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Abstract

Artificial intelligence (AI) offers innovative approaches for the estimation of protein structures and protein-

protein interactions. Notably, scientists have successfully employed AI to swiftly estimate novel SARS-CoV-2

viral proteins and their binding affinities to neutralizing antibodies mere hours after the discovery of new variants.

Regrettably, the process of estimating protein structures and their affinities with neutralizing antibodies has not

yet been fully automated, necessitating the expertise of skilled practitioners for execution. In this endeavor,

we embark on the automation of this process while enhancing its user-friendliness. The instrumental tools

employed encompass cutting-edge protein structure prediction algorithms (specifically, AlphaFold2), precise

protein binding estimators (HADDOCK), and sophisticated software for parsing, editing, and visualizing three-

dimensional protein structures (ChimeraX). This endeavor will serve as a cornerstone in the development of

a pipeline utilizing Bash and Python3. By doing so, we concurrently reduce processing time, thereby enabling

more expeditious predictions. To showcase the efficacy of our newly automated pipeline, we conduct an in-depth

investigation of select SARS-CoV-2 viral proteins (variants XBB.1.5, BJ.1, BM1.1.1, and B.1.1.529) and human-

neutralizing antibodies (AZD1061, AZD8895, 58G6, C110, CV38-142, LY-CoV-1404, LY-CoV-555, P5C3, EY6A,

and COVOX-150).
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1. Introduction

BACKGROUND–In late November 2022, the United

States Centers for Diseases Control began tracking a new

SARS-CoV-2 variant named XBB.1.5, which accounted for

about 3% of infections at the time. By January 2023,

XBB.1.5 had grown to represent 30% of all infections [1].

This variant is characterized by 40 mutations in the Spike

protein (S), with 22 occurring in the receptor binding do-

main (RBD) [2]. It has been proposed that XBB.1.5 is a

recombinant strain of the virus from BJ.1 and BM.1.1.1, but

alternative explanations, such as convergent evolution, are

also being considered [3], [4], [5], [6]. Ford et al. [7] inves-

tigated XBB.1.5 and related variants (B.1.1.529, BJ.1, and

BM.1.1) using in silico modeling to predict Spike protein

structures and their ability to escape neutralizing antibod-

ies. By predicting these binding affinities, they could deter-
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mine whether new variants would respond well to current

treatments and vaccines.

AIMS–Our goal is to reproduce the study by Ford et al.

[7], corroborate their findings, and produce a more granular

documentation of their methodology to facilitate automa-

tion. To do that, we followed the original study with a few

modifications. In the original study, the AI tools used were

HADDOCK (version 2.2/2.4) [8], [9], PRODIGY [10], [11],

AlphaFold2 (ColabFold-mmseqs2 version) [12], RoseTTAfold

[13], [14], and PyMOL (version 1.8) [15]. In the current study,

we used a different version of HADDOCK (version 2.4) [8, 9],

incorporated ChimeraX (version 1.6.1) [16], and executed Al-

phaFold2 via two Google Colabs (ColabFold-mmseq2 and

AlphaFold colab) [17, 12, 18]. The detailed protocols are in

“Methods and Materials” below.

2. Methods and Materials

DATA–Selected nucleotide sequences of the Spike gene

from different variants of SARS-CoV-2 were downloaded

from public databases [19]. Protein structures validated by
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direct observation (i.e., crystallography) [20] were down-

loaded from [21]. Antibody data was retrieved from [22], [23].

The input data is summarized in Table 1.

Table 1. This is the full list of neutralizing antibodies and

SARS-CoV-2 variants used in this study.

Neutralizing antibodies SARS-CoV-2 variants

LY-CoV555 XBB.1.5

LY-CoV1404 BM.1.1.1

P5C3 B.1.1.529

COVOX-150 BJ.1

AZD1061

AZD8895

C110

EY6A

58G6

CV38-142

Computational Workflow We modified the workflow

from [7] as shown in Figure 1. Viral protein structures cor-

responding to the Spike gene (S) were predicted using Al-

phaFold2 v2.3.2 (using either AlphaFold Colab [17, 18] or

ColabFold-mmseq2 [12]). Protein-to-protein docking analy-

ses between viral targets and neutralizing antibodies were

executed in HADDOCK v2.4 [8, 9]. ChimeraX v1.6.1 [16]

was used to manipulate and visualize the results after we

encountered technical difficulties executing PyMOL [15] (see

“Challenges” below).

Figure 1. A flowchart summarizing our methodology. The

scissors symbol indicates the editing or formatting of struc-

tural files in ChimeraX.

CHALLENGES–We encountered and overcame two major

challenges in conducting this research.

1. Handling AlphaFold2 executing time in AlphaFold Co-

lab: We learned that the parameters of ColabFold re-

sult in a faster and equally reliable prediction, which will

inform the Phyloinformatics lab’s future research. With

AlphaFold Colab, we had an issue running a test SARS-

CoV-2 variant. This variant was used in the comparison

between the two programs to make sure we had a well-

documented older variant, but AlphaFold Colab was un-

able to run and predict this variant.

2. Downloading and using PyMOL [15]: PyMOL proved dif-

ficult to handle by inexperienced users. This allowed us to

find alternatives to PyMOL. We learned that ChimeraX

has similar functionality and is more user-friendly than

PyMOL. Future workflows designed by the Phyloinfor-

matics lab will use ChimeraX instead of PyMOL.

3. Results

ALPHAFOLD–We tested ColabFold and AlphaFold’s ac-

curacy and speed. ColabFold was consistently faster than

AlphaFold by an average of 60 to 90 minutes, with Colab-

Fold only taking 3 to 7 minutes to produce results. When

comparing the predictions for both programs, we found neg-

ligible differences between the resulting files. For the test

variant, we found that while ColabFold took 87 minutes to

fully run, AlphaFold Colab would take 420 minutes to run

before crashing. AlphaFold Colab could not handle the test

variant, so we could not collect results from both programs.

HADDOCK–Overall, differences between our results and

[7] are negligible (for example, see Figure 2). Changes we

made to the original pipeline gave us similar results com-

pared to the original study.

The plot in 2 shows how similar our results are to the orig-

inal study. Like the original publication, HADDOCK scores

reported here are negative values instead of positive, which

is why the boxplot uses negative numbers. The lower (more

negative) the HADDOCK score is, the stronger the bind-

ing affinity between that specific neutralizing antibody and

SARS-CoV-2 variant is. When comparing the two studies’ re-

sults, it is apparent that many of the scores are in a similar

range, with only the bond between XBB.1.5 and AZD1061

having vastly different old and new scores.

PYMOL AND CHIMERAX–After attempting to down-

load and run both programs (PyMOL and ChimeraX), we

found that ChimeraX is easier to install and more user-

friendly. ChimeraX was sufficient for all the steps in the

workflow used, including analyzing 3D structures and edit-
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Figure 2. This plot summarizes our results and shows that we (light gray) were able to replicate [7] (dark grey) HADDOCK

scores (Y-axis) for each pair of variant and antibody (X-axis).

ing files. Furthermore, we documented how to use ChimeraX

instead of PyMOL in future analyses.

We note that installing and executing PyMOL was diffi-

cult, making it hard to reproduce [7]. ChimeraX performed

the same as PyMOL when needed, making it a better choice

for automation.

OTHER OUTCOMES–While replicating the original

study, we broke its workflow into granular steps and pro-

duced a tutorial to facilitate its replication and automatiza-

tion. We developed a flowchart and spreadsheets that com-

pare AlphaFold Colab and ColabFold, including the original

study’s results. Finally, this abstract was produced with a

poster (presentation: July 28, 2023, at UNC Charlotte, Char-

lotte NC) [24].

4. Conclusion

During this study, we engaged with a diverse array of AI

tools. Through active participation in classes and discussions

within UNC Charlotte’s Phyloinformatics lab (phyloinfor-

matics.com), we gained a profound appreciation for their

pivotal role in the fields of bioinformatics and phylogenetics.

By meticulously replicating the original study, we conducted

a comprehensive comparative analysis of various alternative

tools, including PyMOL and ChimeraX. Our findings will

serve as a foundation for shaping future workflows.

Upon comparing ColabFold and AlphaFold Colab, we as-

certained that ColabFold’s parameters exhibit superior speed

without compromising accuracy when compared to those

of AlphaFold Colab. Consequently, we incorporated Colab-

Fold’s parameters in forthcoming automation endeavors.

In our evaluation of PyMOL and ChimeraX, we observed

that ChimeraX not only offers a more intuitive user experi-

ence but it is also equally amenable to seamless integration

within an automated workflow, akin to PyMOL. Remark-

ably, even for files necessitating modification, we found that

manipulation within ChimeraX obviated the need for Py-

MOL entirely.

With regard to the HADDOCK results, we noted that the

reported scores must be multiplied by -1 to conform to the

standard adopted by other programs, wherein the most neg-

ative values signify the strongest binding affinities. This ad-

justment will be implemented automatically in future auto-

mated processes.

In summation, we successfully replicated the original study

and meticulously documented our procedural steps. The abil-

ity to validate the original findings, even through applying

distinct tools and methodologies, underscores the feasibil-

ity of automating this pipeline for large-scale drug screen-

ing. While some tools employed in this study may be better

suited for automation than those in the original study, the

work of Ford et al. [7] holds immense promise and can be

reliably reproduced.

IN SHORT–The following are the main outcomes of our

research project.
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• ColabFold is faster and not less accurate than AlphaFold

colab: we will use its parameters during automation.

• ChimeraX is as easy to implement in a pipeline as Py-

MOL is. However, ChimeraX was easier to install and

manipulate: we will use ChimeraX instead of PyMOL for

automation.

• HADDOCK scores have to be multiplied by -1 to report

scores in the same standard as other programs where the

most negative values are read as the strongest binding

affinities: we will automatically adjust HADDOCK scores

in the future during automation.

• Original paper’s results [7] are reproducible even using

slightly different methodologies: this further validates this

workflow for large-scale drug screening.
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