
TD-Magic: From Pictures of Timing Diagrams
To Formal Specifications

Jie He1, Dejan Ničković2, Ezio Bartocci1, Radu Grosu1

1Technische Universität Wien, 2AIT Austrian Institute of Technology
Vienna, Austria

1{jie.he, ezio.bartocci, radu.grosu}@tuwien.ac.at, 2Dejan.Nickovic@ait.ac.at

Abstract—We introduce TD-Magic, the first neuro-symbolic approach
for translating an image of a timing-diagram (TD) to a formal specification.
We overcome the lack of labelled data for supervised learning, by first
developing a synthetic data generator of labelled TDs. We then use object
detection techniques to identify rising and failing edges, OCR to recognise
the text, and image processing algorithms to capture synchronisation
patterns. Finally, we use semantic interpretation to analyse the extracted
features and generate the associated formal specification. Our experiments
on industrial TDs show high translation accuracy opening the way to
more sophisticated requirements-extraction algorithms from pictures.

Index Terms—Requirements Engineering, Formal Specification, Timing
Diagram, Computer Vision

I. INTRODUCTION

Timing diagrams (TDs) play a central role in the design of hardware
systems. They provide a visual and diagrammatic specification of
the timing behavior, which is intuitive to the engineer and widely
adopted in the industrial practice. Figure 1(a) shows a TD D with two
digital signals, X and Y . Signal X contains two pulses and signal
Y contains one. A pulse is delimited by a rising and a falling edge,
characterized by the signal crossing the threshold T1 from above and
T2 from below, respectively. TD D describes three timing relations:
(1) the duration t1 of the first pulse in X , (2) that the first pulse in
X is followed by a pulse in Y after t2 time, and (3) that the first
pulse in X is followed by another pulse in X after time t3 between
the end of the first pulse and the beginning of the second one.

X

Y

T

T2

t1

t2

t3

T1

X

Y

T

T2

t1

t2

t3

T1

(a) (b)

Fig. 1: Timing diagram D: (a) without, and (b) with identified features.

The common practice in the semiconductor industry is to use
TDs to exchange the requirements between different stakeholders
and as a visual aid to the designer in understanding the system’s
intended behavior. Typically, an engineer draws a TD by hand and a
graphical designer creates a pdf picture (image) of it. The resulting
TD lacks an intermediate formal model and consequently it cannot
be used in verification and testing activities. To address this problem,
multiple modelling approaches to formalise TDs have been proposed.
Despite these important efforts, the vast majority of TDs found in
datasheets of commercial products are still given in the form of
images. Unfortunately, the formal specification of a TD from its
pictorial representation requires considerable expertise and effort.

Leveraging on recent advances in ML (machine learning), AI
(symbolic artificial intelligence), and IP (image processing), we
propose TD-Magic, an approach for automatically translating a TD
image to a formal representation, as shown in Figure 2.

Fig. 2: Overview of TD-Magic

TD-Magic takes as input
a bitmap-image of a TD. In
the first step, it recognizes
the main features in this
image: the different signals,
their rising/falling edges, the
duration, threshold parame-
ters and constants, and the
arrows with their associ-
ated vertical lines denoting
events and their timing rela-

tions. To facilitate feature recognition, we developed SED (signal-edge
detector) and OCR (optical character recognition) modules by using
state-of-the-art computer vision methods for object detection relying
on deep supervised learning. To train these two modules, we needed
labeled data and to the best of our knowledge, no public labeled dataset
for TDs is available. We therefore devised a procedure to synthetically
generate labeled pictures of TDs. The LAD (line-and-arrow-detection)
module complements the ML modules, with morphology analysis from
the field of IP, in order to better identify arrows and horizontal/vertical
lines in the picture.

Figure 1(b) shows the expected outcome of identifying features
in D. SED and OCR output for every feature a bounding box
in its diagram’s coordinates (red for texts, and blue for edges).
OCR also associates the recognized text to its bounding box.
LAD, aided by SEI (semantic interpretation), outputs the detected
vertical and horizontal lines (orange dotted) and arrows (violet).

event 1
↑X,T1

event 2
↓X,T1

event 3
↑X,T1

event 4
↑Y,T2

t1 t3

t2

Fig. 3: Formal representation.

Finally, SEI analyses all extracted
features and their relations, to gen-
erate a formal representation of D
in form of an SPO (strict partial or-
der), among events. These are anno-
tated with their type (e.g., ramp-up
or ramp-down with corresponding

height and width, and associated signals, such as, X and Y), and
duration constraints between the events (e.g., t1, t2, and t3). Figure 3
graphically depicts the SPO representation of D as a DAG, with
nodes as the events, directed arrows as the order relation, and arrow
annotations as the timing constraints imposed on the order.

We experimentally evaluated the performance of TD-Magic on an
extensive set of benchmarks, both synthetic and from the semicon-
ductor industry. Our results show that TD-Magic is very effective in
learning from synthetic TDs, and extrapolating to industrial TDs.

To summarize, TD-Magic combines advances from ML, AI, IP, and
FM (formal methods), to automatically translate digital TDs into their
SPO representation. TD-Magic significantly broadens the application
of TDs. It bridges the gap between RE (requirements engineering)
and FM and enables the use of model checking, runtime verification
and testing tools with TDs as formal specifications.

20
23

 6
0t

h
A

C
M

/IE
EE

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(D
A

C
) |

 9
79

-8
-3

50
3-

23
48

-1
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

A
C

56
92

9.
20

23
.1

02
47

68
5

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 16,2023 at 23:16:22 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

TDs are a very well established visual specification language [1],
they are included in the Unified Modelling Language [2], and they
capture with waveforms and graphs the evolution of the values of
the variables in a system over time, and the casual dependencies of
timing events occurring among variables in different subsystems. It
found its best application in the design of hardware components.

Motivated by the need to automatically verify, monitor, or test TD
requirements against a hardware design and implementation [3], a
great deal of past work was devoted to the model-to-model translation
of TDs into formal-specification languages such as VHDL [4], Linear
Temporal Logic [5] and automata [3]. All these works assumed to have
access to the formal representation of a TDs in the form of an SPO.
However, this textual, formal representation is often not available.
For example, in the semiconductor-industry practice, requirements
specifications are usually in form of thousands of data sheets, with
several TDs each, and only available as pictures in a document.

TD-Magic infers the PO by directly observing a TD image. To
the best of our knowledge, there are no other similar approaches.
The closest topic in the literature somewhat related to our work is
the problem of signal digitisation. For example, in the biomedical
domain, there has been a great deal of interest in automatically
digitizing ECG signals from pdf documents directly [6], [7], using
both traditional image processing [8]–[12] and the latest advances
deep-learning technology [13], [14]. The major difference between our
work and these methods is that we focus on simpler, “digital” signals,
with rising and failing ramps, that have nevertheless very sophisticated
synchronization patterns among them, describing for example, the
duration of timed events with horizontal arrows, and the desired timing
between events by using vertical bars. We take advantage of recent
advances in computer vision using object detection techniques [15],
[16]. In particular we employ YOLO [17] to identify rising and failing
edges, OCR to recognise the text, and IP to capture the other graphical
patterns describing synchronisation and time duration.

III. PRELIMINARIES

Data Collection. We aim to identify the main features present
in common industrial TDs of products’ data sheets from major
semiconductor manufactures. We selected 29 representative industrial
TDs from STMicroelectronicsTM and Infineon TechnologiesTM. We
restricted our attention to TDs with up to three digital or piecewise
linear analog signals with maximum five rising/falling edges, and
maximum ten timing constraints.

Timing Diagrams Description. We consider timing diagrams with
three different categories of signals: digital signals (e.g., signals VINA

in Fig. 4), analog signals with ramp edges (e.g., signal VOUTA and
SCK in Fig. 4) and analog signals with double-ramp edges (e.g.,
signal SI in Fig. 4). These signals may contain five types of edges:
riseStep, fallStep, riseRamp, fallRamp, double. In addition we consider
the following graphical and textual annotations that are important for
the semantic interpretation of TDs:

1) Signal names, often positioned near the y-axis arrow, e.g., VINA

and VOUTA in Fig. 4. In the absence of axes, names are usually
in the leftmost part of the signal, e.g., SI and SCK in Fig. 4.

2) Boundary values describe the maximum and minimum signal
values, e.g. VCC gives upper and GND lower bound in Fig. 4
(on the right). Not all TDs are annotated with boundary values
(e.g., see Fig. 4). They are often placed to the right hand side of
the signal, to the left side of the y-axis, when axes are available.

3) Thresholds are constants associated to rising and falling edges in
ramp and double signals. Typically, a threshold is defined as a
percentage of the maximum expected signal value. For example,
there are two thresholds defined for the signal VOUTA in Fig. 4.
They are annotated with “90%” and “10%” and are associated to
the riseRamp and fallRamp edges, respectively.

4) Events are instantaneous occurrences of interest in signals. In digital
signals, an event corresponds to either a riseStep or a fallStep edge
(e.g., signal VINA in Fig. 4). In ramp and double signal, an event
corresponds to the time when a riseRamp, a fallRamp or a double
edge crosses a threshold (e.g., the crossing of the 90% threshold
by the first riseRamp in signal VOUTA in Fig. 4). The events in
all types of signals are often explicitly marked with a vertical line.

5) Timing constraints between TD events capture timing properties,
typically marked by a double-headed arrow, between two vertical
lines. The constraint is annotated with a timing parameter (e.g.,
the parameter tD(on) anotates the timing constraint between the
rising edge of the signal VINA and the rising ramp event of the
signal VOUTA in Fig. 4). The timing parameter values are often
defined in the data sheets outside of the TD. This is for instance
the case for tD(on), which is specified in the Table 10 [18].

VOUTA

VINA

90%

10%

t

t

tD(off)tD(on)
50% 50%

50%

tS th

SI

SCK

GND

VCC

VCC

GND

10%

90%VOUTA

VINA tD(on) tD(off)

SCK

SI

50%

50% 50%

GND

GND

VCC

VCC

tS th

t

t

Fig. 4: (left) Example 1 (redrawn from Fig. 6 in [18]), (right) Example
2 (redrawn similar to Fig. 9 in [19])

TD pictures might also have optional (e.g., in Fig. 4 on the left are
present, in Fig. 4 on the right are absent) components such as axes.

TD semantics. The semantics of a TD, that is its formal specification,
is captured with a strict partial order.

Definition 1 (SPO): A tuple P =(E,<) is an SPO (strict partial
order), if < is an irreflexive, asymmetric, and transitive relation over
a set of events E. In other words, for all events e, f, g ∈E: (1) e ̸<e,
(2) e< f ⇒ f ̸<e, and (3) e< f ∧ f < g ⇒ e< g.

Below, we formally define the set of events E and the partial order
relation <. We will annotate < with an associated duration. The SPO
can be alternatively viewed as a directed acyclic graph (DAG), with
events as nodes and arrows as edges.
• Nodes. A node n = (sn, ei, et, th) is a four-tuple, where sn is

the name of the signal containing the event, ei is the index of the
edge in the event, et is the the edge type, and th is the threshold
associated to the event. All events are indexed by their global
occurrence in the TD, sorted from left to right. If the event occurs
on a riseStep or fallStep edge, then th has the value None.

• Edges. An edge e = (sn, td, dn) is a timing constraint linking
the source node sn with the destination node dn through the time
delay td. The formal specification of a TD can be extracted through
a depth-first search from its DAG.

Example 1: According to the TD semantics above, the formal
specification of the TD in Fig. 4(left) can be given as follows:

n1 = (VINA, 1, riseStep,None)
n2 = (VOUTA, 1, riseRamp, 90%)
n3 = (VINA, 2, fallStep,None)
n4 = (VOUTA, 2, fallRamp, 10%)

e1 = (n1, tD(on), n2)
e2 = (n3, tD(off), n4)

Example 2: Fig. 4(right) has three events: (1) The first 50% crossing
point of signal SI; (2) The time point when signal SCK increases

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 16,2023 at 23:16:22 UTC from IEEE Xplore. Restrictions apply.

above the 50% threshold; (3) The second 50% crossing point of signal
SI . Event 1 and Event 2 are associated with the timing constraint ts,
and Event 2 and Event 3 are associated with the timing constraint th.
The ranges of ts and th can be found in Table 7 of [19]. The formal
specification of the TD results as follows:

n1 = (SI, 1, double, 50%)
n2 = (SCK, 1, riseRamp, 50%)
n3 = (SI, 2, double, 50%)

e1 = (n1, ts, n2)
e2 = (n2, th, n3)

IV. DATASET GENERATION

Supervised DL requires labeled TDs, and manual labeling is tedious.
It also requires expertise in both circuit design and FM. To solve
this problem, we developed L-TD-G, an algorithm that automatically
generates synthetic, labeled TDs, for training DL models.

Since we use DL to recognize different edges, we will maximise
the diversity of their shapes (e.g., height, slope), and consider their
interaction with timing constraints accordingly. The overall generation
procedure is based on TDs that have been collected first.

Signal/Edge Selection. L-TD-G produces TDs with only two stacked
signals (as in most industrial examples, and enough for learning).
It first randomly selects two signal types, each with a rising and a
falling edge. They also determine the type of the rise and fall edges,
associated to a bounding box. L-TD-G will then create and randomly
place two edge boxes inside the reference coordinate system of the
signals. Starting from a sequence of horizontally aligned boxes, we
can reconstruct the waveform of the entire signals.

Inter/Intra-Signal-Constraints Selection. To illustrate the possible
inter-signal-constraints, we denote with b11 and b12 the edge boxes
generated for Signal1, and with b21 and b22 for Signal2. Basically,
bi1 is always on the left of bi2, but despite this, there are still many
combinations for the box order across signals, and some of them
rarely occur in real TDs. To simplify SPO generation, we propose
the following rules: (1) Signal2 has to lag behind Signal1; (2) There
is no crossing of arrows when linking boxes between Signal1 and
Signal2; (3) Only one arrow is allowed to point to one box.

These rules thus lead to only five cases of inter-relation orders
supported by L-TG-G: (1) b11 <b21, (2) b12 <b21, (3) b11 <b21 ∧
b12 <b22, (4) b11 <b22, and (5) b12 <b22. L-TD-G randomly selects
one case for generating one labeled TD. Next, the annotation of the
intra-relations bi1 <bi2 in Signali, will be randomly selected.

Once boxes and their order are selected, L-TD-G proceeds concer-
tizing the SPO-guided labeled TD. This implies defining the concrete
sizes of the boxes in the signals waveform, and placing arrows for
annotating inter/intra-relations of signals. As there is a lot of freedom
in these choices, L-TD-G captures part the above in form of a set
of SMT (satisfiability modulo-theories) constraints, such that each
solution defines one possible realization of the SPO and its associated
labeled TD. We discuss in detail these steps below on hand of Fig. 5.

SMT Inequality Constraints. In Fig. 5, Signal1 and Signal2 are
shown in dark-blue and dark-red colors, respectively. Accordingly, the
bounding boxes of their rising/falling edges are shown in light-blue
and light-red colors, respectively. There are six parameters defining
one bounding box. We enumerate them below, using box b11 as an
example: (1) The leftmost x coordinate, e.g., x1,1l, (2) The rightmost
x coordinate, e.g., x1,1r , (3) The downmost y coordinate, e.g., y1,1d,
(4) The topmost y coordinate, e.g., y1,1u, (5) The width of the box,
e.g., w1,1, and (6) The height of the box, e.g., h1,1. The naming rules
for the parameters of the other three bounding boxes are similar.

The shape and placement of boxes determine the function values of
the piecewise-continuous waveforms. We take Signal1 as an example,

𝑥!,!# 𝑥!,!$ 𝑥!,%# 𝑥!,%$

𝑦!,!&

𝑦!,!' = 𝑦!,%'

𝑦!,%&

𝑦()*

𝑥%,!# 𝑥%,!$ 𝑥%,%# 𝑥%,%$

𝑦()*
𝑦%,%'

𝑦%,!'

𝑦%,!& = 𝑦%,%&

𝑤!,!

ℎ!,!

𝑤!,%

ℎ!,%

𝑤%,!

ℎ%,!

𝑤%,%

ℎ%,%

∆𝑥!,! ∆𝑥!,% ∆𝑥!,+

∆𝑥%,! ∆𝑥%,% ∆𝑥%,+

∆𝑦!,!' = ∆𝑦!,%'

∆𝑦!,!& ∆𝑦!,%&

∆𝑦%,!& = ∆𝑦%,%&

∆𝑦%,!' ∆𝑦%,%'

𝑥!,!$

∆𝑥!%,!

𝑥!,%$

∆𝑥!%,%

𝜀%

𝜀!,

𝜀%,𝜀!𝑦!!

0

𝑦!,(-.

𝑦%%

0

∆𝑦!!,'

∆𝑦!!,&
∆𝑦%%,&

∆𝑦%%,' 𝑥()*

𝑥()*
𝑦%,(-.

𝑃!,! 𝑃!,%

𝑃%,! 𝑃%,%

𝐴!

𝐵!

𝐷!

𝐶!

𝐴%

𝐵%

𝐷%

𝐶%

Fig. 5: Demonstration of Core Algorithm

again. Horizontally, we plan to reserve enough space to plot the
starting/ending plateaus of the signal curve. Therefore we introduce
two auxiliary variables ∆x1,1 = x1,1l−0 and ∆x1,3 = xmax−x1,2r .
Similarly, the two adjacent bounding boxes of Signal1 should keep
enough horizontal distance, so we introduce ∆x1,2 = x1,2l − x1,1r .
Vertically, we also plan to reserve enough bottom/top margins. At the
bottom of the bounding boxes, we introduce two auxiliary variables:
∆y1,1d = y1,1d − 0 and ∆y1,2d = y1,2d − 0. At the top of the
bounding boxes, since Signal1 follows a rise-to-fall style, y1,1u =
y1,2u, which leads to the same upper margin of the two bounding
boxes: ∆y1,1u = ∆y1,2u = ymax − y1,1u.

1) Signal-waveforms constraints: We now discuss the first two
groups of constraints to be solved for plotting signal waveforms.
• Group 1: The y-constraints of the waveform. These constraints, with
i representing Signali, are partitioned in the following subgroups:

1.1. Eight unsolved y-parameters and their bounds (i = 1, 2): (1)
0 ≤ yi,1d < yi,1u ≤ ymax; (2) 0 ≤ yi,2d < yi,2u ≤ ymax.

1.2. Height of bounding boxes (i = 1, 2): (1) hi,1 = yi,1u−yi,1d ≥
ryh · ymax; (2) hi,2 = yi,2u − yi,2d ≥ ryh · ymax.

1.3. Vertical margins for Signal1: (1) ∆y1,1d = y1,1d − 0 ≥
ryd · ymax; (2) ∆y1,2d = y1,2d − 0 ≥ ryd · ymax; (3) ∆y1,1u =
∆y1,2u = ymax − y1,1u ≥ ryu · ymax.

1.4. Vertical margins for Signal2: (1) ∆y2,1u = ymax − y2,1u ≥
ryu ·ymax; (2) ∆y2,2u = ymax−y2,2u ≥ ryu ·ymax; (3) ∆y2,1d =
∆y2,2d ≥ ryd · ymax.

In Group 1, the parameters ryh, ryd, ryu are ratios within [0, 1] for
the height, bottom and upper margin of the bounding boxes.

• Group 2: The x-constraints of the waveforms. These constraints are
partitioned in the following subgroups:

2.1. Eight unsolved x-parameters and their bounds (i = 1, 2):
0 ≤ xi,1l < xi,1r < xi,2l < xi,2r ≤ xmax.

2.2. Width of bounding boxes (i = 1, 2): (1) wi,1 = xi,1r−xi,1l ≥
rxw · ymax; (2) wi,2 = xi,2r − xi,2l ≥ rxw · ymax.

2.3. Horizontal margins (i = 1, 2): (1) ∆xi,1 = xi,1l − 0 ≥
rxl · xmax; (2) ∆xi,2 = xi,2l − xi,1r ≥ rxm · xmax; (3) ∆xi,3 =
xmax − xi,2r ≥ rxr · xmax.

2.4. Inter-relations (Case 3): (1) ∆x12,1 = x2,1l − x1,1r ≥ rxi ·
xmax; (2) ∆x12,2 = x2,2l − x1,2r ≥ rxi · xmax.

Similarly to Group 1, rxw, rxl/rxm/rxr and rxi are the ratios
within [0, 1] for the width of bounding boxes, left/intra-signal box
distance/right margin, and inter-signal box distance margin.
2) Intra/inter-relations constraints: For arrows denoting intra-

and inter-relations timing constraints, our strategy is to reserve a
specialized area with height in [y1,min, 0] to plot them, as shown by
the green lines and green arrows in Figure 5.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 16,2023 at 23:16:22 UTC from IEEE Xplore. Restrictions apply.

We first generate a set of constraints to compute the vertical
coordinates of arrows denoting inter-relations, as shown by y11
(linking b11 and b21) and y22 (linking b12 and b22) in Figure 5.
Afterwards, surrounding these two arrows, we draw two pseudo-
rectangles to represent the endpoints of vertical lines (A1B1C1D1

and A2B2C2D2). The height of these two rectangles are controlled
by ε1, ε2, ε′1 and ε′2 which are randomly sampled. Afterwards, for
the arrows of intra-relations, for simplicity, we only place them, in
a randomized manner, above or below these two pseudo-rectangles.
The above gives rise to the following group of constraints.

• Group 3: The y-constraints of inter-relation arrows. These con-
straints are partitioned in the following subgroups:

3.1. Two unsolved y-parameters and their bounds: (1) y1,min ≤
y11 ≤ 0; (2) y1,min ≤ y22 ≤ 0.

3.2. Vertical margins for inter-relation arrow at y11: (1) ∆y11,u =
0− (y11 + ε1) ≥ l1; (2) ∆y11,d = (y11 − ε2)− y1,min ≥ l2.

3.3. Vertical margins for inter-relation arrow at y22: (1) ∆y22,u =
0− (y22 + ε′1) ≥ l1; (2) ∆y22,d = (y22 − ε′2)− y1,min ≥ l2.

3.4. Overlap avoidance: y11 + ε1 < y22 − ε′2.
In Constraints 3.2 and 3.3, l1 and l2 are linear functions of the

maximum height of the text. These two constraints plus 3.4 are
designed to guarantee that, when random sampling is conducted, no
overlap will happen, and the layout will be flexible enough.

3) Solving inequality constraints: Groups 1-3 introduce constraints
for 18 variables. We use a hit-and-run Markov Chain Monte Carlo
library [20] to uniformly sample the solution.

Other Features. Given selected signals, edges, and SPOs with
computed key coordinates from the constraints, L-TD-G will randomly
plot graphic features (including axes, lines and arrows), and textual
annotations (like signal names, upper/lower boundaries, thresholds
and timing parameters), according to our empirical analysis of TDs.

V. TD-MAGIC

We now discuss how TD-Magic translates TDs into SPOs by
combining object-detection, image-processing, and symbolic-reasoning
techniques, through its SED, OCR, LAD, and SEI modules.

SED and OCR Modules. SED and OCR, taking TD picture as input,
are DL-based modules trained from synthetic data. Although L-TD-G
creates labelled TDs of a simplified form, in Section VI we will
show TD-Magic is able to extrapolate and interpret more complex
TDs. SED first creates a list LB = {b1, b2, ..., bn}, of all edge-boxes
it detected. Each box b∈LB contains the coordinates of the box and
the edge type. Next, it sorts LB according to the box coordinates (top
to bottom first, then left to right). Finally, it partitions LB on a per
signal basis. Similarly, OCR creates a list LT = {t1, t2, ..., tn} of all
detected text-boxes. A box t∈LT consists of the text box coordinates,
and the recognized string. Next, it sorts LT the same way as LB .

LAD Module. LAD uses IP morphological operations, for accurately
detecting annotating lines and arrows. LAD first transforms the input
TD image into an inverse binary image named imgBW. It then applies
vertical contour detection on imgBW. This operation: (1) Strengthens
vertical structures in the image (e.g., turning dashed vertical into
solid lines), (2) Filters out all non-vertical elements from the image,
and (3) Collects all detected vertical contours with their coordinates
into a list LV . A similar method is applied to extract the list LH of
horizontal contours (either lines or arrows), and their coordinates, too.

SEI Module. SEI provides a semantic interpretation to a TD image.
It takes as input the lists LB and LT of edge and text boxes, and the

Algorithm 1 Edge-Box-Event Association
1: function EDGEBOXEVENT(LB , LV)
2: LB,E = {}
3: for all b ∈ LB do
4: Lb,E = {}
5: for all v ∈ LV do
6: if v ∩ b ̸= ∅ then
7: x = center x-coordinate of v
8: y, h = FINDHLINE(x, b)
9: Lb,E = Lb,E ∪ {((x, y), v)}

10: if Lb,E ̸= ∅ then
11: LB,E = LB,E ∪ {(b, Lb,E)}
12: return LB,E

Algorithm 2 Arrow Association
1: function ARROWASSOCIATE(LB , LV , LH)
2: L̂B = EXPAND(LB)
3: LH,V = {}
4: for h ∈ LH do
5: if not FULLSPAN(h) and h ∩ b = ∅ for all b ∈ L̂B then
6: Lh,V = {}
7: for v ∈ LV do
8: if h ∩ v ̸= ∅ then
9: y = center y-coordinate of h ∩ v

10: Lh,V = Lh,V ∪ {(h, v, y)}
11: LH,V = LH,V ∪ Lh,V

12: LTC = {}
13: for Lh,V ∈ LH,V do
14: for (h1, v1, y1) ∈ Lh,V do
15: for (h2, v2, y2) ∈ Lh,V do
16: if h1 = h2 and y1 = y2 and v1 ̸= v2 then
17: LTC = LTC ∪ {(v1, v2, y1, t)}
18: return LTC

lists LH and LV of horizontal and vertical lines, respectively. It then
finds the appropriate associations and relations between the features
in the TD, organizing them into an SPO, returned as the output.

1) Events association: Every detected edge box can have associated
several events. Accordingly, Algorithm 1, Lines 3-11, computes for
each box b, a possibly empty set Lb,E of events associated to b. An
event is represented by a threshold point of an edge box, where a
vertical annotation-line crosses a horizontal annotation-line. Hence,
for every vertical line that intersects the box edge, Lines 5-9, finds a
horizontal line that intersects it. The intersection point is the event
(Procedure FINDHLINE, Line 8) associated to the edge box (Line 9).

2) Arrows Association: Next, SEI identifies horizontal arrows, and
infers their timing constraints while building the SPO, as described in
Algorithm 2. First (Line 5), it filters out horizontal lines that are not
arrows. These lines are either (1) Spanning over the entire signal, or
(2) Intersecting or touching an (expanded) edge box. The edge box
expansion (see Line 2) is done to facilitate identifying a line that just
touches an edge box, a frequent case in horizontal lines corresponding
to constant segments of a piecewise-linear signal. Every remaining
horizontal line is an arrow candidate. Then, it associates to every
candidate, a set of vertical lines that intersect it, together with the y-
coordinate of the intersection. This is stored in a set LH,V (see Lines
7−11). Finally, it searches for horizontal lines that have associated
two vertical lines with the same y-coordinate. Each is an arrow, i.e. a
timing constraint t that we add to the structure LTC . The algorithm
then returns the set LTC of all inferred timing constraints.

3) SPO generation: SEI generates the SPO from LTC and LB,E .
They contain all the necessary information about the timing constraints
in the TD. SEI constructs a DAG G representing the SPO by:

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 16,2023 at 23:16:22 UTC from IEEE Xplore. Restrictions apply.

(1) Associating a node in G to every unique vertical line in LTC , and
checking this line’s relation with the edge boxes in LB,E , (2) Adding a
directed edge from a node v1 to v2, if there exists a tuple (v1, v2, y1, t)
in LTC . The edge is labeled by the timing constraint t.

VI. EXPERIMENTAL EVALUATION

Evaluation on Synthetic Data. Here we evaluate how effective is
TD-Magic in learning from synthetic TDs.

1) Data Preparation: (a) For edge detection, we generated 15,000
labelled pictures (size: 3600 × 2160 for G1 and G2, 2880 × 1728
for G3; resolution: 144 pixels/inch), divided into three groups:
(G1) Created in default mode, with two signals and two edges;
(G2) Including only one big signal per picture; (G3) With simplified
constraints and a special focus on ramp signals. The number of
samples in G1, G2 and G3 is 8000, 4000 and 3000 respectively, with
100 for validation in each. (b) For text detection, the training data
consists of 4,000 labeled pictures, and the validation data of 100
labeled pictures: both from G1. (c) For text recognition, the training
data, of 10,000 cropped pictures, and validation data, of 1,022 cropped
pictures, are also from G1.

2) Results: We used YOLO5 [21] for edge detection. We conducted
three independent experiments, each with 30 epochs and a batch size
of 128. Table I shows the overall validation results (mean values
over three experiments). We omitted the variance as it is too small
(10−6). In Table I, P (Precision) represents how well YOLO makes
a correct object classification, and R (Recall) indicates how many
objects are not detected. Both P and R reach the almost optimal value
of 1, meaning that nearly all objects in the validation set are correctly
detected, and no objects are missing in detection. The metrics in
the last two columns are the mean average precision under different
confidence and IoU (Intersection over Union between detected box
and labelled box) values. They both approach the best value of 1.

TABLE I: Validation Accuracy of Edge Detection.

Class Labels P R mAP@.5 mAP@.5:.95
all 1000 0.9990 1 0.995 0.995

riseRamp 388 0.9987 1 0.995 0.995
fallRamp 388 0.9997 1 0.995 0.995
riseStep 79 0.9990 1 0.995 0.995
fallStep 79 0.9963 1 0.995 0.995
double 66 0.9990 1 0.995 0.995

For the two OCR tasks, we conducted three independent experiments
using PaddleOCR [22], an open source library for common OCR
tasks. We trained 30 epochs (with one experiment stopping earlier at
the 22nd epoch) for the text detection task, and trained 120 epochs
for text recognition. For both OCR tasks, the validation results reach
the best accuracy of 1, with negligibly small derivation.

The deep neural network actually overfits on the synthetic examples.
This means TD-Magic is very effective in learning from synthetic
TDs. Traditionally, over-fitting should be avoided, but if the features
are stable enough in both synthetic TDs and extrapolation examples,
this phenomenon is beneficial, which will be shown subsequently.

Extrapolation Evaluation. We now evaluate how well TD-Magic
extrapolates to industrial TDs. To this end, we evaluated its perfor-
mance on 30 TDs (29 from industry, and one inspired by industry
and manually drawn in Figure 1). All results shown in this subsection
are based on the best combination of the trained neural networks.

1) Basic Statistics: For the 30 TDs (size: 3119±606×1709±232;
resolution: 144 pixels/inch), 6 (20%), 19 (63.3%), 5 (16.7%) were
with 1, 2, and 3 signals respectively. Hence, there are 59 signals,
of which, 14 (23.7%), 38 (64.4%), 4 (6.8%), 3 (5.1%) signals have

1, 2, 3 and 4 edges respectively. The last one thus also evaluates
TD-Magic’s analysis ability on TDs out of synthetic distribution.

2) Object- and OCR-detection evaluation: We first evaluate the
performance of object detection. Table II shows the results for all
graphical classes. The first five are edges detected by YOLO, and the
last three are detected as described in Section V (V-line is vertical
annotation-line, H-line is horizontal annotation-line).

The precision for detecting edges is 1 for all types. On the other
hand, as reflected in the minor drop of recall, a small number of
edges are not detected, in particular the vertical edges. This might be
a consequence of a not large-enough number of vertical edges in the
training set. Despite the decrease of recall values, this reduction is in
a reasonable range, which still shows the efficiency of TD-Magic in
detecting edges of real signals. For V-line and H-line, as their own
detection requires the edge-detection results from YOLO, undetected
edges by YOLO will influence their recognition, too. This explains
why the recall values for these two objects are not 1. For arrows,
both their P and R value are not 1. This is on the one hand, due to
the undetected edges. On the other hand, it is because arrows are the
most flexibly annotation in terms of shape and position. The approach
proposed in Section V is therefore unable to cover all situations.
Despite the imperfect results for lines and arrows, their metrics all
exceed 0.9, which proves the efficiency of our approach.

TABLE II: Object Detection Accuracy in Extrapolation.

Metrics riseRamp fallRamp riseStep fallStep
number 44 42 9 10

P 1 1 1 1
R 0.977 0.976 0.889 0.900

Metrics double V-line H-line arrow
number 8 128 106 84

P 1 1 1 0.951
R 1 0.969 0.972 0.929

Table III illustrates the recognition accuracy for key texts. We only
counted totally correct texts. The results show that both the signal
names and the signal values enjoy a high accuracy. This shows that
our prepared database for common signal names takes effect, and our
empirical study on the style of annotating signal values is helpful.
For timing constraints, since they are the most flexibly written texts
(with subscripts and special symbols) in TDs, their accuracy does not
reach 0.9. We claim that a more diverse text set for training purpose
will increase the accuracy of OCR.

TABLE III: OCR Accuracy in Extrapolation.

Metrics Signal Name Signal Value Time Constraint
Accuracy 0.915 0.925 0.845

3) Overall-performance evaluation: From the 30 TDs used for
extrapolation, the SPOs in 23 (76.7%) pictures can be successfully
extracted at a template level. Some minor mistakes in recognition
of texts may occur in these structurally correct cases, but no timing
constraints are missing or mistakenly extracted. Within these 23
cases, 15 (50.0%) cases are totally correct, at both structural and
textual levels. For most of the other 7 (23.3%) TDs, TD-Magic can
still partially extract their SPOs. Some common sources of errors
are from: (1) Undetected edge boxes. (2) Corner cases. For example:
the y-axis is used to represent a partial order; the thresholds are on
the boundary of edges; the special position and shape of arrows.
Finally, we provide below three examples, illustrating the output of
TD-Magic for each. Here rR, fR and fS is used to express riseRamp,
fallRamp and fallStep. The detected edge boxes, V-lines, H-lines,
arrows are in grey, blue (also for wrong texts), red and green.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 16,2023 at 23:16:22 UTC from IEEE Xplore. Restrictions apply.

3 stacked signals (Structurally correct)

n1 = (TxD, 1, fR, 0.3xVIO)
n2 = (VST, 1, rR, 0.9V)
n3 = (RxD, 1, fR, 0.3xVIO)
n4 = (TxD, 2, rR, 0.7xVIO)
n5 = (VST, 2, fR, 0.5V)
n6 = (RxD, 2, rR, 0.7xVIO)

e1 = (n1, td(L),T, n2)
e2 = (n2, td(L),Ri, n3)
e3 = (n1, tLoop(H,L), n3)
e4 = (n4, td(H),T, n5)
e5 = (n5, td(H),R, n6)
e6 = (n4, tLoop(L,H), n6)

td(H),R�
tLoop(L,H)

td(L),R�

tLoop(H,L)

TxD

0.3 x VIO
0.7 x VIO

t

VDiff

t

0.9 V

td(L),T

0.5 V

td(H),T

RxD

t

0.3 x VIO
0.7 x VIO

Fig. 6: Example 1 (input: original; plot: redrawn) [23]

2 stacked signals (Entirely correct)

e1 = (n1, 6ns, n3)
e2 = (n2, tPHL, n4)
e3 = (n2, tW, n6)
e4 = (n5, 6ns, n7)

50%

10%
CLEAR

6 ns 6 ns

VCC

GND

QN

tw

VOH

VOL

90%

50%

tPHL

n1 = (CLEAR, 1, rR, 10%)
n2 = (CLEAR, 1, rR, 50%)
n3 = (CLEAR, 1, rR, 90%)
n4 = (QN, 1, fR, 50%)
n5 = (CLEAR, 2, fR, 90%)
n6 = (CLEAR, 2, fR, 50%)
n7 = (CLEAR, 2, fR, 10%)

Fig. 7: Example 2 (input: original; plot: redrawn) [24]

Example 3: Input is the original picture of Figure 4 (left). Since
the vertical lines are nearly as thick as the step edges, it may confuse
TD-Magic, so the tool returns the structurally incorrect SPO where
n2, n3 should be n3, n4. OCR also returns IO0% instead of 10%.

n2 = (VINA, 1, fS, None)
n3 = (VOUTA, 2,fR, IO0%)

e1 = (n2, tD(Off), n3)

We also tested original versions of Figures 1, 4 (right). TD-Magic
made a minor mistake in the former, while the results are all correct
in the latter. Example 1 demonstrates that TD-Magic can extrapolate
to three or more signals, although the synthetic data-set provided at
most two signals in one picture, only. This is because the YOLO-
network focuses on the shape of edges, and not on the number of
signals. The successful analysis of Example 2 shows that TD-Magic
is able to detect edges with dense thresholds (with more than two key
values). This is because the design of L-TD-G pays special attention
to this kind of annotation. One notable observation from Example 2
is that although the shape of the left and right arrows delimiting
annotation “6ns” is not supported by our generator, TD-Magic is
able to extrapolate, and properly detect them. This demonstrates the
efficiency of the SEI module.

The failure of Example 3 to extract the entire PSO of the TD
picture in Figure 4 (left), is because YOLO does not successfully
detect the first vertical edge in Signal VINA as shown in Figure 4.
To solve this problem, more vertical edges should be provided to the
training set. Providing more training data is also an effective method
to increase the accuracy of OCR. We leave this to future work.

VII. CONCLUSION

We considered the open problem of translating bitmap TD-pictures
into formal specifications. We tamed the lack of publicly available
labelled TDs, necessary for training object detection techniques, by
developing L-TD-G, a synthetic data generator producing pictures of
realistic industrial timing diagrams, annotated with their corresponding
formal specification. We then designed TD-Magic, an automatic
approach combining object-detection techniques, OCR, and image-
processing algorithms, to extract the relevant features from TD-
pictures, and construct their semantic interpretation as a formal
specification. Our experimental results on industrial TDs, found in
publicly available products’ data sheets, are very encouraging, and

demonstrate a high level of accuracy. As future work, we plan to
extract formal specifications from more complex timing diagrams
with mixed analog-digital signals.

ACKNOWLEDGMENT

This project has received funding from the Austrian FFG ICT of
the Future program under grant agreement No 880811, and funding
from the European Key Digital Technologies Joint Undertaking (KDT
JU) under grant agreement No 101097300.

REFERENCES

[1] P. Rony, “Interfacing fundamentals: Timing diagram conventions,” Com-
puter Design, vol. 19, no. 1, pp. 152–153, 1980.

[2] O. M. G. (OMG), “Unified modeling language: Superstructure, v2.0,”
https://www.omg.org/cgi-bin/doc?formal/05-07-04, 2004, online; ac-
cessed 05 August 2022.

[3] F. Kathi, “Timing diagrams: Formalization and algorithmic verification,”
J. Log. Lang. Inf., vol. 8, no. 3, pp. 323–361, 1999.

[4] R. Schlor, “A prover for vhdl-based hardware design,” in Proc. of ASP-
DAC’95/CHDL’95/VLSI’95 with EDA Technofair, 1995, pp. 643–650.

[5] N. Amla, E. A. Emerson, and K. S. Namjoshi, “Efficient decompositional
model checking for regular timing diagrams,” in Proc. of CHARME, ser.
LNCS, vol. 1703. Springer, 1999, pp. 67–81.

[6] N. Ortigosa and V. M. Giménez, “Raw data extraction from electrocar-
diograms with portable document format,” Comput Methods Programs
Biomed, vol. 113, no. 1, pp. 284–289, 2014.

[7] D. Chung, J. Choi, J.-H. Jang, T. Y. Kim, J. Byun, H. Park, H.-S. Lim,
R. W. Park, and D. Yoon, “Construction of an electrocardiogram database
including 12 lead waveforms,” JHIR, vol. 24, no. 3, pp. 242–246, 2018.

[8] G. S. Waits and E. Z. Soliman, “Digitizing paper electrocardiograms:
Status and challenges,” J. Electrocardiol., vol. 50, no. 1, pp. 123–130,
2017.

[9] L. Ravichandran, C. Harless, A. J. Shah, C. A. Wick, J. H. Mcclellan,
and S. Tridandapani, “Novel tool for complete digitization of paper
electrocardiography data,” IEEE J. Transl. Eng. Health Med., vol. 1, p.
1800107, 2013.

[10] M. Baydoun, L. Safatly, O. K. Abou Hassan, H. Ghaziri, A. El Hajj, and
H. Isma’eel, “High precision digitization of paper-based ECG records: a
step toward machine learning,” IEEE J. Transl. Eng. Health Med., vol. 7,
pp. 1–8, 2019.

[11] X. Sun, Q. Li, K. Wang, R. He, and H. Zhang, “A novel method for
ECG paper records digitization,” in Proc. of CinC. IEEE, 2019, pp.
1–4.

[12] S. Ganesh, “Novel method of digitization of electrocardiogram signals,”
Ph.D. dissertation, Georgia Institute of Technology, 2020.

[13] S. Mishra, G. Khatwani, R. Patil, D. Sapariya, V. Shah, D. Parmar,
S. Dinesh, P. Daphal, and N. Mehendale, “ECG paper record digitization
and diagnosis using deep learning,” JMBE, vol. 41, no. 4, pp. 422–432,
2021.

[14] Y. Li, Q. Qu, M. Wang, L. Yu, J. Wang, L. Shen, and K. He, “Deep
learning for digitizing highly noisy paper-based ECG records,” Computers
in biology and medicine, vol. 127, p. 104077, 2020.

[15] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proc.
of IEEE ICCV. IEEE, 2017, pp. 2961–2969.

[16] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in Proc.
of ECCV 2020, 2020, pp. 213–229.

[17] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proc. of IEEE CVPR. IEEE,
2016, pp. 779–788.

[18] “Example of timing diagram similar to Figure 6 (on page 15),” https:
//www.st.com/resource/en/datasheet/vnh5050a-e.pdf.

[19] “Example of timing diagram similar to Figure 9 (on page 13),” https:
//www.st.com/resource/en/datasheet/m74hc595.pdf.

[20] “anyhr,” https://github.com/figlerg/anyHR.
[21] “Yolo5,” https://github.com/ultralytics/yolov5.
[22] “Paddleocr,” https://github.com/PaddlePaddle/PaddleOCR.
[23] “Example of timing diagram similar to Figure 31 (on page 43),”

https://www.infineon.com/dgdl/Infineon-TLE9252V-DataSheet-v01_
11-EN.pdf?fileId=5546d462602a9dc80160e0c3c92f5346.

[24] “Example of timing diagram similar to Figure 6 (on page 9),” https:
//www.st.com/resource/en/datasheet/m74hc4060.pdf.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 16,2023 at 23:16:22 UTC from IEEE Xplore. Restrictions apply.

