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In this work, we revisit the Generalized Navier Boundary condition (GNBC) introduced
by Qian et al. in the sharp interface Volume-of-Fluid context. We approximate the singular
uncompensated Young stress by a smooth function with a characteristic width Y. We show
that the resulting model is consistent with the fundamental kinematics of the contact angle
transport described by Fricke, Köhne and Bothe. We implement the model in the geometrical
Volume-of-Fluid solver Basilisk using a “free angle” methodology. This means that the
dynamic contact angle is not prescribed but reconstructed from the interface geometry and
subsequently applied as an input parameter to compute the uncompensated Young stress.
We couple this approach to the two-phase Navier Stokes solver and study the withdrawing
tape problem with a receding contact line. It is shown that the model is grid-independent
and leads to a full regularization of the singularity at the moving contact line. In particular,
it is shown that the curvature at the moving contact line is finite and mesh converging. As
predicted by the fundamental kinematics, the parallel shear stress component vanishes at the
moving contact line for quasi-stationary states (i.e. for ¤\d = 0) and the dynamic contact angle
is determined by a balance between the uncompensated Young stress and an effective contact
line friction. Away from the moving contact line, we confirm that the viscous bending of the
interface is well-described by the asymptotic theory of Cox. A non-linear generalization of
the original GNBC is proposed, which is closely related to the Molecular Kinetic Theory of
wetting.
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1. Introduction
The phenomenon of dynamic wetting / dewetting requires a relative motion of the contact
line, i.e. the triple line at which the liquid-fluid interface and the solid support’s surface
meet, against the solid wall. This fundamental process can be modeled in various different
ways. If the fluid-interface and the contact line are modeled as a material surface and a
material line, respectively, it is clear that the classical no-slip condition is incompatible with
the dynamic wetting process. Mathematically, it has been shown that, for a material interface
and contact line, the no-slip boundary condition leads to a discontinuity in the velocity as
the contact line is approached. Because of that, a viscous fluid develops a non-integrable
singularity at the moving contact line. This has been first shown in the seminal paper by Huh
& Scriven (1971). Since then, various mathematical models have been developed to resolve
the paradox in the continuum mechanical description. In the framework of diffuse interface
models, where both the fluid interface and contact line have a finite width characterized by
a smooth but rapidly varying order parameter, a motion of the contact line can be achieved
by pure diffusion of the order parameter; see Jacqmin (2000). In this case, the motion is
driven by gradients of the chemical potential and the contact line is not a material line with
respect to the fluid particles. The Interface Formation Model due to Shikhmurzaev (1993,
2008) describes the dynamic wetting process using mass transfer between the bulk phases
of the liquid and the interfaces between fluid and solid and fluid gas. Hence, in this case, the
contact line can move without hydrodynamic slip as the primary mechanism.

A commonly used approach in the sharp interface framework is to model the interface and
the contact line as material objects and to allow for slip between the bulk velocity and the
solid wall. The Navier slip condition states that the amount of tangential slip is determined
by a balance between the tangential component of the viscous stress (described by the
viscous stress tensor S) and a sliding friction force between fluid particles and the solid
surface according to

−V(v‖ − UF ) = (SnmΩ)‖ . (1.1)

This boundary condition introduces the slip length ! := [/V as the key parameter. Here [
denotes the viscosity of the liquid and V > 0 is a coefficient describing the (sliding) friction
between the liquid molecules and the solid surface. Within the Navier slip model, the slip
length can be interpreted geometrically as the distance below the solid surface where the
linearly extrapolated tangential velocity vanishes. In particular, this implies that, formally,
the slip length goes to infinity if the shear stress goes to zero. Indications of a vanishing shear
stress in the vicinity of the contact line have been observed in molecular dynamics (MD)
simulations by Thompson & Robbins (1989) and others. This phenomenon is commonly
referred to as apparent “perfect slip” at the contact line. So, within the model (1.1), the
friction parameter V would vanish as the contact line is approached. Besides the mobility of
the contact line, the wettability of the solid surface is another key parameter for the physical
system. It is usually characterized by the equilibrium contact angle \e that the free surface
forms with the solid boundary in equilibrium. It can be computed from the surface tension of
the liquid-gas, liquid-solid and solid-gas interfaces, using the equation introduced by Young
(1805), viz.

f cos \e +fls − fsg = 0. (1.2)

While the latter equation can be easily deduced from variational principles, the dynamics of
the contact angle is a much more complex problem and a large variety of empirical models
exist. Notably, there is one fundamental relation for the dynamics of the microscopic contact



3

angle \d in the limit of slow velocities of the contact line, which is shared by many of these
models:

−Z*cl = f(cos \d − cos \e). (1.3)

Here *cl denotes the normal speed of the contact line relative to the solid surface (positive
for advancing and negative for a receding contact line) and Z is the so-called “contact line
friction” parameter. Equation (1.3) arises, for example, from the molecular kinetic theory of
wetting in the limit of small capillary numbers, i.e. for a slow motion of the contact line (see
Blake & Haynes (1969); Blake et al. (2015)).

Recently, Fricke et al. (2019, 2018) studied the kinematics of the contact angle transport and
showed that the rate-of-change of the contact angle is fully determined by the directional
tangential derivative of the velocity field v at the contact line, i.e.

¤\d = (mgv) · nΣ. (1.4)

Here nΣ denotes the interface normal vector and g is a vector tangential to the interface
(see Section 2 for more details). Notably, when applied to the full two-phase flow problem
(assuming sufficient regularity of the solution), Equation (1.4) implies that ¤\d is proportional
to the derivative in the direction normal to the wall of the tangential velocity component. In
other words, (1.4) predicts that an apparent perfect slip is acting at the moving contact line if
the contact angle does not change in time, i.e. if ¤\d = 0. Qualitatively, this is consistent with
what has been observed in MD simulations. However, it is well-known that the singularity at
the moving contact line is only partially relaxed by the Navier slip condition. A logarithmic
divergence as a function of the distance to the contact line still exists for the curvature and
the pressure, as pointed out by Huh &Mason (1977). Indeed, Fricke & Bothe (2020) showed
that the local boundary conditions at the moving contact line are incompatible with each
other. As a consequence, the solution cannot possess a C1-regularity for the velocity up
to the contact line. To summarize, the contact angle boundary condition formulated in the
standard Navier slip model of the moving contact line is in contradiction with the kinematic
evolution law (1.4) and a regular (i.e., piecewise C1) solution does not exist. However, the
introduction of the Navier slip transforms the singularity at the moving contact line into an
integrable one and allows for physically meaningful solutions. The physical implications of
the pressure singularity is debated in the literature. Shikhmurzaev (2006) argues that the
pressure should remain finite because otherwise the model of an incompressible fluid would
no longer be valid. On the other hand, it has been demonstrated that the Navier slip model is
able to describe various wetting experiments in a satisfactory manner.

The “Generalized Navier Boundary Condition” (GNBC) was first described by Qian
et al. (2003, 2006a,b) in the context of diffuse interface models. The key idea of the GNBC is
to introduce the uncompensated Young stress as an additional force density into the balance
equation (1.1). So, in this model, the slip velocity relative to the solid surface is a result of
a balance between a sliding friction force, the viscous stress and the uncompensated Young
stress. In a sharp interface and sharp contact line formulation, the GNBC can be written as

−V(v‖ − UF ) = (SnmΩ)‖ + f(cos \d − cos \e) nΓXΓ on mΩ. (1.5)

Notably, the contact line delta distribution XΓ appears because, in the sharp contact line
formulation, the Young stress is concentrated just on a mathematical curve. Hence, Equa-
tion (1.5) should mathematically be understood as an equality of distributions. Provided that
the left-hand side, i.e. the sliding friction force, is regular, this implies that the viscous stress
component (SnmΩ)‖ should also develop a singularity to make the right-hand regular as well.
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This singularity is then balancing with the singularity in the Young stress. This delta function
GNBC formulation (DF-GNBC) is applicable in weak formulations of the two-phase flow
problemwhere the contact line delta distributionwill translate into an integral over the contact
line in the weak formulation (see, e.g, Gerbeau & Lelièvre (2009)). On the other hand, there
is no singularity in the Phase Field formulation of the GNBC (PF-GNBC) due to Qian et
al., because the thickness of the interface and the contact line is a finite, physical model
parameter in this case. Yamamoto et al. (2013, 2014) implemented the GNBC approach into
a front-tracking-method and studied the dynamics of capillary rise in a tube. In this method,
the contact line is transported by an advection of the Lagrangian marker points without a
prescribed contact angle. Then the dynamic contact angle is evaluated and used to compute
the uncompensated Young stress, which determines the slip velocity profile. Yamamoto et
al. noticed that the viscous stress becomes negligible as the contact line is approached.
Motivated by this observation, they dropped the viscous stress contribution in (1.5) leading
to a “simplified GNBC”.

−V(v‖ − UF ) = f(cos \d − cos \e) nΓXΓ near Γ. (1.6)

It is evident that, by taking the inner product with the contact line normal vector, Eq. (1.6)
can be reduced to an equation equivalent to (1.3) if the delta distribution is approximated
with a regular function over a finite width.

Yamamoto et al. (2013, 2014) smoothed the delta distribution over a region of approximately
four grid points. Using this estimate as the characteristic width of the delta function, the
authors concluded that

*cl ≈
!

Δ

f(cos \e − cos \d)
[

, (1.7)

where Δ is the grid size. Obviously, the contact line speed in (1.7) can only be grid-
independent if also the slip length is chosen in proportion to the grid size, i.e. if ! ∼ Δ.
Consequently, they fixed the parameter j := !/Δ in their simulations. The approach
was extended by using the Cox-Voinov relation for \d in Yamamoto et al. (2014). Later,
Yamamoto et al. (2016) used this method to study the withdrawing plate problem with
a single wettable defect. Recently, the GNBC front-tracking approach was extended by
Kawakami et al. (2023) using a so-called “rolling belt-model” inspired by the work of
Lukyanov & Pryer (2017). Chen et al. (2019) used the GNBC in a Front Tracking method
to study the coalescence-induced self-propelled motion of droplets on a solid surface.
Shang et al. (2018) used a quite similar method to study droplet spreading and the motion
of drops on surfaces subject to a shear flow. All these methods have in common that the
uncompensated Young stress is distributed over a characteristic distance, which is related to
the mesh size.

In the present work, we aim at a regularization of the Young stress in a sharp interface
setting. This is achieved by approximating the Young stress by a smooth function with a
characteristic width Y which is chosen independently of the computational mesh but treated
as a model parameter. We shall call this model the “smooth-function GNBC” (SF-GNBC)
in the following. It has been shown recently by Kulkarni et al. (2023) that this model
admits a local C2-regularity of the velocity in the vicinity of the moving contact line. In
the present paper, we develop a novel implementation of the SF-GNBC in a geometrical
Volume-of-Fluid method. This method should be consistent with the fundamental kinematic
law (1.4). Therefore, the dynamic contact angle is not prescribed but is reconstructed from
the volume fraction field in a neighborhood of the contact line. As one important preliminary
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Figure 1: Mathematical notation for the withdrawing tape setup.

step, we validate this “free contact angle” methodology by studying the advection problem
by a prescribed velocity field (see Fricke et al. (2020)). In this case, the interface and the
contact line are transported without a boundary condition for the contact angle and the
results are validated against analytical solutions of (1.4). Moreover, we couple this method
to the SF-GNBC model and use the reconstructed contact angle as an input parameter for \d
to compute the uncompensated Young stress in the simulation.

We study the withdrawing tape problem as a prototypical example for a dynamic
dewetting process. The setup follows the previous work by Afkhami et al. (2018). The solid
wall is moving upwards with velocity *F > 0 in the laboratory frame (see Figure 1). So
we study the case of a receding contact line. We define the (global) capillary number with
respect to the wall speed as

Ca :=
[*F

f
.

For convenience, we define the contact line capillary number using the negative contact line
speed, i.e. (note that the contact line speed*cl is always measured relative to the solid)

Cacl :=
[(−*cl)
f

.

In a quasi-stationary state, we have −*cl = *F and hence Ca = Cacl. With this definition, we
can always work with positive values for the capillary number. Notice that, in the literature,
one will also find the convention that Cacl is negative for a receding contact line and positive
for an advancing contact line.

Structure of this article
The mathematical derivation of the GNBC in a sharp-interface framework is revisited in
Section 2. It is shown that the GNBC can be obtained as a combined closure relation for
the dissipation due to slip along the liquid-solid surface and the contact line dissipation.
Using the laws of kinematics, we derive the contact angle evolution equation in Section 2.4
and show that (1.3) holds for quasi-stationary states. The numerical implementation of the
method in the geometrical Volume-of-Fluid solver is described in Section 3. We validate the
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Table 1: Description of Symbols

Symbol Description Units

d Density kg/m3

[ Viscosity Pa·s
f Surface Tension N/m
v Velocity m/s
V Friction Coefficient Pa·s/m
g Gravitational Acceleration m/s2
D Rate-of-Deformation Tensor 1/s

S = 2[D Viscous Stress Tensor Pa

Σ Interface -
+Σ Interface Normal Speed m/s
nΣ Interface Normal -

^ = −∇Σ · nΣ Interface Mean Curvature 1/m
Γ Contact Line -
*cl Contact Line Speed m/s
nΓ Contact Line Normal (tangential to mΩ) -
mΩ Solid Boundary -
nmΩ Unit Outer Normal to Ω -
*F Wall Speed m/s
UF Wall Velocity m/s

! = [/V Slip Length m
Ca Wall Capillary Number -

Cacl Contact Line Capillary Number -
Caloc Capillary Number in the lab frame of reference -
Catr Transition Capillary Number -
Z Contact Line Friction Pa·s
\e Static Contact Angle rad
\d Dynamic Microscopic Contact Angle rad
\Δ Numerical contact angle observed at the contact line rad
\s Steady state contact angle rad

numerical method by studying the kinematic transport of the contact angle and the curvature
at the contact line. The results for the withdrawing tape problem are discussed in detail in
Section 4. In particular, it is shown that the results are grid-independent. Notably, we can
demonstrate by a mesh study that, unlike for the Navier slip model, the curvature at the
contact line converges to a finite value. Away from the contact line, we show that the viscous
bending of the interface is well-described by the hydrodynamic theory of Cox. Finally, we
conclude this study by an outlook to a non-linear variant of the GNBC, which can be derived
as a non-linear closure of the entropy production described earlier in Section 2.

2. Mathematical Modeling
2.1. Governing equations

We employ the sharp-interface / sharp-contact line continuum modeling approach. We
start from the incompressible, two-phase Navier Stokes equations with surface tension for
Newtonian fluids under isothermal conditions (see, e.g., Slattery (1999); Prüss & Simonett
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(2016)). Inside the fluid phases, the governing equations are

mC (dv) + ∇ · (dv ⊗ v) + ∇? = ∇ · S + dg, (2.1)
∇ · v = 0 (2.2)

with the viscous stress tensor†

S = 2[D = [(∇v + ∇vT).

These bulk equations are accompanied by jump conditions at the interfaceΣ(C). The interface
is modeled as a hypersurface (i.e. it has zero thickness) and separates the domain Ω into two
bulk phases Ω1,2(C) occupied by the two fluid phases (see Fig. 1). Assuming that no phase
change occurs in the system, the normal component of the adjacent fluid velocities v1,2 at the
interface are coinciding and equal to the speed of normal displacement +Σ of the interface,
resulting in the kinematic boundary condition

+Σ = v · nΣ on Σ(C), (2.3)

where nΣ is the interface unit normal field. Additionally, no-slip between the fluid phases is
usually assumed. Assuming further that the surface tensionf is constant, the jump conditions
for mass and momentum read as

ÈvÉ = 0, È?I − SÉnΣ = f^nΣ on Σ(C). (2.4)

Here ^ := −∇Σ · nΣ is twice the mean curvature of the interface and

ÈkÉ (C, x) := lim
ℎ→0+
(k(C, x + ℎnΣ) − k(C, x − ℎnΣ))

is the jump of a quantity k across the interface. We assume that the solid boundary mΩ is
not able to store mass, i.e. we assume it to be impermeable. We consider an inertial frame
of reference where the wall is moving parallel to itself with a velocity*F > 0 upwards (see
Fig. 1). The impermeability condition in this frame of reference reads as

v⊥ = 0 on mΩ, (2.5)

where v⊥ = (v ·nmΩ) nmΩ denotes the normal part of the velocity with respect to mΩ. In order
to obtain a closed model, the system of equations (2.1)-(2.5) must be complemented by (one
or more) additional boundary conditions describing

(i) the wettability of the solid (i.e. the static and dynamic contact angle) and
(ii) the mobility of the contact line (i.e. the tangential velocity v‖ at the solid boundary).

These boundary conditions are closure relations for the continuum mechanical description
and must be thermodynamically consistent, i.e. they must obey the first and second law of
thermodynamics. To arrive at a consistent closure, we consider the available energy functional
consisting of the kinetic energy of the bulk phases and the surface energies of the liquid-gas
interface as well as the wetted area, (C) ⊂ mΩ, i.e.

� (C) :=
∫
Ω\Σ(C)

d |v|2
2

3+ +
∫
Σ(C)

f 3� +
∫
, (C)

fF 3�.

Here f = flg > 0 denotes the surface tension coefficient of the liquid-gas interface and

fw = fls − fsg

† We use the symbol D = 1
2 (∇v + ∇vT) for the rate-of-deformation tensor.
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is the specific energy density for wetting the solid surface. Note that fw might be negative,
as we see from Young’s equation

f cos \e +fw = 0, (2.6)

which defines the “static” or “equilibrium” contact angle \e. It is a purely mathematical
exercise (see Fricke (2021) (Appendix A) for details) to compute the rate of change ¤� for a
sufficiently regular solution of (2.1)-(2.5) (in the absence of external forces, i.e. for g = 0).
The result reads as
3�

3C
= −2

∫
Ω\Σ(C)

[D : D 3+ +
∫
mΩ

(v‖ − UF ) · (SnmΩ)‖ 3� +
∫
Γ(C)

f(cos \d − cos \e)*cl 3;.

(2.7)

In this formulation with a continuous velocity field, the scalar contact line speed (measured
relative to the solid) is given as

*cl = v · nΓ −*F .
Closure relations are required to satisfy the second law of thermodynamics† ¤� 6 0. A linear
closure for the second integral in (2.7) yields the well-known Navier slip condition, i.e.

−V(v‖ − UF ) = (SnmΩ)‖ with a friction coefficient V > 0. (2.8)

Using the slip lenth parameter ! = [/V, one may reformulate (2.8) as

v‖ + 2! (DnmΩ)‖ = UF . (2.9)

The third integral in (2.7) suggests that the dynamic contact angle \d, which ismathematically
defined as the angle of intersection‡ of the free surface Σ with the solid boundary mΩ, i.e.

cos \3 := −nΣ · nmΩ at Γ(C),
should be linked to the contact line speed *cl. A linear closure leads to the well-known
condition

−Z*cl = f(cos \d − cos \e) with a (contact line) friction coefficient Z > 0. (2.10)

Note that also more general contact angle boundary conditions are possible if a non-linear
closure relation is employed. To summarize, the “standard model”¶ based on the Navier slip
condition is given by Equations (2.1)-(2.5), (2.9) together with (2.10) or a non-linear variant
of the form

\d = 5 (*cl) on Γ(C). (2.11)
To ensure thermodynamic consistency, we require that

[ > 0, f > 0, ! > 0, *cl( 5 (*cl) − \e) > 0.

As shown by Fricke & Bothe (2020), there is an inconsistency of boundary conditions in
the standard model because the evolution of the contact angle is determined by the contact

† Note that we assume an isothermal system here. In this case, we may directly consider the change in
available energy.
‡ Note that, in order to define the contact angle \d, we have to assume that interfaceΣ(C) has awell-defined

normal field up to the boundary. This is usually the case even if the mean curvature of Σ(C) is singular at the
contact line.
¶ The mathematical model (2.1)-(2.5), (2.9), (2.10) is one of the most commonly applied models for

dynamic wetting in the literature. However, there are many more modeling approaches which aim at a
regularization of the singularity and a prediction of the dynamics of wetting. For a survey of the field, we
refer to the references de Gennes et al. (2004); Blake (2006); Shikhmurzaev (2008); Bonn et al. (2009);
Snoeijer & Andreotti (2013); Marengo & De Coninck (2022)
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angle boundary condition (say (2.10)) as well as by the flow in the vicinity of the contact
line according to (1.4). As a consequence, a regular solution of the system does not exist but
a weak singularity is present at the contact line as shown already in Huh & Mason (1977).

2.2. Formal derivation of the GNBC
It is important to note that the GNBC was originally formulated in a diffuse interface
framework (see Qian et al. (2003, 2006a)). However, the GNBC can be formally understood
in the sharp interface model as a combined closure for the terms in the entropy production
(2.7) which arise from the contact line motion and from slip at the solid-liquid boundary. For
this purpose, we consider the sum of the wall and the contact line dissipation, given as

T =
∫
mΩ

(v‖ − UF ) · (SnmΩ)‖ 3� + f
∫
Γ(C)
(cos \d − cos \e)*cl 3;.

By introducing the contact line delta distribution XΓ, one can rewrite T as a single integral
over the entire solid boundary mΩ according to

T =
∫
mΩ

(
(SnmΩ)‖ + f(cos \d − cos \e) nΓXΓ

)
· (v‖ − UF ) 3�.

So, formally, a linear closure relation is provided by the generalized Navier boundary
condition

−V(v‖ − UF ) = (SnmΩ)‖ + f(cos \d − cos \e) nΓXΓ on mΩ (2.12)

with a friction coefficient V > 0. Notice that the “delta function GNBC” (DF-GNBC) should
be understood in the sense of distributions.

2.3. Approximation of the delta distribution over a finite region
A possible approach for regularization is to approximate the contact line delta distribution in
(2.12) by a smooth function over a finite transition region with characteristic width Y. Note
that this approach also requires to extend the definition of the contact angle \d and the contact
line normal nΓ away from the sharp contact line. Then, the deviation of the contact angle
from the equilibrium value appears in the velocity boundary condition leading to a balance
between sliding friction forces due to slip along the solid boundary, the tangential component
of the viscous stress at the boundary and the uncompensated Young force. If extensions of
\d and nΓ on a local neighborhood of the contact line are available, one may approximate
(2.12) by

−(v‖ − UF ) = 2! (DnmΩ)‖ +
f

V
[(cos \d − cos \e) nΓX̂Γ], (2.13)

where X̂Γ is a smooth approximation of XΓ. Notably, the dynamic contact angle is not
prescribed explicitly in this approach. Instead, the dynamics of the contact angle is determined
by (2.13) and the kinematics of the interface transport.

2.4. Kinematics of the dynamic contact angle
We derive the evolution law for the contact angle, given a sufficiently regular solution of
the SF-GNBC model (2.1)-(2.5) and (2.13). Below, we consider the limit of the free surface
case, where one phase is assumed to be a dynamically passive gas at a constant pressure. The
GNBC condition, evaluated at the contact line, reads as

V(v‖ − UF ) + (SnmΩ)‖ +
1
Y
f(cos \d − cos \e) nΓ = 0 at Γ, (2.14)
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where Y > 0 is a small parameter describing the characteristic length over which X̂Γ is
non-zero. By taking the inner product with the contact line normal vector, we obtain the
relation

*cl

!
+ 〈nΓ, (∇v) nmΩ〉 + 〈(∇v) nΓ, nmΩ〉 +

f

Y[
(cos \d − cos \e) = 0 at Γ. (2.15)

Using the kinematic evolution equation for the contact angle derived in Fricke et al. (2019),
one can show that the rate-of-change of the contact angle ¤\d is given by

2 ¤\d = − 〈nΓ, (∇v) nmΩ〉 . (2.16)

Moreover, it follows from the impermeability condition that the term 〈∇v nΓ, nmΩ〉 vanishes
for a flat solid boundary. Therefore, we obtain the contact angle evolution law for a regular
solution of the SF-GNBC model. In this case, it reads as

¤\d =
*cl

2!
+ 1
Y

f

2[
(cos \d − cos \e). (2.17)

2.5. Remarks
(i) Compared to the standard Navier slip model (see Fricke et al. (2019) for details), the

uncompensated Young stress leads to an additional term in the equation for ¤\d, which reads
as

1
Y

f

2[
(cos \d − cos \e).

Obviously, the latter term is negative for \d > \e (and positive for \d < \e) and, hence, drives
the system towards equilibrium.
(ii) An important consequence of the GNBC for quasi-stationary states is that it defines

a functional dependence between the dynamic contact angle and contact line speed. In fact,
setting ¤\d = 0 leads to the relation

Cacl =
[(−*cl)
f

=
!

Y
(cos \d − cos \e), (2.18)

or, equivalently, to

−(VY)*cl = f(cos \d − cos \e). (2.19)

By comparing (2.19) with (2.10), we see that the contact line friction parameter can be
indentified with the product of the “bulk friction” in the Navier slip condition and the width
of the contact line region, i.e.

Z = VY. (2.20)

The latter equation has been proposed before by Blake et al. (2015) in the context of the
molecular kinetic theory. Physically, it indicates that, within the present modeling framework,
there is only one friction mechanism that affects both the slip at the solid boundary and the
dynamics of the microscopic contact angle.
(iii) From (2.16) we conclude that the stress component 〈nΓ, (∇v) nmΩ〉 vanishes at the

contact line for quasi-stationary states, i.e. for ¤\ = 0. So, there appears to be “perfect slip”
at the contact line in that case. Actually, the concepts of the “apparent slip length” !0 (see
Fig. 2) and the physical slip parameter defined as ! = [/V must be distinguished for the
GNBC model. In fact, the uncompensated Young stress is able to reverse the sign of the
velocity gradient at the contact line. In this case, fluid particles at the solid boundary may
have a larger tangential velocity than the fluid particles slightly above the boundary. This

Rapids articles must not exceed this page length
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Figure 2: Different cases for the apparent slip length !0: positive, perfect and negative slip
(reference frame with*F = 0).

situation corresponds to a negative apparent slip length (see Fig. 2). It is, however, caused by
the uncompensated Young stress in the velocity boundary condition. The physical slip length
parameter ! is still positive and finite in all cases.
(iv) Note that (2.17) can be phrased as a generalized mobility law of the form

*cl = 5 (\d, ¤\d).

Therefore, the contact line speed depends on the contact angle \d but also on its rate-of-
change ¤\d which, in turn, can be computed from ∇v (see Fricke et al. (2019)). In this sense,
the contact line speed in the GNBC model depends on the flow in the vicinity of the contact
line. Such a kind of non-local dependence has been discussed in the literature in the context
of the so-called “hydrodynamic assist” (see, e.g, Blake et al. (1994, 2015)).

(v) Moreover, the GNBC can be understood as an inhomogeneous Robin condition for
the velocity. Hence, the GNBC enforces a flow whenever \d ≠ \e. In contrast to the standard
model, the GNBC model is able to describe the relaxation process of the contact angle.

3. Numerical Methods
3.1. The Volume-Of-Fluid method

The Volume-Of-Fluid (VOF) method for representing fluid interfaces coupled with a flow
solver is well-known to be suited for solving interfacial flows (see e.g. Scardovelli & Zaleski
(1999); Popinet & Zaleski (1999); Tryggvason et al. (2011); Marić et al. (2020)). We use
the free software Basilisk, a platform for the solution of partial differential equations on
adaptive Cartesian meshes (Popinet (2009, 2015, 2018)). For a two-phase flow, the volume
fraction 2(x, C) is defined as the integral of the first fluid’s characteristic function in the
control volume. The volume fraction 2(x, C) is used to define the density and viscosity in the
control volume according to

d(2) ≡ 2d1 + (1 − 2)d2,

`(2) ≡ 2`1 + (1 − 2)`2,
(3.1)

with d1, d2 and `1, `2 the densities and viscosities of the phase 1 and 2 respectively.
The advection equation for the density is then replaced by the equation for the volume fraction

mC2 + ∇ · (2v) = 0 (3.2)

The projectionmethod is used to solve the incompressible Navier-Stokes equations combined
with a Bell-Collela-Glaz advection scheme and a VOF method for interface tracking. The
resolution of the surface tension term is directly dependent on the accuracy of the curvature
calculation. The Height-Function methodology, described in Afkhami & Bussmann (2008,
2009), is a VOF-based technique for calculating interface normals and curvatures. About each
interface cell, fluid ‘heights’ are calculated by summing fluid volume in the grid direction

http://basilisk.fr/
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closest to the normal of the interface. In two dimensions, a 7 × 3 stencil around an interface
cell is constructed and the heights are evaluated by summing volume fractions horizontally

ℎ 9 =

:=8+3∑
:=8−3

2 9 ,: Δ, (3.3)

with 2 9 ,: the volume fraction and Δ the grid spacing. The heights are then used to compute
the interface normal nΣ and the curvature ^

nΣ = (ℎG ,−1),

^ =
ℎGG(

1 + ℎ2
G

)3/2 ,
(3.4)

where ℎG and ℎGG are discretized using second-order central differences. The orientation
of the interface, characterized by the contact angle – the angle between the normal to the
interface at the contact line and the normal to the solid boundary – is imposed in the contact
line cell. It is important to note that a numerical specification of the contact angle affects the
overall flow calculation in two ways:

(i) it defines the orientation of the interface reconstruction in cells that contain the contact
line;
(ii) it influences the calculation of the surface tension term by affecting the curvature

computed in cells at and near the contact line.
We now present the numerical implementation of the Generalized Navier Boundary Con-
dition as written in (2.14). The boundary condition is applied on the solid surface with a
smoothing function that takes into account the relative position along the boundary with
respect to the contact line

V(v‖ − UF ) + (SnmΩ)‖ + f ( G
Y
) f(cos \d − cos \e) nΓ = 0 on mΩ, (3.5)

with f
( G
Y

)
the discrete dirac function defined as

f
( G
Y

)
=

(
1 − tanh2

( G
Y

))
Y

. (3.6)

The boundary condition can be expressed as a inhomogeneous Robin boundary condition
for the parallel velocity v‖ , as outlined below

v‖ +
1
V
(SnmΩ)‖ = UF +

1
V

f ( G
Y
) f(cos \e − cos \d) nΓ on mΩ. (3.7)

We use the Robin boundary condition (slip) that was implemented in the same framework
in Fullana et al. (2020) and tested as a localized slip boundary condition in Lācis et al. (2020).
The difference lies now in the space dependent right-hand-side of (3.7). The uncompensated
Young’s stress, that only acts at the contact line through the discrete dirac function, needs to
be computed at each grid point.
The GNBC approach in this study stands out for its "free angle" method. Instead of setting

the dynamic angle \d, we reconstruct it from the interface geometry and use it as an input
parameter to calculate the right-hand side of (3.7). To impose such a consistent angle we
use the derived a relation between the numerical contact angle and an "apparent" angle, a
specific distance away from the wall, as shown in Fricke (2021). The numerical angle can be
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Figure 3: Extrapolation of the contact angle \d using the apparent angle \0 located 3/2 Δ
away from the wall.ℎ0 to ℎ2 denote the horizontal heights.

extrapolated using the following formula

\3 = \0 +
3
2
Δ
^

√
1 + (ℎH)2

sin(\0)
. (3.8)

Here, \3 represents the extrapolated angle, \0 is the apparent angle, Δ denotes the grid
spacing, ^ stands for curvature, and ℎH represents the first-order derivative of the height
function in the H direction (normal to the wall). Figure 3 provides a schematic illustration of
this extrapolation process. Once the extrapolated angle is computed, we enforce it through
height functions, similar to a regular contact angle. Algorithm 1 is a concise summary of the
two-step procedure to apply the "free angle" GNBC in the VOF framework.

Algorithm 1: Two-step "free angle" GNBC pseudo-code
for each boundary cell do

1. Locate the contact line cell
2. Locate the cell one grid point above the contact line
3. Compute the apparent angle \0 using the unit normal nΣ
4. Compute the first order derivative of the height function ℎG
5. Compute the interface curvature ^
6. Compute the extrapolated angle \d using (3.8)

end
7. Apply \d at the contact line through height functions
for each boundary cell do

8. Compute the right-hand-side of (3.7) using \d and \e
end
9. Apply the boundary condition for v‖ using (3.7)

3.2. Kinematic transport of the contact angle
We validate the angle extrapolation methodology presented in (3.8) through an analysis of
the kinematic transport of the contact angle in a simplified setup. Leveraging kinematic
considerations, Fricke (2021) derived an analytical solution for the transport of the contact
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angle and the curvature in the case of an incompressible flow. To validate the present approach
within the VOF framework, we conduct simulations of an oscillating disk in contact with the
domain boundary. These simulations are carried out for various grid sizes.
The setup involves a disk with a diameter � = 1 in a 2 × 2 domain, initially placed over a

static substrate with a contact angle of \0 = 90°. The velocity field across the entire domain
is defined as:

EG = 21 cos(cC)G + 22 cos(cC)H, (3.9)
EH = 21 cos(cC)H, (3.10)

Here, EG and EH represent the G and H components of the velocity, while 21 and 22 are
positive constants. We aim to validate the accuracy and reliability of the angle extrapolation
methodology under varying grid sizes, where we only consider the advection equation of the
color function (3.2).
The prescribed incompressible velocity field (3.9) will induce oscillations of the drop in

both vertical and horizontal directions. The angle formed at the contact line will be affected
by this motion and vary in time. From the relations derived in Fricke et al. (2020), we will
compare the observed numerical contact angle with the analytical one \0=, given by the
formula

\0= =
c

2
+ tan−1

(
−1

tan \0
42 21 ( + 21

2 22
42 21 ( − 1

)
, (3.11)

with

( =
sin(cC)
c

, (3.12)

and the numerical curvature with the analytical one ^0=, that can be expressed as the solution
of an ordinary differential equation

m^0=

mC
= −3 ^0= cos(cC) (21 cos2(\0=) − 22 cos(\0=) sin(\0=) − 21 sin2(\0=)), (3.13)

with the initial condition ^0 = 2/� = 2. We conduct two sets of simulations to evaluate
the method. In the first set, the contact angle remains constant at 90° (corresponding to
a default symmetric boundary condition for the color function), while in the second set,
we enforce the extrapolated angle. The simulations run until a final time ) = 10, and we
examine the convergence of the method with grid sizes varying from 16 to 128 points per
diameter. In Figure 4, we summarize the obtained results. The extracted contact angle shows
an increased accuracy and rapid convergence compared to the analytical solution, thanks to
the angle extrapolation methodology. Furthermore, the curvature is accurately transported in
this scenario, while it diverges in the case where the contact angle is fixed at 90°.

4. Results
We apply the numerical method for the flow-consistent Generalized Navier Boundary
Condition (GNBC) to the pulling plate setup, following the approach discussed in Section 1.
This setup is akin to the one investigated by Afkhami et al. (2018).
Figure 5 displays the results of a steady-state simulation using the present GNBC method.

The Figure is presented in the reference frame of the contact line, where the contact line
remains stationary while the left wall is pulled upwards. The velocity field relaxes, creating
a stagnation point at the contact line. Additionally, the streamlines reveal another stagnation
point formed above the interface in the lighter phase. It’s worth noting that the characteristics
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Figure 4: Validation of the angle extrapolation method. The plots depict various aspects
against dimensionless time, with the red color denoting the 90° case and blue indicating
the imposition of the extrapolation method. The shading from light to dark corresponds to
increasing points per diameter. (a) The transport of the contact angle reveals superior

convergence with the extrapolation method. (b) The error in the contact angle over time,
peaking when disk deformation is maximal. (c) Curvature transport over dimensionless
time, illustrating divergence in the 90° case and convergence towards the analytical

solution in the other scenario.

of this additional stagnation point depend on the viscosity ratio, although our primary focus
is not on this aspect.

4.1. Grid independency and transition to film entrainment
In the pulling plate setup, a distinctive characteristic is the presence of a de-wetting transition
capillary number Catr, marking the point beyond which liquid film entrainment occurs,
leading to an absence of a steady-state position for the contact line. Previous numerical results
byAfkhami et al. (2018) identified this transition capillary number, but it was grid-dependent.
Using the GNBC method, with Y resolved (ie. larger than the grid size Δ), we achieve a grid-
independent Catr. Figure 6 illustrates this, plotting the contact line position (representing
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U

Figure 5: Steady-state meniscus example for Ca = 0.1 using our GNBC method with
Y = 0.05. The Figure is in the contact line’s reference frame, where the left plate is pulled
up with*F =

√
Ca. The inset, a zoomed image depicting the flow field, highlights the

contact line as a stagnation point. Notably, there is an additional stagnation point in the
upper phase, as indicated by the streamlines. Both the GNBC delta function width and the

slip length are set to Y.

the fluid film height) over time. For Ca 6 0.12, a steady-state height is eventually reached;
however, for Ca = 0.14, the height continually increases. Thus, we determine that Catr for
this case is Ca = 0.13 ± 0.01. The influence of Young’s stress is evident when comparing
Figure 6a with Figure 6b. The Catr remains the same, but the steady-state heights exhibit a
slight decrease.
We now conduct a convergence study to demonstrate grid independence of the GNBC.

In Figure 7a, we present interface shapes for a fixed Ca = 0.12 and Y = 0.2 with varying
resolutions, showing apparent convergence. In Figure 8, we display the percentage error in
the contact line position for this case, revealing second-order convergence. This confirms that
our GNBC method achieves grid independence for steady-state height with a fixed Ca and
Y, including the Catr. As a comparison, Figure 7b illustrates a similar convergence study for
the no-slip case, presenting steady-state interface shapes for a fixed Ca = 0.04 and a constant
capillary length ;2 with varying grid sizes. Unlike the GNBC case, there is no convergence
in the steady-state height. Notably, for a grid resolution of ;2

Δ
= 200, the Ca = 0.04 surpasses

the transition point Catr. This aligns with the findings of Afkhami et al. (2018), emphasizing
the grid dependence of Catr in the no-slip scenario. Thus, our GNBC method has shown a
significant improvement by removing this grid dependence.
With our resolved GNBC, the parameters influencing Catr are Y and the equilibrium

contact angle (\4@), not the grid size. This aligns with expectations, as these are the only two
variables† considered, apart from fluid properties.
Figure 9 illustrates Catr as a function of Y and \4@ . A decrease in Y width and \4@

corresponds to a decrease in Catr. The dependence on the equilibrium contact angle is
notably linear. While this linearity may break at smaller angles, it’s important to note that our

† For simplicity, the ratio of the smoothed delta function width to the slip length is assumed to be 1.
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τS τS + τY

(a) (b)
Figure 6: Vertical height of the contact line as a function of time for different capillary
numbers Ca, presented separately for (a) shear stress only and (b) both Young stress and
shear stress. Steady-state heights are achieved, and a transition Catr is observed, beyond
which the liquid film rises continuously. In both (a) and (b), Catr = 0.13. Simulations are

conducted with Y = 0.05, \e = 90°, and a resolution of Y/Δ = 5.12.

solver, which employs only horizontal heights, faces limitations in handling angles smaller
than 30°.

4.2. Steady-state contact line dynamics: the GNBC smoothing signature
We demonstrate the full regularization of the contact line singularity achieved by our GNBC
method. Figure 10 presents the curvature as a function of the distance from the contact
line for various grid resolutions. The Navier slip model exhibits a logarithmic divergence in
curvature, consistent with the analytical findings of Devauchelle et al. (2007) and Kulkarni
et al. (2023). While the singularity in the Navier slip model is integrable and considered
’weak,’ it induces pressure singularities, rendering the slip model thermodynamically ill-
posed. In contrast, our GNBC method regularizes the logarithmically singular curvature at
the contact line (^ ∼ log A), establishing it as a thermodynamically well-posed model.
In their work, Fricke et al. (2019) demonstrated that assuming a �1 velocity field up to

the contact line allows the proof that, in the reference frame of the solid wall, the rate of
change of the contact angle scales with the shear stress at the contact line. Mathematically,
this implies ¤\d = mD

2mG . In steady state, where ¤\d = 0, the shear stress, denoted as mD
mG

, must
approach zero as one approaches the contact line. A non-zero mD

mG
would indicate a violation

of the smoothness assumption made by Fricke et al. (2019). This violation occurs in the
Navier slip model, where mD

mG
≠ 0 is necessary for contact line motion. In Figure 11, we

observe the behavior of shear stress for both Navier slip and GNBC in steady state. The shear
stress at the contact line converges to zero within the Y region for GNBC, aligning with the
expected smoothness of the flow field. However, for the Navier slip model, the shear stress
fails to converge to zero.
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(a) (b)

GNBC No-slip

Figure 7: Steady-state height and interface shapes near the contact line with varying grid
resolution for (a) GNBC and (b) No-slip. In (a), Ca = 0.12 and Y = 0.2 are fixed, showing

convergent interface shapes. In (b), fixed Ca = 0.04 reveals that due to implicit slip,
steady-state solutions are achievable even with a no-slip boundary condition. Interface
shapes do not converge with grid refinement, and no steady-state height is found at
resolutions higher than ;2

Δ
> 100. This emphasizes the grid independence in (a) with

GNBC, while (b) exhibits clear grid dependence.
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Figure 8: Percentage error in the contact line position for steady-state interface shapes
obtained in Figure 7a. The reference solution is taken at 164 grid points per slip length Y

Δ
,

and the dashed lines represent second-order and first-order convergence. It is observed
that above 20 grid points per Y, a second-order convergence is achieved.

Having demonstrated that the shear stress at the contact line is zero for GNBC in the steady
state, we proceed to compare the quasi-stationary state GNBC law (2.18) with our simulation
results in Figure 12. Remarkably, we observe an excellent agreement between the simulation
outcomes and the quasi-stationary GNBC law, particularly up to Ca < Catr. It is essential to
note that the behavior of Cacl = 5 (\s) in Figure 12, as per the quasi-stationary GNBC law
(2.15), is not explicitly imposed but is an outcome derived from our simulations.
Our GNBC smoothing is seen only inside the A < Y region meaning that the outer region
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Figure 9: Transition capillary number plotted against (a) Y and (b) \e. All simulations
incorporate both Young’s stress and shear stress, employing the flow-consistent

Generalized Navier Boundary Condition (GNBC). In (a), \e = 90°, and in (b), Y = 0.05.
The resolution for all simulations is maintained at Y

Δ
= 5.12.

Slip

GNBC

Figure 10: Curvature profiles relative to the radial distance from the contact line. The red
curves represent curvature under the Navier slip boundary condition (NBC), exhibiting a

logarithmic divergence. In contrast, the blue curves illustrate curvature under the
Generalized Navier Boundary Condition (GNBC), demonstrating convergence to a finite
value and eliminating the singularity present in the NBC. Simulations are conducted with
Ca = 0.08 and Y = 0.05. The equilibrium angle is \4 = 90°, and Δ denotes the grid size.
Various color intensities denote grid refinement, where lighter shades correspond to a

coarse mesh, and darker shades indicate a fine mesh.

solution and intermediate asymptotic remain the same and in line with those that are well-
known in the literature (Afkhami et al. 2018). Cox (1986) did an asymptotic expansion in
powers of Ca and showed that for any slip-like model, there exists an intermediate scale
where the interface bending behaves as per the following Cox-law

� (\3) − � (\ (A)) = −�0 log
A

Y
+ �0 00

5 (\3 , j)
+ O(�02). (4.1)
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Figure 11: (a) Wall shear stress mD
mG

in a steady-state simulation plotted against the vertical
position H. The dashed line corresponds to the Navier slip boundary condition, while the
solid line corresponds to the GNBC. Both curves largely overlap, except for a small region

shown in the zoom-ins for Navier slip and GNBC in (b) and (c) respectively. The
zoomed-in figures are normalized by the contact line position, where 0 on the x-axis

corresponds to the contact line position. Notably, for (c) GNBC, shear stress at the contact
line is zero, whereas it is not the case for (a) Navier slip. Simulations are conducted for

Ca = 0.08 with a fixed Y = 0.05 for varying grid sizes.

In above equation, � (\) is the Cox function which can be approximated as � (\) = \3

9 ,
\3 is the contact angle and \ (A) s the local angle measured at a distance A . Other parameters
include Y which is the slip length or any other microscopic length scale such that the inner
region physics is captured only inside A < Y. j is the viscosity ratio and 00 is a constant
obtained by matching to the outer solution. Afkhami et al. (2018) verified above law and
presented a wetting theory derived from the numerics where the Cox law (4.1) was written
as

� (\3) − � (\ (A)) = �0 log(A/ℓ<82) +Φ, (4.2)
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Figure 12: The behavior of the quasi-stationary value of \3 vs �0 is illustrated for various
\4@ and compared with the GNBC law (2.18). The solid lines represent the analytical
expression of the steady-state behavior expected from (2.18), while the dots depict

simulation results. Horizontal lines denote the Catr. Different colors represent various
\4@ , progressing from left to right (black to red) as 45°, 60°, 75°, 90°, and 120°,

respectively. An excellent agreement between simulations and the GNBC law (2.18) is
observed up to �0 < Catr.

where ℓ<82 is the microscopic length scale which in their paper was the grid size Δ and in
current work should be _. Φ is a gauge function which would be obtained numerically. The
reader is referred to the original work of Cox (1986) and the numerical work by Afkhami
et al. (2018) for the details.
We verify the existence of the region predicted by the (4.2) in figures 13 and 14. These

figures also show that the gauge function for the GNBC is always less than the gauge
function of the Navier slip. Based on the asymptotic matching section presented in the work
by Kulkarni et al. (2023), the intermediate region exists where the Cox solution and the inner
region solution are of similar order. The Cox law in theory gives us a family of curves in
the intermediate region. The final curve is then decided by matching the family to the inner
region. In the present case, this means that the matching happens at A = 2_ where 2 depends
on whether we use the slip boundary condition or the GNBC. A smaller value of Φ implies
that the GNBC smoothing influence region is stronger than the slip smoothing inner region.
That is 26=12 > 2B;8 ?. This is explicitly shown in Figure 15. We can identify the following
two regions, (a) an inner region present at A � 2_ and (b) an intermediate region A � 2_

where we see Cox bending. The matching happens when the two regions are of similar order
at A = 2_. Here 2 depends on the contact line model used.

4.3. The transient characteristics of the GNBC numerics
In the previous section, we demonstrated the steady-state smoothness achieved by GNBC.
Starting from a horizontal two-fluid interface at rest, we now compare the transient charac-
teristics of GNBC. A distinctive feature of our GNBC is that the contact angle is not fixed
a priori. Figure 16a illustrates the contact angle \3 as a function of time. It initiates from
an initial value of 90° and subsequently relaxes to a steady-state value different from 90°.
Although it eventually converges to a steady state, we observe some spurious oscillations in
the value of \3 . These oscillations increase with higher Ca, but their impact is limited as
their amplitude remains less than 0.5° and decreases with grid refinement.
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Figure 13: Comparison of the Cox law observed at an intermediate scale in our
simulations for GNBC (blue) and Navier slip (red). The vertical dashed line represents the
slip length _, which is equivalent to the GNBC width Y. The solid black lines follow the
Cox law (4.2), approximated as \3Δ − \3 (A) = 9�0 log A

_
+ 2. Here, \Δ is the contact

angle observed in the simulations at the contact line cell. The value of 2 is provided in the
plot for each case, with a smaller 2 observed for GNBC. \4@ = 90° for all simulations,

resulting in a constant \Δ = 90° for Navier slip and \Δ = \3 for GNBC. _ = 0.05, and the
resolution is Y

Δ
= 10 in all cases.
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Figure 14: An extension of Figure 13 for higher values of �0. All parameters remain the
same as in Figure 13, except for the �0 values. The matching with the Cox law starts to

deteriorate as �0 is increased, aligning with theoretical expectations.

In Figure16a, we observe an interesting trend when plotting \3 against Caloc, depicted in
Figure 16b. Here, Caloc signifies the contact line �0 in the lab frame. It starts from 0 as
everything is initially at rest and eventually converges back to 0 in a quasi-stationary state.
The transient behavior reveals that although we instantaneously set the solid velocity to*F ,
Caloc takes some time to reach its maximum velocity. The time required for this is given
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Figure 15: The Cox law matching to the inner region for GNBC and Navier slip. The Cox
solution becomes comparable to the inner region at a certain scale A = 2_. The value of 2
is 0.08 for Navier slip but is 0.25 for GNBC. The higher value of 2 indicates a stronger

influence from the inner region. Simulations are conducted for �0 = 0.08 and
Y = _ = 0.05. The resolution is A/Δ = 20 for both the slip and GNBC.
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Figure 16: (a) Evolution of the grid-scale dynamic contact angle \3 in the GNBC
simulation for various �0. The angle begins to deviate from the initial value of 90° and
eventually reaches a steady state. Around Catr, the angle exhibits oscillations over time.

(b) The relaxation plot on a \ − �0 plane. Here, Caloc represents the contact line capillary
number. Time progresses from right to left, and a maximum in Caloc is reached at CY = 1,

which corresponds to the slip length timescale (Y/*F ). After this point, Caloc starts
relaxing towards a steady state (Caloc = 0). Beyond Catr, Caloc reaches a minimum and

begins rising again. Simulations are the same as in Figure 6.

by the Y time, denoted as CY = Y/*F . This implies that CY acts as a relaxation timescale
stemming from contact line friction. A detailed examination of behavior for C < CY is beyond
the current study’s scope. Once Caloc reaches its maximum, it starts relaxing to the steady
state where Caloc = 0, and \3 adheres to the GNBC law shown in Figure 12.
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Figure 17: The relaxation plot on the Caloc-\ plane for GNBC (YS=1; slip=1), NBC
(YS=0; slip=1), and no-slip with Young stress (YS=1; slip=0). All the plots are done for

Ca = 0.04 and Y = 0.05. The grid resolution is reported in terms of Y/Δ, and color
intensity is increased to show higher resolution. The dashed black line represents the

GNBC law angle in the steady state. Time flows from right to left and aligns the curves.
Each curve set has its own characteristic feature. The blue (YS=1; slip=0) case rises

suddenly to Ca as expected and then relaxes to the steady-state value. In the steady state, it
converges to the GNBC law \3 . We also observe that the steady-state value converges
with grid refinement, and the spurious oscillations in the angle are reduced with grid

refinement. The green case (YS=0; slip=1) rises to max Caloc < Ca in the relaxation time
CY , then it converges to the constant value of 90° contact angle as the grid is refined. The
red case, GNBC (YS=1; slip=1), has characteristics of both of the former cases, that is,
rises to the max Caloc < Ca in CY and then relaxes to the GNBC law angle. Note that

GNBC (YS=1; slip=1) outperforms both the other cases even with a small refinement of
Y/Δ = 5, showing fewer spurious oscillations than NBC (YS=0; slip=1) and higher

accuracy in converging to the GNBC law angle than the only Young stress curve (YS=1;
slip=0).

In Figure 17, we illustrate the behavior of each term of the GNBC equation 3.7.We analyze
and present each outcome for three different boundary conditions:

(i) Navier slip with a constant contact angle \3 = \4, denoted (YS = 0; slip = 1)

v‖ +
1
V
(SnmΩ)‖ = UF on mΩ, (4.3)

(ii) No slip with uncompensated Young stress, with the "free angle" method (3.8), denoted
(YS = 1; slip = 0)

v‖ = UF +
1
V

f ( G
Y
) f(cos \e − cos \d) nΓ on mΩ, (4.4)
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(iii) Full GNBC as written in Equation (3.7) that combines contributions from both the
above cases, denoted (YS = 1; slip = 1).
We conduct simulations for each individual case (i), (ii), and (iii), and illustrate the behavior

of each term on a Caloc −\ plane in Figure 17. The timeline in this figure progresses from
right to left. For case (i) Navier slip (depicted by green curves), we observe that at C = 0
and \3 = 90°, when the interface is horizontal, Caloc is null. Then, Caloc suddenly rises to
a maximum value, which remains lower than the imposed Ca. This rapid rise occurs within
the relaxation time CY , where Y is the slip length. This behavior aligns with the discussion
in Figure 16b. Subsequently, the contact line relaxes to a steady state where Caloc returns to
zero. This relaxation is accompanied by spurious oscillations in the contact angle \3 . Ideally,
in this case, the system should relax to \3 = 90° throughout the motion and also in the steady
state (given that we impose a constant \3 = \4 = 90°), which is indeed observed as the
grid is refined. The final angle \3 converges to 90°, and spurious oscillations diminish with
increasing grid refinement.
In case (ii) No slip with Young’s stress (shown in blue curves), we notice an interesting

pattern. At the start (t=0), the simulation begins with Caloc = 0 and \3 = 90° at the lower
right of Figure 17. However, as soon as we advance in time, Caloc increases to a maximum
value equal to Ca, subsequently, starts relaxing to 0. With the presence of uncompensated
Young stress, it ideally should relax to the GNBC law angle indicated by the dashed line
in Figure 17. We observe that oscillations are decreasing with grid refinement and the final
angle value is converging towards the GNBC law angle.
In the case of (iii) with Full GNBC (depicted by red curves), we observe characteristics

from both (i) and (ii). Initially, both Caloc and \d start from zero. Subsequently, Caloc reaches
a maximum during the relaxation time and eventually relaxes to the GNBC law angle. The
notable advantage of the full GNBC is that even with a modest resolution of 5 grid points
per slip length, the spurious oscillations, compared to case (i) at the same resolution, are
significantly reduced. Moreover, the accuracy in relaxing towards the GNBC law angle
(dashed line) is substantially improved compared to case (ii). Further grid refinement leads
to a continued reduction in spurious oscillations and enhances accuracy in relaxing towards
the GNBC law.

5. Conclusion and Outlook
To summarize, we have developed an implementation of the Generalized Navier Boundary
Condition in a geometrical Volume-of-Fluid method. In this method, the dynamic contact
angle is not prescribed geometrically but is controlled by kinematics through the velocity
boundary condition. This is achieved by reconstructing the contact angle at the boundary
using the interface normal and the curvature one cell layer away from the boundary. We
validate the resulting “free angle methodology” by studying the interface advection problem
in the presence of a moving contact line in Section 3.2. In the present approach, the
uncompensated Young stress is distributed over a characteristic width Y which is defined
independently of the mesh size. Using the kinematic evolution equation of the dynamic
contact angle (1.4), we show rigorously that the solution obeys the “GNBC law” (2.17), if
the solution has a C1-regularity up to the contact line. Indeed, we show in Section 4 that
the weak singularity at the contact line is removed in the GNBC model with finite Y. We
find a mesh-converging curvature at the contact line (see Fig. 10) and the numerical solution
satisfies the GNBC law in a quasi-stationary state (i.e. for ¤\d = 0). These results are consistent
with the recent findings of Kulkarni et al. (2023) who showed that this model indeed shows
a local C2-regularity at the contact line. As expected from kinematics, the tangential stress
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component goes to zero at the contact line in quasi-stationary states (see Fig. 11). In this
sense, we observe perfect apparent slip at the moving contact line.

5.1. Outlook: A non-linear generalization of the GNBC
As discussed in detail in Section 2.2, the GNBC in the form

−V(v‖ − UF ) = (SnmΩ)‖ + f(cos \d − cos \e) nΓXΓ on mΩ (5.1)

is obtained as a linear closure relation, to render the dissipation integral

T =
∫
mΩ

(
(SnmΩ)‖ + f(cos \d − cos \e) nΓXΓ

)
· (v‖ − UF ) 3�. (5.2)

non-positiv. Since, according to kinematics, the viscous stress contribution vanishes in a
quasi-stationary state, we obtain the dynamic contact angle relation

−Z*cl = f(cos \d − cos \e) (5.3)

with the contact line friction coefficient Z = VY. Notably, equation (5.3) is also found in the
Molecular Kinetic Theory (MKT) in the limit of low capillary number (see, e.g., Blake et al.
(2015)). However, for higher capillary numbers, the MKT predicts that†

*cl = 2^0_ sinh [f (cos \e − cos \d) /(2=:�))] . (5.4)

Therefore, it is interesting to think about a possible closure relation for (5.2) that will
lead to the relation (5.4) in quasi-stationary states. Notice that (5.4) can be linearized for
*cl → 0 using sinh(G) = G + O(G3). Hence, the contact line friction coefficient is identified
as Z = (=:�))/(^0_).

For simplicity, let us assume that UF = 0 in the following (the generalization to UF ≠ 0
is obvious). To proceed, it is useful to decompose the integral in (5.2) into its components
normal and tangential to the contact line, using the decomposition

v‖ = nΓ(v‖ · nΓ) + tΓ(v‖ · tΓ).

Here, we denote by tΓ the tangent vector to the contact line. We obtain the representation

T = T⊥ + T‖ (5.5)

with

T‖ =
∫
mΩ

(
tΓ · (SnmΩ)‖

)
(tΓ · v‖) 3�

and

T⊥ =
∫
mΩ

(
nΓ · (SnmΩ)‖ + f(cos \d − cos \e) XΓ

)
(nΓ · v‖) 3�. (5.6)

We are now looking for closure relations to ensure that T⊥ 6 0 and T‖ 6 0. Motivated by
(5.4), we may choose

v‖ · nΓ = 0 sinh
(−nΓ · (SnmΩ)‖ + f(cos \e − cos \d) XΓ

1

)
(5.7)

† In this case, the average distance and equilibrium frequency of molecular jumps are denoted by _ and
^0, respectively. Moreover, = is the number of adsorption sites per unit area, :� is the Boltzmann constant
and ) is the absolute temperature; see Blake et al. (2015) for more details.
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with positive constants 0 = 2^0_ and 1 = 2=:�) . This closure is consistent with the entropy
principle because

0G sinh(−G/1) 6 0 for all G ∈ R
if 0, 1 > 0. Clearly, Equation (5.7) reduces to the original GNBC (5.1) with V = 1/0 if
v‖ · nΓ → 0. Since it corresponds to the MKT (5.4) for quasi-stationary states, it may
improve the standard GNBC model for higher values of the capillary number. This shall be
studied in detail in the future.
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