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We study the relation between the Schwarzschild solution and other coordinate-dependent solutions of the
gravitational field produced by a point mass in the free space. We demonstrate that, although an infinite
number of different coordinate systems can be used for solving this problem in general relativity, the physical
solution is unique and unambiguous. Importantly, this physical solution differs from the Schwarzschild solution
because the true physical distance R is distinct from the Schwarzschild coordinate distance r. This fact is
often ignored and leads to many confusions. For instance, the event horizon present in the Schwarzschild
solution is actually missing in the true physical solution, being just an apparent phenomenon associated with
the Schwarzschild coordinates. Similarly, the concepts of the trapped surface at r lower than the Schwarzschild
radius and the intrinsic singularity at r = 0, discussed in many papers and textbooks, are misleading.

I. INTRODUCTION

As commonly known, General Relativity (GR) equa-
tions are invariant to coordinate transformations, hence
the physical solution should be independent of the used
coordinates. Nevertheless, the choice of coordinates is
important to solve Einstein’s equations for some specific
problem. For example, the static gravitational field asso-
ciated with a point mass can effectively be studied using
spherically symmetric metric tensor gkl

ds2 = −gtt(r)c2dt2 + grr(r)dr
2 + gθθ(r)dθ

2 + gφφ(r)dφ2 ,
(1)

which reads in the Schwarzschild coordinate
system6,26,33,34

ds2 = −
(

1− rs
r

)
c2dt2 +

(
1− rs

r

)−1

dr2 + r2dΩ2 , (2)

where dΩ2 = dθ2 + dφ2 defines the element of the solid
angle, rs = 2GM/c2 is the Schwarzschild radius, G is the
gravitational constant, M is the mass of the body, and
r and t are the coordinate (contravariant) distance and
time. Velocity c is the speed of light far from the source
of gravity. This solution is called the Schwarzschild black
hole solution and a sphere with the Schwarzschild radius
rs is called the event horizon of the black hole. The event
horizon with r = rs is characterized by gtt = 0 and de-
fines a volume around the point mass, from which no par-
ticle or light can escape13,18,31. Consequently, events in-
side the horizon can never influence external observers26.
In addition, the radial term of the Schwarzschild metric
is also anomalous at r = rs, being characterized by the
coordinate singularity with grr =∞.

However, a solution of the same problem can be found
also for other coordinate systems, such as the isotropic
or harmonic coordinates37. As shown by Painlevé28,
Fromholz et al.14 or Crothers3, 5, the number of possible
alternative coordinate systems satisfying the Einstein’s
equations is even infinite. A particularly simple solu-
tion is obtained, for instance, for the so-called Brillouin

coordinates1

ds2 = −
(

1 +
rs
r

)−1

c2dt2+
(

1 +
rs
r

)
dr2+

(
1 +

rs
r

)2
r2dΩ2 ,

(3)
where rs = 2GM/c2 is the Schwarzschild radius similarly
as in Eq. (2). Interestingly, properties of the Brillouin
solution are completely different from the Schwarzschild
solution: the metric tensor is regular with no zeros or
singularities for all r except for the origin of coordinates
with r = 0, where the point mass is situated.

The differences between the solutions in Eq. (2) and
Eq. (3) point out the fact that the presented metrics
are coordinate-dependent. Therefore, a true physical so-
lution, which should be invariant of coordinates, is yet
to be found. If this necessary step is ignored, and so-
lutions calculated in various coordinates are interpreted
directly in physical terms, confusions and misinterpreta-
tions about the gravitational field of the point mass can
arise7,21,24,25,28.

The issue about the physical meaning of the
Schwarzschild and other coordinate-dependent solutions
of gravitational field in GR involves two key difficulties:

First, there is confusion regarding whether the
Schwarzschild coordinates are preferable to other coor-
dinates for certain reasons or not. For example, Mis-
ner et al.26 advocate using the Schwarzschild coordinates
as a particularly simple coordinate system with excep-
tional intrinsic geometric properties. In contrast, Hawk-
ing & Ellis18 consider the Schwarzschild coordinates a
poor choice. They argue that these coordinates produce
the coordinate singularity grr = ∞ at r = rs, which is
not a real physical singularity. They claim that this sin-
gularity is apparent because it can be removed by using
other coordinates. Obviously, this argument can be ap-
plied not only to the coordinate singularity but also to
the existence of the event horizon in the Schwarzschild
metric and its physical interpretation, as it also disap-
pears in some coordinate systems.

Second, it is often ignored that the coordinate distance
r in the Schwarzschild metric has not a direct physi-
cal meaning. For example, Landau & Lifshitz23, Mis-
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ner et al.26, Hartle16 or Lambourne22 emphasize that we
should be careful in interpretations of the Schwarzschild
coordinates, because distance r in the Schwarzschild met-
ric is not a real physical distance R of an observer from
the point mass. Instead, it is a quantity related the area
of a sphere in the Schwarzschild coordinates defined by

ds2 = r2dΩ2 , (4)

when r and t are assumed to be constant in the
Schwarzschild metric. The physical distance R must be
further calculated through an integral over r (see Landau
& Lifshitz23, their eq. 97.16; Lambourne22, his eq. 5.20).
However, the difference between r and R in the physical
interpretations of the properties of the Schwarzschild so-
lution is commonly ignored, and formulas are expressed
in terms of r instead of R in the literature. For instance,
the Schwarzschild radius rs is often evaluated for various
objects (e.g., Earth, sun, or other stars) and it is believed
that this radius reflects a physical size and volume of a
hypothetical black hole18,20,22,26. Similarly, orbits in the
gravitational field are exclusively described as a function
of the Schwarzschild coordinate r and misinterpreted as
defining geometry of real physical orbits2,22,26. The same
applies to studies of the collapse to a black hole when
behaviour of particles near the event horizon is studied
and implicitly assumed that its physical size is directly
described by the Schwarzschild radius18,20,26,29. In this
way, it is omitted that the properties of the solution can
be essentially different when expressed in physical coor-
dinates.

In this paper, we address the above-mentioned diffi-
culties in the interpretation of the gravitational field in
GR using Schwarzschild and other coordinate systems.
We illustrate the correct method for manipulating vari-
ous coordinate systems through the example of the ra-
dial propagation of photons in the gravitational field of a
point mass. We investigate the properties of several met-
rics used to solve this problem and discuss their mutual
relation. We highlight that many confusions in the inter-
pretation of these solutions arise from mixing invariant
quantities with coordinate-dependent quantities, as well
as free-falling with non-inertial static frames. We empha-
size that once the coordinate dependence of the solutions
is properly eliminated by converting the used coordinate-
dependent quantities into physical (proper) quantities,
the problem becomes unique, and the interpretation of
the physical solution becomes straightforward, even in
non-inertial frames.

II. THEORY

A. Coordinate-dependent and physical quantities in GR

It is well-known that coordinates are irrelevant for
physical quantities and they can, in principle, be as-
signed completely arbitrarily. According to the principle

of general covariance, they are merely labels for space-
time events. The only physically meaningful quantities,
as measured in experiments, are those invariant under
coordinate transformations. Nevertheless, a choice of co-
ordinates must be made, and it is often critical for finding
solutions to Einstein’s equations14.

As a good example of a smartly selected coordinate
system for solving the gravitational field around a point
mass is the metric in Eq. (2) derived by Schwarzschild33,

34. This metric belongs to the most famous solutions
in GR, and its properties are thoroughly discussed in
all relativistic textbooks23,26,36,37. The metric is spheri-
cally symmetric and is expressed using the Schwarzschild
(contravariant) coordinates (x0, x1, x2, x3) = (t, r, θ, φ).
Although this coordinate system is straightforward, we
must be careful in interpreting quantities in this sys-
tem because its base vectors are not normalized. Con-
sequently, the quantities evaluated in these coordinates
(or any other curvilinear coordinates) may not represent
true physical quantities16,27.

In order to calculate true physical (proper) quantities
in curvilinear coordinate systems, we have to apply a
system of orthonormal base vectors16,27. Consequently,
the physical components of vectors that are independent
of coordinates can be expressed as

v(i) = vi
√
gii , v(i) = vi

√
gii ,

(no summation over i) ,
(5)

where vi and vi are the contravariant and covariant com-
ponents of vector v, gkl and gkl are the contravariant
and covariant metric tensors, and v(i) and v(i) are the
contravariant and covariant physical components of vec-
tor v. In orthogonal coordinate systems, both types of
the physical components are equal:

v(i) = v(i) . (6)

Hence, using Eqs (1) and (5) we get the following
equations16,22,23

dT =
√
gtt dt , (7)

dR =
√
grr dr , (8)

where dT is the element of the proper time, and dR is the
element of the proper radial distance dR. Subsequently,
the proper time T and the radial distance R read in a
time-independent (static) coordinate system

T =
√
gtt t , (9)

R =

�
√
grr dr . (10)

B. Coordinate-dependent and physical speeds of light

The physical speed of light in free-falling frames in the
gravitational field is exactly equal to c. However, special



3

attention should be paid to calculating the physical speed
of light in the gravitational field in non-inertial frames
that are at rest with respect to the mass producing the
gravitational field. This velocity is of particular interest
because it describes the scenario in which the observer
experiences a static gravitational field, and his position
is fixed with respect to this field. In the following cal-
culations and discussions regarding the physical speed of
light, we will refer to this non-trivial case.

Let us assume a spherically symmetric metric tensor
gαβ defined in Eq. (1) and light propagating in a radial
direction (dθ = 0, dφ = 0)

ds2 = −gttc2dt2 + grrdr
2 . (11)

The propagation of the electromagnetic waves obeys
the equation of the null spacetime distance, ds2 = 0.
Hence,

gttc
2dt2 = grrdr

2 , (12)

and the contravariant (coordinate-dependent) speed of
light crg along the r - axis reads

crg =
dr

dt
=

√
gtt
grr

c , (13)

where subscript g means that the speed is affected by
gravity in a static non-inertial frame.

In order to express the physical (proper) speed of light,
which is coordinate invariant and evaluated in the fixed
frame, we have to express the speed of light in the or-
thonormal coordinate basis16,27. Hence, the i-th compo-
nent of the proper speed of light is

cg(r) =
√
grr c

r
g =
√
gtt c . (14)

Calculating tangential components of the speed of light
in an analogous way, we will find that the proper speed
of light has the same magnitude in all directions. Hence,
we can simply write

cg =
√
gtt c . (15)

Emphasize that the proper speed of light cg is the
quantity measured in the frame at rest with respect to
the sources of the static gravitational field. The system is
not inertial or free-falling; hence, it is affected by gravity.
This causes the speed of light not constant but varying,
dependent on the distance from the observer to the source
of gravity. Clearly, the physical speed of light in a free-
falling system is simply c, defined as the ratio of elements
of proper distance and proper time: c = dR/dT .

C. Gravitational field of point mass in various coordinate
systems

In this section, we investigate the relation between the
coordinate-dependent and physical speed of light propa-
gating radially in the gravitational field of a point mass in

various coordinate systems. Specifically, we will examine
the Schwarzschild and Brillouin metrics, as described by
Eqs (2) and (3). Additionally, we will explore the solu-
tion of the gravitational field in the isotropic coordinates
defined by7,26,37

ds2 = −
(

1− rs
4r

)2
/
(

1 +
rs
4r

)2
c2dt2

+
(

1 +
rs
4r

)4 (
dr2 + r2dΩ2

]
,

(16)

and in the harmonic coordinates defined by37

ds2 = −
(

1− rs
2r

)
/
(

1 +
rs
2r

)
c2dt2

+
(

1 +
rs
2r

)
/
(

1− rs
2r

)
dr2 + r2

(
1 +

rs
2r

)2
dΩ2 .

(17)

Using Eq. (10) and Eq. (15), the physical distance and
the physical speed of light read for the four coordinate
systems as follows:

• the Schwarzschild coordinates

R =

� r

rs

1√
1− rs

r

dr ,

cg = c

√
1− rs

r
, r ≥ rs ,

(18)

• the Brillouin coordinates

R =

� r

0

√
1 +

rs
r
dr ,

cg = c/

√
1 +

rs
r
, r ≥ 0 ,

(19)

• the isotropic coordinates

R =

� r

rs/4

(
1 +

rs
4r

)2
dr ,

cg = c
(

1− rs
4r

)
/
(

1 +
rs
4r

)
, r ≥ 1

4rs
,

(20)

• the harmonic coordinates

R =

� r

rs/2

√(
1 +

rs
2r

)
/
(

1− rs
2r

)
dr ,

cg = c

√(
1− rs

2r

)
/
(

1 +
rs
2r

)
, r ≥ 1

2rs
.

(21)

The range of the coordinate distance r is chosen the
physical distance R and the physical speed of light cg to
be positive or zero. For other values of r, the solutions
are not physical.

Obviously, the formulas for the physical distances far
from the point mass (r → ∞) coincide in all coordinate
systems in the first-order approximation of 1/r:

dR =
(

1 +
rs
2r

)
dr +O

(
r−2
)
, (22)
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and similarly the physical speed of light cg behaves in the
same way

cg =
(

1− rs
2r

)
c+O

(
r−2
)
. (23)

As expected, the physical distance R in Eqs. (18-21)
is always positive and ranges from zero (when the obser-
vation point is at the origin of coordinates) to infinity.
This confirms the fact that radius r is not a physical
distance16, and the Schwarzschild radius rs is not a real
physical quantity. Additionally, this implies that radius
r does not need to cover the whole range of values from
zero to infinity as commonly incorrectly assumed in the
concept of black holes. This mistake leads to confusions
about the physical interpretation of the Schwarzschild
solution for r in the interval 0 ≤ r ≤ rs, including
the speculations about the existence and visibility of the
trapped surfaces at r < rs and the intrinsic singularity
at r = 017,19,22,26,29,30.

D. Properties of the physical solution at a non-inertial
static frame

Here, we numerically examine the properties of the
physical solution for the radial propagation of photons
in the gravitational field of a point mass. Specifically,
we investigate the physical speed of light measured by
a static observer as a function of the physical distance
from the point mass at rest. Since GR equations should
yield a unique solution to this problem, we expect that
the physical solutions obtained using different coordinate
systems will coincide.

Figure 1 shows the physical radial speed of light cg as
a function of the physical radial distance R of an obser-
vation point from the point mass. The figure indicates
that all four coordinate systems yield the same depen-
dence, cg = cg(R). This confirms our expectation that
the physical solution should be unique and coordinate-
independent. Interestingly, the speed of light in the non-
inertial static frame varies depending on the position of
the observation point. The speed of light cg is zero di-
rectly at the point mass but rapidly increases with dis-
tance. The increase of cg slows down with distance, and
finally cg converges to c at very large distance, which
characterizes the speed of light in a medium with no grav-
ity.

III. DISCUSSION

The gravitational field of a point mass can be studied
in an infinite number of coordinates with different metric
tensors that satisfy the Einstein field equations. There-
fore, finding a suitable metric tensor is not the final goal;
it represent just the first step in solving the problem.
The essential step is to solve the geodesics equation and
express its solution in physical (coordinate-independent)

quantities. Evidently, in contrast to the ambiguity of the
used coordinates, the physical solution must be unique
and unambiguous.

This procedure is demonstrated in solving a simple
problem of the radial propagation of photons in the grav-
itational field produced by a point mass situated at the
origin of coordinates. Four completely different metric
tensors that satisfy the Einstein equations are applied
to solve the geodesics equation for the propagation of
photons. Subsequently, the physical speed of light is ex-
pressed in terms of the physical distance from the point
mass, cg = cg(R). This dependence is identical for all
coordinate systems and confirms that GR yields an un-
ambiguous solution, and the presented procedure gives
correct results.

As a consequence, we must be aware that specific prop-
erties of metrics related to individual coordinate systems
cannot be interpreted directly in physical terms. This
applies, for example, to an anomalous behaviour of the
Schwarzschild metric at the Schwarzschild radius, r = rs,
when gtt becomes zero (the event horizon) and grr goes
to infinity (the coordinate singularity). The coordinate
singularity is considered as apparent and produced by
the choice of coordinates13,18. In contrast, this argument
has not surprisingly been applied to the event horizon
that is commonly assumed a real phenomenon attributed
to a physical sphere with a radius rs around the point
mass. This opinion is misleading because it ignores the
fact that the coordinate r in the Schwarzschild metric
is not the physical distance and it need not cover the
full range of values 0 ≤ r ≤ ∞. Actually, the coordi-
nate r covers only the interval of rs ≤ r ≤ ∞, because
r = rs corresponds to the physical distance R = 0 from
the point mass (see Eq. (18)). Hence, the coordinate
distance r = rs is not associated with any surface in the
physical space but with the point singularity at the ori-
gin of the physical space. Consequently, the event hori-
zon associated with the Schwarzschild black hole is an
apparent phenomenon similarly as the coordinate singu-
larity in the Schwarzschild coordinates3–5. Similarly, the
concepts of the trapped surfaces at r < rs and the in-
trinsic singularity at r = 0 discussed in many papers and
textbooks13,17,19,21,22,26,29,30,37 are misleading.

Figure 1 indicates that the physical speed of light in
a non-inertial frame, which is at rest with respect to the
static point mass, behaves in an essentially different man-
ner than in free-falling frames. The physical speed of light
is not constant but varies depending on the distance from
the point mass. It is zero at the origin of coordinates but
rapidly increases with distance. At a large distance from
the point mass, where the gravitational field is weak, the
speed of light cg converges to the speed of light c in vac-
uum, undistorted by gravity.

Note that the concept of the varying speed of light
seems apparently to be against the basic principles of
theory of the Special and General Relativity. However,
this is misleading, because we are not studying the speed
of light in free-falling inertial frames, but in non-inertial
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FIG. 1. The physical speed if light cg as a function of the physical (proper) distance R of an observation point from the point
mass. (a) The logarithmic scale, (b) the linear scale. The Schwarzschild solution - the blue full line, the Brillouin solution - the
red dashed line. Note that the physical solution in the isotropic and harmonic coordinates is identical with the Schwarzschild
and Brillouin solutions. The axes are in relative units: the speed of light cg is normalized to c and the physical distance R is
normalized to the Schwarzschild radius rs.

frames. These frames are not equivalent because the ac-
celeration due to gravity is not cancelled with the grav-
itational field in non-inertial frames. As emphasized by
Einstein8: ‘the law of constancy of the velocity of light
in vacuo, which constitutes one of the fundamental as-
sumptions in the special theory of relativity and to which
we have already frequently referred, cannot clam an un-
limited validity its results hold only so long as we are
able to disregards the influences of gravitational fields on
the phenomena (e.g. of light)’. A typical example of an
observation of the varying speed of light is gravitational
lensing, since ‘A curvature of rays of light can only take
place when the velocity of propagation of light varies with
position’8.

Considering the varying speed of light in the gravi-
tational field, we can define the refractive index of the
vacuum distorted by gravity as

n =
c

cg
=

1
√
gtt

, (24)

and simulate the propagation of photons in curved space-
times using the Fermat’s principle in a manner very anal-
ogous to that used for light in dielectric media. This
approach is mentioned in several textbooks23,27 and has
been applied by many authors to astrophysical and cos-
mological problems9–12,15,32,35,38. The validity of this ap-
proach is, however, limited to weak gravitational fields,
where the physical distance dR and the Schwarzschild
covariant distance dr are close, as seen in Eq. (22). Nev-
ertheless, this limitation can easily be removed by trans-

forming dr to dR using Eq. (18). Consequently, the exact
ray fields can be calculated even for strong gravitational
fields in the close vicinity of massive objects.
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