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Chemical reaction and reactor engineering: a big driver
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CO2 emissions of chemical production worldwide
from 2015 to 2030, by chemical source

(in million metric tons)
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SCOPE definition according GHG protocol

* Scope 1 —All Direct Emissions from the
activities of an organization or under
their control. Including fuel combustion
on site such as gas boilers, fleet vehicles
and air-conditioning leaks.

* Scope 2 — Indirect Emissions from

Scope 2 Scope 1 electricity purchased and used by the
INDIRECT DIRECT organization. Emissions are created
during the production of the energy and
eventually used by the organization.

i Scope 3 Scope 3  Scope 3 — All Other Indirect Emissions
" INDIRECT IR from activities of the organization,
Sorromd] . occurring from sources that they do not
W o ﬂ % transportation B own or control. These are usually the
purchased electricity, steam, and distribution s =
% Pestig & cooing for s use Py investments. greatest share of the carbon footprint,
s -' | faciities J m covering emissions associated with
capital : i ;
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mf:;{:::w chmﬁu -g sold products 9 ﬁ water.
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GHG protocol for the chemical industry

‘....| applaud the breadth and depth of this unprecedented report that quantitatively analyzed pathways for
the chemical industry to reach net zero not only in scope 1 & 2, but also scope 3 upstream and
downstream...’

..... The production of basic chemical intermediates in-scope for this report has a Scope 1, 2 & 3 emissions
of 2.3 Gt CO,,,, representing just under 4% of the 59 Gt global annual emissions and an estimated 72% of
all chemical system emissions. Within the 2.3 Gt, Scope 3 represents the majority at 64% (1.5 Gt CO,,,),
while Scope 1&2 only represent 36% (0.8 Gt CO,.,). The magnitude of Scope 3 in the chemical system is
driven by its dependence on fossil, leading to high upstream scope 3 emissions from oil and gas
extraction (0.5 Gt COZEq), as well as carbon-dense products such as plastics and urea resulting in high
associated downstream Scope 3 emissions (1.0 Gt COZEq). It is for this reason that focusing on Scope 3 in
the chemical system transition to net zero is so essential.....

‘....There is growing recognition that the chemical industry needs to address its Scope 1&2 and,
increasingly, end-of-life Scope 3 emissions....

‘....The vast bulk of total in-scope system emissions stem from Scope 3 (~“64% today). Therefore, abating
Scope 3 is the biggest driver for system emissions reduction and the driver of the bulk of the technology
shifts needed to abate the system...

From a report commissioned by The Center for Global Commons, The University of Tokyo, Japan. Published September 2022. (Refer
)



Accurate experimental data for plastic waste

conversion
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New large scale chemical recycling pilot
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Typical more complex than what managers want!
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Process intensification:

develop new technology
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Process intensification — what?

“any chemical engineering development that leads to a substantially smaller,
cleaner, and more energy-efficient technology”

A. Stankiewicz, J. Moulijn
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Stankiewicz, A. I.; Moulijn, J. A., Process Intensification: Transforming Chemical Engineering. Chemical Engineering Progress 2000, 22.
https://www.ugent.be/csc/en



Multiphase Chemical Reactors
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- Gas flow restrictions

- Dilute beds

Fluidized Bed
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Centrifugal
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Gas-Solid “**\\\Drag

Vortex Reactors
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Packed beds

Process intensification in terms of heat & mass transfer
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Injection slots
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Reactive flow

= High interphase slip velocity

= Strong vortex flow and centrifugal force field
= No mechanical rotation

= Small equipment size

Cold flow

Rotating™@ed in
vortex reactor

* Low solids loading

= High gas flow rate
= |ow residence time of gas
= Loss of gas energy

Gas-Solid

Gonzalez-Quiroga, Arturo, et al. "Azimuthal and radial flow patterns of 1g-Geldart B-type parfiéles in a
gas-solid vortex reactor." Powder Technology 354 (2019): 410-422.




catchyFOAM

W energysfuels

EULER-EULER REACTOR SIMULATIONS + MICROKINETIC GAS AND SURFACE MODEL

Catalyst volume fraction [-]
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Vortex dryer: design by CFD DEM

E CFD-DEM model validation N\ GSVU hydrodynamics B
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Chemical Engineering Journal 455 (2023) 140529

% 5 n % % Chemical
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Florian Weéry, Laurien A. Vandewalle, Guy B. Marin, Geraldine J. Heynderickx,
Kevin M. Van Geem



PS Pyrolysis Experiment in the VR

— EXxpected liquid production in PS pyrolysis ~ 70-90%
— High flow of gas - short residence time

Challenges Possible Solutions
[Quantifying the liguid production rate ] > [ * Online sampling and analysis with injecting the IS ]
[ Collecting all the produced liquid ] > [ Modifying the condensers (Packing or S&T condenser) ]
i 1 S~
EE B
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Second dimension retention time [s]

Liquid Products Analysis
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Results o6

Species 75" min 85" min 95t min
Benzene 06 04 03
PS flow rate [kg/h] 1.0,2.2 Toluene 0.8 1.0 1.1
Primary N, flow rate [Nm3/h] 15 Ethylbenzene 0.3 0.1 0.2

Average Bed Temperature (Bed

and Throat) [°C] 490 Styrene 910 954 958

other monoaromatics 1.0 1.0 0.9
bis-phenyls 5.8 1.7 1.0
tris+-phenyls 0.0 0.0 0.0
Dimer 0.3 0.1 0.1
Trimer 0.0 0.0 0.0

PS 1 kg/h - 450 °C (#3)

5 @ \/\/Q PS 2.2 kg/h - 450 °C (#6)
/ / /‘ -

w
o Q | o C 90 e
'g \ ?' ;; g Q "’ I v
c - "'l [ -
.‘22— q'l" i \ OO "éz— . Q%
= ‘ . B
s O 4 5| 4" i
o g O ® -
c -
2 £
:
o 14 £ S |
E e g 1- z
s : = y
T 3 - s
c 2 3
8 5
& o =
Z 3
i N L SN NN NS LS S I S B S NS SR B SR B S B S U e S B B B B B B B e B e M B e |
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

19

First dimension retention time [min] First dimension retention time [min]



Electrification:

develop new technology
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Electrification: defenition

— Electrification of the chemical Iindustry Is the use of
electricity to drive a chemical process including
conversion, separation, purification and providing the

utilities to assist In operating and controlling
process

# Energy and mass
i i
N —— Electric Power to:

Heat
H/ ",
m Chemicals
E Synthetic Fuels
T 1 S~ . . ;

— H N I 2620 2635 2650
GHENT S
UNIVERSITY DRIVING CHEMICAL .

Renewable

Fossil

Making chemicals with electricity, Kevin M. Van Geem, Vladimir V. Galvita, Guy B. Marin Science 24 May 2019

the
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It Is all about priority

Challenges and Opportunities of Carbon Capture
and Utilization: Electrochemical Conversion of

CO, to Ethylene

Cato A. R. Pappijn, Q Matthijs Ruitenbeek?,

@ Kevin M. Van Geem?!”

Marie-Francoise Reyniers! and

I Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
2 Dow Benelux BV, PSPH R&D, Terneuzen, Netherlands
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L SEVIER
Carbon dioxide mitigation using renewable
James R Lattner
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Structure of the chemical industry: chemistree

_ Plastics, electronic materials, :
Consumer products ( +30000) _Fibers_, _solvents, deterge_nts, - SpeCI_aIty
Insecticides, pharmaceuticals Chemlcals
/a Acetic acid, formaldehyde,
Urea, ethene oxide,
_ A\ [ Acrylonitrile, acetaldehyde,
Terephtalic acid Bulk
chemicals
Ethene, propene, 1,3-butadiene,
. ™ Benzene, synthesis gas, ammonia
""" Methanol sulfuric acid, chlorine

LPG, gasoline, diesel

Kerosene
N

GHENT
UNIVERSITY

Oil, natural gas, coal, biomass,
Rock, salt, sulfur, air, water




Toward an e-chemistree : materials for electrification of the
e-Chemstree

Kevin Van Geem (UGent) and Bert M. Weckhuysen
(2021) MRS BULLETIN. 46(12). p.1187-1196

—

Plastics, electronic materials,
Fibers, solvents, detergents,
insecticides, pharmaceuticals

Specialty
— chemicals

Consumer products (+30000)

"""‘\\u 4

Acetic acid, formaldehyde,
Urea, ethene oxide,
Acrylonitrile, acetaldehyde,
Terephtalic acid

—

Ethene, propene, 1,3-butadiene,
Benzene, synthesis gas, ammonia
Methanol sulfuric acid, chlorine

—

Hydrogen, methanol,

e-Fuels and chemicals (+5) ammonia, ethanol,
oxygen ...

LPG, gasoline, diesel
Kerosene, ...

0il, natural gas, coal,
Rock, salt, sulfur, air,...

water, waste, biomass,
air, bio-gas, salt, CO, ...

Raw materials (+10)



https://biblio.ugent.be/person/F65C46C2-F0ED-11E1-A9DE-61C894A0A6B4
https://biblio.ugent.be/publication?q=author%3D%22Weckhuysen%2C+Bert+M.%22+or+(type+any+%22bookEditor+journalEditor+issueEditor%22+and+editor%3D%22Weckhuysen%2C+Bert+M.%22)
https://biblio.ugent.be/publication?q=year+exact+2021
https://biblio.ugent.be/publication?q=parent+exact+%22MRS+BULLETIN%22

Carbon footprint: olefin production from Py-oll

Cradle —to - gate LCA
(at this scope effectively equal to
SCOPE 1+2+3 emissions)

* - Fossil naphtha for baseline
scenario (steam cracking of
naphtha), toluene upkeep stream
for MPO pyrolysis process

—_
T = n'
GHENT
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Carbon fotprint, GHG 100, kg CO, eq per kg of HVC

0.8—-
0.6—-
0.4—-
0.2 —

0.0

-0.2 4

0.4 -

PR Electricity

Steam export
Natural gas supply
Stack emissions

D Feed*

0.78
0.13
0.18 013
-0.17
-0.43
2
_,\5
Q

37%
reduction
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ELECTRO: Electrified olefin production

Pure streams
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xed streams - Chemical recycling |

Residual streams
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Recycling routes state of the art

]—v[ Separation ]

Pyrolysis to T 1 1
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Extrusion Electrified
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More disruptive changes for CO2 neutrale olefins

Rotor stator.reactor

GHENT
UNIVERSITY e B
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Electrification of plastic waste to olefins

“RDR (Roto Dynamic Reactor) is a revolutionary technology that uses rocket engineering, mechanical
engineering and chemistry to solve the biggest challenges in olefins production today.”

% ROTO

) REACYSR « Convert kinetic energy into heat

« Lower residence times then conventional steam cracking and thus higher selectivity
« Offers the possibility to use (green) electric power in the cracking process

* Lower capex cost

I = ’ &
GHENT
UNIVERSITY ~— s B
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Laboratory for chemical Technology

Design and optimization of sustainable products and processes

The advanced simulation and optimization
software for the ethylene industry

Application Domains:
Transportation fuels and Energy carriers
— Large scale Chemicals
I ¥ on J

— EE B Functional materials (catalysts, polymers)
GHENT L% B
UNIVERSITY
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RDR vs conventional steam cracking

Yield comparison (normalized residence time)

52

50 -

°0 5 : ; : I RDR Ethylene 48
' RDR Propylene
50 RDR Ethylene + Propylene 46 [
SC-1 Ethylene =~~~
SC-1 Propylene = ===~ 44
= 4 ene + Propylene ==---
a‘. [
E 42
= 30
o 40
QU
2

20

(P + E) for RDR is 51.35 wt%
(P + E) for the millisecond is 49.81 wt%

10

0 0.2 0.4 0.6 0.8 1 =» Advantage for RDR is ~ 3%
Normalized residence time [-] 9 Slgnlflca nt improvement

GHENT
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GHG Protocol: e-Cracking

GHENT
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1.64

B Propane Upstream

1.26
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I Grid electricity [ Fuel gas export {777 Steam export
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'RDR', EU grid — 1.}\W 0.926
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Conclusions

» Reaction engineering will be a key driver to move to a net-zero World

» Collaboration is key: local but also on global scale (industry & Academia)
» Waste can become an important feed for the CPI
» Process intensification Is a necessity

» |t Is more than Technology

N

GHENT
UNIVERSITY
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Chemical or advanced recycling: definition

Feedstock recycling, also known as chemical Q-,
&&a Cefic

recycling, aims to convert plastic waste Into
chemicals. It Is a process where the chemical structure
of the polymer Is changed and converted into chemical
building blocks including monomers that are then used
again as a raw material in chemical processes.

i i S~

-
GHENT
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Multiple technologies...feedstock dependent

Each chemical recycling technology can treat specific feedstock and
therefore offer a complementary model to support a circular economy for
all plastics.

— Deploymerisation mostly focuses on monostreams independently
sorted by plastic types: PET (including fibers), PA, PU, PMMA and PLA.

— Pyrolysis and hydrothermal upgrading mostly focus on mixed polymers
(including multilayers, multi-materials within controlled limits): LDPE,
HDPE, PP, PS.

— Gasification mostly focuses on mixed polymers.

I} 1 S~ FOCUS

GHENT
UNIVERSITY ~— s B
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Vortex Technology

* Decouple F.and F,4 by introducing external force
» Offer guidance for design the blade-driven mode

Starvoc?2
Decoupled
F.and Fg

Air inlet

Transparent plate

Static

Rotating

Air outlet

Vane ring

Motor drive

39



STARVOC-3 (patented design)

GHENT
UNIVERSITY
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Clockwise rotation (when viewed from top)




Methodology

—~ Camera

y |
| ;///,@/

{1'

¢ Setup

Reactor with transparent endplates

Light
PIV camera above or below the reactor Pressure

- Data acquisition measurements

* PIV camera is synchronized c

* Images/videos
Reactor

* Pressure drop over the solids bed is

measured

T =I~r

GHENT
UNIVERSITY e B
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Incipient entrainment

N

GHENT
UNIVERSITY
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Particles: porous alumina (0.5-0.6 mm)
RPM: 300
Gas flowrate: 0-70 Nm3/h

42



Experimental setup

* Motor-driven chamber as an approach to:
* Independently control of flowrate and rotating speed
* |nvestigate the hydrodynamic study of these variables

Gas in

Gasout | ———

1.40

30

1.40

1800 jet-holes (d1mm, 30°)

o Gas distributor

N Tal
GHENT
UNIVERSITY e B
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Stati

c vortex technology

« @Gas-solid vortex reactor (GSVR)24

Tangential gas injection slots

Stable rotating bed

UNIVERSITY

Tangential gas injection
Vortex flow

Centrifugal force field

High interphase slip velocity
No mechanical rotation

« Gas-liquid vortex reactor (GLVR)>/

Tangential gas injection

Centrifugal force field by gas energy input
Momentum transfer from gas to liquid
Large interfacial area

High energy dissipation rate

Stable rotating liquid layer
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GLVR research at the LCT

« |nterface mass transfer

» Hydrodynamics>

e« Streamline

G =30m¥h—L=20kg/h

7.0
6.0
5.0
4.0 é

=y

2
3.0 <
2.0

G =50 Nm3/h & L =110 kg/h
1.0
« Flow pattern, liquid layer

T thickness,...
- H u m
GHENT %
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' I
Rotating packed bed, perforated packing (Jiao et al.) ] 1 intensified
Rotating packed bed, beads packing (Munjal etal.) } 0 | equipment
Bubble columns (Charpentier et al.) |} ]
Packed bed, Metal Pall-Ring (Hoffmannetal.) | |l conventional
Spinning disc reactor, (Meeuwse et al.) Hj} reactors
Packed bed, Mellapak 250Y (Valenzetal.) | || oo "

P N R | ST WS S S N T L

0

500 1000 1500

2000 2500 3000

Effective specific interfacial area a, [m?/m?3]

ortex technologyjly

Rotating packed bed, packing with blades (Luo et al.)
Spinning disc reactor, (Meeuwse et al.)

Bubble columns (Charpentier et al.) - | EzN

Packed bed, Random packed columns (Piche et al.)

Wetted-well column absorber (Luo et al.) HIl}
L

String of discs contactor (Hartono et al.)

I | iensified

PR WA TR R [ el ST TR SR TN BT TR S 1

equipment

conventional
reactors

15 20

Mass transfer coefficient k; x70-4 [m/s]

= g, &k

« Enhancement factor of 10 compared to

conventional reacto

I'S

« Enhancement factor of 2 compared to
intensified equipment

« Micromixing time®

m

Order of magnitude of ¢

Reactors and mixers

Micromixing time is reduced by 2
magnitudes compared to
conventional reactors

45/80



Liquid and gas flow patterns for CO2 capture

3D streamlines for gas and liquid phases

gas-holdup
Volume fraction (gas)

(a)

1.00
0.90
0.80
0.70
0.60
0.50
0.40
= 0.30
| 020

0.10

0.00

GHENT
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liquid-holdup
(b) Volume fraction (liquid)

1.00
0.90
/
1} 7 “ D,
= 0.80 : D,
070 ‘{.:,. - _____:’” : ",‘ . : A 4 v & :-»-‘. . ."/., . > .A‘.
B Joenax: U A w " i Wi
l’ N AF. 11 X i ! WY i
0.60 U & R ()
0.50 = h = NG=sEr e
\ ; 7 - ;= ~,-. o
| | = |
0.40 Gas L =d, L =D, L >0,
(@) (b) (c) (d)
0.30 FIGURE 6 Top view of various fow patterrs in 3 vortex unit (with vertical ads) covering (a) gas-only Mow showing swirling gas motion,
(b} bed at vortex suppression candition, [c} bed operating at maximum solids loading capacity, and {d) bed operating at salids entranment limit
with excess partickes deposited on the unit bottom plate. Red circle depicts the exhaust diameter and the yeliow regicn commespands to solids bed
¢ 0.20
4 [Color figure can be viewed at wileyonhinellbrary.com]
*
TE' 7 0.10
P ) * L

Gas holdup " 000 Liquid holdup @i’ Gas streamline in GSVR with solid?
G = 50m%h L =110kg/h

— The gas vortex flow is broken due to the liquid injection/solid
- o loading

N
B=%e B . Theliquid is rotating in the chamber 46/80
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We need both large scale and small scale
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Liquid
sampler

]

1

Single-way valve . .
a: Since the outlet is on the top of the reactor, pushing gas from
outlet would help to withdraw liquid sample from sampler.

Supercritical water treatment and hydrogenolysis
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