

Morphological classification of compact and extended sources by PDF analysis

Carlos López San Juan H. Vázquez-Ramió, J. Varela, D. Spinoso, D. Cristóbal-Hornillos, K. Viironen & the J-PLUS collaboration

Centro de Estudio de Física del Cosmos de Aragón

J-PLUS EDR RIA meeting / 2nd October 2017

Funding agencies :

Objects classification

N 1.41 deg E OMB A0 O \bigcirc G2 M2 WD O **QSO** (z = 2.24) \cap 1.41 deg $O_{\mathbf{QSO}}(z = 2.29)$ Gali Gal2 Gal3 К3 О Gal4 $z \sim 0.068$

Objects classification

Objects classification

N

OMB

К3 О

 \bigcirc G2

E

1.41 deg

Objects classification

C. López-Sanjuan @ CEFCA @ J-PLUS EDR RIA meeting

Objects classification

We can use morphology (compact vs. extended)

or colour properties (star/galaxy/QSO).

Objects classification

We can use morphology (compact vs. extended) or colour properties (star/galaxy/QSO).

Morphological classification of J-PLUS EDR 251k sources with r < 21 over 31.7 deg²

- Simple cut in a concentration parameter (e.g. SDSS; Yasuda+01).
- Machine learning techniques (e.g. CLASS_STAR in SExtractor; Bertín&Arnotus96).
- **Bayesian analysis** (e.g. Sebok79, Scranton+02, Henrion+11, Molino+14).

We have to compute the probability distribution function (PDF) of the morphological type t = (s, g),

Morphological classification of J-PLUS EDR 251k sources with r < 21 over 31.7 deg²

- Simple cut in a concentration parameter (e.g. SDSS; Yasuda+01).
- Machine learning techniques (e.g. CLASS_STAR in SExtractor; Bertín&Arnotus96).
- **Bayesian analysis** (e.g. Sebok79, Scranton+02, Henrion+11, Molino+14).

We have to compute the probability distribution function (PDF) of the morphological type t = (s, g), PDF $(t) \sim P(t) \mathcal{L}(c \mid t)$

Morphological classification of J-PLUS EDR 251k sources with r < 21 over 31.7 deg²

- Simple cut in a concentration parameter (e.g. SDSS; Yasuda+01).
- Machine learning techniques (e.g. CLASS_STAR in SExtractor; Bertín&Arnotus96).
- Bayesian analysis (e.g. Sebok79, Scranton+02, Henrion+11, Molino+14).

We have to compute the probability distribution function (PDF) of the morphological type t = (s, g),

 $\operatorname{PDF}(t) \propto \boldsymbol{P}(t) \mathcal{L}(\boldsymbol{c} \mid t)$

Morphological classification of J-PLUS EDR 251k sources with r < 21 over 31.7 deg²

- Simple cut in a concentration parameter (e.g. SDSS; Yasuda+01).
- Machine learning techniques (e.g. CLASS_STAR in SExtractor; Bertín&Arnotus96).
- Bayesian analysis (e.g. Sebok79, Scranton+02, Henrion+11, Molino+14).

We have to compute the probability distribution function (PDF) of the morphological type t = (s, g), PDF $(t) \propto P(t) C(c \mid t)$

Goals

Morphological classification of J-PLUS EDR 251k sources with r < 21 over 31.7 deg²

- Simple cut in a concentration parameter (e.g. SDSS; Yasuda+01).
- Machine learning techniques (e.g. CLASS_STAR in SExtractor; Bertín&Arnotus96).
- Bayesian analysis (e.g. Sebok79, Scranton+02, Henrion+11, Molino+14).

We have to compute the probability distribution function (PDF) of the morphological type t = (s, g),

 $\text{PDF}(t) \propto P(t) \mathcal{L}(c \mid t)$

J-PLUS • SOURCE

SDSS STAR GALAXY

The **concentration** parameter $c_r = r_{1.5''} - r_{3''}$

seems to work at bright magnitudes... but it fails at r > 19.5.

We have to model the stellar and galaxy locus to compute $\mathcal{L}(c_r \mid t)$

The **concentration** parameter $c_r = r_{1.5''} - r_{3''}$ seems to work at bright magnitudes... but it fails at r > 19.5.

We have to model the stellar and galaxy locus to compute $\mathcal{L}(c_r \mid t)$

PLUS

The **concentration** parameter $c_r = r_{1.5''} - r_{3''}$ seems to work at bright magnitudes... but it fails at r > 19.5.

We have to model the stellar and galaxy locus to compute $\mathcal{L}(c_r \mid t)$

PLUS

The **concentration** parameter $c_r = r_{1.5''} - r_{3''}$ seems to work at bright magnitudes... but it fails at r > 19.5.

We have to model the stellar and galaxy locus to compute $\mathcal{L}(c_r | t)$.

PLUS

Stellar Locus

We describe the compact (stellar) locus with a skew Gaussian,

$$D_{\mathrm{s}}(c_r|\mu_{\mathrm{s}},\sigma_{\mathrm{s}}) = P_{\mathrm{G}}(c_r|\mu_{\mathrm{s}},\sigma_{\mathrm{s}}) \left\{1 + \mathrm{erf}[rac{4.1(c_r-\mu_{\mathrm{s}})}{\sqrt{2}\sigma_{\mathrm{s}}}]
ight\}$$

Stellar Locus

We describe the compact (stellar) locus with a skew Gaussian,

$$D_{s}(c_{r}|\mu_{s},\sigma_{s}) = P_{G}(c_{r}|\mu_{s},\sigma_{s}) \left\{1 + \operatorname{erf}[\frac{4.1(c_{r}-\mu_{s})}{\sqrt{2}\sigma_{s}}]\right\}$$

Stellar Locus

We account for the errors in c_r , including a covariance $\rho = 0.72$

Stellar Locus

We account for the errors in c_r , including a covariance $\rho = 0.72$.

Galaxy Locus

PLUS

We describe the extended (galaxy) locus with a log-normal, $D_{g}(c_{r}|\mu_{g},\sigma_{g}) = \frac{1}{c_{r}}P_{G}(c_{r}|\log\mu_{g},\sigma_{g})$

Galaxy Locus

PLUS

We describe the extended (galaxy) locus with a log-normal,

$$D_{g}(c_{r}|\mu_{g},\sigma_{g}) = \frac{1}{c_{r}}P_{G}(c_{r}|\log\mu_{g},\sigma_{g})$$

Galaxy Locus

PLUS

We describe the extended (galaxy) locus with a log-normal,

$$D_{\mathrm{g}}(\boldsymbol{c}_{r}|\mu_{\mathrm{g}},\sigma_{\mathrm{g}}) = rac{1}{c_{r}} P_{\mathrm{G}}\left(\boldsymbol{c}_{r}|\log\mu_{\mathrm{g}},\sigma_{\mathrm{g}}
ight)$$

Position of galaxy and stellar locus

PLUS

The FWHM mainly rules the position of the stellar and the galaxy locus but is not the only factor (e.g. PSF variations along FoV).

Now we have the likelihood $\mathcal{L}(c_r | t, \sigma_{c_r})$.

Position of galaxy and stellar locus

The FWHM mainly rules the position of the stellar and the galaxy locus but is not the only factor (e.g. PSF variations along FoV).

Now we have the likelihood $\mathcal{L}(c_r | t, \sigma_{c_r})$.

Position of galaxy and stellar locus

PLUS

The FWHM mainly rules the position of the stellar and the galaxy locus but is not the only factor (e.g. PSF variations along FoV).

Now we have the likelihood $\mathcal{L}(c_r | t, \sigma_{c_r})$.

Star/galaxy prior

The **prior** is the star/galaxy fraction with magnitude and sky position, $P(g|r) = f_g(r) = \frac{1}{1 + \exp[-\kappa_p(r - \mu_p)]}.$

St-PLUS

Star/galaxy prior

The **prior** is the star/galaxy fraction with magnitude **and sky position**, $P(g|r) = f_g(r) = \frac{1}{1 + \exp[-\kappa_p(r - \mu_p)]}$.

Star probability density function

$\text{PDF}_{r}(s) \propto \boldsymbol{P}(s) \mathcal{L}(\boldsymbol{c}_{r} | s, \sigma_{\boldsymbol{c}_{r}})$

C. López-Sanjuan @ CEFCA @ J-PLUS EDR RIA meeting

J-PLUS: Morphological classification by PDF analysis

PLUS

Star probability density function

PLUS

$\text{PDF}_{gri}\left(s\right) \propto \boldsymbol{\mathcal{P}}\left(s\right) \, \mathcal{L}(\boldsymbol{c}_{r} \,|\, s, \sigma_{c_{r}}) \, \mathcal{L}(\boldsymbol{c}_{g} \,|\, s, \sigma_{c_{g}}) \, \mathcal{L}(\boldsymbol{c}_{i} \,|\, s, \sigma_{c_{i}})$

 c_r distribution (g - i) distribution

-PLUS

Distribution on c_r with magnitude

A boolean classification holds at r < 20, but the PDF probability works at r < 21 (e.g. Scranton+02).

 c_r distribution (g - i) distribution

-PLUS

Distribution on c_r with magnitude

A boolean classification holds at r < 20, but the PDF probability works at r < 21 (e.g. Scranton+02).

 c_r distribution (g - i) distribution

PLUS

Distribution on c_r with magnitude

A boolean classification holds at r < 20, but the PDF probability works at r < 21 (e.g. Scranton+02).

Introduction c_r PDF(t) J-PLUS vs SDSS Number counts Conclusions c_r distribution

 c_r distribution (g - i) distribution

PLUS

Distribution on (g - i) with magnitude

The (g - i) colour distribution of star and galaxies is also reproduced with our classification.

Introduction c_r PDF(t) J-PLUS vs SDSS Number counts Conclusions c_r distribution (

 c_r distribution (g - i) distribution

PLUS

Distribution on (g - i) with magnitude

The (g - i) colour distribution of star and galaxies is also reproduced with our classification.

Introduction cr PDF(t) J-PLUS vs SDSS Number counts Conclusions

 c_r distribution (q - i) distribution

PLUS

Distribution on (g - i) with magnitude

The (q - i) colour distribution of star and galaxies is also reproduced with our classification.

Number counts C_S C_g

Star and galaxy number counts

PLUS

The stellar and galaxy number counts from J-PLUS are in good agreement with the literature.

C. López-Sanjuan @ CEFCA @ J-PLUS EDR RIA meeting

Number counts C_S C_g

Star and galaxy number counts

The stellar and galaxy number counts from J-PLUS are in good agreement with the literature.

C. López-Sanjuan @ CEFCA @ J-PLUS EDR RIA meeting J

Number counts C_S C_g

S-PLUS

The stellar and galaxy number counts from J-PLUS are in good agreement with the literature.

C. López-Sanjuan @ CEFCA @ J-PLUS EDR RIA meeting

Star and galaxy number counts

Number counts C_s C_g

PLUS

The stellar and galaxy number counts from J-PLUS are in good agreement with the literature.

C. López-Sanjuan @ CEFCA @ J-PLUS EDR RIA meeting

Number counts C_s C_g

Star and galaxy number counts

The stellar and galaxy number counts from J-PLUS are in good agreement with the literature.

C. López-Sanjuan @ CEFCA @ J-PLUS EDR RIA meeting

Star and galaxy number counts

Number counts C_s C_g

The stellar and galaxy number counts from J-PLUS are in good agreement with the literature.

C. López-Sanjuan @ CEFCA @ J-PLUS EDR RIA meeting

Number counts C_s (

Star and galaxy number counts

The stellar and galaxy number counts from J-PLUS are in good agreement with the literature.

Number counts C_s C_g

Star number counts in J-PLUS EDR

We have ${\sim}150k$ stars over 31.7 deg². The star density increases as we move away from the MW disc.

Number counts C_s C_g

Galaxy number counts in J-PLUS EDR

We have \sim 101k galaxies over 31.7 deg². The dispersion in the counts decreases with magnitude.

We performed a **Bayesian morphological classification** of J-PLUS EDR sources over 31.7 deg²

J-PLUS EDR comprises \sim 150k stars and \sim 101k galaxies with r < 21. The number counts are in good agreement with previous work.

> Fhe final J-PLUS will comprise ~30 million stars and ~25 million galaxies.

We performed a **Bayesian morphological classification** of J-PLUS EDR sources over 31.7 deg²

J-PLUS EDR comprises \sim 150k stars and \sim 101k galaxies with *r* < 21. The number counts are in good agreement with previous work.

The final J-PLUS will comprise ~**30 million stars** and ~**25 million galaxies**.

We performed a **Bayesian morphological classification** of J-PLUS EDR sources over 31.7 deg²

J-PLUS EDR comprises \sim 150k stars and \sim 101k galaxies with *r* < 21. The number counts are in good agreement with previous work.

The final J-PLUS will comprise \sim 30 million stars and \sim 25 million galaxies.

We performed a **Bayesian morphological classification** of J-PLUS EDR sources over 31.7 deg²

J-PLUS EDR comprises \sim 150k stars and \sim 101k galaxies with *r* < 21. The number counts are in good agreement with previous work.

The final J-PLUS will comprise \sim 30 million stars and \sim 25 million galaxies.