
Seamless network renumbering in RINA: automate
address changes without breaking flows!

Eduard Grasa∗, Leonardo Bergesio∗, Miguel Tarzan∗, Diego Lopez†, John Day§ and Lou Chitkushev§
∗Internet Architecture and Services, Fundacio i2CAT, {eduard.grasa, leonardo.bergesio, miquel.tarzan}@i2cat.net

†Telefonica Investigation y Desarrollo S.A., diego.r.lopez@telefonica.com
§Computer Science Department, Metropolitan College, Boston University, {day, ltc}@bu.edu

Abstract—Network renumbering in the IP world is a compli-
cated and expensive procedure that has to be carefully planned
and executed to avoid routing, security (firewall, ACLs) and
transport connection integrity problems. The source of most of
these issues is in the lack of a complete naming and addressing
architecture in the TCP/IP protocol suite. This paper analyses the
issues related to IP networks renumbering, identifying its root
causes. Then it looks into how these issues affect renumbering
in networks based on RINA, a network architecture with a
complete naming scheme. Theoretical analysis backed up by
experimentation results indicate that renumbering in RINA
networks not only is seamless (can be done without impacting
existing flows) but also does not require any special mechanisms.

I. INTRODUCTION AND MOTIVATION

Most real networks have to be eventually renumbered [1]: a
subset or all the addresses assigned to network entities must be
updated. It may be happen that the network has grown to the
point that its current addressing plan is no longer effective or
does not scale. Or perhaps the network is changing upstream
providers and must get new addresses from the new provider
(provider-based addresses are the norm in the current Internet).
Whatever the reason, renumbering in IP networks is a complex
procedure involving a number of steps: IP addresses need
to be assigned to interfaces on switches and routers, routing
information must be propagated, ingress and egress filters must
be updated - as well as firewalls and access control lists -, hosts
must get new addresses and DNS entries have to be updated.

An overview of the problems associated to renumbering
of IP networks is provided in [2]. Since TCP and UDP
connections are tightly bound to a pair of IP addresses,
changing any of them will destroy the flow. Since DNS
is an external directory - not part of the network layers -
the renumbering process usually leads to stale DNS entries
pointing to deprecated addresses. Even worst, applications may
operate through the direct use of IP addresses, which will
require an update in the application code, its configuration
or both. Router renumbering usually requires an exhaustive
manual and error-prone procedure for updating control plane
Access Control Lists or firewall rules. Moreover, static IP
addresses are usually embedded in numerous configuration
files and network management databases [3].

Router Host

Application
Name

Node
Address

PoA
Address

Directory

Route

Router

Path

Host

Fig. 1. Elements of a complete naming and addressing scheme

Most if not all of the issues described are rooted in the
incomplete naming and addressing architecture of IP networks.
In 1982 Saltzer [4] described the elements of a complete
naming architecture for computer networks as well as their
properties: application names that are location independent so
that applications can move, node addresses that are location
dependent but route independent to facilitate routing, and
names for points of attachment to the network. Application
names are mapped to node addresses via a directory, as
illustrated in Figure 1. In the IP world there are no application
names - domain names are synonyms for IP addresses resolved
outside of the network layer - and end to end communication
flows are created between transport layer endpoints identified
by an IP address and a transport port number. If flow requests
to the network were based on application names and the
network internally resolved those names to network addresses
renumbering would be completely transparent to applications.

The issues on ACLs and firewalls, which use rules based
on IP addresses, have a similar origin. Since the IP address
is both the identity of protocol machines (nodes) in the IP
layer and also the name used for forwarding IP packets, there
is an issue if the network is renumbered: ACL and firewall
rules have to be updated to reflect the new address assignment.
Obviating the fact that in well-formed architectures firewalls
are not necessary [5], we can generalise the problem to
that of setting access control rules in the IP layer. There is
clearly a need for a stable, location-independent name that
identifies the node (protocol machine) in the layer, and another
location-dependent name that is used for forwarding packets
between protocol machines (the addresses). In this scenario
access control rules can be written in terms of the location-

978–1–5386–3873–6/17/$31.00 c© 2017 IEEE

Host	

Border	router	 Interior	Router	

DIF	

DIF	 DIF	

Border	router	

DIF	DIF	

Distributed	IPC	Facility	(DIF)	

Host	

App		
A	

App		
B	

Consistent	
API	through	

layers	

App	A	

Layer	(DIF)	API	
IPC	

Process	

1. Register/Unregister	App	
2. Allocate/Deallocate	flows	
3. Write	data	(SDUs)	to	flows	
4. Read	data	(SDUs)	from	flows	

5. 	Get	layer	informaHon	

Fig. 2. Layers in RINA (down), and grouping of functions of protocol
machine in the layer(IPC Process, up)

independent names; if addresses change access control rules
do not need to be updated. Similar considerations apply to
management-related problems: if the system being managed is
identified by a location independent (management) application
name, all problems related to stale addresses in configuration
files and network management databases are just avoided.

The rest of the paper is structured as follows. In section
II we discuss the RINA design principles that are relevant
to naming and addressing and facilitate achieving seamless
renumbering. In Section III we make a functional analysis
of the renumbering procedure in RINA networks. In Section
IV we describe the changes performed to the IRATI RINA
implementation to support dynamic network renumbering; in
section V we describe experimental scenarios and present
results and finally Section VI provides concluding remarks
and discusses future work.

II. CAN RENUMBERING CAUSE ISSUES IN RINA
NETWORKS?

RINA [6], [7] the Recursive InterNetwork Architecture,
is a fundamental network architecture that relies on the
premise that networking is nothing more and nothing less
than distributed Inter Process Communication (IPC). RINA
decomposes networks into layers of generic protocols that can
be configured via policies to optimally serve their operational
requirements. As seen in Figure 2, in RINA there is a single
type of layer - called a DIF, Distributed IPC Facility - that
repeats as many times as needed by the network designer.

A DIF itself is just a distributed application that performs
and manages IPC. The application processes that are members
of a DIF are called IPC Processes (IPCPs). As described
by Saltzer, within the RINA framework application processes
(APs) are assigned names that are location-independent. In
order for an AP to be reachable via a certain DIF, it has
to register to the DIF. Registration creates a local binding
between the AP and the IPC Processes it is registering to. This
binding is disseminated through the DIF via a DIF directory
update that maps the registered AP name to the address of the
IPCP through which it is available.

Figure 3 provides an example of this procedure. AP named
B registers to the DIF called Provider 1. IPCP Y is the

App		
A	

App		
B	

Host	 Host	

IPCP	
Z,	@	1	

IPCP	
Y,	@	2	B ->2 B ->2

Register	1	

4	 2	
3	 Update	

mapping	
Update	
mapping	

Disseminate	mapping	

Provider	1	DIF	

App		
A	

App		
B	

Host	 Host	

IPCP	
Z,	@	1	

IPCP	
Y,	@	2	B ->2 B ->2

Accept			
/	Deny	5	

2	 4	
3	 Access		

Control	Check	
Resolve	
address	

Allocate	Flow	Request	

Provider	1	DIF	

1	
Allocate		
Flow	to	B	

6	
Allocate	Flow	Response	

7	

Flow	AllocaBon	

ApplicaBon	registraBon	

Fig. 3. Application registration in DIF (up); allocation of flow in DIF (down)

DIF representative at the system where AP B is executing.
Upon receiving the registration request the IPCP updates its
internal directory map and disseminates the new registration
information through the DIF. Eventually IPCP Z learns this
information and updates its internal directory map. Note that
the procedures for maintaining the distributed directory in the
DIF are a policy: they change from DIF to DIF, depending
on its operational environment. Small DIFs may use fully
replicated directories as the one described in this example
or exhaustive search such as ARP (the Address Resolution
Protocol), larger DIFs may use partially replicated directories
with structure (hierarchical maps similar to DNS, the Domain
Name system) or without it (Distributed Hash Tables [8]).

When an AP wants to communicate to another one, it
requests the allocation of a communication flow to the destina-
tion AP, just providing its name. The local IPCP that processes
the request queries the DIF directory to resolve the address of
the IPCP through which the destination AP is reachable, and
forwards the flow allocation request to the resolved IPCP. The
destination IPCP does an access control check and notifies the
local AP, who has the last say in accepting or rejecting the
flow. An example of this procedure is shown in the bottom part
of 3. An AP called A requests a flow allocation to AP B. IPCP
Z processes the allocation request, queries the directory and
finds out that AP B is reachable via the IPCP whose address is
2, therefore it sends a flow allocation request to this address.
IPCP Y receives the flow allocation request, notifies AP B, who
accepts the flow, and sends a reply to IPCP Z, who notifies
AP A that the flow is now allocated.

Notice that in all this procedure the addresses of the IPCP
are never exposed outside of the DIF, therefore if IPCP
addresses change the ability to create new flows is not com-
promised and the identity of old flows is not lost. Moreover,
since DIFs are also distributed applications - which means
IPCPs are just application processes - the naming problems
of IPCPs at each layer are also solved. IPCPs have a stable
location-independent AP name that use as their identity, while
they also have one ore more temporary location-dependent
synonyms (addresses) that are used for forwarding the PDUs
of the DIFs data transfer protocol. Addresses are temporary
by design, therefore renumbering is just part of the normal
lifecycle of the DIF, as it is explained in the next section.

IPCP	
Y,	@	2	

IPCP	
Z	

1	Allocate		
Flow	to	Y	

3	 Accept			
/	Deny	2	

Host	 Router	

4	
Authen3ca3on	

5	
Access		
Control	

IPCP	Z	joins	DIF	

Allowed
IPCPs: Z, T, R

Provider	1	DIF	

Access	DIF	

Net	Mgmt	DIF	

MA	
K	

Mgr	
L	

1	Allocate		
Flow	to	L	

3	
Accept			
/	Deny	2	

Router	 Mgmt.	System	

System	discovers	Manager		

Fig. 4. IPCP joining a DIF (up); Network Manager contacting a managed
system (down)

To better understand how this solves the problems related
to access control rules and management when a DIF is renum-
bered we will describe an example using the scenario in Figure
4. The upper part of this Figure shows an scenario in which an
IPCP called Z is joining the DIF named Provider 1 DIF. To do
so, it requests the allocation of a flow to Y to a lower level DIF
(in fact it would allocate a flow to the DIF name, but we will
assume the flow is to Y to simplify the explanation). When
the flow is allocated, IPCP Z authenticates to IPCP Y, using
its application name. After authentication, IPCP Y checks if Z
is allowed to join the DIF - here it could have access control
rules based on the IPCP name, or something more elaborate.
If the access control check is positive, IPCP Z joins and is
initialised with enough information to start operating as a
DIF member (including getting one or more addresses). The
address of IPCP Z is never used for authentication or access
control, in fact Z does not even have an address until it has
joined the DIF.

The bottom part of Figure 4 illustrates an scenario in
which a managed system (in this case a router) discovers its
Manager. The Management Agent AP in the Router System
requests a flow allocation to the Manager AP - called L
in the Figure. Once the flow is allocated the Management
Agent can authenticate to the Manager and start exchanging
information with it. Again, no address of any IPCP is used
in the scenario, just location-independent application names;
therefore renumbering does not cause issues.

III. A WALK-THROUGH A RENUMBERING EVENT

When an IPCP is renumbered it obtains a new synonym
that better represents the location of the IPCP within the
graph of the DIF (facilitating aggregation and routing). Once
the IPCP has acquired the new address it starts using it and
deprecates the old one. In order to achieve these goals no new
mechanisms are required, only normal DIF operations need to
be used.

The first thing that needs to be done by the IPCP that
obtained the new address is to start advertising it through the
routing system, so that when the IPCP starts using the new

address the other IPCPs in the DIF know how to forward
PDUs to it. If the DIF is using link-state routing, this can
be achieved by advertising new routing updates to the direct
neighbours of the IPCP. Neighbors will update their link-state
database and propagate the new advertisement to other IPCPs
in the DIF. After a while, all the DIF members know how to
forward PDUs to both the old and new address.

After a wait period the renumbered IPCP can start using the
new address. This wait period may be very low or even zero
depending on why and how the network is being renumbered.
In the case of an IPC Process in a mobile node having moved
too far away and getting a new address, it is possible and
beneficial to start using the new one almost right away. Since
the address is location-dependent, routing to the new address
and to the old one will be the same until packets are close
to the area where the IPCP is located. When that happens
routing in the neighbourhood of the renamed IPC Process will
have already converged (more experimentation is required to
properly understand any limitations in this approach). In the
mobility scenario it is beneficial to start using the new address
as soon as possible because the path to the new address will
have a higher probability of introducing less latency than the
path to the old one. If a lot of IPC Processes change its
addresses at approximately the same time but very infrequently
(e.g. because the network has grown too much and needs a
new addressing plan), then it may be necessary to define a
guard time before start using the new address; depending on
the addressing plan, routing policy or distribution of flows.

Going back to the details on how to start using the new
address, if the renumbered IPCP is providing any flows to
applications or higher-level DIFs it will issue flow update
messages to the IPCPs at the other end of the flows; to
notify them about the address change. Then the renumbered
IPCP just needs to start using its new address as the source
address of outgoing data transfer protocol PDUs. When the
IPCPs at the other end of the flows receive the Flow update
message, they will see that the address has changed, update
the data transfer protocol state and start using this address
as the destination address for outgoing data transfer protocol
PDUs. If the renumbered IPCP has any local applications
registered in the DIF, it will have to update its directory
and disseminate it through the DIF according to the directory
dissemination policy. This way new flow allocation requests to
the applications registered in the renumbered IPCP will also
use the new address.

After these procedures the new address is fully operational
and in use. Upon the expiration of a timeout - set with a
value that is high enough to guarantee that the old address
is no longer used by other IPCPs in the DIF - the IPCP can
free the old address. To do so it just needs to issue a routing
update deprecating the old address. For example, if link state
is the routing policy of the DIF, the IPCP will advertise all
the link state objects containing the old address as deprecated
to its neighbours, who will remove them from the flow state
database and propagate the message to other IPCPs in the
DIF. After that the old address will have disappeared from the

forwarding tables of the IPCPs in the DIF.

IV. IMPLEMENTATION IN IRATI

In order to experimentally validate the behaviour of renum-
bering in a RINA network, we have used the IRATI [9] RINA
implementation. Although RINA allows an IPC Process to
have multiple addresses, the IRATI implementation was still
not prepared to exploit this feature, therefore we extended
the codebase to support it. IRATI is a Linux-based RINA
implementation that splits the functionality of IPC Processes
between the kernel and user spaces [10]. The fast path func-
tions - IPCP data transfer and data transfer control - belong
to the kernel, while the slow path functions - IPCP layer
management (routing, resource allocation, enrolment, etc) -
belong to user space. IRATI also facilitates programmability
of IPC Process functions via a Software Development Kit that
allows plugging in well-defined units of functionality called
policies [11].

The authors have extended the IRATI codebase to support
multiple addresses and the ability to change them, specifically:
i) data structures that were assuming a single address per IPC
Process have been updated; ii) the link-state routing policy
has been adapted and iii) the synchronisation mechanisms
between user-space and kernel IPC Process components have
been extended. A new namespace management policy was
implemented to trigger the IPCP address changes, as a quick
way to control the renumbering periods in experiments. The
Namespace Manager is the layer management task of the IPC
Process that manages its naming and addressing. The policy
is configured with an address range and an address change
period. It then sleeps a random amount of time within the
configured period and when it wakes up changes the address
of the IPC Process. When the address change occurs, the
Namespace Manager sends an event to the other tasks of the
IPC Process, which react to it accordingly. In particular:

• The routing policy (link-state is the only one implemented
to date) starts advertising the new address to its neighbors
via routing updates. It sets a timer to deprecate the old
address (part of the IPCP configuration).

• The core IPCP component updates its internal data struc-
tures and sends a message to the kernel to notify about
the address change.

• The kernel updates the internal RMT (Relaying and
Multiplexing Task) data structures (it will now accept
PDUs whose destination address is the old one or the
new one) and sets two timers: one to start using the new
address and another one to deprecate the old address (the
timers are part of the IPCP configuration).

• When the first timer fires (start using new address), the
kernel modifies the data structures containing the data of
active connections in order to start using the new address
as the source address of all outgoing PDUs.

• When the second timer fires (deprecate old address),
the kernel removes the old address from the RMT data
structures, which causes the IPCP to no longer accept
PDUs with the old address.

MAD LIS

DUB
LON

PAR

BRU

AMS

LUX

BEN

RO

VAL

LJU

ATH

NIC

ANK
SOF

BUC BUD
ZAG

VIE

BER PRA

COP

OSL
STO

TAL
RIG

VIL
WA

MOS

PtP DIF

“European

Backbone DIF”

PtP DIF PtP DIF PtP DIF

Client
1

IPCP
LIS

IPCP
MAD

IPCP
BERN

IPCP
BER

IPCP
MOS

Server
1

Fig. 5. Layer diagram of the single DIF Experiment (up); Connectivity graph
of the European backbone DIF (down)

• The second timer will also fire in user-space, causing
the link-state routing policy to advertise the old address
as deprecated to its neighbours. The next time the PDU
Forwarding table is computed all entries associated to the
old address will be removed.

V. EXPERIMENTATION AND VALIDATION

We have conducted a set of experiments to validate the
behaviour of renumbering in RINA networks using the IRATI
implementation. In order to stress the network we have de-
signed a scenario in which all IPC Processes of all DIFs
involved in the experiment change their addresses periodically.
This scenario does not match real use cases, which are quite
less demanding: either only a subset of the IPC Processes
change their addresses (in the case of mobile networks), or
a significant number of the IPCPs in the network change its
address but very infrequently (e.g. merging two networks after
an acquisition). With this very demanding scenario we will
be able to understand if the ability of the network to keep
operating effectively is compromised due to the renumbering
process. In addition to the IRATI implementation we will also
be using the Demonstrator tool [12] to configure and setup
the experimental scenario. The Demonstrator is a Python-
based tool that automates the deployment and configuration of
RINA networks in virtualised environments. Given an initial
configuration file, it sets up a number of RINA-enabled Linux
Virtual Machines (VMs), connects them through Ethernet
software bridges in the physical machine, configures RINA in
each VM and initiates the enrolment and neighbor discovery
procedures in all DIFs.

The first experimental scenario is depicted in Figure 5.
This scenario consists of a single DIF - called European
backbone DIF - on top of several point-to-point Ethernet
links. The goal of this experiment is to evaluate the degra-
dation of performance experimented by different flows while
renumbering is taking place in a single DIF in the network.
The bottom part of Figure 5 shows the connectivity graph of

0	 0.2	 0.4	 0.6	 0.8	 1	 1.2	 1.4	

Brussels	-	Nicosia	

Valleta	-	Oslo	

Dublin	-	Ankara	

Riga	-	Lisbon	

rin
a-
ec
ho

-*
m
e	
flo

w
	b
et
w
ee
n	
no

de
s	

Applica*on	RTT	(ms)	vs.	renumbering	frequency	

Every	[30,	60]	s	

Every	[60,	120]	s	

Every	[120,	240]	s	

No	renumbering	

Fig. 6. Application RTT (ms) vs. renumbering frequency for flows in the
European backbone DIF

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

Brussels	-	Nicosia	

Valleta	-	Oslo	

Dublin	-	Ankara	

Riga	-	Lisbon	

rin
a-
tg
en

	fl
ow

s	b
et
w
ee
n	
no

de
s	

Applica4on	goodput	(Mbps)	vs.	renumbering	frequency	

Every	[30,	60]	s	

Every	[60,	120]	s	

Every	[120,	240]	s	

No	renumbering	

Fig. 7. Application goodput (Mbps) vs. renumbering frequency for flows in
the European backbone DIF

the European backbone DIF, composed of 32 IPC Processes
connected via 52 N-1 flows (which essentially wrap point
to point Ethernet links). After instantiating the experiment
with the Demonstrator tool, we setup four flows over this
DIF (Riga-Lisbon, Dublin-Ankara, Valletta-Oslo and Brussels-
Nicosia) and run the rina-echo-time application over them
in order to measure the application round trip time and the
data loss rates. rina-echo-time is configured to send 100.000
Echo Requests, waiting 2 ms between each request. Upon
completing the execution of the four rina-echo-time instances,
four new flows are setup, this time by the rina-tgen traffic gen-
eration application. rina-tgen reports the application goodput
after sending data as fast as possible (limited by flow control
carried out by the European backbone DIF) during 60 seconds.
This experiment is repeated four times, for different rates
of IPCP address change: i) no address change; ii) addresses
change randomly every 30 to 60 seconds (high renumbering
rate); iii) addresses change randomly every 60 to 120 seconds
(mid renumbering rate) and iv) addresses change randomly
every 120 to 240 seconds (low renumbering rate).

Figures 6 and 7 show how the RTT and goodput degrade
for different rates of IPCP address change. Packet loss is
not reported because it was 0 in all cases, therefore we can
conclude that renumbering does not affect packet loss. The
ability to create new flows is not impaired by the renumbering

PtP DIF PtP DIF

PtP DIF PtP DIF DC Fabric DIF

VPN DIF VPN DIF

ToR
router

Spine
router

ToR
router

Server Server

DC FABRIC
DIF

TOR1 TOR2 TOR3 TOR4

SPI1 SPI2

TOR1 TOR2

S11 S12 S13 S14 S21 S22 S23 S24

VPN (1-4)
DIF

Fig. 8. Layer diagram of the Data Centre Experiment (up); Connectivity
graph of the DC Fabric and VPNs (1-4) DIF (down)

procedures, since we created all flows in the experiment
while renumbering was taking place. Figure 6 reports the
round-trip delay perceived by the rina-echo-time application.
It can be seen that the delay is approximately the same in
the no-renumbering situation than in the low renumbering
rate situation. However, delay increases specially in the high
renumbering situation, in which the average round-trip delay
is twice the no renumbering round-trip delay. Taking into con-
sideration that there are 32 IPC Processes changing addresses
every 45 seconds on average, it means that on average every
1.5 seconds at least one IPC Process in the DIF is changing
addresses. Since all the DIF is a single link-state domain, it
implies there is a forwarding table recomputation at least once
per second. Our conjecture is that most of the extra delay
is due to the non-optimised implementation of the fast-path
functions in IRATI, which for example cannot keep forwarding
data while the forwarding table is being updated. However,
even if this was not the case, the performance degradation
is quite acceptable given the extreme scenario in which it is
occurring.

Figure 7 shows that application goodput is also reduced in
the case of mid and high renumbering scenarios. This fact is
a consequence of the degradation in delay; since the flows
are flow-controlled the fact that flow control PDUs take more
time to reach the EFCP senders causes a reduction in goodput.
Again, given the non-optimal efficiency of the implementation
and the high rate of address change events in both scenarios
we think that the performance degradation is not too high.

The scenario for the second experiment is depicted in Figure
8. This experiment is designed to understand the effects of
renumbering in performance when two DIFs on top of each
other are being constantly renumbered at the same time. The
scenario chosen is a small datacenter (DC) configuration, in

0	 0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	

VPN	1:	s14	-	s24	

VPN2	:	s18	-	s28	

VPN3:	s31	-	s41	

VPN4:	s35	-s45	

rin
a-
ec
ho

-*
m
e	
flo

w
s	b

et
w
ee
n	
no

de
s	

Applica*on	RTT	(ms)	vs.	renumbering	frequency	

Every	[30,	60]	s	

Every	[60,	120]	s	

Every	[120,	240]	s	

No	renumbering	

Fig. 9. Application RTT (ms) vs. renumbering frequency for flows in the
different VPN DIFs

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

VPN	1:	s14	-	s24	

VPN2	:	s18	-	s28	

VPN3:	s31	-	s41	

VPN4:	s35	-s45	

rin
a-
tg
en

	fl
ow

s	b
et
w
ee
n	
no

de
s	

Applica4on	goodput	(Mbps)	vs.	renumbering	frequency	

Every	[30,	60]	s	

Every	[60,	120]	s	

Every	[120,	240]	s	

No	renumbering	

Fig. 10. Application goodput (Mbps) vs. renumbering frequency for flows in
the different VPN DIFs

which 4 clusters of 8 servers each one are connected to each
other via a leaf-spine fabric composed of 4 Top of Rack (ToR)
routers and 2 spine routers. The upper part of Figure 8 depicts
the layer diagram of the network. The DC fabric DIF connects
together the ToRs and spines, supporting the connectivity and
performance requirements of multiple VPN or tenant DIFs.
Each tenant DIF provides an isolated connectivity domain
to a different customer of the DC. In the experiment there
are 4 VPN DIFs, each one connecting 8 servers together. We
perform the same actions as in the previous experiment, the
differences being that this time we start a separate flow in
each of the four VPN DIFs and that renumbering is going on
in both the VPN DIFs and the DC Fabric DIFs.

Figures 9 and 10 show how the RTT and goodput degrade
for different rates of IPCP address change. As in the first
experiment there is no packet loss and new flows can be
established while IPC Processes change addresses. This time
performance degradation is much lower than in the first exper-
iment, with minor increases in delay and almost no decrease
in goodput. Even though there are more VMs in this scenario
(38 instead of 32), there are less IPC Processes in each DIF,
and application flows have to go through less number of hops
compared to the first experiment - which hides a bit more
the non-optimal implementation of the fast path. In any case
we confirm that renumbering multiple layers at once does not
disrupt the network, which can continue with normal operation

even at high renumbering rates.

VI. CONCLUSIONS AND FUTURE WORK

Shortcomings in the naming and addressing structure of
the current Internet protocol suite make network renumbering
a tedious, error-prone and expensive procedure. The lack of
application names causes the network to bind an application
flow to an IP address and a transport layer port number.
If the IP address of the source or the destination of the
flow changes, the flow identity is lost and the flow is no
longer usable. In contrast the comprehensive naming scheme
of RINA makes renumbering problems in IP networks non-
issues and enables dynamic network renumbering. Flows are
associations between application names, only locally bound
to IPC Processes via a port-id. Addresses are just location-
dependent synonyms of IPC Process names. The identity of
IPC Processes is represented by their location-independent
application name: authentication and access control operations
are performed in terms of AP names, not IPCP addresses.
Hence renumbering does not interfere with such procedures.

In this paper we have described how the complete naming
and addressing architecture embodied by RINA allows RINA
networks to be renumbered live, without significantly impact-
ing the performance perceived by existing flows or impairing
the ability to crate new ones. We plan to use this RINA feature
to simplify routing and forwarding in DIFs with mobile nodes,
as part of one of the experiments carried out within the context
of the H2020 ARCFIRE project.

ACKNOWLEDGMENT

This work is partly funded by the European Commission
through the H2020 ARCFIRE project (Grant 687871).

REFERENCES

[1] F. Baker, E. Lear, and R. Droms, “Procedures for renumbering an ipv6
network without a flag day,” IETF Network Working Group. RFC 4192,
September 2005.

[2] B. Carpenter, R. Atkinson, and H. Flinck, “Renumbering still needs
work,” IETF RFC 5887, May 2010.

[3] D. Leroy and O. Bonaventure, “Preparing network configurations for
ipv6 renumbering,” International Journal of Network Management,
vol. 19, no. 5, pp. 415–426, September/October 2009.

[4] J. Saltzer, “On the naming and binding of network destinations,” Local
Computer Networks, 1982.

[5] J. Small, “Threat analysis of recursive internetwork architecture dis-
tributed ipc facilities,” BU Technical report. Available online at
http://pouzinsociety.org/research/publications, 2011.

[6] J. Day, I. Matta, and K. Mattar, “”Networking is IPC”: A Guiding
Principle to a Better Internet,” in Proceedings of the 2008 ACM CoNEXT
Conference, 2008.

[7] J. Day, Patterns in network architecture: A return to fundamentals.
Pearson Education, 2007.

[8] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran,
Z. Zhang, and I. Raicu, “Zht: A light-weight reliable persistent dynamic
scalable zero-hop distributed hash table,” Parallel and Distributed Pro-
cessing (IPDPS), IEEE 27th International Symposium on, 2013.

[9] “Irati rina implementation source code,” https://github.com/IRATI/stack.
[10] S. Vrijders, D. Staessens, D. Colle, F. Salvestrini, E. Grasa, M. Tarzan,

and L. Bergesio, “Prototyping the recursive internetwork architecture:
The irati project approach,” IEEE Network, vol. 28, no. 2, 2014.

[11] V. Maffione, E. Grasa, F. Salvestrini, M. Tarzan, and L. Bergesio,
“A software development kit to exploit rina programmability,” IEEE
International Conference on Communications, May 2016.

[12] “Demonstrator source code,” https://github.com/IRATI/demonstrator.

