
A beginner’s guide to Linux

Ian Rutt

1 Introduction

The Linux operating system is probably the best environment for serious scientific computing.
The way it functions will seem unfamiliar if you have not encountered it before, but it is not
hard to learn, and can be quickly harnessed in powerful ways.

Although Linux sports a graphical (Windows-like) user interface, we will be focusing on
the Command-Line Interface, where the computer is controlled by issuing commands at a
text prompt. We will cover basic commands for handling files and directories, as well as
commands that are useful for data-processing. This document is a tutorial on using Linux,
and a basic reference for the techniques we’ll be covering; the practical sessions will provide
an opportunity to practice them.

UNIX and/or Linux?
You’ll often hear people use the terms UNIX and Linux interchangeably. UNIX is a type
of proprietary/commercial operating system (OS) which has enjoyed widespread use
since the mid-1980s. Linux is a UNIX-like OS which is built of free software components:
the Linux kernel originally developed by Linus Torvalds in 1991, and the software of
the GNU project. There are differences between UNIX and Linux, but from the user’s
point of view, they are slight.

2 The File system

Before we start looking at issuing commands, it’s worth getting an overview of the way the
Linux system is organised. As with any computer system, files are an important part of it.
Just as in Windows, a file can contain text, data, a program or whatever. These can be
organised by collecting them into directories (called folders in Windows), which can exist
inside one another, in a tree-like structure. Figure 1 shows a sample file system: the root

directory, denoted ‘/’ contains four directories, dir1 to dir4, one of which contains other
directories. The location of a file or directory is written as the sequence of directories that
contain it, separated by forward-slashes, so that the location of directory bob in Figure 1
would be written:

/dir2/jim/bob

This expression is known as the absolute path of bob. By contrast, a path expressed without
the leading slash is a relative path, i.e. it is taken in relation to the current directory.

1

/

dir1 dir3dir2 dir4

fred jim

bob

Figure 1: Linux file system

Three other symbols can be used in paths. The current directory is denoted by a single dot
(.), the next directory up by two dots (..), and the user’s home directory by a tilde (~).
For example, if your current directory is fred in Figure 1, you can refer to /dir2/jim/bob

as ../jim/bob.

3 The Command-Line Interface (a.k.a. the Shell)

At the heart of the Linux system is the kernel, which runs constantly in the background,
managing programs which are running, hardware, input and output, and all those things
that most people don’t want to have to worry about when using a computer. To allow the
user to interact with the system, a command-line interface is provided, which is called the
shell because it acts like a layer between the user and the kernel.

There are various shells available for Linux, but the most commonly-used one is called bash1.
The shell is actually a sophisticated programming language, and can be effectively used to
automate processes and control other programs.

3.1 Using bash

When you open a Linux terminal or console, you’ll typically be presented with a prompt
that looks something like this (the exact form depends on the system configuration — like
almost everything else in Linux, the prompt can be customized):

[user@machine ~]$

This is where your commands appear when you type them. Try it now: the Linux command
ls lists the contents of the current directory (this output is just an example - yours will look
different!).

1The name is a pun, the details of which are not important. . .

2

[user@machine ~]$ ls

AdminDocs bin bookmarks.html Desktop

Additional options can be added to a command, usually by using a minus sign; the -l option
produces a long listing, with details about files sizes, etc:

[user@machine ~]$ ls -l

total 504

drwx------ 2 irutt staff 4096 Aug 9 10:40 AdminDocs

drwx------ 3 irutt staff 4096 Jun 18 12:39 bin

-rw------- 1 irutt staff 489658 Mar 2 2007 bookmarks.html

drwx------ 2 irutt staff 4096 Sep 13 16:20 Desktop

Various extra pieces of information are shown, in addition to the filenames, including the
owner of the file, its size, and who is allowed to access it.

Commands may also take arguments, such as the names of files that to be operated on.
Arguments usually go at the end of the command, after the options. The ls command can
take the name of a file or directory as its argument:

[user@machine ~]$ ls -l bin

This generates a long listing of the bin directory.

3.2 Navigating the file system

You can find out your current path using the command pwd:

[user@machine ~]$ pwd

/geog/home/user

You can change your location in the file system using the cd command (= change direc-

tory):

[user@machine ~]$ cd my_directory

[user@machine my_directory]$ pwd

/geog/home/user/my_directory

Now, the working directory is ~/my_directory, and the prompt has changed to reflect
this.

The final set of basic commands needed for navigating the file system are for copying, moving
and deleting files, and for creating and destroying directories. The basic forms of these
commands are:

cp file1 file2 Copies file1 to file2. If file2 already exists, it is overwritten.
mv file1 file2 Moves file1 to file2. If file2 already exists, it is overwritten.
rm file Removes file.
mkdir dir Creates directory dir.
rmdir dir Removes directory dir, which must be empty.

3

3.3 Wildcards and operations on multiple files

When using some of the file commands given above, it is useful to specify multiple files easily.
For instance, we might want to move all files ending .txt to their own directory:

[user@machine ~]$ mkdir text_files

[user@machine ~]$ mv *.txt text_files

What we have here is a form of the mv command that takes multiple files and moves them
to a target directory. The first argument is a pattern that matches multiple filenames; the
‘*’ is a wildcard that matches any text, so that *.txt matches filenames that consist of any
text, followed by .txt — i.e. filenames that end in .txt.

Other wildcards are available — this is the full list:

Wildcard Matches

* zero or more characters
? exactly one character
[abcde] exactly one character listed
[a-e] exactly one character in the given range
[!abcde] any character that is not listed
[!a-e] any character that is not in the given range
{debian,linux} exactly one entire word in the options given

As you can see, it is possible to construct very sophisticated expressions for multiple file-
names.

Take care with wildcards!
Obviously, careless use of wildcards can result in the unintended loss of important data.
For instance, an accidental additional space can transform a command to delete files
ending in .txt (rm *.txt) into one that deletes all files in the current directory (rm *

.txt). One way of guarding against this is to use the -i option with rm, cp and mv:
it makes these commands prompt for confirmation for each file that is to be deleted or
overwritten. On some systems, these commands are configured to behave like this by
default.

3.4 Finding out about commands

Most Linux commands have a large number of options that can be used to change their
behaviour. For instance, the ls command has dozens of options that control the content
and format of the output. But how do you find out what the options are? Obviously, a good
reference book is very useful, but it can be as quick to use Linux’s built-in manual pages.
These can be accessed using the man command:

[user@machine ~]$ man ls

This will open a reference page for the command in your terminal window. Press space to
go down the page, b to go back up, h for help, and q to quit and return to the command-
line.

You’ll notice from the manual pages for ls that some options have long forms, beginning
with two dashes (e.g. --recursive is equivalent to -R). Also, it is possible to combine short

4

options together in a single option. For instance,

[user@machine ~]$ ls -laF ~

displays the contents of the user’s home directory, in long format, including files and direc-
tories whose names begin with a dot, and adds additional characters at the end of filenames
to distinguish directories (‘/’) and executables (‘*’). These options are all described on the
ls manual pages.

3.5 Pipes, redirects and command quoting

One of the most useful aspects of the Linux command-line is the ability to take the output
of a command and use it as the input to another command. There are three ways of doing
this: pipes, redirects and command quoting.

3.5.1 Pipes

A pipe is a way of allowing the output of one command to be used directly as the input
to another command. Some commands take input from the keyboard; using a pipe, we can
make them take input from another command instead.

Here’s an example. The grep command is a very useful tool for searching through text to
find parts that match a desired pattern; the syntax is grep pattern . Try it at the command
line now, with a simple search pattern:

[user@machine ~]$ grep at

Here, ‘at ’ is the search pattern. Having pressed enter, you’re left (rather perplexingly) with
a flashing cursor, and not much else. Type some text — it doesn’t matter what — and press
enter at the end of each line (press ctrl -C to return to the prompt when you get bored). What
you should notice is that when the line you typed contained the letters ‘at’, the computer
repeated them back to you.

This may not seem much use, but when the input is from another command (perhaps one
that produces a lot of output), grep is very powerful. Here’s how it’s done:

[user@machine ~]$ ls -a ~ | grep "^\."

The first part is a command (ls -a ~) lists the names of all files and directories in your home
directory. The vertical line (‘|’) is the pipe, which feeds that list into the command that
follows (grep "^\."). The search pattern given here, contained in quotation marks, matches
lines that begin with a dot (why it matches that isn’t important to us at the moment). As
a consequence, a list of just those files and directories whose names begin with a dot are
output to the screen. And if the list is too long, you can always pipe the output to less,
which allows you to move through it a page at a time (q to quit):

[user@machine ~]$ ls -a ~ | grep "^\." | less

One thing that’s important to understand about pipes is that feeding the output of one
command into the input of another is not the same as using the output from the command
as the arguments to another. What this means is that this command

5

[user@machine ~]$ ls | rm

will not delete all files listed by ls (obviously, you would use rm * to accomplish this task
in reality). The mechanism needed for doing this is explained below.

3.5.2 Redirects

Often, it is desirable to write the output of a command to a file, or to supply the input of a
command from a file. This can be achieved using a redirect. The simplest redirect uses the
‘>’ operator:

[user@machine ~]$ ls > my_files

The result is a file that contains the output from ls. Use less to look at it:

[user@machine ~]$ less my_files

If you want to write the output to the end of a file that already exists (to append to it), this
is done with the ‘>>’ operator:

[user@machine ~]$ ls >> my_files

Now, if you look at the contents of my files, you’ll see the output from ls twice over.

Now, in reality, the output from a command comes in two streams, known as standard output

and standard error. Up until this point, we’ve been concentrating on the standard output
— the output of a command that has completed successfully. However, commands can also
produce error messages, and these are handled separately. Try this:

[user@machine ~]$ rm > test

What happened? Does your file test contain anything? What happened here was that an
error message was produced, and was sent via standard error to the screen. The redirect
operator ‘>’ only redirects the standard output, leaving error messages to be passed to
the screen. Sometimes this is what you want, but it might be advantageous to send error
messages to the same file, or a different one. To do this, file descriptor notation must be
used. You can do a lot with this, but I’ll just mention two possibilities. To redirect standard
error to a different file from standard output, use ‘2>’:

[user@machine ~]$ rm > test 2> errors

And to redirect the standard error to the same place as the standard output, use ‘2>&1’:

[user@machine ~]$ rm > test 2>&1

The other type of redirect that is of interest to us allows the supply of run-time input from
a file (this is called standard input), and uses the ‘<’ operator:

[user@machine ~]$ grep too < test

Here, the contents of file test are used as the input for grep, and lines that match ’too’ are
output2. This technique is particularly useful if you have some model code that prompts the

2This is a somewhat contrived example, as grep will also take a filename as an argument: grep too test

accomplishes the same thing

6

user for input: instead of having to type in the parameters each time the model is run, you
can put them in a text file and use redirection.

3.5.3 Command quoting

In the section on pipes, it was noted that they cannot be used to allow one command
to supply the arguments to another command. The way to make this happen is to use
command quoting. Bash understands three types of quotation marks: ’ (single-quotes), "
(double-quotes), and ‘ (backward-quotes). Each has a different use, and it is the last of the
three that is used for command quoting3. To replace a command with its output, all you
need to do is enclose it in backwards quotes:

[user@machine ~]$ rm ‘ls *.txt‘

The result of this command is the deletion of all files ending in ‘.txt’ (OK, this is a trivial
example, but it illustrates the principle — the command ls *.txt is replaced here by its
output. You’ll be surprised how useful this is!).

4 Environment variables

I’m sure you’re familiar with the concept of a variable — an entity that holds a value, which
can be changed as time goes by. An environment variable is simply a variable that exists
in the Linux command-line, and can be read and written by programs that are run from
that command-line. There are several reasons why you might need to set or examine the
contents of an environment variable; some commands use them to determine where to look
for particular files, for instance. Most environment variables are set automatically when you
log in, but sometimes it is necessary to adjust them yourself.

Environment variables names are almost invariably composed entirely of uppercase letters.
Accessing their contents is straightforward:

[user@machine ~]$ echo $PWD

/geog/home/user

The dollar ($) indicates that what follows is a variable name, rather than plain text. We
use the echo command to ‘echo’ the contents of the variable to the screen. As you can
see, the environment variable $PWD contains the current path, as returned by the command
pwd.

To set an environment variable, we use the bash command export:

[user@machine ~]$ export MY_VARIABLE=a_value_of_some_kind

Note that we do not put a dollar before the variable name. If we did, the shell would try and
substitute the name with the contents of the variable, which isn’t what we want4. Of course,

3The backward quote is usually found to the left of the number one on a standard keyboard.
4You should also be aware that this is one thing that other UNIX/Linux shells do differently. The C shell

(csh) uses the setenv command, with a space between the variable name and its contents rather than an
equals sign.

7

you can’t just set any old environment variable; in particular, strange and unpredictable
things will happen if you set a variable like $PWD which is set by the system.

Probably the most useful environment variable to know about is $PATH, which is a list of
directories that the system searches when looking for commands. You can see what’s in your
PATH using echo, as above.

You’ll notice that the directories are separated by colons. This means that if you need to
add a new directory to the list, you can just tag it on the end:

[user@machine ~]$ export PATH=$PATH:/my_directory

The presence of the dollar before the second mention of PATH is because in this case we do

want the shell to substitute the current contents of the variable. A word of caution: it’s
generally considered to be bad practice to add the current directory (.) to the PATH, for
security reasons. If you need to execute a command located in your working directory, but
not in your path, then prefix the filename with ‘./’.

5 Processes

Linux is multitasking operating system; that is, it’s capable of doing more than one thing
at a time. To keep track of everything that’s going on, the system organises the tasks it’s
doing into units of activity called processes. You can think of a process as a running program.
What might come as a surprise is the number of processes that are running even when you’re
not doing anything. The ps command outputs a list of processes:

[user@machine ~]$ ps -A

This delivers a list of all running processes, each with its process identification number (PID)
on the left-hand side, and with the name of the process on the right. Like other commands,
ps can take a long list of different options to control the processes listed and the format
of the output. Without any options, only the processes started from within your current
terminal window are listed.

5.1 Running processes in the background

When you run a simple command like ls, it’s fine to wait while it runs, and get the prompt
back when it finishes. However, often you’ll want to set a program running, and carry on
using the terminal while it runs. This is particularly true of programs that spawn their own
windows, such as file editors or viewers. Here’s how to run the popular text editor emacs in
the background:

[user@machine ~]$ emacs &

That’s all there is to it: just add an ampersand (&) at the end of the line. (Close emacs’s
window to quit).

Sometimes you’ll have started to run a program in the foreground, and then want to move
it to the background. This is easy too: type ctrl -Z to stop the program temporarily, fol-
lowed by the command bg (= background). The program will then continue to run in the
background:

8

[user@machine ~]$ emacs

(press ctrl -Z)

[3]+ Stopped emacs

[user@machine ~]$ bg

[3]+ emacs &

You’ll notice that after you press ctrl -Z, emacs becomes completely inert, until you restart
it in the background.

5.2 Leaving processes running when you log out

Often, a numerical model or data-processing routine will take a long time to run — hours or
perhaps days. It can be inconvenient (not to say risky) to just launch these commands from
the prompt and leave them running. If you log out, or even just close the window where the
command is running (even one that’s running in the background), it will terminate. And of
course, if you’re logged into the machine from elsewhere, the connection could fail for some
reason, and you’d have to start again.

To avoid these problems, it’s good to start long-running processes using the nohup command
(= no hang-up). Since you won’t be able to look at all the output from the command on the
screen, it’s useful to use a redirect:

[user@machine ~]$ nohup my_model arg1 arg2 > my_output 2>&1 &

Here, my model is the command you’re running; arg1 and arg2 are the arguments taken by
the command, and my output is where the standard output and standard error are being
redirected.

5.3 Managing processes

OK, so you’ve started your model running using nohup, but then you realize that you’ve
made a mistake with the input parameters, which you need to rectify. But how do you stop
the model? Pressing ctrl -C or even logging out won’t work — what you need to do instead
is to kill the relevant process.

The first step is to discover your model’s process number. This is simple enough: we just
use ps:

[user@machine ~]$ ps -u user

The -u user option selects processes belonging to the given user — obviously you would
substitute your own username here. The command returns a long list of processes. We look
for our model in the list of running processes:

9795 ? 00:00:17 my_model

And then we kill it (using the kill command: the use of -9 ensures the process is well and
truly dead):

[user@machine ~]$ kill -9 9795

9

Another useful tool for process management is top. This provides and interactive, continually
updated view of the most processor-intensive running processes. You can use it to check
whether your model is running properly, see whether other things are slowing your machine
down, and discover how long a process has been running for (among many other things).
The command doesn’t need any arguments: it’s simply top.

Here’s some sample output from top:

top - 14:04:42 up 16 days, 3:27, 4 users, load average: 0.11, 0.13, 0.09

Tasks: 132 total, 2 running, 130 sleeping, 0 stopped, 0 zombie

Cpu(s): 26.0% us, 0.3% sy, 0.0% ni, 71.9% id, 1.7% wa, 0.1% hi, 0.1% si

Mem: 3838400k total, 3703712k used, 134688k free, 57236k buffers

Swap: 2040212k total, 224k used, 2039988k free, 3049276k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

20383 irutt 25 0 210m 13m 1576 R 100 0.4 0:04.25 genie.exe

9917 irutt 16 0 164m 20m 8724 S 2 0.5 0:05.60 gnome-terminal

5641 root 16 0 184m 134m 8052 S 1 3.6 16:04.60 X

562 root 15 0 0 0 0 S 0 0.0 0:09.94 kjournald

11488 irutt 16 0 295m 72m 21m S 0 1.9 0:29.86 firefox-bin

1 root 16 0 4756 556 460 S 0 0.0 0:01.27 init

2 root RT 0 0 0 0 S 0 0.0 0:00.15 migration/0

3 root 34 19 0 0 0 S 0 0.0 0:00.01 ksoftirqd/0

4 root RT 0 0 0 0 S 0 0.0 0:00.16 migration/1

5 root 34 19 0 0 0 S 0 0.0 0:00.02 ksoftirqd/1

6 root RT 0 0 0 0 S 0 0.0 0:00.11 migration/2

From this, we can learn that I’m running something called genie.exe5, which is using 100%
of one CPU, and has so far consumed 4.25 seconds of CPU time. Type q to quit top.

6 Utility Command Reference

This section is intended to give you a manageable overview of a small number of the most
useful commands available on the average Linux system. Neither the list nor the descriptions
of the commands are at all comprehensive, but they should give you an idea where to start.
For a complete description, you should turn to the man pages on your system, or to a reference
book (see bibliography).

6.1 Looking at the contents of files

There are various ways to look at the contents of text files. The simplest are cat, more,
less and tail:

5GENIE is an Earth System model

10

cat cat file

Outputs the contents of file to the screen.

more more file

Outputs the contents of file to the screen, a page at a time

less less file

A more sophisticated version of more. However, the advantage
of more is that the text generally remains on the screen after
more exits, whereas with less it does not.

tail tail file

Displays the last ten lines of file to the screen. Can be made
to display more or less using the -n number option. There
is also a corresponding command called head (no prizes for
guessing. . .)

6.2 Comparing two text files

The key command here is the imaginatively-named diff, which takes the names of two files
as arguments, and outputs any differences it finds. This is most useful when the two files
can be expected to differ only slightly, or not at all.

6.3 Compressing and archiving files

Given the potential size of some data files, it can be useful to compress them, where possible.
If you only have a single file you want to compress, you can use gzip:

[user@machine ~]$ gzip my_file

This will produce a compressed file called my file.gz, and remove the original, uncom-
pressed file. To restore the file to uncompressed state, simply use gunzip:

[user@machine ~]$ gunzip my_file.gz

With that, your original file is restored. Using the -v option with either command results in
information being output to the screen about the compression/decompression process.

If you have more than one file that needs archiving/compressing, the tar command is your
friend. The syntax is a bit obscure (tar is a venerable command that dates back to the days
when data was routinely archived on tape), but entirely manageable when you get used to
it. The first argument after the command is a series of letters that specify the operation to
be performed:

11

List of tar options

x extract files
c create an archive
t list files in an archive
v be verbose (i.e. print lots of output)
z use file compression
f the following argument is the name of the archive file

Obviously, it doesn’t make sense to specify more than one of x, c and t at a time. So,
to archive the contents of my dir to a compressed archive, this is the command you would
typically use:

[user@machine ~]$ tar czvf my_dir.tar.gz my_dir

The suffix .tar.gz is conventional for the resulting archive files. To uncompress the direc-
tory, the procedure is very similar:

[user@machine ~]$ tar xzvf my_dir.tar.gz

Care must be taken to make sure this operation doesn’t overwrite any pre-existing files
located target directory

6.4 Editing files

As mentioned previously, emacs is a popular and very versatile editor, available on almost
all Linux systems. One of its great advantages is that it has many built-in highlighting and
indentation modes for use with different programming languages. For example, Fortran code
is automatically coloured to reflect its syntax, and the TAB key can be used to auto-complete
do-loops and if-blocks.

Emacs is a sophisticated program, and has a built-in version of the LISP programming lan-
guage, in addition to many useful text-editing tools. If you want to learn how to use it
effectively, consulting one of the many books or websites devoted to the subject is essen-
tial.

For the more adventurous, and especially when in a situation where emacs is unavailable,
the standard Linux editor is called vi. Explaining how to use vi is definitely beyond the
scope of this document!

6.5 Printing

Printing is one of those things that varies somewhat between Linux systems; over the years,
there have been many ways of handling printing in UNIX and Linux, and so there is perhaps
more variation between systems than in other matters. So, here we will cover one of the
most common printing frameworks, the Common Unix Print System (CUPS). Most of these
commands should work on most Linux systems.

First, you need to find out what printers are attached to your system, and what they’re
called. The main command for discovering information about printers is lpstat:

[user@machine ~]$ lpstat -p -d

12

This combination of options returns a list of currently available printers and also gives the
name of the default printer. On my system, I get this output:

printer GlaciologyMono is idle. enabled since Jan 01 00:00

system default destination: GlaciologyMono

So, I have only one printer available (called GlaciologyMono), which is the default.

The basic file format for printing in the UNIX/Linux is Postscript (files generally end in .ps).
Postscript was devised by Adobe, and is in some respects similar to their popular Portable

Document Format (PDF). Postscript files may be printed directly to a printer using the lpr

command:

[user@machine ~]$ lpr -P GlaciologyMono my_file.ps

The -P option is used to specify the destination printer: if it is omitted, the default printer
is used.

Without any options, lpstat can be used to discover information about what print jobs are
being processed:

[user@machine ~]$ lpstat

GlaciologyMono-270 irutt 20480 Thu 04 Oct 2007 12:00:26 BST

Only the user’s own print jobs are displayed. To cancel a job, the cancel command is used,
along with the job ID:

[user@machine ~]$ cancel GlaciologyMono-270

One very useful command that can be used to print plain text files is called a2ps (the name
is shorthand for ASCII-to-Postscript). This command will format text in a sensible way, and
convert to Postscript format. The number of columns, page orientation, font size, etc, can
be specified using options. Usually, a2ps is configured to send its output direct to the default
printer, but this can also be changed: see the relevant manual pages for details.

6.6 Accessing remote systems

It is often useful to be able to access other computer systems from the Linux command-line.
Two basic methods exist: ssh allows you to log onto another computer and give it commands
through the shell as though you were physically sitting in front of it, while sftp allows you to
transfer files to and from another computer. In both cases, the initial ‘s’ stands for ‘secure’
— the connections are encrypted.

Using ssh (Secure Shell) to access another computer is simple:

[user@machine ~]$ ssh -X username@remotemachine.somewhere.ac.uk

Here, remotemachine.somewhere.ac.uk is the computer you want to log into, and username

is your username on that machine. The -X option allows software running on the remote
machine to display windows on your display. You’ll be prompted to enter your password, of
course.

Transferring files is done using sftp (Secure File Transfer Protocol), and the syntax is very
similar:

13

[user@machine ~]$ sftp username@remotemachine.somewhere.ac.uk

After entering your password, you’re presented with a prompt that accepts a number of
simple commands:

List of selected sftp commands

put copy a file from local to remote machine
get copy a file from remote to local machine
cd change current directory on remote machine
lcd change current directory on local machine
ls list files in current directory on remote machine
lls list files in current directory on local machine
rm delete file on remote machine
rename rename a file on the remote machine
help display help text
exit quit sftp

One thing to note is that the put and get commands only act on one file at a time, so if
you want to transfer large numbers of files, it is more efficient to use tar to make an archive
of the files and transfer that.

Another useful command that can be used for file transfer is scp (Secure Copy). See its
manual pages for more information.

7 Customizing Linux

One thing almost all regular users of Linux do is to customize the way Linux, and especially
bash, behaves when they log in. There are several hidden files located in your home directory
(they’re hidden because they begin with a dot, so don’t show up unless you do ls -a). The
most useful is probably .bashrc, which consists of a list of commands to be executed when
bash is started.

Among the tasks you can perform by adding lines to .bashrc are these:

• Customize the prompt — for instance, to display the whole path, of just part of it, or
not at all.

• Set extra search directories in the PATH.

• Set rm, cp and mv to prompt for deletions by default.

The last of these is accomplished by adding the following three lines to .bashrc:

alias rm=’rm -i’

alias mv=’mv -i’

alias cp=’cp -i’

14

Selected bibliography6

Barrett DJ (2004) Linux Pocket Guide, O’Reilly.

Cameron D, Elliot J and Loy M (2004) Learning GNU Emacs, O’Reilly.

Siever E, Weber A, Figgins S, Love R and Robbins A (2005) Linux in a Nutshell, 5th Ed.,
O’Reilly.

6Despite appearances, I wasn’t in the pay of O’Reilly when I compiled this list.

15

