Knowledge Graphs

Lecture 5 – Ontological Engineering for Smarter Knowledge Graphs 5.4 Ontological Engineering

Prof. Dr. Harald Sack & Mary Ann Tan FIZ Karlsruhe – Leibniz Institute for Information Infrastructure

AIFB – Karlsruhe Institute of Technology Autumn 2023

of lenter a Constitute

[1]

5.1 Beyond the Limits of OWL

Excursion 7: The Semantic Web Rule Language SWRL

- 5.2 How to design your own Ontology
- 5.3 How to design better Ontologies
- 5.4 Ontological Engineering
- 5.5 Knowledge Graph Construction
- 5.6 Ontologies & Knowledge Graphs Best Practices

Knowledge Graphs 2023, Prof. Dr. Harald Sack, FIZ Karlsruhe – Leibniz Institute for Information Infrastructure & Karlsruhe Institute of Technology

Ontology in Computer Science

An ontology is an explicit, formal specification of a shared conceptualization.

according to Thomas R. Gruber: A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition, 5(2):199–220, 1993.

COLUMN STREET, COLUMN

Computer Science Definition

NULL O RICHARD NO NULLING BASE PROJECTION DATE

Derrytema for LFUE nong were to

Ontology Types and Categories

According to their Level of Generality

general, cross domain ontologies;

Top-Level Ontology (Upper Ontology, Foundation Ontology) represent very general concepts as: Time, Space, Event; independent of a specific domain or problem

Task Ontology

Domain Ontology

fundamental concepts according to a generic domain; specializes terms introduced in top-level ontology

Application Ontology

specialized ontology focussed on a specific task and domain; often a specialization of both task and domain ontology; often specify roles played by domain entities for specific activity

(according to Guarino: Formal Ontology in Information Systems, 1998)

fundamental concepts according to a

terms introduced in top-level ontology

Ontology Types and Categories

According to their Level of Generality

neral, cross domain ontologies;

Top-Level Ontology (Upper Ontology, Foundation Ontology) represent very general concepts as: Time, Space, Event independent of a specific domain or problem

Task Ontology

Domain Ontology

fundamental concepts according to a generic domain; specializes terms introduced in top-level ontology

Intervola Manuel Mellouria In dynatose desarch dynatic Stylen Andre Malancia, edit Stylen Intervet Malancia, edit Stylen

Application Ontology

specialized ontology focussed on a specific task and domain; often a specialization of both task and domain ontology; often specify roles played by domain entities for specific activity

(according to Guarino: Formal Ontology in Information Systems, 1998)

fundamental concepts according to a

terms introduced in top-level ontology

Ontology Types and Categories

According to their Level of Generality

general, cross domain ontologies;

Top-Level Ontology (Upper Ontology, Foundation Ontology) represent very general concepts as: Time, Space, Event; independent of a specific domain or problem

Task Ontology

Domain Ontology

fundamental concepts according to a generic domain; specializes terms introduced in top-level ontology

utristan barre senarah s 6 oratos detes senarah m departa association (1000, 60,000 defait association) (1000, 60,000

Application Ontology

specialized ontology focussed on a specific task and domain; often a specialization of both task and domain ontology; often specify roles played by domain entities for specific activity

(according to Guarino: Formal Ontology in Information Systems, 1998)

fundamental concepts according to a

terms introduced in top-level ontology

Ontology Types and Categories

According to their Level of Generality

general, cross domain ontologies;

Top-Level Ontology (Upper Ontology, Foundation Ontology) represent very general concepts as: Time, Space, Event; independent of a specific domain or problem

Task Ontology

Domain Ontology

fundamental concepts according to a generic domain; specializes terms introduced in top-level ontology

Nitoa hanne sittigana overtos Autea sinti dee si si pinnos escondo, tonic bulon niti titte sinti, del coles situe

Application Ontology

specialized ontology focussed on a specific task and domain; often a specialization of both task and domain ontology; often specify roles played by domain entities for specific activity

(according to Guarino: Formal Ontology in Information Systems, 1998)

undamental concepts according to a

general activity or task; specializes terms introduced in top-<u>level ontology</u>

Ontology Types and Categories

According to their Level of Generality

general, cross domain ontologies;

Top-Level Ontology (Upper Ontology, Foundation Ontology) represent very general concepts as: Time, Space, Event; independent of a specific domain or problem

Task Ontology

Domain Ontology

fundamental concepts according to a generic domain; specializes terms introduced in top-level ontology

A State Control Contro

Application Ontology

specialized ontology focussed on a specific task and domain; often a specialization of both task and domain ontology; often specify roles played by domain entities for specific activity

(according to Guarino: Formal Ontology in Information Systems, 1998)

fundamental concepts according to a

terms introduced in top-level ontology

5. Ontological Engineering for Smarter Knowledge Graphs / 5.4 Ontological Engineering Ontological Engineering

- Ontologies enable **interoperability** among metadata
- Therefore, we need
 - Methods for efficient **development** of ontologies
 - Methods for efficient **comparison** of ontologies
 - Methods for efficient **combination** of ontologies
- There are automated methods to support Ontological Engineering:
 - Learning new ontologies from a given set of information resources
 - Populating existing ontologies with individuals from information resources

(Ontology Design) (Ontology Evaluation) (Ontology Alignment)

(Ontology Learning)

(Knowledge Graph Population)

Ontology Design & Knowledge Graph Population

FIZ Karlsruhe

Leibniz Institute for Information Infrastructure

5. Ontological Engineering for Smarter Knowledge Graphs / 5.4 Ontological Engineering How Ontologies can differ

• the same term describes different concepts

e.g. Author – writer of a book vs. creator of a document

• different terms describe the same concept

e.g. Author vs. Writer

- different modelling conventions and paradigms

 e.g. intervals vs. points to describe temporal aspects
- different level of granularity

e.g. Fiction vs. PoliticalFiction, ScienceFiction, RomanticFiction, etc. as literary genres

- different coverage or different point of view
- etc.

5. Ontological Engineering for Smarter Knowledge Graphs / 5.4 Ontological Engineering Heterogeneity of Ontologies

- Syntactical Heterogeneity:
 - Ontologies are available in **different ontology representation languages**.
 - Can be resolved on the conceptual level, most times preserving the semantics.
- Terminological Heterogeneity:
 - **Naming differences** for the identification of entities in different ontologies (E.g.: Author vs. Writer).
 - Might occur because different (natural) languages are used.
- Conceptional (Semantic) Heterogeneity:
 - Ontologies model the same domain, but in different ways.
 - Differences might occur in coverage, granularity, perspective, etc.
- Semiotic (Pragmatic) Heterogeneity:

Differences in interpretation of the domain to be modelled by humans (difficult).

Ontologies Alignment or Ontology Matching is the process of determining

correspondences between ontological concepts:

5. Ontological Engineering for Smarter Knowledge Graphs / 5.4 Ontological Engineering Correspondences & Mappings

 Given the ontologies O₁ and O₂, a correspondence or mapping among the entities e₁ and e₂ from O₁ respectively O₂, is defined as

$$\langle id, e_1, e_2, r, n \rangle$$

• with

- **id** ... a unique **identifier** of the correspondence
- r ... a relation, as e.g. equivalence (=), more general (⊒,≥), less general (⊑,≤), disjointness(⊥), part-of, etc...
- **n** ... a **confidence measure** (typically in the range of [0,1]) holding for the correspondence between e_1 and e_2
- the correspondence $\langle id, e_1, e_2, r, n \rangle$ asserts that the relation *r* holds between the entities e_1 and e_2 with confidence *n*

5. Ontological Engineering for Smarter Knowledge Graphs / 5.4 Ontological Engineering Correspondences & Mappings

Examples of simple correspondences:

- o dbpedia:George_Orwell = wikidata:Q3335
- :Author = :Writer
- :Fiction $≥_{1.0}$:ScienceFiction
- o rdfs:label ≥_{0.9} dc:title

5. Ontological Engineering for Smarter Knowledge Graphs / 5.4 Ontological Engineering Correspondences & Mappings

Examples of more complex correspondences:

- o :speed = :velocity × 2.237 0.477 × :speed = :velocity
- Book(x) ∧ author(x,y) ∧ Writer(y) ⇒_{.85}
 writtenBy(x,concat(y.firstname, y.lastname))

5. Ontological Engineering for Smarter Knowledge Graphs / 5.4 Ontological Engineering

Ontology Alignment Example

Book $=_{1.0}$ Volume id $\ge_{0.9}$ isbd Person $=_{0.9}$ Human name $\ge_{1.0}$ title author $=_{1.0}$ author Science $\le_{0.9}$ Essay

Euzenat, Shvaiko: Ontology Matching, Springer, 2013. 18 Knowledge Graphs 2023, Prof. Dr. Harald Sack, FIZ Karlsruhe – Leibniz Institute for Information Infrastructure & Karlsruhe Institute of Technology

Knowledge Graphs 2023, Prof. Dr. Harald Sack, FIZ Karlsruhe – Leibniz Institute for Information Infrastructure & Karlsruhe Institute of Technology

5. Ontological Engineering for Smarter Knowledge Graphs / 5.4 Ontological Engineering Ontological Engineering

- Ontologies enable **interoperability** among metadata
- Therefore, we need
 - Methods for efficient **development** of ontologies
 - Methods for efficient **comparison** of ontologies
 - Methods for efficient **combination** of ontologies
- There are automated methods to support Ontological Engineering:
 - Learning new ontologies from a given set of information resources
 - Populating existing ontologies with individuals from information resources

(Ontology Design) (Ontology Evaluation) (Ontology Alignment)

Karlsruher Institut für Technologie FIZ Karlsruhe Leibniz Institute for Information Infrastructure

(Ontology Learning)

(Knowledge Graph Population)

Ontology Learning

• Ontology Learning from Text

automatic or semi-automatic generation of lightweight ontologies by means of text mining and information extraction

• Linked Data Mining

detecting meaningful patterns in RDF graphs via statistical schema induction or statistical relational learning

• Concept Learning in Description Logics and OWL

learning schema axioms from existing ontologies and instance data mostly based on Inductive Logic Programming

• Crowdsourcing Ontologies

combines the speed of computers with the accuracy of humans, e.g. taxonomy construction via Amazon Turk or games with a purpose

Ontology Learning from Text

Asim (2018)

Knowledge Graphs 2023, Prof. Dr. Harald Sack, FIZ Karlsruhe – Leibniz Institute for Information Infrastructure & Karlsruhe Institute of Technology

5. Ontological Engineering for Smarter Knowledge Graphs / 5.4 Ontological Engineering The Ontology Learning Layer Cake

General Axioms Country $\subseteq \leq 1$ hasCapital. \top Axiomatic Schemata River \sqcap Mountain $\sqsubseteq \bot$ **Relation Hierarchies** capitalOf \sqsubseteq locatedIn Relations flowThrough(dom:River, range:GeoEntity) **Concept Hierarchies** Capital \sqsubseteq City , City \sqsubseteq InhabitedGeoEntity **Concept Description** c:=country:=<description(c), uri(c)> Multilingual Synonyms {country, nation, land} Terms river, country, nation, city, capital, ...

FIZ Karlsruhe

eibniz Institute for Information Infrastructure

5. Ontological Engineering for Smarter Knowledge Graphs / 5.4 Ontological Engineering Ontological Engineering

- Ontologies enable **interoperability** among metadata
- Therefore, we need
 - Methods for efficient **development** of ontologies
 - Methods for efficient **comparison** of ontologies
 - Methods for efficient **combination** of ontologies
- There are automated methods to support Ontological Engineering:
 - Learning new ontologies from a given set of information resources
 - Populating existing ontologies with individuals from information resources

(Ontology Design) (Ontology Evaluation) (Ontology Alignment)

(Knowledge Graph Population)

A line of the l

24

Knowledge Graphs

5. Ontological Engineering for Smarter Knowledge Graphs / 5.4 Ontological Engineering

Carlsruher Institut für Technologie

Bibliographic References:

- Russell Ackoff. (1989). "From Data to Wisdom". Journal of Applied Systems Analysis. 16: 3–9.
- Nicola Guarino. (1998). *Formal Ontology in Information Systems*: Proceedings of the 1st International Conference June 6-8, 1998, Trento, Italy (1st. ed.). IOS Press, NLD.
- Jérôme Euzenat , Pavel Shvaiko (2013), Ontology Matching, Springer.
- Jens Lehmann, Johanna Völker, <u>Perspectives on Ontology Learning</u>. Studies on the Semantic Web 18, IOS Press 2014.
- Muhammad Nabeel Asim, Muhammad Wasim, Muhammad Usman Ghani Khan, Waqar Mahmood, Hafiza Mahnoor Abbasi (2018). <u>A</u> survey of ontology learning techniques and applications. Database : the journal of biological databases and curation, bay101.

Picture References:

- [1] "On this scifi movie poster we see the vibrant construction site of a gigantic space ship in the vast deserts of planet Mars exposing many small details.", created via ArtBot, Deliberate, 2023, [CC-BY-4.0], https://tinybots.net/artbot
- [2] "A Scifi movie poster depicting Raphael's "School of Athens" with all the important classical Philosophers including their significant tools set into a retro futuristic urban environment of planet Mars with spaceships in the sky.", created via ArtBot, Deliberate, 2023, [CC-BY-4.0], https://tinybots.net/artbot
- [3] "On this hyperrealistic scifi movie poster we see the scenery of Hans Holbein the Younger's famous painting "The Ambassadors" set into a retro futuristic environment on planet Mars showing countless small strange artifacts belonging to the ambassadors including a large distorted skull.", created via ArtBot, Deliberate, 2023, [CC-BY-4.0], https://tinybots.net/artbot

Knowledge Graphs 2023, Prof. Dr. Harald Sack, FIZ Karlsruhe – Leibniz Institute for Information Infrastructure & Karlsruhe Institute of Technology