/reposito
ry/docker/hecodeco/netma-
netmanagement/general

heco-
deco/net
ma-net-
manage-
ment:1.0

https://colab-repo.intracom-telecom.com/colab-projects/he-codeco/pdlc/pdlc-dl/mlops
https://colab-repo.intracom-telecom.com/colab-projects/he-codeco/pdlc/pdlc-dl/mlops
https://colab-repo.intracom-telecom.com/colab-projects/he-codeco/pdlc/pdlc-dl/mlops
https://colab-repo.intracom-telecom.com/colab-projects/he-codeco/pdlc/pdlc-dl/mlops
https://colab-repo.intracom-telecom.com/colab-projects/he-codeco/pdlc/pdlc-dl/mlops
https://colab-repo.intracom-telecom.com/colab-projects/he-codeco/pdlc/pdlc-dl/mlops
https://colab-repo.intracom-telecom.com/colab-projects/he-codeco/pdlc/pdlc-dl/mlops/-/releases/v1.0.0
https://colab-repo.intracom-telecom.com/colab-projects/he-codeco/pdlc/pdlc-dl/mlops/-/releases/v1.0.0
https://colab-repo.intracom-telecom.com/colab-projects/he-codeco/pdlc/pdlc-dl/mlops/-/releases/v1.0.0
https://colab-repo.intracom-telecom.com/colab-projects/he-codeco/pdlc/pdlc-dl/mlops/-/releases/v1.0.0
https://colab-repo.intracom-telecom.com/colab-projects/he-codeco/pdlc/pdlc-dl/mlops/-/releases/v1.0.0
https://colab-repo.intracom-telecom.com/colab-projects/he-codeco/pdlc/pdlc-dl/mlops/-/releases/v1.0.0
https://colab-repo.intracom-telecom.com/colab-projects/he-codeco/pdlc/pdlc-dl/mlops/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/mec-enablement/-/releases/v1.0.0
https://hub.docker.com/repository/docker/hecodeco/netma-mec-enablement
https://hub.docker.com/repository/docker/hecodeco/netma-mec-enablement
https://hub.docker.com/repository/docker/hecodeco/netma-mec-enablement
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-exposure/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/secure-connectivity/-/releases/v1.0.0
https://hub.docker.com/repository/docker/hecodeco/netma-secconn-l2sm-operator/general
https://hub.docker.com/repository/docker/hecodeco/netma-secconn-l2sm-operator/general
https://hub.docker.com/repository/docker/hecodeco/netma-secconn-l2sm-operator/general
https://hub.docker.com/repository/docker/hecodeco/netma-secconn-l2sm-ovs/general
https://hub.docker.com/repository/docker/hecodeco/netma-secconn-l2sm-ovs/general
https://hub.docker.com/repository/docker/hecodeco/netma-secconn-l2sm-ovs/general
https://hub.docker.com/repository/docker/hecodeco/netma-secconn-l2sm-lpm/general
https://hub.docker.com/repository/docker/hecodeco/netma-secconn-l2sm-lpm/general
https://hub.docker.com/repository/docker/hecodeco/netma-secconn-l2sm-lpm/general
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/network-management-and-adaptation-netma/network-state-management/-/releases/v1.0.0
https://hub.docker.com/repository/docker/hecodeco/netma-netmanagement/general
https://hub.docker.com/repository/docker/hecodeco/netma-netmanagement/general
https://hub.docker.com/repository/docker/hecodeco/netma-netmanagement/general

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

92

C SC URL OSS DH URL Tag

MDM MD
M
APIs

https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/metadat
a-manager-
mdm/mdm-api

https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/metadat
a-manager-
mdm/mdm-api/-
/releases/v1.0.0

https://hub.docker.com/reposito
ry/docker/hecodeco/mdm-
neo4j-ctrl/general

heco-
deco/md
m-
api:1.0

https://hub.docker.com/reposito
ry/docker/hecodeco/mdm-
neo4j-ctrl/general

heco-
deco/md
m-neo4j-
ctrl:1.0

Grap
h DB

https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/metadat
a-manager-
mdm/graphdb

https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/metadat
a-manager-
mdm/graphdb/-
/releases/v1.0.0

Assist
ed
Devel
opme
nt

Synt
hetic
Data
Gen
erato
r

https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/experime
ntation-
framework-and-
demonstrations/
data-generators-
and-
datasets/synthet
ic-data-
generator

https://gitlab.ecli
pse.org/eclipse-
research-
labs/codeco-
project/experime
ntation-
framework-and-
demonstrations/
data-generators-
and-
datasets/synthet
ic-data-
generator/-
/releases/v1.0.0

https://hub.docker.com/reposito
ry/docker/hecodeco/synthetic-
data-generator-acm/general

heco-
deco/syn
thetic-
data-
genera-
tor-
acm:1.0

https://hub.docker.com/reposito
ry/docker/hecodeco/synthetic-
data-generator-mdm/general

heco-
deco/syn
thetic-
data-
genera-
tor-
mdm:1.0

https://hub.docker.com/reposito
ry/docker/hecodeco/synthetic-
data-generator-netma/general

heco-
deco/syn
thetic-
data-
genera-
tor-
netma:1.
0

https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/mdm-api/-/releases/v1.0.0
https://hub.docker.com/repository/docker/hecodeco/mdm-neo4j-ctrl/general
https://hub.docker.com/repository/docker/hecodeco/mdm-neo4j-ctrl/general
https://hub.docker.com/repository/docker/hecodeco/mdm-neo4j-ctrl/general
https://hub.docker.com/repository/docker/hecodeco/mdm-neo4j-ctrl/general
https://hub.docker.com/repository/docker/hecodeco/mdm-neo4j-ctrl/general
https://hub.docker.com/repository/docker/hecodeco/mdm-neo4j-ctrl/general
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/metadata-manager-mdm/graphdb/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/releases/v1.0.0
https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/experimentation-framework-and-demonstrations/data-generators-and-datasets/synthetic-data-generator/-/releases/v1.0.0
https://hub.docker.com/repository/docker/hecodeco/synthetic-data-generator-acm/general
https://hub.docker.com/repository/docker/hecodeco/synthetic-data-generator-acm/general
https://hub.docker.com/repository/docker/hecodeco/synthetic-data-generator-acm/general
https://hub.docker.com/repository/docker/hecodeco/synthetic-data-generator-mdm/general
https://hub.docker.com/repository/docker/hecodeco/synthetic-data-generator-mdm/general
https://hub.docker.com/repository/docker/hecodeco/synthetic-data-generator-mdm/general
https://hub.docker.com/repository/docker/hecodeco/synthetic-data-generator-netma/general
https://hub.docker.com/repository/docker/hecodeco/synthetic-data-generator-netma/general
https://hub.docker.com/repository/docker/hecodeco/synthetic-data-generator-netma/general

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

93

Annex III – Automating software builds, testing,
packaging, and deployment
To enable this level of automation, specific pre-requisites must be met, detailed as follows:

• The presence of a.gitlab-ci.yml file at the project's root.

• Unit tests located within a valid project path for the testing stage.

• A Dockerfile for appropriate artifact packaging in the form of an image.

• A kubeconfig file as an Environmental Variable, referring to the integration testbed k8s
cluster along with a k8s deployment configuration file, to facilitate image deployment on
the Kubernetes cluster.

The next code snippet presents an example of the gitlab-ci.yaml file designed for a Python
codebase, specifically named "ca_controller", which acts as a Kubernetes controller for some
defined CRs. This file, demonstrating the necessary stage configurations, can serve as a
useful starting point for developers working on their own codebases.

CI/CD Configuration file

.gitlab-ci.yml

variables:

IMAGE_NAME: $CI_REGISTRY_IMAGE/ca

IMAGE_TAG: $CI_COMMIT_BRANCH.$CI_COMMIT_SHA

CONTAINER_REGISTRY: colab-repo.intracom-telecom.com:5050

stages:

- test

- build

- prepare_deployment

- deploy

default:

image: python:3.8

before_script:

- apt-get update && apt-get install gettext-base

test:

stage: test

only:

- test

tags:

- internal-cluster

script:

- cd ca_controller

- python3 -m pytest

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

94

build:

stage: build

tags:

- internal-cluster

image: docker:20.10.24

only:

- main

services:

- name: docker:20.10.24-dind

variables:

DOCKER_DRIVER: overlay2

DOCKER_TLS_CERTDIR: ""

DOCKER_HOST: tcp://docker:2375

before_script:

- docker login $CONTAINER_REGISTRY -u $REGISTRY_USER -p $CR_TOKEN

script:

- docker build -t $IMAGE_NAME:$IMAGE_TAG .

- docker push $IMAGE_NAME:$IMAGE_TAG

artifacts:

paths:

- $CI_PROJECT_DIR

expire_in: 1 week

prepare_deployment_files:

stage: prepare_deployment

tags:

- internal-cluster

only:

- main

script:

- cd ca_controller

- export IMAGE_CON=$IMAGE_NAME:$IMAGE_TAG

- envsubst < ca-deployment-ci.yaml > ../ca-deployment-ci.yaml

artifacts:

paths:

- ca-deployment-ci.yaml

expire_in: 1 day

HE CODECO D11: CODECO Basic Operation components
and Toolkit
Grant Agreement nr: 101092696

95

deploy:

stage: deploy

tags:

- internal-cluster

only:

- main

image:

name: bitnami/kubectl:latest

entrypoint: ['']

before_script:

- echo $KUBECONFIG64 | base64 --decode > /.kube/config

script:

- kubectl apply -f ca_controller/ca-crd.yaml

- kubectl apply -f ca_controller/ca-role.yaml -n codeco-pdlc

- kubectl apply -f ca_controller/ca-role-binding.yaml -n codeco-pdlc

- kubectl apply -f ca-deployment-ci.yaml -n codeco-pdlc

At the top of the file, three global variables are defined and made available to all the jobs,
while also the four desired stages are defined, namely: “test”, “build”, “prepare_deployment”
and “deploy”. The rest of the file defines jobs for each stage.

Each job has an intuitive non-standard name (e.g., build) and defines multiple configurations
required to complete successfully. In most cases, jobs define a pipeline stage during which
they will be invoked for execution, a base image to use for the job fulfilment, as well as a
“scripts” tag with the actual execution logic.

For the case of the test job, the stage is set to “test”, the base image to python:3.8 and the
scripts tag executes the “python3 -m pytest” command to run all project unit tests.
Once the test stage is completed, jobs that are part of the “build” stage will be executed. That
is, build job, which uses a ‘docker:20.10.24’ as the base image to containerize the application.
Any artifacts built during the “build” stage are available in the next stages of the pipeline. Then,
the build job pushes the image to the project’s private image registry. A set of global variables
created using environmental variables - defined in Gitlab’s project settings, under the CI/CD
settings - belonging to the codeco-k8s-cluster environment are passed to the docker executor
to successfully complete the job.

The next job of the file is the “prepare_deployment_files”, part of the “prepare_deploy” stage,
utilizes a python:3.8 base image to overwite the deployment file with the proper tag referring
to the new image created in the previous build job, and passes the updated file in the next
stages of the pipeline.

The last job of the file deploy, part of the “deploy” stage, utilizes a kubectl base image to
connect through the Kubernetes API to the integration testbed cluster and deploy or update
the resource defined in the “deployment.yaml” file created in the previous stages, as well as
the CRDs, Roles and Roles Bindings files.

