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Abstract

We develop and test algorithms to detect �Edgeworth cycles,� which are asym-

metric price movements that have caused antitrust concerns in many countries. We

formalize four existing methods and propose six new methods based on spectral analy-

sis and machine learning. We evaluate their accuracy in station-level gasoline-price

data from Western Australia, New South Wales, and Germany. Most methods achieve

high accuracy in the �rst two, but only a few can detect the nuanced cycles in the

third. Results suggest whether researchers �nd a positive or negative statistical re-

lationship between cycles and markups, and hence their implications for competition

policy, crucially depends on the choice of methods. We conclude with a set of practical

recommendations.
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1 Introduction

Retail gasoline prices are known to follow cyclical patterns in many countries (e.g., Byrne

and de Roos 2019). The patterns persist even after controlling for wholesale and crude-oil

prices. Because these cycles are so regular and conspicuous, and because price increases

tend to be larger than decreases, observers suspect anti-competitive business practices. The

occasional discovery of price-�xing cases supports this view (e.g., Clark and Houde 2014,

Foros and Steen 2013, Wang 2008).1

These asymmetric movements are called Edgeworth cycles and have been studied exten-

sively.2 In particular, scholars and antitrust practitioners have investigated whether the pres-

ence of cycles is associated with higher prices and markups. Deltas (2008), Clark and Houde

(2014), and Byrne (2019) �nd that asymmetry is correlated with higher margins, price-�xing

collusion, and concentrated market structure, respectively. However, Lewis (2009), Zimmer-

man et al. (2013), and Noel (2015) show prices and margins are lower in markets with

asymmetric price cycles. Given the diversity of countries and regions in these studies (Aus-

tralia, Canada, the US, and several countries in Europe), the cycle-competition relationship

could be intrinsically heterogeneous across markets.

But another, perhaps more fundamental, problem is measurement: the lack of a formal

de�nition or a reliable method to detect cycles in large datasets. Because theory provides

only a loose characterization of Edgeworth cycles, empirical researchers have to rely on visual

inspections and summary statistics based on a single quanti�able characteristic: asymmetry.

Meanwhile, the phenomena�s most basic property, cyclicality, is almost completely absent

from the existing operational de�nitions. Even though asymmetry may be the most salient

feature of� and hence a necessary condition for� Edgeworth cycles, it is not a su¢ cient con-

dition. Empirical �ndings are only as good as the measures they employ; the incompleteness

of detection methods could a¤ect the reliability of �facts�about competition and price cycles.

Now that the governments of many countries and regions are making large-scale price data

publicly available,3 developing scalable detection methods represents an important practical

1Recent studies on algorithmic collusion suggest interactions between self-learning algorithms could lead
to collusive equilibria with such cycles (Klein 2021); the use of �repricing algorithms�by many sellers on
Amazon has made these phenomena prevalent in e-commerce as well (Musol¤ 2021).

2Maskin and Tirole (1988) coined the term after Edgeworth�s (1925) hypothetical example. It became
a popular topic for empirical research since Castanias and Johnson (1993). We explain its theoretical
background in section 2.

3The governments of Australia, Germany, and other countries have made detailed price data publicly
available to inform consumers and encourage further scrutiny. The Australian Consumer and Compe-
tition Commission has a team dedicated to monitoring gasoline prices and regularly publishes reports.
See https://www.accc.gov.au/consumers/petrol-diesel-lpg/about-fuel-prices. The Bundeskartellamt does the
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challenge for economists and policymakers.4

This paper proposes a systematic approach to detecting Edgeworth cycles. We formalize

four existing methods as simple parametric models: (1) the �positive runs vs. negative

runs�method of Castanias and Johnson (1993), (2) the �mean increase vs. mean decrease�

method of Eckert (2002), (3) the �negative median change�method of Lewis (2009), and (4)

the �many big price increases�method of Byrne and de Roos (2019). We then propose six

newmethods based on spectral analysis and nonparametric/machine-learning techniques: (5)

Fourier transform, (6) the Lomb-Scargle periodogram, (7) cubic splines, (8) long short-term

memory (LSTM), (9) an �ensemble�(aggregation) of Methods 1�7 within a random-forests

framework, and (10) an ensemble of Methods 1�8 within an extended LSTM.5

To evaluate the performance of each method, we collect data on retail and wholesale

gasoline prices in two regions of Australia, Western Australia (WA) and New South Wales

(NSW), as well as the entirety of Germany. These datasets cover the universe of gasoline

stations in these regions/countries, record each station�s retail price at a daily (or higher)

frequency, and are made publicly available by legal mandates.6 Given the lack of a clear

theoretical de�nition, we construct a benchmark �ground truth�based on human recognition

of price cycles as follows. We reorganize the raw data as panel data of the daily margins (=

retail minus wholesale prices) of gasoline stations and group them into calendar quarters,

so that a station-quarter (i.e., a set of 90 consecutive days of retail-margin observations for

each station) becomes the e¤ective unit of observation.7 We employ eight research assistants

(RAs) to manually classify each station-quarter as either �cycling,��maybe cycling,�or �not

cycling.�We then de�ne a binary indicator variable that equals 1 if an observation is labeled

as �cycling�by all of the RAs (the majority of observations are labeled by three RAs), and 0

otherwise, thereby preparing a conservative target for automatic cycle detection.8 Note that

we look only for cyclicality and do not impose asymmetry or other criteria in the manual-

classi�cation stage. The reason is that asymmetry is� unlike cyclicality� amenable to clear

same in Germany.
4Systematic methods to detect price cycles are useful for researchers who do not want to study cycles as

well. Chandra and Tappata (2011) examine the role of consumer search in generating temporal dispersion in
the US retail gasoline prices. However, they could not completely reject Edgeworth cycles as an alternative
explanation (see their page 697 and footnote 46) because they did not have a scalable method to prove the
absence of cycles in their large dataset of more than 25,000 stations. Our procedure would have allowed
them to provide more concrete evidence.

5Section 4 formally introduces all methods.
6See Byrne, Nah, and Xue (2018) for a guide to the Australian data. Haucap, Heimesho¤, and Siekmann

(2017), Martin (2018), and Assad, Clark, Ershov, and Xu (2021), among others, study the German data.
7We explain our data, the choice of sampling frequency, and the manual classi�cation procedures in

section 3.
8Appendix sections B.4�B.6 show results under alternative criteria.
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mathematical de�nitions and can easily be checked at a later stage. Hence, we prioritize the

detection of cyclicality, thereby alleviating the cognitive burden on RAs.

At this point, one might wonder whether human recognition of cycles is an appropriate

benchmark. We regard it as the best feasible option (the �second best�) given the lack of clear

theoretical de�nitions (the ��rst best�). Manual classi�cation by a team of RAs represents

a best-e¤ort practice in the literature and provides a relevant� if not perfect� benchmark in

the following sense. First, most existing studies employ some rule-of-thumb de�nitions with

calibrated thresholds, which are ultimately based on the researchers�eyeballing and judg-

ment, the details of which are rarely documented. We make such procedures more explicit,

systematic, and transparent, so that the overall scheme becomes more reproducible. Second,

human recognition is central to the prominence of Edgeworth cycles as an antitrust topic.

Despite the lack of universal de�nitions, the phenomena have become a perennial policy issue

in many countries precisely because consumers and politicians can easily recognize cyclical

patterns when they see them. In this regard, human recognition is the �ground truth�that

eventually determines the phenomena�s relevance to public policy. We interpret our RAs�

responses as a proxy for the general public�s responses to various patterns in gasoline prices.

We report three sets of results. First, when applied to the two Australian datasets, most

of the methods� both existing and new� achieve high accuracy levels near or above 90% and

80%, respectively, because price cycles are clearly asymmetric and exhibit regular periodicity

(hence, are easy to detect) in these regions. By contrast, German cycles are more subtle

and diverse, defying many methods. All existing methods except Method 4 fail to detect

cycles, even though as much as 40% of the sample is unanimously labeled as �cycling�by

three RAs (see Figure 1 for examples). This failure is not an artifact of sample selection or

human error because our interview with a German industry expert suggests Edgeworth cycles

are known to exist. They are (in fact) called the �price parachute� (or Preis Fallschirm)

phenomena, and are considered to be part of common pricing strategies among practitioners.

The Bundeskartellamt (2011) also con�rms the existence of both weekly and daily cycles.9

Methods 7�10 attain 71%�80% accuracy even in this challenging environment.

Second, we assess the cost e¤ectiveness of each method by using only 0:1%, 1%, 5%, 10%,

� � � , 80% of our manually labeled subsamples as �training�data. Results suggest simpler

models (Methods 1�7) are extremely �cheap�to train, as they quickly approach their respec-

tive maximal accuracy with only a dozen observations. The nonparametric models (Methods

8�10) need more data to achieve near-maximal performance, but their data requirement is

9See sections 3.3 and 7.2 for further details on the German data.
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Figure 1: Examples of Cycling and Non-cycling Station-Quarter Observations

Note: The top panels and the bottom panels show examples of daily retail-price series in �cycling�and �non-
cycling�station-quarter observations, respectively, for illustration purposes. The vertical axes measure retail
gasoline prices in the Australian cent (left, middle) and the Euro cent (right), respectively. The horizontal
axes represent calendar days. Note our main analysis uses retail margins (= retail minus wholesale prices)
instead, thereby controlling for costs.

su¢ ciently small for practical purposes. Only a few hundred observations prove su¢ cient for

even the most complex model (Method 10). The economic cost of manually classifying a few

hundred observations is in the order of tens of RA hours, or a few hundred US dollars at the

current hourly wage of US$13.50 for undergraduate RA work at Yale University. Potential

cost savings are sizable, as manually labeling the entire German dataset in 2014�2020 would

require 4,800 RA hours, or US$64,800. Thus, our approach is economical and suitable for

researchers and governments with limited resources.

Third, we investigate whether and how gasoline stations�markups are correlated with

the presence of cycles. In WA and NSW, the average margins in (manually classi�ed) �cy-

cling�station-quarters are statistically signi�cantly higher than in �non-cycling�ones. The

relationship is reversed in Germany, where the margins in �cycling�observations are lower

than in �non-cycling�ones. Hence, in general, the presence of cycles could be either posi-

tively or negatively correlated with markups. All of the automatic detection methods lead

to the correct �nding (i.e., positive correlations) in WA, but some of them fail in NSW.
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Furthermore, Methods 1�6 either fail to detect cycles or lead to false conclusions in Ger-

many (i.e., �nd statistically signi�cant positive correlations). This �nding emerges under

both �cyclicality only� and �cyclicality with asymmetry� de�nitions of Edgeworth cycles.

Thus, whether researchers discover a positive, negative, or no statistical relationship between

markups and cycles� a piece of highly policy-relevant empirical evidence� depends on the

seemingly innocuous choice of operational de�nitions.

The rest of the paper is organized as follows. Sections 2�4 explain the theoretical back-

ground, data, and methods, respectively. Sections 5�7 report our main �ndings and discuss

their economic/policy implications. Section 8 summarizes our practical recommendations

for cycle detection. Section 9 concludes.

Related Literature, Contributions, and Replication Package. This work is so closely

connected to the Edgeworth-cycle literature and cites so many related works throughout the

paper that a separate review section would be redundant. Speci�cally, the �rst �ve para-

graphs of this introductory section provide the overall literature context; section 2 covers

the theoretical background; section 3 cites data sources as well as several papers that use

the German data; section 4.1 acknowledges the proponents of each of the existing methods;

section 4.2 suggests helpful readings for the new methods that we propose.

Besides the contributions speci�c to the phenomena, our broader contribution is three-

fold: (i) introducing certain �heavy-duty�machine-learning models and methods (a class of

deep-neural-network architectures) to the empirical economics literature, (ii) precisely ex-

plaining the mechanisms inside these �black boxes,�and (iii) demonstrating their usefulness

with a concrete, public-policy-relevant example.

For the purpose of lowering the �entry barriers�for those empirical economists who are

considering the use of advanced machine-learning tools, we have made the computer code

(in Python), the dataset, and detailed documentations (including the read-me �le and the

Online Appendix) publicly available as a replication package (Holt, Igami, and Scheidegger

2023) at https://dx.doi.org/10.5281/zenodo.10126406.

2 Theoretical Background

Even though the primary goal of this article is empirical, some conceptual anchoring clari�es

the target of measurement.
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2.1 What Are Edgeworth Cycles?

Maskin and Tirole (1988) o¤er the following verbal description: �In the Edgeworth cycle

story, �rms undercut each other successively to increase their market share (price war phase)

until the war becomes too costly, at which point some �rm increases its price. The other �rms

then follow suit (relenting phase), after which price cutting begins again. The market price

thus evolves in cycles�(pages 571�572). This description and its micro foundation� as a class

of Markov perfect equilibria (MPE) in an alternating-move dynamic duopoly game� suggest

four important characteristics: cyclicality, asymmetry, stochasticity, and strategicness.

Property 1: Cyclicality. The price should exhibit cyclicality, as the terminology sug-

gests. However, this property is not so obvious in Edgeworth�s (1925) original conjecture.

His writing focuses on the indeterminacy of static equilibrium in a price-setting game be-

tween capacity-constrained duopolists. Even though he mentions a price path that resembles

Maskin and Tirole�s description as an example, he uses the word �cycle�only once. More

generally, he conjectures that �there will be an indeterminate tract through which the in-

dex of value will oscillate, or rather will vibrate irregularly for an inde�nite length of time�

(page 118). Thus, Edgeworth�s original theory features not so much cyclicality as �perpetual

motion�(page 121).

Nevertheless, we have chosen to focus on cyclicality in this paper. Theoretically, Maskin

and Tirole�s equilibrium strategies (their equation 23) explicitly feature price cycles. Empiri-

cally, it is this repetitive pattern that draws consumers�and politicians�attention; �perpetual

motion�alone would not raise antitrust concerns.

Property 2: Asymmetry. The second characteristic is the asymmetry between relatively

few large price increases and many small price decreases. Edgeworth (1925) does not empha-

size this property either, but it plays an important role in the Maskin-Tirole formalization

and the subsequent empirical literature (see Methods 1�4 in section 4.1).

Property 3: Stochasticity. In Maskin and Tirole�s Edgeworth-cycle MPE, big price

increases are supposed to happen stochastically, not deterministically. The reason is that if

one �rm always �relents�whenever the low price is reached, the other �rm will always wait

and free-ride, which in turn would make the �rst �rm more cautious about the timing of

price increases. Thus, the frequency of cycles must be stochastic� with varying lengths of
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time spent at the low price� in equilibrium.10 We do not impose stochastic frequencies as

a necessary condition in our empirical procedures, but some of our methods are designed to

accommodate cycles with varying frequencies (Methods 7 and 8 in section 4.2).

Property 4: Strategicness. The cyclical patterns are supposed to emerge from dynamic

strategic interactions between oligopolistic �rms. If similar patterns are observed under

monopoly, their underlying mechanism must be di¤erent from that of Edgeworth cycles.11

Thus, whether market structure is monopolistic or oligopolistic is a theoretically important

distinction. Empirically, however, market de�nition is rarely clear-cut in practice. Even

when a gasoline station is located in a geographically isolated place, pricing decisions at

large chains tend to be centralized at the city, region, or country level. Market structure at

these aggregate levels is oligopolistic in all of our datasets. Consequently, we do not impose

any geographical boundaries a priori. We simply analyze data at the individual station

level.12 Our idea is that once the station-level characterization is successfully completed, one

can always compare cyclicality across stations in the same market (de�ned geographically or

otherwise) and look for synchronicity� whenever such analysis becomes necessary.

2.2 Are Edgeworth Cycles Competitive or Collusive?

Whether Edgeworth cycles represent collusion is a subtle issue on which we do not take a

stand. Several reasons contribute to its subtlety and our cautious attitude.

First, the theoretical literature seems agnostic about the distinction between competitive

and collusive behaviors in the current context. On the one hand, Edgeworth�s (1925) nar-

rative lacks any hint of cooperative actions or intentions. On the other hand, Maskin and

Tirole (1988) seem open to collusive interpretations: �Several of the results of this paper

underscore the relatively high pro�ts that �rms can earn when the discount factor is near 1.

Thus our model can be viewed as a theory of tacit collusion�(page 592). In the more recent

literature, however, the term �tacit collusion�is usually associated with collusive equilibria

10This theoretical property seems largely overlooked in the empirical literature, presumably because the
�rst two properties make the phenomena su¢ ciently interesting and policy-relevant.

11Alternative explanations include consumers with heterogeneous search costs, intertemporal price dis-
crimination, and �dynamic pricing�algorithms (broadly de�ned as any pricing strategy and its implemen-
tation(s) that tries to exploit consumer heterogeneity and time-varying price-elasticity of demand).

12This operational decision is not without its own risks. For example, if the grid of relevant prices were
very coarse and two �rms take turns to change prices, we might not be able to observe clear cycles at any
speci�c station�s time-series data even if such cycles exist at the aggregate level. Fortunately, gasoline prices
reside on a relatively �ne grid with the minimum interval of the Australian or Euro cent. Moreover, Maskin
and Tirole�s Edgeworth-cycle MPE requires a �ne grid with su¢ ciently small intervals (denoted by k in their
model). Therefore, we believe the risk of missing aggregate cycles is low.
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in repeated-games models.13 The latter rely on the concepts of monitoring, punishment, and

history-dependent strategies as their underlying mechanism, none of which are prominently

featured in Edgeworth cycles. Thus, even though Maskin and Tirole�s own remarks suggest

the possibility of collusive interpretations, we feel inclined to regard their Edgeworth-cycle

MPE as a re�ection of competitive interaction between forward-looking oligopolists.

Second, in terms of antitrust law, explicit communications of a cooperative nature are

the single most important act that constitutes criminal price-�xing. That is, tacit collusion

is not illegal as long as it truly lacks explicit communication. Notwithstanding this legal

distinction, most of the theoretical literature does not discriminate between tacit and explicit

collusion because the process through which �rms reach collusive agreements is usually not

modeled. Hence, an important gap lies between economic theory and legal enforcement,

which complicates the interpretation of Edgeworth cycles in empirical research.

Third, partly re�ecting this unresolved theory-enforcement divide, the empirical literature

has documented many di¤erent instances of asymmetric price cycles, both with and without

legally established evidence of criminal price-�xing. Accordingly, interpretations of observed

cycles vary across papers on a case-by-case basis. The only common thread that unites the

large empirical literature is the data patterns with clear cyclicality and asymmetry.

For these reasons, we do not (necessarily) interpret Edgeworth cycles as evidence of

collusion. Consequently, we do not aim or claim to detect �collusion.�Reliable methods to

detect price cycles would nevertheless be useful for detecting cycle-based collusion.

3 Data and Manual Classi�cation

Retail-price data are publicly available for the universe of individual gasoline stations in

WA, NSW, and Germany. We combine them with wholesale-price data, based on the region

of each station (Australia) or the location of the nearest re�nery (Germany). We compute

station-level daily pro�t margins by subtracting the relevant wholesale price from the retail

price,

pi;d � pRi;d � pWi;d; (1)

13Tirole and his coauthors exclusively focus on the repeated-games theory when they summarize the
�economics of tacit collusion� for the European competition authority. See Ivaldi, Jullien, Rey, Seabright,
and Tirole (2003).
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where pRi;d and p
W
i;d are retail and wholesale prices at station i on day d, and simply refer

to this markup measure pi;d as �price� in the following. We organize these daily prices by

calendar quarter, so that station-quarter (i.e., a sequence of daily prices over 90 days for

each station) becomes the unit of observation for cycle detection.

3.1 Data Sources and Preparation

Retail Prices. We use three datasets on retail gasoline prices that are publicly avail-

able and of high quality. FuelWatch and FuelCheck are legislated retail-fuel-price platforms

operated by the state governments of WA and NSW, respectively. Their websites display

real-time information on petrol prices, and the complete datasets can be downloaded.14 The

Market Transparency Unit for Fuels of the Bundeskartellamt publishes similar data for every

German gas station in minute intervals.15

Sampling Frequencies. The raw data fromWA contain daily retail prices for each station,

which is the most granular level in this region because its law mandates each station must

commit to a �xed price level for 24 hours. By contrast, the stations in NSW and Germany

can change prices at any point in time, which we aggregate into daily prices by taking either

end-of-day values (NSW) or intra-day averages (Germany). Intra-day changes are relatively

rare in NSW, and hence, end-of-day values are representative of the actual transaction prices.

In Germany, many stations change prices multiple times during the day, so we sample 24

hourly prices and take their average for each station-day (see section 3.3 for further details

on Germany).

Wholesale Prices. The Australian Institute of Petroleum publishes average regional whole-

sale prices at https://www.aip.com.au. The Argus Media group�s OMR Oil Market Report

collects daily regional wholesale prices and o¤ers the database on a commercial basis.16

3.2 Manual-Classi�cation Procedures

Whereas most existing studies treat the manual-veri�cation process as an informal prepara-

tory step (to be embodied by the analyst�s eventual choice of methods and calibration of

threshold parameters), we make it as systematic as possible. Our goal is to develop and

14Their URLs are https://www.fuelwatch.wa.gov.au and https://www.fuelcheck.nsw.gov.au.
15https://www.bundeskartellamt.de/EN/Economicsectors/MineralOil/MTU-Fuels/mtufuels_node.html
16Regional wholesale prices are the most detailed publicly available information on the operating costs of

retail gasoline stations (to our knowledge). We do not observe station-speci�c costs.
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compare the performance of multiple methods, and such �horse racing�requires a common

benchmark.

To establish a �ground truth�based on human recognition of cycles, we employed a team

of eight RAs to manually classify station-quarter observations.17 Each station i in quarter

t is classi�ed as either �cycling,� �maybe cycling,� or �not cycling.�The total number of

manually labeled observations is 24,569 (WA), 9,693 (NSW), and 35,685 (Germany). The

RAs�total working hours are approximately 260 (WA), 210 (NSW), and 480 (Germany).

The manual labeling of the datasets proceeded in three stages.

WA. First, we labeled all station-quarters in the WA data with two RAs as a pilot project

between July 2019 and June 2020. The �rst RA (a PhD student in economics) laid the

ground work with approximately half of the WA data in close communication with one of the

coauthors (Igami). The second RA (a senior undergraduate student majoring in economics)

followed these examples to label the rest. Then, the �rst RA carefully double-checked all

labels to maintain consistency. As a result, each station-quarter (i; t) in WA has one label

based on the consensus of the two RAs.

NSW. Second, the NSW dataset is smaller but contains more ambiguous cases. Hence,

we took a more organized/computerized approach by building a cloud-based computational

platform to streamline the labeling process. The same coauthor manually labeled a random

sample of 100 station-quarters in December 2020, which is used for generating automated

training sessions for three new undergraduate RAs (a senior and a junior majoring in eco-

nomics, and a junior mathematics major). In the automated training sessions, each of the

three RAs was asked to classify random subsamples of the labeled observations, and to re-

peat the labeling practice until their judgments agreed with the coauthor�s at least 80%

of the time. Subsequently, each of the RAs independently labeled the entire dataset in

February�April 2021. Thus, each (i; t) in NSW carries three labels.

Germany. Third, the same team of three RAs proceeded to label a 5% random sample

of the German dataset in April�June 2021. In turn, these labels served as a source of

�training sample�for yet another team of three RAs (two juniors majoring in economics and

a freshman in statistics and data science). They labeled an additional 5% random sample

in June 2021. In total, 10% of the German data is triple-labeled.

17All of them are graduate or undergraduate students majoring in economics, mathematics, and statistics
at Yale University.
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Risk of �Collusion� Is Low. In the computerized procedures for NSW and Germany,

each RA is given one randomly selected observation for labeling at a time. We believe the

risk of �collusion�among RAs is low because copying each other�s answers would require (i)

keeping records of random sequences of thousands of observations with their station-quarter

identi�ers, (ii) exchanging these long records, and (iii) matching each other�s answers across

di¤erent random sequences. Such a conspiracy is conceivable in principle but prohibitively

time-consuming in practice. Honestly labeling all observations just once would be much

easier.

Summary Statistics. Table 1 reports summary statistics. Based on these manual-classi�cation

results, we de�ne cyclei;t as a binary variable indicating the presence of clear cycles. In

WA, each observation is labeled exactly once, based on the consensus of two RAs. We set

cyclei;t = 1 if station-quarter (i; t) is labeled as �cycling,�and 0 otherwise. In the NSW and

German data, which contain more ambiguous patterns, we assigned three RAs to label each

observation individually, and hence each (i; t) is triple-labeled. We set cyclei;t = 1 for obser-

vations with triple �cycling� labels (i.e., based on three RAs�unanimous decisions), and 0

otherwise.18 Thus, we prepare the target for automatic detection in a relatively conservative

manner.

Table 1: Summary Statistics

(1) (2) (3)
Dataset Western Australia New South Wales Germany
Sample period (yyyy/mm/dd) 2001=1=3� 2020=6=30 2016=8=1� 2020=7=31 2014=6=8� 2020=1=7
Number of gasoline stations 821 1; 226 14; 780
Number of calendar quarters 77 15 26
Number of station-quarters 25; 463 9; 693 353; 086
Of which:
Labeled as �cycling�by 3 RAs 0 (0:0%) 6; 878 (71:0%) 14; 116 (39:6%)
Labeled as �cycling�by 2 RAs 0 (0:0%) 906 (9:4%) 7; 173 (20:1%)
Labeled as �cycling�by 1 RA 15; 007 (61:1%) 759 (7:8%) 6; 280 (17:6%)
Not labeled as �cycling�by any RA 9; 562 (38:9%) 1; 150 (11:9%) 8; 116 (22:7%)
Total manually labeled 24; 569 (100:0%) 9; 693 (100:0%) 35; 685 (100:0%)
Not manually labeled 894 0 317; 401

Note : Each �manually labeled�station-quarter observation in the WA data is single-labeled as either �cycling,��maybe
cycling,�or �not cycling,�whereas the NSW and German data are triple-labeled. See main text for details.

18We assess the sensitivity of our results under alternative criteria in Appendix sections B.4�B.6.
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3.3 Rationale for Daily Frequency and Quarterly Window

Several considerations led us to use the daily sampling frequency and the quarterly time

window.

First, we prioritize setting a common time frame for all three datasets. Our goal is

to compare the performance of various methods in multiple di¤erent datasets under the

same protocol; a detailed case study of any single region/country is not our main objective.

The daily frequency is the �nest granularity that can be commonly used across all datasets

because retail prices in WA are �xed for 24 hours due to regulation (see section 3.1). It is

also the �nest granularity used in most other studies (however, see below for our discussion

of the German data).

Second, cyclicality implies repetition, the identi�cation of which requires a su¢ ciently

long time window. The existing studies on WA and NSW report cycles with frequencies of

one to several weeks, whereas those on Germany report both weekly and intra-day cycles.

The 12�13 weeks of a calendar quarter permit repeated observations of relatively long (e.g.,

monthly) cycles.

Third, shorter-than-daily (e.g., hourly) frequencies would be too �costly�for our research

design, as systematic manual veri�cation is its essential component. Eyeballing and labeling

a 10% subsample of the entire German dataset at the hourly (instead of daily) frequency

would require 24 times more labor: 480 hours � 24 = 11,520 hours. At the hourly wage of
$13.50, the total cost would be $155,520.

Fourth, we avoid longer-than-quarterly time windows for two reasons. One is that macro-

economic factors (such as business cycles, �nancial crises, and geopolitical upheavals in the

world crude oil market) tend to feature prominently in a time horizon longer than 90 days,

which increases noise. Another reason is that longer windows tend to complicate classi�ca-

tion, as cycles might appear in only one part of the graph but not others.

For these reasons, the daily frequency and the quarterly horizon are suitable for our

purposes. Note that our choice is driven by the comparative research design, practical

considerations, and budget constraints, not conceptual limitations. All of the methods can

be applied to time-series data of any frequency and length in principle.

On Intra-Day Cycles in the German Data. We are aware of multiple studies that

document intra-day price cycles in Germany. The �rst investigation into the German retail

fuel markets by Bundeskartellamt (2011) studies data from four major cities (Hamburg,

Leipzig, Cologne, and Munich) in January 2007�June 2010 and highlights three patterns.
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First, weekly cycles exist in both diesel and gasoline prices, with the highest prices on Fridays

and the lowest prices on Sundays and Mondays. Second, intra-day cycles exist as well, with

many small price reductions during the day and fewer, larger increases in the evening. Third,

stations operated by Aral (BP) and Shell typically lead those price increases, in which one

follows the other within three hours in 90% of the cases, followed by three other major chains.

Given the well-documented presence of intra-day cycles, one might wonder whether our

focus on the daily data and multi-day cycles leads to an important omission. Our answer is

�yes,�but this issue is orthogonal to the main purpose of this research.

By aggregating the underlying minute-by-minute data to 24-hour averages, we lose these

interesting short-run movements. Our choice of the daily frequency is driven by the compar-

ative design of our research, which prioritizes the systematic comparisons across the three

datasets and (costly) manual veri�cation. Thus, researchers who wish to conduct an in-depth

case study of the German fuel markets might want to analyze intra-day patterns as well.

Nevertheless, the presence of shorter cycles does not preclude that of longer cycles; Bun-

deskartellamt (2011) con�rms the existence of both (see above). One should also note that

the intra-day cycles seem to follow a speci�c time schedule in which prices (i) rapidly increase

at night between 20:00 and 24:00 hours and (ii) gradually decrease from around 6:00 in the

following morning (Siekmann 2017). As Linder (2018) correctly points out, such a deter-

ministic pattern is more consistent with intertemporal price discrimination than Maskin and

Tirole�s Edgeworth cycles (recall Property 3� stochasticity� in section 2.1). Hence, while

interesting, the intra-day cycles in Germany are outside the scope of this paper.

4 Models and Methods for Automatic Detection

This section explains (i) how we formalize the four existing methods, (ii) the six new methods

that we propose, and (iii) the way we optimize the parameter values of each model.

4.1 Existing Methods Mostly Focus on Asymmetry

The existing methods in the literature almost exclusively focus on asymmetry. We formalize

four of them as simple parametric models.

Method 1: Positive Runs vs. Negative Runs (�PRNR�). Castanias and Johnson

(1993) compare the lengths of positive and negative changes. We formalize this idea by
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classifying each station-quarter as cycling (cyclei;t = 1) if and only if

mean
�
len
�
run+

��
< mean

�
len
�
run�

��
+ �PRNR; (2)

where len (run+) and len (run�) denote the lengths of consecutive (multi-day) price in-

creases/zero changes and decreases within quarter t, respectively. The means are taken over

these �runs.��PRNR � 0 is a scalar threshold, which we treat as a parameter.19

Method 2: Mean Increase vs. Mean Decrease (�MIMD�). Eckert (2002) compares

the magnitude of the mean increase and the mean decrease. Formally, station-quarter (i; t)

is cycling if and only if

��meand2t ��p+i;d��� > ��meand2t ��p�i;d���+ �MIMD; (3)

where �p+i;d and �p
�
i;d denote positive and negative daily price changes at station i (between

days d and d � 1), respectively, and �MIMD � 0 is a scalar threshold. That is, a cycle is

detected when the average price increase is greater than the average price decrease.20

Method 3: Negative Median Change (�NMC�). Lewis (2009) classi�es cyclei;t = 1

if and only if

mediand2t (�pi;d) < �
NMC ; (4)

where �pi;d denotes a price change between days d and d � 1, and �NMC � 0 is a scalar

threshold. In other words, the signi�cantly negative median change is taken as evidence of

price cycles.21

19Eckert (2002) proposes a more comprehensive version of this idea, which compares the distributions of
positive and negative runs across lengths, by using the Kolmogorov-Smirnov test.

20Eckert (2003) uses this method as well. Clark and Houde (2014) propose its variant: the ratio of the
median price increase to the median price decrease, with 2 as a threshold to de�ne cyclical subsamples.

21Many subsequent studies use this method, including Wills-Johnson and Bloch (2010), Doyle, Muehleg-
ger, and Samphantharak (2010), Lewis and Noel (2011), Lewis (2012), Eckert and Eckert (2013), Zimmerman,
Yun, and Taylor (2013), and Byrne (2019). As a threshold for discretization, Lewis (2012) uses �0:2 US
cents per gallon, whereas Doyle et al. (2010) and Zimmerman et al. (2013) use �0:5 US cents per gallon.
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Method 4: Many Big Price Increases (�MBPI�). Byrne and de Roos (2019) identify

price cycles with the condition

X
d2t

I
�
�pi;d > �

MBPI
1

	
� �MBPI

2 ; (5)

where I f�g is an indicator function that equals 1 if the condition inside the bracket is satis�ed,
and 0 otherwise. �MBPI

1 and �MBPI
2 are thresholds for �big� and �many�price increases,

respectively. They set �MBPI
1 = 6 (Australian cents/liter) and �MBPI

2 = 3:75 (per quarter) in

studying the WA data.22 Thus, many instances of big price increases are taken as evidence

of price cycles.

Other Existing Methods. These methods are among the most cited in the literature,

but our listing is not exhaustive. Other in�uential papers use a variety of methods. Let us

brie�y discuss three of them. First, Noel (2007) proposes a Markov switching model with

three unobserved states, two of which correspond to positive and negative runs, respectively,

and the third corresponds to a non-cyclical regime.23 Second, Deltas (2008) and many others

regress retail price on wholesale price to describe asymmetric responses. Third, Foros and

Steen (2013) regress price on days-of-week dummies to describe weekly cycles. These papers

o¤er valuable insights, and their methods are suitable in their respective contexts. However,

they are not speci�cally designed for de�ning or detecting cycles.

4.2 Our Proposals to Capture Cyclicality

We propose six new methods. Methods 5�6 are based on spectral analysis, and hence are

attractive as formal mathematical de�nitions of regular cycles. By contrast, Methods 7�8

build on nonparametric regressions and machine-learning techniques, respectively, and are

more suitable for capturing nuanced patterns and replicating human recognition of cycles.

Methods 9�10 combine some or all of the previous methods.

22Lewis (2009) also uses a similar method, with �MBPI
1 = 4 (US cents/gallon) in a single day or two

consecutive days.
23Because these states are modeled as unobserved objects, using this approach as a de�nition is not

straightforward. Zimmerman et al. (2013) propose another de�nition that shares the spirit of Markov
switching regressions: (i) Compare the probability that a price increase (decrease) is observed after two
consecutive price increases (decreases); and (ii) if the conditional probability of a third consecutive increase
is smaller than that of a third decrease, take it as an indicator of cycles. We regard their approach as a
variant of Castanias and Johnson�s method. Finally, Noel (2018) de�nes the relenting and undercutting
phases by consecutive days with cumulative increases and decreases of at least 3 Australian cents per liter,
respectively, which is also close to Castanias and Johnson�s (1993) idea.
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This subsection is rather technical because we are introducing data-analysis techniques

from outside the usual toolbox of empirical economists. If the reader is not interested in

methodological details, a quick look at the �rst and the last few sentences of each method

would be su¢ cient for an overview. If, instead, the reader wants to exactly follow our

procedures, Appendix A.1 (and the replication package) provides additional details.

Method 5: Fourier Transform (�FT�). Fourier analysis is a mathematical method for

detecting and characterizing periodicity in time-series data. When a continuous function of

time g (x) is sampled at regular time intervals with spacing �x, the sample analog of the

Fourier power spectrum (or �periodogram�) is

P (f) � 1

N

�����
NX
n=1

gne
�2�ifxn

�����
2

; (6)

where f is frequency, N is the sample size, gn � g (n�x), i �
p
�1 is the imaginary unit (not

to be confused with our gas-station index), and xn is the time stamp of the n-th observation.

It is a positive, real-valued function that quanti�es the contribution of each frequency f to

the time-series data (gn)
N
n=1.

24

We focus on the highest point of P (f) and detect cycles if and only if

max
f
Pi;t (f) > �

FT
max; (7)

where Pi;t (f) is the periodogram (6) of station-quarter (i; t), and �FTmax > 0 is a scalar

threshold parameter.

Method 6: Lomb-Scargle (�LS�) Periodogram. The LS periodogram (Lomb 1976,

Scargle 1982) characterizes periodicity in unevenly sampled time series.25 It has been ex-

tensively used in astrophysics because astronomical observations are subject to weather con-

ditions and diurnal, lunar, or seasonal cycles. Formally, it is a generalized version of the

24Appendix A.1 (Method 5) introduces FT to readers who are not familiar with Fourier analysis.
25Our data are evenly sampled at the daily frequency and can be analyzed by FT alone, but the LS

periodogram o¤ers additional bene�ts. One is conceptual: it is interpretable as a kind of nonparametric
regression� see Appendix A.1 (Method 6). Another is practical: its o¤-the-shelf computational implemen-
tation can o¤er more granular periodograms.
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classical periodogram (6):26

PLS (f) =
1

2

(
(
P

n gn cos (2�f [xn � � ]))
2P

n cos
2 (2�f [xn � � ])

+
(
P

n gn sin (2�f [xn � � ]))
2P

n sin
2 (2�f [xn � � ])

)
; (8)

where � is speci�ed for each frequency f as

� =
1

4�f
tan�1

�P
n sin (4�fxn)P
n cos (4�fxn)

�
: (9)

We propose the following threshold condition to detect cycles:

max
f
PLSi;t (f) > �

LS
max; (10)

where �LSmax > 0 is a scalar threshold parameter.

Method 7: Cubic Splines (�CS�). This method captures cycles� frequency in a less

structured manner than FT and LS by using cubic splines (a spline is a piecewise polynomial

function). That is, we smooth the discrete (daily) time series by interpolating it with a

commonly used continuous function.27 For each (i; t), we �t CS to its demeaned price series,

pi;d � pi;d�meand2t (pi;d), and count the number of times the �tted function CSi;t (d) crosses
the d-axis (i.e., equals 0). Operationally, we count the number of real roots and detect cycles

with the condition,

#roots
�
CSi;t (d)

�
> �CSroot; (11)

where �CSroot > 0 is a scalar parameter. Thus, any frequent oscillations (not limited to the

sinusoidal ones as in FT or LS) become a sign of cycles.

Method 8: Long Short-Term Memory (�LSTM�). Recurrent neural networks with

LSTM (Hochreiter and Schmidhuber 1997) are a class of arti�cial neural network (ANN)

models for sequential data. LSTM networks have become a �de-facto standard�for recog-

nizing and predicting complicated patterns in many applications, including speech, hand-

writing, language, and polyphonic music. Because LSTM is relatively new, we explain this

method in greater detail.

26Appendix A.1 (Method 6) explains how this expression relates to FT.
27We use a cubic Hermite interpolater, which is a spline where each piece is a third-degree polynomial of

Hermite form. Appendix A.1 (Method 7) explains the details of this functional form.
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Econometrically speaking, LSTM is a nonparametric model for time-series analysis. It is

a recursive dynamic model whose behavior centers on a collection of pairs of Bl � 1 vector-
valued latent state variables, sld and c

l
d, where l = 1; 2; � � � ; L is an index of layers. As

this notation suggests, we use a multi-layer architecture (a.k.a. �deep�neural networks) to

enhance the model�s �exibility.28 Bl represents the number of blocks per layer, which are

analogous to �neurons�(basic computing units) in other ANN models. sld is an output state

that represents the current, �short-term�state, whereas cld is called a cell state and retains

�long-term memory.�The latter is designed to capture lagged dependence between the state

and input variables, thereby playing the role of a memory cell in electronic computers.

These state variables evolve according to the following Markov process:

sld = tanh
�
cld
�| {z }

�output�

��
�
!l1 + !

l
2�pd + !

l
3s
l�1
d

�| {z }
�output gate�

; and (12)

cld = tanh
�
!l4 + !

l
5�pd + !

l
6s
l�1
d

�| {z }
�input�

��
�
!l7 + !

l
8�pd + !

l
9s
l�1
d

�| {z }
�input gate�

+cl�1d �
�
1� �

�
!l7 + !

l
8�pd + !

l
9s
l�1
d

��| {z }
�forget gate�

; (13)

where d = 1; 2; � � � ; D is our index of days, �pd � pd � pd�1 (we set �p1 = 0), tanh (x) �
ex�e�x
ex+e�x is the hyperbolic tangent function, � denotes the Hadamard (element-wise) product,
and � (x) � ex

1+ex
is the cumulative distribution function (CDF) of the logistic distribu-

tion.29 The !s are weight parameters with the following dimensionality: (i) !l1, !
l
2, !

l
4,

!l5, !
l
7, and !

l
8 are Bl � 1 vectors; and (ii) !l3, !l6, and !l9 are Bl � Bl�1 matrices. Thus,

B � (B1; B2; � � � ; BL) determines the e¤ective number of latent state variables and parame-
ters, and hence the �exibility of the model.

The �rst layer l = 1 of time d takes as input the states of the last layer l = L of time

d�1. Thus,
�
sl�1d ; cl�1d ; Bl�1

�
in the above should be replaced by

�
sLd�1; c

L
d�1; BL

�
when l = 1.

After the �nal layer L of the last day D = 90 of quarter t, we detect cycles in station-quarter

(i; t) if and only if

s�
�
pi;t;�

LSTM
�
� !10 + !011sLD > 0; (14)

where !10 is a scalar, !11 is a BL � 1 vector, and �LSTM � (!; L;B) collectively denotes

28Except for the multi-layer design, our speci�cation mostly follows Gre¤, Srivastava, Koutník, Steune-
brink, and Schmidhuber (2017), in which one of the original proponents of LSTM and his team compare
many of its variants and show that their simple �vanilla�speci�cation outperforms others.

29See Appendix A.1 (Method 8) for further details on this speci�cation and computational implementation.
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all parameters, including (i) the many weights in ! �
��
!l1;!

l
2; � � � ;!l9

�L
l=1
; !10;!11

�
, (ii)

the number of layers L, and (iii) the pro�le of the number of blocks in each layer, B. We

set L = 3 and B = (16; 8; 4), and �nd the value of ! that approximately maximizes the

accuracy of prediction (to be explained in section 4.3 and Appendix A.2).

In summary, LSTM sequentially processes the daily price data in a �exible Markov model

with many latent states, and uses the terminal state s� as a latent score to detect cycles.

Method 9: Ensemble in Random Forests (�E-RF�). This method combines Methods

1�7 within random forests (RF), which is a class of nonparametric regressions. Let

gmi;t � LHSmi;t �RHSmi;t (15)

denote a �gap,�the scalar di¤erence between the left-hand side (LHS) and the right-hand

side (RHS) of the inequality that de�nes each method m = 1; 2; � � � ;M , excluding the
threshold parameter, �m. For example, inequality (3) de�nes Method 2. Hence, g2i;t =��meand2t ��p+i;d���� ��meand2t ��p�i;d���.30 Let

gi;t �
�
gmi;t
�M
m=1

(16)

denote their vector, where M = 7.31 We construct a decision-tree classi�cation algorithm

that takes gi;t as inputs and predicts cyclei;t = 1 if and only if

h
�
gi;t;!

RF ;�RF
�
�

KX
k=1

!RFk I fgi;t 2 Rkg �
KX
k=1

!RFk �
�
gi;t;�

RF
k

�
> 0; (17)

where K is the number of adaptive basis functions, !RFk is the weight of the k-th basis

function, Rk is the k-th region in the M -dimensional space of gi;t, and �RFk encodes both

the choice of variables (elements of gi;t) and their threshold values that determine region

Rk.32 Because �nding the truly optimal partitioning is a computationally di¢ cult (combi-

natorial) problem, we use an RF algorithm to stochastically approximate it.33 Thus, this

method aggregates and generalizes Methods 1�7 in a �exible manner that permits (i) mul-

30All of Methods 1�7 except 4 are one-parameter models like this example. For Method 4, we de�ne

g4i;t �
P

d2t I
n
�pi;d > �

MBPI�
1

o
, where �MBPI�

1 is the accuracy-maximizing value of �MBPI
1 .

31Our computational implementation also incorporates two additional variants of each of Methods 5�7,
which we explain in Appendix A.1 (Method 9). Hence, the eventual value of M is 7 + (2� 3) = 13.

32See Murphy (2012, ch. 16) for an introduction to adaptive basis-function models including RF.
33See Appendix A.1 (Method 9) for further details.
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tiple thresholds and (ii) interactions between gmi;ts. We denote its full set of parameters by

�RF �
�
!RF ;�RF

�
�
��
!RFk

�K
k=1
;
�
�RFk

�K
k=1

�
.

Method 10: Ensemble in LSTM (�E-LSTM�). This method combines Methods 1�8

within an extended LSTM by incorporating gi;t in (16) as additional variables in the laws of

motion:

sld = tanh
�
cld
�
� �
�
!l1 + !

l
2�pd + !

l
3s
l�1
d + !l12g

�
; and (18)

cld = tanh
�
!l4 + !

l
5�pd + !

l
6s
l�1
d + !l13g

�
� �
�
!l7 + !

l
8�pd + !

l
9s
l�1
d + !l14g

�
+cl�1d �

�
1� �

�
!l7 + !

l
8�pd + !

l
9s
l�1
d + !l14g

��
; (19)

where
�
!l12;!

l
13;!

l
14

�
are Bl �M matrices of weight parameters for gi;t (we suppress (i; t)

subscript here). Other implementation details are the same as Method 8.

4.3 Optimization of Parameter Values (�Training�)

Accuracy Maximization. Whereas the existing research typically calibrates (i.e., man-

ually tunes) the threshold parameters, we optimize this process by choosing the parameter

values that maximize accuracy, which we de�ne as the percentage of correct predictions,

% correct (�) �

P
(i;t) I

n
[cyclei;t (�) = cyclei;t

o
# all predictions

� 100; (20)

where [cyclei;t (�) 2 f0; 1g is the algorithmic prediction for observation (i; t) at parameter
value �, and cyclei;t 2 f0; 1g is the manual classi�cation label (data). We analogously de�ne
two types of prediction errors, �false negative�and �false positive,�in Appendix A.2. Thus,

�� � argmax
�

% correct (�) (21)

characterizes the optimized (or �trained�) model for each method.34

Splitting Data into Training and Testing Subsamples. We optimize and evaluate

each method as follows, separately for each of the three datasets (WA, NSW, and Germany):

1. Randomly split each labeled dataset into an 80% �training� subsample and a 20%

�testing�subsample.

34See Appendix A.2 for further details.
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2. Optimize the parameter values of each model in the 80% training subsample.

3. Assess its �out-of-sample�prediction accuracy in the 20% testing subsample.35

4. Repeat these three steps 101 times.36

5. Report the medians of the optimized parameter values, as well as the medians and

standard deviations of the prediction-accuracy results.

5 Results

Table 2 summarizes the performance of all methods for each dataset. We report the median

accuracy, the composition of correct and incorrect predictions, and the associated parameter

value(s), ��, for each method.

WA. Panel I shows the results inWA, where clear-cut cycles of deterministic frequencies are

known to exist. Almost all methods achieve high accuracy near or above 90%. The �exible,

nonparametric models of Methods 8�10 do particularly well with above 99% accuracy.

Some of the parameter values are informative about the underlying data patterns. For

example, CS lags behind all other methods with (a still respectable) 85% accuracy. Its

parameter value, �CSroots = 22:5, suggests the model is trained to focus on shorter cycles with

wavelengths less than 90� 22:5
2
= 8 days. Byrne and de Roos (2019) show both weekly and

two-weekly cycles exist in WA. Thus, the inferior performance of CS stems from missing the

latter, longer cycles.

Another interesting result concerns MBPI, which achieves 90% accuracy. Byrne and

de Roos (2019) set �MBPI
1 = 6 and �MBPI

2 = 3:75 in their original study of WA. Our

accuracy-maximizing values (5:05 and 5, respectively) turn out to be reasonably close to

their calibrated values. This comparison illustrates how experienced researchers�parameter

tuning could approximate the results of systematic numerical optimization. One can also

interpret this �nding as an external validation of our manual classi�cation. Given the similar

parameter values and the high accuracy, it follows that our manual classi�cation must be

broadly consistent with Byrne and de Roos�s eyeballing results.

35This cross-validation procedure is particularly important for the nonparametric models of Methods
8�10, which contain many parameters and could potentially �over-�t�the training subsample.

36An odd number of bootstrap sample-splits facilitates the selection of the medians in step 5.
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NSW. Panel II reports the results in NSW. Cycle detection in NSW is not as easy as in

WA, but most methods achieve near or above 80% accuracy. The nonparametric methods

are top performers again (87%�90%), followed by MBPI and the spectral methods (81%�

82%). By contrast, CS (74%) and NMC (71%) make mostly degenerate predictions in which

they classify virtually all observations as cycles.

The poor performance of NMC is surprising in three ways. First, it performed well in WA.

Second, it is one of the most widely used methods in the literature. Third, other methods

that similarly focus on asymmetry (PRNR and MIMD) do signi�cantly better (78%�79%).

This �nding alone does not necessarily invalidate the use of NMC in other datasets but

cautions against overly relying on any single metric.

Germany. Panel III shows most methods fail in Germany, where cycles are more subtle

and data are noisier (i.e., our RAs reach unanimous decisions less often).37 E-LSTM is the

only method that achieves accuracy near 80%, followed by E-RF (76%) and LSTM (75%).

Somewhat surprisingly, CS (71%) outperforms all other parametric models; MBPI (65%) is

the only existing method with non-degenerate predictions, presumably because it does not

exclusively rely on asymmetry.

This pro�le of success and failure is intriguing. The methods that exclusively focus on

asymmetry (Methods 1�3) and deterministic cycles (Methods 5�6) fail, whereas those that

capture cyclicality in �fuzzier�manners (Methods 4 and 7) manage to make at least some

correct (non-degenerate) predictions. These results suggest that not all of the German cycles

conform to the idealized patterns of asymmetry or cyclicality and that less rigid classi�cation

rules could be relatively more robust to irregular patterns and noise.

The parameter values of CS (�CSroots = 24:50) and MBPI (�
MBPI
2 = 14) suggest that the

German cycles are approximately weekly. That is, �CSroots = 24:50 means at least as many ups

and downs are often recorded in �cycling�observations, which translate into the wavelength

of 90 � 24:5
2
= 7:3 days or shorter. Likewise, �MBPI

2 = 14 requires at least as many �big

jumps�within a calendar quarter and hence implies the wavelength of 90 � 14 = 6:4 days
or shorter. These numbers provide another opportunity for external validation: the detailed

case study by Bundeskartellamt (2011) con�rms the presence of weekly cycles (see section

37As Table 1 shows, 71% of the NSW data is unanimously labeled as �cycling�by three RAs, whereas
9:4% + 7:8% = 17:2% is labeled as such by only two or one RAs. In the German sample, only 39:6% is
unanimously �cycling,�whereas RAs disagree in 20:1%+ 17:6% = 37:7% of the data. Appendix B.4 reports
results based on �cleaner� subsamples that eliminate such observations with disagreements. By contrast,
Appendix B.5 investigates how the algorithms classify ambiguous observations (i.e., station-quarters on which
RAs disagree and/or choose �maybe cycling�). Appendix B.6 examines such labeler heterogeneity in detail.
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3.3).

Summary. In summary, four �ndings emerge from Table 2. First, the four existing meth-

ods (Methods 1�4) work well in the clean data environments of Australia, but mostly fail in

the noisier data from Germany. The spectral methods (Methods 5�6) show similar perfor-

mance. Second, by contrast, CS (Method 7) underperforms most other methods when cycles

are clear and regular, but does relatively well in noisier cases. Third, LSTM (Method 8) is

su¢ ciently �exible to capture both clear and noisy cycles: the most accurate stand-alone

method. Fourth, the ensemble methods (Methods 9�10) e¤ectively leverage the information

content of Methods 1�8 and usually outperform all of them. The fact that E-RF performs

so well is particularly interesting because it simply aggregates the descriptive statistics from

Methods 1�7 in a more �exible manner (i.e., permitting their interactions and multiple

thresholds).

Performance on Simulated Cycles. In Appendix A.3, we examine the 10 methods�per-

formances on simulated data with four types of arti�cial patterns: white noise, theoretical

Edgeworth cycles, �reverse Edgeworth�cycles, and sine waves of various lengths. We sim-

ulate 10,000 quarters of data based on each DGP and deploy the three pre-trained versions

(WA, NSW, and Germany) of each method. Four �ndings emerge. First, Methods 1�4 and 7

either fail to detect most of these cycles or incorrectly classify white noise as cycles. Second,

Methods 5�6 are the best performers in such a controlled environment. Third, the perfor-

mances of Methods 8�10 are somewhere between these two groups of methods. Fourth, a

little bit of additional noise could either help or hinder the performance of these 10 methods.

These results suggest the real-world data are qualitatively di¤erent from simulated data with

arti�cial cycles.

6 How Much Data Do We Need?

The accuracy �horse racing�in the previous section shows that more �exible methods tend

to outperform simple parametric ones, which is not surprising. The real question is the cost

of �training�complicated machine-learning algorithms, which are known to require a lot of

data. This section investigates the cost-accuracy trade-o¤s of the 10 methods.

The accuracy of cycle detection naturally improves with the size of the training dataset.

The rate of improvement is di¤erent across methods, however. Figure 2 shows performance
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when we restrict the training dataset to only 0:1%, 1%, 5%, 10%, � � � , 80% of the available

samples.

Methods 1�7 and 9 perform surprisingly well with only 0:1% of the data, which corre-

sponds to 25, 10, and 36 observations in WA, NSW, and Germany, respectively. The labor

cost of human-generated labels is negligible for such small samples (US$3:51, US$2:84, and

US$6:48, respectively, based on the hourly wage of US$13.50 for undergraduate RA work at

Yale University as of 2021). These methods are extremely cost e¤ective.

The fact that simple models with one or two parameters (Methods 1�7) require only

a few dozen observations is not surprising. All we have to do is to adjust one or two

numerical thresholds to distinguish cycles from non-cycles. However, the �nding that E-RF

(Method 9) is equally cheap is surprising. It is a highly nonlinear machine-learning model

with potentially many thresholds and interactions. This result suggests that the building

blocks of E-RF� the summary statistics derived fromMethods 1�7� contain genuinely useful

information that those stand-alone methods under-utilize.

Methods 8 and 10 contain a few thousand parameters and obviously need more data.

For instance, E-LSTM�s accuracy in NSW is below 50% when it uses only 10 observations

(0:1% subsamples). Fortunately, their performance dramatically improves with a mere 1%

subsample, and they start outperforming all other methods when 5% subsamples are used.38

The �critical� sample size above which they perform the best is in the order of several

hundred observations. The associated cost of manual labeling is only tens of RA hours, or a

few hundred US dollars.39 Thus, even though LSTM and E-LSTM require more data for a

given accuracy level, their total cost is surprisingly low, making them the highest-accuracy

methods within a limited amount of resources.

This �nding is unexpected, but is de�nitely good news: heavy-duty machine-learning

algorithms turn out to be not only useful, but also a¤ordable in the context of detecting

Edgeworth cycles. Our conjecture is that the cyclical patterns that humans recognize are

relatively simple after all, even though explicitly articulating them might be di¢ cult.

38Strictly speaking, E-RF slightly outperforms E-LSTM in subsamples up to 40% in WA, although their
mean di¤erences are small relative to their standard deviations (see Tables 11 and 12 in Appendix B.3).

39Panel (B) of Table 11 in Appendix B.3 reports the total cost of manual labeling for each dateset.
The reason only �several hundred observations� are su¢ cient to approximately optimize �a few thousand
parameters�is because various forms of regularization restrict the e¤ective parameter space.
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Table 2: Performance of Automatic Detection Methods

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Method PRNR MIMD NMC MBPI FT LS CS LSTM E-RF E-LSTM

I. Western Australia (# manually labeled observations: 24; 569)

Parameter 1 �1:16 6:13 �0:20 5:05 0:12 0:21 22:50 � � �
Parameter 2 � � � 5 � � � � � �
Accuracy rank 5 4 9 6 8 7 10 1 3 1
% correct (median) 90:80 91:27 89:34 90:23 90:11 90:15 85:47 99:25 99:04 99:25
(Standard deviations) (0:37) (0:38) (0:38) (0:36) (0:40) (0:36) (0:45) (0:18) (0:15) (0:14)
of which cycling 55:27 55:70 57:08 60:74 58:24 57:92 56:41 60:62 60:97 60:34
of which not 35:53 35:57 32:25 29:49 31:87 32:23 29:06 38:62 38:07 38:91
% false negative 5:27 5:27 3:34 0:71 2:48 3:30 5:29 0:35 0:61 0:31
% false positive 3:93 3:46 7:33 9:06 7:41 6:55 9:24 0:41 0:35 0:45

II. New South Wales (# manually labeled observations: 9; 693)

Parameter 1 4:20 5:76 1:01 14:90 0:20 0:57 4:50 � � �
Parameter 2 � � � 2 � � � � � �
Accuracy rank 7 8 10 4 6 5 9 2 3 1
% correct (median) 78:55 78:39 70:96 81:59 80:71 80:82 73:90 89:63 87:42 90:30
(Standard deviations) (0:85) (0:88) (0:97) (0:86) (0:80) (0:80) (0:89) (0:67) (0:69) (0:67)
of which cycling 67:04 65:09 70:96 64:62 66:53 66:43 70:40 67:20 67:10 65:60
of which not 11:50 13:31 0:00 16:97 14:18 14:39 3:51 22:43 20:32 24:70
% false negative 3:30 4:85 0:00 6:55 5:47 4:02 0:77 4:33 8:35 2:99
% false positive 18:15 16:76 29:04 11:86 13:82 15:16 25:32 6:03 4:23 6:70

III. Germany (# manually labeled observations: 35; 685)

Parameter 1 �3:48 0:30 �0:45 1:25 0:24 0:62 24:50 � � �
Parameter 2 � � � 14 � � � � � �
Accuracy rank 9 6 7 5 8 10 4 3 2 1
% correct (median) 60:38 60:61 60:53 65:39 60:50 60:36 71:28 74:61 76:14 79:58
(Standard deviations) (0:49) (0:50) (0:52) (0:52) (0:56) (0:59) (0:42) (0:44) (1:46) (0:53)
of which cycling 0:00 1:25 0:07 14:77 0:00 0:00 25:88 23:46 23:96 29:96
of which not 60:38 59:37 60:46 50:62 60:50 60:36 45:40 51:16 52:18 49:63
% false negative 39:62 38:07 39:40 24:65 39:50 39:57 14:28 15:99 15:75 9:50
% false positive 0:00 1:32 0:07 9:96 0:00 0:07 14:45 9:40 8:11 10:91

Note : See section 4 for the de�nition of each method. Appendix B.1 investigates whether combining some or all
of Methods 1�4 leads to better performances. Appendix B.2 reports additional results for the variants of Methods
5�7. Columns (8)�(10) do not report parameter values because they contain too many parameters to be listed. We
randomly split the sample into an 80% training subsample and a 20% testing subsample 101 times. In each split,
the former subsample is used for setting parameter values, the medians of which are reported here. The accuracy
statistics are also the medians from the 101 testing subsamples. The replication package (Holt, Igami, and Scheidegger
2023) implements the training and testing of each method only once, but adding a loop in the computer code (for 101
repetitions) should be straightforward.
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Figure 2: Gains from Additional Data

Note: The exact numbers underlying these plots are reported in Panel (A) of Table 11 in Appendix B.3.
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7 Economic and Policy Implications

The suspicion that price cycles might be related to collusive business practices has led many

researchers and governments to collect and scrutinize large amounts of data on fuel markets.

Some papers �nd that the presence of cycles is positively correlated with retail prices and

markups, whereas others �nd the opposite relationships.40 Section 7.1 investigates how such

�ndings depend on the de�nition of cycles. Sections 7.2 and 7.3 report additional �ndings.

7.1 Cycles and Margins

Human-Recognized Cyclicality and Margins. Table 3 compares the retail-wholesale

margins between �cycling�and �non-cycling�observations.41 Column (0) is based on our

manual classi�cation and serves as a �ground truth� benchmark. The mean margins in

cycling and non-cycling observations in WA are Ac/11.86 and Ac/9.47, respectively. The mean

di¤erence is Ac/2.39. The t test (based on Welch�s t statistic) rejects the null hypothesis that

the di¤erence in means is zero at the 0:1% signi�cance level. Hence, price cycles are positively

correlated with margins in WA. The same analysis yields similar results in NSW.

However, the pattern is reversed in Germany, where margins are lower in cycling station-

quarters. Thus, in general, the presence of cycles (as recognized by human eyes) could be

either positively or negatively correlated with margins, depending on regions/countries.42

Algorithmic Cycle Detection and Margins. Columns (1)�(10) report the same analy-

sis based on the 10 algorithmic methods. In WA, all methods reach the same conclusion that

margins are higher in cycling observations. Broadly similar results also emerge in NSW, even

though one method fails (Method 3) and one reaches the opposite conclusion (Method 7).

These discrepancies suggest that researchers �nd a positive or negative cycle-margin rela-

tionship depending on the operational de�nition of cycles.

Our analysis of the German data highlights this point even more vividly. Both the manual

classi�cation and Methods 7�10 suggest signi�cantly negative relationships between cycles

40The former includes Deltas (2008), Clark and Houde (2014), and Byrne (2019); the latter includes Lewis
(2009), Zimmerman et al. (2013), and Noel (2015).

41Our measure of pro�t margin is the di¤erence between the retail price and the wholesale price before
tax, as de�ned in equation (1) in section 3, in the Australian cent in WA and NSW and the euro cent in
Germany, respectively. Note the lack of volume data� a main limitation in this area of research� means
that we cannot check the extent to which consumers buy at the bottom of price cycles.

42Determining the exact source of heterogeneity is beyond the scope of this paper. There can be many
reasons and Edgeworth cycles are only one of the possible mechanisms. Our purpose is to illustrate with
concrete examples how di¤erent methods could lead to di¤erent �ndings and policy implications.
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and margins, but Methods 2�6 lead to positive mean di¤erences. These positive di¤erences

are highly statistically signi�cant in Methods 2�4. Some of them entail degenerate predictions

(see section 5), but Method 4 features reasonable parameter values and achieves at least 65%

accuracy. Hence, we cannot dismiss these discrepancies as purely random anomalies.
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Table 3: Pro�t Margins by Cycle Status

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Method Manual PRNR MIMD NMC MBPI FT LS CS LSTM E-RF E-LSTM

I. Western Australia (# manually labeled observations: 24; 569)
Cycling
# obs. 15; 007 14; 462 14; 620 16; 147 16; 941 16; 223 15; 774 15; 953 15; 011 14; 994 14; 999
Mean 11:86 12:07 12:21 11:66 11:46 11:88 12:03 11:78 11:86 11:86 11:86
Std. dev. 4:01 3:80 3:74 3:98 4:13 3:87 3:85 4:04 4:01 4:01 4:01
Not cycling
# obs. 9; 562 10; 107 9; 949 8; 422 7; 628 8; 346 8; 795 8; 616 9; 558 9; 575 9; 570
Mean 9:47 9:30 9:05 9:52 9:73 9:08 8:94 9:35 9:47 9:47 9:47
Std. dev. 4:97 5:04 4:98 5:22 5:20 5:18 5:03 5:02 4:97 4:97 4:96
Di¤erence
Mean di¤. 2:39 2:77 3:16 2:14 1:73 2:80 3:09 2:43 2:39 2:39 2:39
Welch�s t 39:53 46:74 53:80 32:96 25:64 43:53 50:02 38:67 39:53 39:55 39:60
D. F. 17; 247 17; 771 17; 314 13; 648 12; 134 13; 263 14; 608 14; 723 17; 236 17; 282 17; 295
p value < :001 < :001 < :001 < :001 < :001 < :001 < :001 < :001 < :001 < :001 < :001

II. New South Wales (# manually labeled observations: 9; 693)
Cycling
# obs. 6; 878 8; 324 8; 038 9; 693 7; 303 7; 704 7; 994 9; 253 7; 052 6; 961 7; 183
Mean 12:03 11:73 12:35 11:66 12:48 11:76 11:81 11:58 12:19 12:07 12:13
Std. dev. 5:51 5:80 5:58 6:04 5:48 5:89 5:84 5:99 5:54 5:53 5:56
Not cycling
# obs. 2; 815 1; 369 1; 655 0 2; 390 1; 989 1; 699 440 2; 641 2; 732 2; 510
Mean 10:76 11:25 8:33 � 9:18 11:28 10:97 13:48 10:25 10:64 10:33
Std. dev. 7:10 7:31 7:01 � 6:92 6:56 6:85 6:79 7:01 7:08 7:08
Di¤erence
Mean di¤. 1:27 0:48 4:02 � 3:30 0:48 0:84 �1:90 1:94 1:43 1:80
Welch�s t 8:50 2:31 21:94 � 21:24 2:97 4:70 �5:76 12:80 9:48 11:55
D. F. 4; 266 1; 663 2; 106 � 3; 423 2; 870 2; 252 472 3; 939 4; 103 3; 648
p value < :001 :021 < :001 � < :001 :003 < :001 < :001 < :001 < :001 < :001

III. Germany (# manually labeled observations: 35; 685)
Cycling
# obs. 14; 116 0 1; 013 72 8; 763 7 7 14; 281 11; 762 13; 574 15; 299
Mean 98:18 � 99:57 99:67 98:73 114:11 115:64 98:19 98:38 98:16 98:18
Std. dev. 3:57 � 6:96 3:26 3:84 32:10 31:40 3:60 3:60 3:59 3:51
Not cycling
# obs. 21; 569 35; 685 34; 672 35; 613 26; 922 35; 678 35; 678 21; 404 23; 923 22; 111 20; 386
Mean 98:65 98:46 98:43 98:46 98:38 98:46 98:46 98:65 98:50 98:65 98:68
Std. dev. 4:37 4:08 3:96 4:08 4:15 4:05 4:05 4:36 4:30 4:34 4:45
Di¤erence
Mean di¤. �0:47 � 1:14 1:21 0:35 15:65 17:18 �0:46 �0:12 �0:49 �0:50
Welch�s t �11:11 � 5:19 3:14 7:26 1:29 1:45 �10:86 �2:77 �11:55 �11:86
D. F. 33; 984 � 1; 031 71 15; 941 6 6 34; 110 27; 415 32; 697 35; 595
p value < :001 � < :001 :002 < :001 :245 :197 < :001 :006 < :001 < :001

Note : Columns (1)�(10) use the median-accuracy version of each method in Table 2. The unit of measurement (of means
and standard deviations) is the Australian cent in WA and NSW, and the euro cent in Germany, respectively. The p
value indicates the probability that the di¤erence in means is zero based on Welch�s t statistic and the approximate
degrees of freedom.
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Margins and Asymmetric Cycles. Note that our classi�cation so far has focused on

cyclicality but not asymmetry. One might wonder whether our �ndings could change if we

study asymmetric cycles speci�cally. The answer is �no.�The results are virtually the same

when we focus on asymmetric cycles.

Table 4: Pro�t Margins by Cycle Status and Asymmetry

(0) (00)
Method Manual Manual + asymmetry

III. Germany
Cycling
# obs. 14; 116 4; 265
Mean 98:18 98:01
Std. dev. 3:57 3:39
Not cycling
# obs. 21; 569 31; 420
Mean 98:65 98:53
Std. dev. 4:37 4:16
Di¤erence
Mean di¤. �0:47 �0:52
Welch�s t �11:11 �9:05
D. F. 33; 984 6; 153
p value < :001 < :001

Note : Column (0) is the same as in Table 3, which Column (00) re�nes by asymmetry based on negative median
change. The unit of measurement (of means and standard deviations) is the euro cent. The p value indicates the
probability that the di¤erence in means is zero based on Welch�s t statistic and the approximate degrees of freedom.

Table 4 compares the mean di¤erences of margins based on our manual benchmark

(copied from column 0 of Table 3) and its re�ned version in which we further require �asym-

metry�based on the negative median change, mediand2t (�pi;d) < 0, as an additional crite-

rion for (Edgeworth) cycles. The results are similar both qualitatively and quantitatively.

In summary, the choice of the detection method could lead to qualitatively di¤erent

results and dictate the policy implications of empirical research on Edgeworth cycles.

7.2 Additional Findings

The results in sections 5, 6, and 7.1 constitute our main �ndings, but the curious patterns

in section 7.1 present additional puzzles. We address them in the following and report

supporting evidence in Appendix C.

1. Why Existing Methods Work in Australia But Fail in Germany. Most of the

cycles in Australia follow speci�c (almost deterministic) frequencies and exhibit strong asym-

31



metry, whereas German cycles are noisier and not always asymmetric (see supplementary

plots in Appendix C.1). The existence of asymmetric non-cycles in Germany further com-

plicates the issue. Hence, asymmetry-based methods correctly identify cycles in Australia

but not in Germany.

2. Why Margins And Cycles Correlate Positively in Australia But Negatively in

Germany. In all datasets, the mean and the standard deviation of margins are positively

correlated. That is, higher markups tend to accompany higher volatility. The reason is that

retail and wholesale prices are relatively close so that the only direction in which margins can

move signi�cantly is upward (unless stations are willing to incur losses). We �nd volatility

and cyclicality are correlated positively in Australia but negatively in Germany (see Appen-

dix C.2 for supplementary plots). Therefore, the average level and cyclicality of margins are

correlated positively in Australia but negatively in Germany.

3. HowCan Cycles Be Less Volatile Than Non-Cycles? Cyclicality implies systematic�

but not necessarily large� movements; not all large/frequent movements follow cycles. Many

German observations exhibit high volatility without any discernible patterns, which explains

the existence of �volatile non-cycles�in the data.

4. Why Existing Methods Find �Positive Correlations.� These methods�threshold

rules tend to recognize high-mean, high-volatility cases as �cycles�because only su¢ ciently

large movements can satisfy these conditions (see Appendix C.3 for supplementary plots).

In Germany, however, volatility is a poor predictor of cyclicality (see Question 3 above).

5. Could Intra-Day Cycles Be the Source of Curious Patterns in Germany? The

answer is �yes�and �no.�In general, our daily sampling frequency and 90-day window are

suitable for identifying cycles with the frequencies of several days to a month or so. Shorter

frequencies may not be well represented.

Nevertheless, if the �intra-day�cycles follow the frequency of exactly 24 hours (or any

hours that can divide 24 evenly), they would be �averaged out�in the process of computing

daily prices and would not a¤ect our observations. The existing studies suggest that they

do follow exactly 24-hour cycles (see section 3.3). Hence, how intra-day cycles a¤ect the

multi-daily volatility in our data is not obvious.43

43One possibility is the existence of �medium frequency�cycles that are longer than 24 hours, but shorter
than 3�4 days. However, we are not aware of any studies that document such cycles. In short, the coexistence
of daily, weekly, and other cycles and their interactions constitute an open-ended question for further research.

32



6. Why Manual Classi�cation Provides a Relevant Benchmark. At this point, one

might question (again) the relevance of human recognition as a benchmark. Our answer is

still the same as in section 1 (paragraph 6): It is the �second best� option. If we had a

perfect mathematical de�nition, no detection problem would arise in the �rst place. In the

absence of such a formula, the existing research relied on rules of thumb that were ultimately

validated by selective eyeballing by the authors. We made this process more systematic and

transparent.

7.3 Exploratory Data Analysis

As a further demonstration of the use of automatic cycle detection, this section investigates

the distribution of price cycles across time and space. Obviously, such an exploratory data

analysis becomes possible only after a scalable method to detect cycles is used on the entire

dataset. We �rst describe time-series patterns and then explore cross-sectional correlations.

Time Series Patterns. How many stations exhibit price cycles at each point in time?

The two panels of Figure 3 plot the fractions of stations that exhibit price cycles in Australia

and Germany, respectively. Throughout this section, the recognition of cycles is based on the

median-performance version (parameter values) of the most accurate algorithm (Method 10),

which we apply to the entire dataset� both labeled and unlabeled� in each region/country.

The two regions of Australia, WA and NSW, show mostly high percentages of cycling

stations. WA o¤ers the longest data period. Byrne and de Roos (2019) documented clear

price cycles in two subperiods (2007�2008 and 2010�2015), both of which correspond to the

periods in which cycles are prevalent according to our method.44 Thus, the results of our

method con�rm Byrne and de Roos�s description of the WA data in terms of time series.

The NSW dataset starts relatively recently in 2016:Q4. Its range of approximately 70%�90%

is comparable to WA.

The German picture is more �colorful,�with greater heterogeneity across regions. We

show the fraction of cycling stations in each of the 10 geographic zones (Postleitzonen, hence-

forth LZs). LZ0 and LZ1 (in green) correspond to former East Germany; LZ2�LZ6 (in red

and yellow) are northwestern regions; LZ7�LZ9 (in blue) roughly correspond to the southern

44Readers might wonder what causes sudden increases and decreases in WA in the 2000s. Some of
them re�ect genuine changes in the number of cycling stations; others could be due to noise in the original
data because the WA database lacks a consistent station identi�er. Even though we tried to reconstruct
as �balanced�panel data as possible (based on street addresses and other observable characteristics), the
recorded number of stations varies across time, sometimes quite dramatically.
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Figure 3: How Many Stations Exhibit Price Cycles?

Note: LZ0�LZ9 are Germany�s 10 geographic zones (Postleitzonen). See main text for details.

states of Baden-Württemberg and Bavaria.45 Three patterns emerge. First, whereas LZ0�

LZ6 tend to move together in relatively high ranges, LZ7�LZ9 exhibit consistently lower

percentages. Second, despite these di¤erences in levels, all regions display similar �uctua-

tions most of the time, and such �uctuations could be large. Third, as a general trend, the

overall range shifted downward from 30%�90% in 2015�2017 to 0%�70% in 2018�2019. The

timing of this change would seem to roughly coincide with the introduction and dissemina-

45For maps and further details, see Wikipedia page on �Postal codes in Germany� at
https://en.wikipedia.org/wiki/Postal_codes_in_Germany (accessed on January 10, 2023).
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tion of automatic pricing algorithms (see Assad et al. (2021)), but the clari�cation of their

causal relationship would require further research.

In Appendix D.1, we also investigate the relationship between macroeconomic shocks and

price cycles, which seems complex.

Spatial Patterns. We now explore spatial patterns within each region. The geographical

scope of price cycles (e.g., local, city-wide, or regional) and their synchronization patterns

might shed light on their mechanism and potentially inform the de�nition of relevant markets

for antitrust purposes.

Speci�cally, we investigate whether multiple gasoline stations tend to exhibit price cycles

at the same time, and if so, how such tendencies change with the distance between them.

We construct our measure of �correlation� between stations as follows. First, within

each region, we list all possible pairs of stations and split them into seven distance bins (less

than 1km, 1�5km, . . . , 50�100km, and above 100km) based on their Euclidean distances.46

Second, for each pair, we calculate the percentage of quarters in which their cycle statuses

match (i.e., either both stations exhibit cycles or neither of them does). Third, for each

distance bin in each region, we take the average of these percentages, either across all pairs

or across pairs of same-brand stations. This procedure creates a summary statistic of how well

the presence or absence of cycles is synchronized across multiple stations in each region� and

how their �correlation�varies with distance.47

Figure 4 reports the spatial patterns of �correlation� in four graphs: (i) all pairs in

WA and NSW, (ii) same-brand pairs in WA and NSW, (iii) all pairs in Germany, and (iv)

same-brand pairs in Germany. Four patterns emerge. First, the majority of the station-pair-

quarter observations shares cycle status, with the exception of the most distant (>100 km)

bin in rural NSW. Second, the cities and the rural areas of Australia exhibit qualitatively

di¤erent patterns. The station pairs within Perth and Sydney (the capital cities of WA and

NSW, respectively) tend to show high correlations with limited variability across distance

bins, whereas the rest of NSW features �correlations�that decrease with distance.48 Third,

all 10 LZs of Germany show similar patterns in which �correlations�steadily decrease with

distance. Fourth, pairs of same-brand stations tend to be more correlated than all/any pairs

in both Australia and Germany, especially in the 0km�10km bins in Germany.

46Note we consider only pairs that share at least 12 calendar quarters of valid data in common.
47We say �correlation�in quotes because we use the �percentage of quarters with matched cycle statuses�

instead of correlation coe¢ cient, which is unde�ned when a station always (or never) shows cycles.
48All of the WA stations (with su¢ cient observations for these plots) are in Perth, which is why we do

not split WA into urban and rural areas as in NSW.
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Figure 4: How Presence of Cycles Correlates between Stations

Note: See main text for the de�nition of �percent matched�statistics. The WA graphs do not show markers
or lines in two distance bins (less than 1km and 50�100km) because the WA data have relatively few pairs
in these bins, which we grouped in the adjacent bins for the purpose of visualization.

In Appendix D.2, we further investigate how the relationship between cycle correlation

and distance varies by time period in WA.

8 Practical Recommendations

Based on our �ndings in sections 5�7, we suggest the following steps as a practical (but not

necessarily the most rigorous) guide for automating the detection of Edgeworth cycles:

1. Choose the data frequency and time window that would permit the identi�cation of

hypothesized cycles. That is, the sampling frequency must be shorter than that of
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suspected cycles, and the time horizon should accommodate at least a few repetitions.

(For the sake of simple exposition, our explanation in the following keeps assuming the

daily frequency and the quarterly window.)

2. Eyeball and manually categorize a random sample of 100 station-quarter observations

in terms of cyclicality (but not necessarily asymmetry).49 If su¢ cient numbers of both

cyclical and non-cyclical cases are found, proceed to the next step. If not, increase the

sample size.

3. As a �rst attempt to algorithmically distinguish cycles from non-cycles, calibrate one

of the simpler methods. We recommend the two-parameter model of Method 4 (MBPI)

because it is the only one (among Methods 1�4) that captures the notion of cyclicality.

4. For more formal, mathematical de�nitions of cyclicality, use Methods 5 (FT) or 6

(LS), both of which are readily implementable in many programming languages for

scienti�c computing. Method 7 (CS) is another option with similarly o¤-the-shelf

implementations.

5. If the performance of these methods is unsatisfactory, tryMethods 9 (E-RF), 8 (LSTM),

and 10 (E-LSTM), in increasing order of complexity and expected accuracy.

6. Once the detection of cyclicality (as recognized by humans) is successfully automated,

re�ne the classi�cation of �cycling�observations in terms of asymmetry. The median-

price-change statistic fromMethod 3 (NMC) o¤ers a simple way to capture asymmetry.

For example, one can distinguish between the Edgeworth-type asymmetry (i.e., the

median change is negative), the inverse-Edgeworth asymmetry (i.e., the median change

is positive), and symmetry (i.e., the median change is approximately zero). Methods

1 (PRNR) and 2 (MIMD) can be used for the same purpose.

7. If desired, this asymmetry-based classi�cation can be automated by using some clus-

tering algorithm on the distribution (e.g., a histogram) of the median price change

across station-quarter observations. This process can be designed as either supervised

or unsupervised machine-learning tasks.

49Adversarial circumstances, such as antitrust cases, could potentially introduce biases in the manual
labeling of data. Hence, the selection and training of human labelers (in more formal contexts that the one
assumed here) might have to be treated with the same care as in the selection and training of jury in trials.
Appendix E discusses this issue in detail.
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8. Once the classi�cation based on both cyclicality and asymmetry is complete, compute

the mean margin and other statistics for each type of observation (e.g., Table 3).

Welch�s t statistic and the associated degrees of freedom can be used for testing the

null hypothesis that the means of the two subsamples (of potentially di¤erent sizes)

are equal.

9. The previous step assumes that the dataset contains only prices and margins. If addi-

tional data are available on the characteristics of gasoline stations and their locations

(as well as other demand- and supply-side factors such as competition), control for

these additional covariates in a suitable regression model.

10. At any point after step 4, one might also consider another re�nement based on the

frequency of cycles. Cycles of multiple lengths may coexist within a single dataset (see

sections 3.3 and 7.2). Methods 5�7 would be useful for this purpose.

Thus, even though Method 10 (E-LSTM) is the top runner in terms of cycle-detection

accuracy, other methods (including the existing ones) have important roles to play, both as

a tool for initial inspection and as a summary statistic for re�nement.

9 Conclusion

We propose scalable methods to detect Edgeworth cycles so that the growing amount of �big

data�on fuel prices can be scrutinized. The failure of the existing methods in noisy data

suggests further investigation would bene�t from distinguishing �cyclicality� from �asym-

metry.�Our nonparametric methods achieve the highest accuracy; such �exible models typ-

ically require large amounts of training data, but the requirement is minimal in this context.

Whether researchers discover a positive or negative statistical relationship between markups

and cycles depends on the choice of method. Because such �facts�are supposed to inform

regulations and competition policy, these methodological considerations are directly policy

relevant.

Data/Code Availability. The replication package (Holt, Igami, and Scheidegger 2023)

and the Online Appendix are publicly available at https://dx.doi.org/10.5281/zenodo.10126406.
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Appendix A Methodological Details and Simulations

A.1 Details of the New Methods

Fourier Transform (Method 5). The Fourier transform of a continuous function g (x)

is

G (f) �
Z 1

�1
g (x) e�2�ifxdx: (22)

Let us de�ne the Fourier transform operator F such that F fgg = G, which is a linear

operation. A sinusoidal signal (i.e., sine wave) with frequency f0 has a Fourier transform

consisting of a weighted sum of the Dirac delta functions at �f0.50 The practical implication
of these properties is that any signal made up of a sum of sinusoidal components will have

a Fourier transform consisting of a sum of delta functions that mark the frequencies of

those sinusoids. Thus, the Fourier transform directly measures additive periodic content

in a continuous function. The power spectral density (PSD, or the power spectrum) of a

function,

Pg � jF fggj2 ; (23)

is a positive, real-valued function of frequency f , and provides a convenient way to quantify

the contribution of each frequency f to the signal g (x).

When a continuous time series is sampled at regular time intervals with spacing �x, as

is the case in our data, one can use the discrete version of (22):

Gobs (f) =
1X

n=�1
g (n�x) e�2�ifn�x: (24)

Acknowledging the �nite sample size N and focusing on the relevant frequency range 0 �
f � 1

�x
, one can de�ne N evenly spaced frequencies with �f = 1

N�x
covering this range.

Let gn � g (n�x) and Gk � Gobs (k�f). Then, the sample analog of (22) is

Gk =
NX
n=0

gne
�2�ikn=N : (25)

50The Dirac delta function is � (f) �
R1
�1 e

�2�ifxdx, and hence, we can write F
�
e2�f0x

	
= � (f � f0).

The linearity of F and Euler�s formula for the complex exponential (eix = cosx+i sinx) lead to the following
identities: F fcos (2�f0x)g = 1

2 [� (f � f0) + � (f + f0)] and F fsin (2�f0x)g =
1
2i [� (f � f0) + � (f + f0)].

See VanderPlas (2018) for further details.
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One can construct the sample analog of the Fourier power spectrum (23) as (6) in the main

text. This is the �classical�or �Schuster�periodogram.51

A potential drawback of the threshold rule in (7) is that it exclusively focuses on the

highest point and ignores the rest. As an alternative rule, we can compare the highest point

with the heights of other, less powerful frequencies. One way to capture relative heights

of multiple frequencies is to measure the �concentration� of power in a limited number

of frequencies. We use the Her�ndahl-Hirschman Index (HHI) for an additional check for

�signi�cant�cycles:

HHIi;t �
X
f

 
Pi;t (f)P
f Pi;t (f)

!2
> �FThhi; (26)

where �FThhi 2 (0; 1] is a scalar threshold parameter.52 A high value of HHIi;t indicates strong
periodicity at certain frequencies relative to other, weaker frequencies.

Lomb-Scargle Periodogram (Method 6). Even though the classical periodogram in

(6) appears di¤erent from (8), (6) can be rewritten as

P (f) =
1

N

24 X
n

gn cos (2�fxn)

!2
+

 X
n

gn sin (2�fxn)

!235 :
Thus, the only major di¤erence between (6) and (8) is the denominators in (8).

Statistically, one can interpret the Lomb-Scargle periodogram as a collection of least-

squares regressions in which one �ts a sinusoidal model at each frequency f :

ĝ (x; f) = Af sin
�
2�f

�
x� �f

��
; (27)

where amplitude Af and phase �f are the parameters to be estimated by minimizing the

sum of squared residuals:

SSRLS (f) �
X
n

(gn � ĝ (xn; f))2 : (28)

51See Press et al. (1992, section 12.2) for computational implementation.
52The HHI is a summary statistic that is typically used to measure the degree of market-share concen-

tration in oligopolistic industries. A high value of the HHI indicates the market is close to monopoly.
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Scargle (1982) shows the following periodogram is identical to (8):

~PLS (f) =
1

2

�
SSRLS0 � SSRLS (f)

�
;

where SSRLS0 is the sum of squared residuals from the restricted model in which the only

regressor is a constant term. The idea is that the frequencies with good �t will exhibit high
~PLS (f).

The HHI variant of the LS method is

HHILSi;t �
X
f

 
PLSi;t (f)P
f P

LS
i;t (f)

!2
> �LShhi: (29)

Cubic Splines (Method 7). A spline is a piecewise polynomial function:

SK (x) =
PX
j=0

�jx
j +

NX
k=1

�P+k (x� � k)
P I fx � � kg ; (30)

where K = 1 + P + N is the number of coe¢ cients, P is the order of the polynomial (not

to be confused with the periodogram in Methods 5�6 or our notation for the price, p), and

the support for x is covered by N + 1 ordered subintervals that are joined by N knots

(� 1 < � 2 < � � � < �N).53 It is a special case of a sieve/series approximation that constitutes
a class of nonparametric regression methods.54 We use splines as an interpolator to smooth

the discrete (daily) time series and facilitate further calculations. Speci�cally, we use a cubic

Hermite interpolator, which is a spline where each piece is a third-degree polynomial of

Hermite form (i.e., P = 3, N = 88, and �s are prespeci�ed).55

In addition to the indicator of frequent oscillations in (11), we propose a measure that

captures amplitude as well. We subtract the lowest daily price in (i; t) from all of its daily

prices, p
i;d
� pi;d�mind2t (pi;d), �t CS to

�
p
i;d

�
d2t
, and calculate its integral over d 2 [1; 90].

53This N should not be confused with our notation for sample size in the discrete Fourier transform.
54Any continuous function can be uniformly well approximated by a polynomial of su¢ ciently high order,

and the rate of approximation is o
�
K�2�. Other series models include trigonometric polynomials, wavelets,

orthogonal wavelets, B-splines, and arti�cial neural networks. See Hansen (2020, ch. 20) for an introduction
and Chen (2007) for a review.

55On the unit interval d 2 (0; 1), given a starting point p0 at d = 0, an ending point p1 at d = 1, and
slopes m0 and m1, this polynomial is

p (d) =
�
2d3 � 3d2 + 1

�
p0 +

�
d3 � 2d2 + d

�
m0 +

�
�2d3 + 3d2

�
p1 +

�
d3 � d2

�
m1:

This form ensures the observed values (p0; p1) and their slopes (m0;m1) are �tted exactly. It has become a
default speci�cation of CS in SciPy, a set of commonly used Python libraries for scienti�c computing.
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We set cyclei;t = 1 if and only ifZ 90

1

CSi;t (d) > �
CS
int ; (31)

where CSi;t (d) is the �tted value of pi;d at time d. Because this de�nite integral equals the

area between the price series and its lowest level within (i; t), this condition captures cycles

with large amplitude and sustained high prices.

We also construct a discrete (raw data) analog of the splines-integral measure as follows:

90X
d=1

j�pi;dj > �CSabs; (32)

where �pi;d is the demeaned price. The information content of this statistic is similar to the

previous one, but its calaculation is simpler.

Long Short-Term Memory (Method 8). Compared with Gre¤ et al.�s (2017) �vanilla�

setup, we make two simpli�cations. First, our law of motion for cld (13) uses the same set of

parameters
�
!l7;!

l
8;!

l
9

�
twice. This simpli�cation corresponds to their �Coupled Input and

Forget Gate�variant due to Cho et al. (2014), which is also referred to as Gated Recurrent

Units (GRUs) in the literature. Second, we do not include cld or c
l
d�1 inside � in (12) or inside

tanh and � in (13). This omission corresponds to their �No Peepholes�variant. Gre¤ et al.

(2017) show these simpli�cations reduce the number of parameters without compromising

predictive accuracy.

We implement LSTM in TensorFlow-GPU 2.6 (tf.keras.models.Sequential). Our choice of

network architecture and activation functions� which constitute the speci�cation of e¤ective

functional forms� are as explained in the main text. The total number of weight parameters

is 2,165. We set other tuning parameters and the details of numerical optimization as follows:

(i) the dropout rate is 0.5, (ii) the optimizer is tf.keras.optimizer.RMSprop with the learning

rate of 0.0005, (iii) the number of epochs is 100, and (iv) the batch size is 30.

Ensemble in Random Forests (Method 9). The relationship between �decision trees�

and �random forests� is as follows, according to Murphy (2012, ch. 16). Because �nding

the truly optimal partitioning in a decision-trees model is computationally infeasible, some

greedy, iterative procedures are used in the estimation/tuning of the parameters
�
!RF ;�RF

�
.

However, the hierarchical nature of this process leads to unstable predictions. Averaging over
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multiple estimates from bootstrapped subsamples (�bootstrap aggregating� or �bagging�)

is a commonly used technique to reduce this variance. A further improvement is possible

by randomly choosing a subset of input variables, in addition to �bagging.�This technique

is called �random forests�(Breiman 2001a) and is known to perform well in many di¤erent

contexts (e.g., Caruana and Niculescu-Mizil 2006).

We implement E-RF in scikit-learn 0.24.2 (sklearn.ensemble.RandomForestClassi�er),

with default options for all settings.

Ensemble in Long Short-TermMemory (Method 10). Our E-LSTM implementation

details are the same as in the basic LSTM (Method 8). The only di¤erence is that the total

number of weight parameters is larger at 2,933 to incorporate the additional input variables

from Methods 1�7.

A.2 Parameter Optimization

We de�ne two types of prediction errors as follows:

% false negative (�) �

P
(i;t) I

n
[cyclei;t (�) = 0; cyclei;t = 1

o
# all predictions

� 100; and (33)

% false positive (�) �

P
(i;t) I

n
[cyclei;t (�) = 1; cyclei;t = 0

o
# all predictions

� 100: (34)

They correspond to type II errors and type I errors in statistics, respectively.

We occasionally encounter cases in which a range of parameter values attain the same

(maximum) accuracy. In such cases, we report the median of all �� values that we �nd in our

grid search. These cases typically involve �degenerate�predictions in which [cyclei;t (�) = 1
or [cyclei;t (�) = 0 for all (i; t), and hence are mostly irrelevant for the purpose of �nding

well-performing �s.

A.3 Performance on Simulated Cycles

This section studies the performance of each method on simulated data. Because arti�cial

cycles and real-world cycles are qualitatively di¤erent, our purpose is not so much testing

algorithms as understanding them better in a controlled environment.

Setup. We consider four kinds of DGPs: (i) white noise, (ii) Edgeworth cycles, (iii) �reverse

Edgeworth� cycles, and (iv) sine waves of various lengths. First, white noise is simply
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a 90-day sequence of i.i.d. random draws from the standard normal distribution. If a

method �detects� cycles in white noise, we interpret it as a false positive. Second, we

simulate theoretical Edgeworth cycles by using Maskin and Tirole�s (1988) example.56 Third,

we simulate cycles with the opposite asymmetry (i.e., few big decreases and many small

increases) by reversing the time stamps of simulated Edgeworth cycles in the above. Fourth,

we generate sine waves (i.e., symmetric cycles) of �ve di¤erent wavelengths: 3, 7, 14, 21, and

28 days. We generate 10,000 quarters of simulated data based on each of these eight DGPs.

Figure 5 shows examples of simulated cycles.

Figure 5: Examples of Simulated Cycles

Note: These pictures show examples of simulated price series before we transform them to match the mean
and standard deviation of each dataset. The horizontal axes represent calendar days.

56We set the annual discount factor to 0.9, which translates into the daily discount factor of � = 0:9997
(in Maskin and Tirole�s notation). The probability of a big price increase at the bottom of a price cycle (in
their notation) is

� (�) =

�
3�2 � 1

� �
1 + �2 + �4

�
8 + 7�2 + 2�4 + 3�6

� 0:2997:

With two �rms taking turns to change prices in the grid of seven di¤erent price levels,
�
0; 16 ;

2
6 ; : : : ; 1

	
,

the Edgeworth-cycle MPE entails asymmetric cycles of approximately weekly frequency. We simulate each
90-day sequence of data by randomly drawing one of the seven price levels as �rm 2�s initial price, to which
�rm 1 best-responds on day 1, to which �rm 2 best-responds on day 2, and so on. These best responses are
based on the equilibrium strategy pro�le of Maskin and Tirole�s Table II. We use �rm 1�s prices as simulated
data.
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Each cycle-detection method comes in three versions as we optimize its parameters in

three di¤erent datasets: WA, NSW, and Germany (Table 2). To match the mean and

standard deviation of each (real) dataset, we rescale the simulated data through an a¢ ne

transformation.

Results. Table 5 reports the percentages of simulated data (10,000 quarters each) that are

classi�ed as �cycling.�Ideally, white noise should be classi�ed as non-cycles and the rest as

cycles, but that is not always the case. The top panel of Table 5 shows Method 4 (MBPI)

and 7 (CS) mistakenly identify cycles in 100% of the white noise simulations. The reason is

that they rely on counting the number of upward (and downward) price movements. White

noise could trivially satisfy these criteria.

By contrast, Methods 1�3 are not fooled by white noise but fail to detect cycles in most

other simulations, with the exception of Method 2 (MIMD) in theoretical Edgeworth cycles

(53%). It is not surprising that these asymmetry-based methods fail to detect non-Edgeworth

cycles; they are designed in such a way. Howerve, the result that Methods 1 (PRNR) and 3

(NMC) detect 0% of Edgeworth cycles is surprising. These false negatives are caused by the

particular way in which Maskin and Tirole specify their model� each �rm changes its price

once every two days. There cannot be consecutive days of (strictly) positive or (strictly)

negative �runs,�which could fool Method 1. Likewise, Method 3 could be fooled by the 45

days of inaction in each 90-day sequence because the median price change is zero.

The �best�methods in the top panel are Methods 5 (FT) and 6 (LS) in the sense that

they correctly reject most of the white noise as non-cycles and correctly detect most of the

arti�cial cycles. In particular, their unique ability to detect cycles of any length is noteworthy.

Even though they are trained in the WA data, which contain only weekly or two-week cycles,

they correctly �ag 100% of sine waves of both higher and lower frequencies.57

Finally, the performance of the nonparametric/machine-learning models of Methods 8

(LSTM), 9 (E-RF), and 10 (E-LSTM) are somewhere in the middle. On the one hand, they

correctly reject 100% of the white noise as non-cycles and correctly detect cycles in some

of the simulated cycles (theoretical Edgeworth cycles and weekly sine waves). On the other

hand, they ignore most of the reverse Edgeworth cycles and the other sine waves. In other

words, they faithfully detect patterns that they are trained to recognize (i.e., the cycles with

Edgeworth-type asymmetry or approximately weekly frequency in the WA data) and reject

others.
57We should note, of course, that these spectral methods are speci�cally designed for sine waves. Their

real-world performance may not be as good, as we show in the main text.
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Table 5: Performance on Simulated Data (% Classi�ed as Cycling)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Method PRNR MIMD NMC MBPI FT LS CS LSTM E-RF E-LSTM

I. All Models Trained with Labeled Data from Western Australia

White noise 0 0 36 100 25 19 100 0 0 0
Edgeworth 0 53 0 100 91 92 100 28 90 40
Reverse Edgeworth 0 0 0 70 91 92 100 0 6 0
Sine wave: 3 days 0 0 0 100 100 100 100 0 0 0
Sine wave: 7 days 0 0 0 85 100 100 100 72 3 54
Sine wave: 14 days 0 0 0 12 100 100 0 23 0 26
Sine wave: 21 days 0 0 0 0 100 100 0 0 0 0
Sine wave: 28 days 100 0 0 0 100 100 0 0 0 0

II. All Models Trained with Labeled Data from New South Wales

White noise 100 0 80 100 22 15 100 0 3 0
Edgeworth 100 100 100 100 98 99 100 0 29 0
Reverse Edgeworth 65 0 100 15 98 99 100 0 0 0
Sine wave: 3 days 100 0 100 100 100 100 100 0 0 0
Sine wave: 7 days 100 0 100 20 100 100 100 0 27 0
Sine wave: 14 days 100 0 100 0 100 100 100 0 100 0
Sine wave: 21 days 100 0 100 0 100 100 100 87 100 100
Sine wave: 28 days 100 0 100 0 100 100 100 100 100 47

III. All Models Trained with Labeled Data from Germany

White noise 0 24 17 100 0 0 100 85 4 100
Edgeworth 0 100 0 64 0 0 100 86 49 100
Reverse Edgeworth 0 0 0 100 0 0 100 96 4 18
Sine wave: 3 days 0 0 0 100 0 0 100 56 8 100
Sine wave: 7 days 0 0 0 100 0 4 100 36 0 100
Sine wave: 14 days 0 0 0 100 0 4 0 0 0 4
Sine wave: 21 days 0 0 0 92 0 4 0 0 0 0
Sine wave: 28 days 0 0 0 44 0 4 0 0 0 0

Note : Each result (%) is based on 10,000 quarters of simulated data. See text for details.

The middle panel of Table 5 shows broadly similar results with the NSW-trained models.

The original NSW data feature longer cycles of 2�4 week frequencies. Consequently, the

nonparametric methods (8�10) respond only to the sine waves of relatively long wavelengths.

The spectral methods (5 and 6) do well across all DGPs. Most of the existing methods (and

Method 7) make degenerate predictions, but Method 2 happens to make perfectly correct

predictions in the �rst two DGPs (white noise and Edgeworth cycles).

The bottom panel of Table 5 reports the performances of the models trained in the

German data, in which cycles are noisy, nuanced, and generally di¢ cult to detect. Almost

all methods produce degenerate predictions on simulated data, with the exception of Method
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2 (in the �rst two DGPs). Method 9 is another exception. Methods 4, 7, 8, and 10 make

useless predictions by classifying most or all of white noise as cycles, but they are capable of

distinguishing between shorter and longer cycles (i.e., they respond to shorter cycles but not

longer ones). This distinction re�ects the fact that typical cycles in Germany are weekly.

In conclusion, these simulations further clarify the performance characteristics of the

algorithms. Certain methods (mostly Methods 1�4 and 7) struggle to reject white noise,

whereas the spectral methods (Methods 5 and 6) perform well across the board� as long as

they are trained on the data with clear cycles (WA and NSW). More �exible models (Meth-

ods 8�10) adapt to nuanced, speci�c data patterns. The 10 methods�relative performance

rankings in the simulated data are often radically di¤erent from the ones in the real-world

data (Table 2). Hence, perhaps the most important lesson from this exercise is that the

real-world data are quite heterogeneous and qualitatively di¤erent from simulated data with

arti�cial cycles. The analyst should use extreme caution when applying a pre-trained model

to new datasets.

Arti�cial Cycles with Noise. How do performances change if we add noise to the sim-

ulated data? Figure 6 shows examples of simulated cycles with noise. Tables 6, 7, and 8

report results when small, medium, and large white noises are added to the arti�cial cycles,

respectively. We do not add noise to the �rst �white noise�simulation because it is already

pure noise. Nevertheless, the three tables keep listing the same white-noise results as a

reminder that some of the predictions are degenerate (i.e., full of false positives).

One might expect monotonically decreasing performances as we increase the noise level,

which we operationalize as the standard deviation of the i.i.d. normal distribution. However,

Table 6 shows small noise (standard deviation = 0.05) could actually help some of the existing

methods that rely on asymmetry. Method 1 (trained in the WA data) now detects at least

10% of theoretical Edgeworth cycles, andMethod 3 (also trained in theWA data) detects 93%

of them, even though neither method could detect any noiseless Edgeworth cycles (Table 5).

The reason is that the noise breaks the dominance of zero-price-change days in theoretical

Edgeworth cycles. The performance of Method 4 also improves, but its predictions are mostly

degenerate (i.e., it classi�es 100% of pure white noise as cycles) anyway. The additional noise

mechanically increases the number of big price increases, which triggers this method to �ag

more cycles.

By contrast, Methods 5 and 6 are hardly a¤ected by small noise. These spectral models

correctly dismiss noise as noise because white noise does not contain any systematic frequency

component. Method 7 is una¤ected, but that is because it typically �nds cycles in either
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Figure 6: Examples of Simulated Cycles with Noise

Note: These pictures show examples of simulated price series before we transform them to match the mean
and standard deviation of each dataset. The horizontal axes represent calendar days.

100% or 0% of the cases due to its simple rule. The impact of noise on Methods 8�10 is

mixed. Noise decreases the percentages of detected Edgeworth cycles but often increases

those of reverse Edgeworth cycles and 3-day sine waves. Overall, a little bit of noise could

be either good or bad, or have no e¤ect, depending on the nature of simulated cycles and

detection algorithms.

Table 7 shows medium-sized noise (standard deviation = 0.25) induces broadly similar

patterns, albeit with some di¤erences. For example, Method 1 stops working. Method 3

seems to perform reasonably well, but it now detects only 72% of Edgeworth cycles, instead

of 93% with small noise. Moreover, it starts detecting cycles in other simulations by chance

(in the top panel) even though its NMC criterion is supposed to capture only Edgeworth-
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type asymmetry. Methods 5 and 6 still perform well (in the top and middle panel) but now

detect only 63%�82% of the asymmetric cycles. Methods 8�10 are also negatively a¤ected

in most cases.

Finally, Table 8 reports the results under large noise (standard deviation = 0.5). Noise

of any size is better than no noise for the use of Method 3 on theoretical Edgeworth cycles,

but most of its predictions are now fooled by the presence of random shocks. Methods 5 and

6 are the only ones that continue to deliver valid classi�cations, albeit with the relatively

low accuracy of 29%�39% for the asymmetric cycles.

Table 6: Simulated Data with Small Noise (Standard Deviation = 0.05)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Method PRNR MIMD NMC MBPI FT LS CS LSTM E-RF E-LSTM

I. All Models Trained with Labeled Data from Western Australia

White noise 0 0 36 100 25 19 100 0 0 0
Edgeworth 10 0 93 100 90 92 100 22 7 17
Reverse Edgeworth 0 0 0 96 90 91 100 0 8 0
Sine wave: 3 days 0 0 27 100 100 100 100 0 0 0
Sine wave: 7 days 0 0 34 87 100 100 100 72 2 53
Sine wave: 14 days 0 0 7 17 100 100 0 22 0 26
Sine wave: 21 days 4 0 0 0 100 100 0 2 0 0
Sine wave: 28 days 6 0 0 0 100 100 0 0 0 0

II. All Models Trained with Labeled Data from New South Wales

White noise 100 0 80 100 22 15 100 0 3 0
Edgeworth 100 7 100 100 97 98 100 0 2 0
Reverse Edgeworth 100 0 43 57 98 99 100 0 1 0
Sine wave: 3 days 100 0 92 100 100 100 100 0 0 0
Sine wave: 7 days 100 0 99 30 100 100 100 0 27 0
Sine wave: 14 days 100 0 99 0 100 100 100 0 99 0
Sine wave: 21 days 100 0 99 0 100 100 100 78 99 100
Sine wave: 28 days 100 0 100 0 100 100 100 100 100 45

III. All Models Trained with Labeled Data from Germany

White noise 0 24 17 100 0 0 100 85 4 100
Edgeworth 0 93 48 99 0 0 100 85 41 100
Reverse Edgeworth 0 0 0 100 0 0 100 96 5 43
Sine wave: 3 days 0 7 5 100 0 0 100 55 14 100
Sine wave: 7 days 0 1 5 100 0 4 100 38 0 100
Sine wave: 14 days 0 0 0 100 0 4 0 0 0 2
Sine wave: 21 days 0 0 0 92 0 4 0 0 0 0
Sine wave: 28 days 0 0 0 46 0 4 0 0 0 0

Note : The �white noise�simulations and results are the same as in Table 5 (with standard deviation = 1 in the
original simulation). We list them here for reference� as a reminder that some of the predictions are degenerate.
Each result (%) is based on 10,000 quarters of simulated data. See the text for details.
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Table 7: Simulated Data with Medium Noise (Standard Deviation = 0.25)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Method PRNR MIMD NMC MBPI FT LS CS LSTM E-RF E-LSTM

I. All Models Trained with Labeled Data from Western Australia

White noise 0 0 36 100 25 19 100 0 0 0
Edgeworth 0 0 72 100 64 63 100 0 0 0
Reverse Edgeworth 0 0 10 100 64 63 100 0 1 0
Sine wave: 3 days 0 0 40 100 100 100 100 0 1 0
Sine wave: 7 days 0 0 40 99 100 100 100 56 3 27
Sine wave: 14 days 0 0 20 51 100 100 0 1 0 19
Sine wave: 21 days 0 0 11 34 100 100 0 0 0 0
Sine wave: 28 days 0 0 11 30 100 100 0 0 0 0

II. All Models Trained with Labeled Data from New South Wales

White noise 100 0 80 100 22 15 100 0 3 0
Edgeworth 100 1 97 100 78 82 100 0 1 0
Reverse Edgeworth 100 0 50 100 77 82 100 0 0 0
Sine wave: 3 days 100 0 75 100 100 100 100 0 0 0
Sine wave: 7 days 100 0 90 91 100 100 100 0 29 0
Sine wave: 14 days 100 0 95 32 100 100 100 0 93 0
Sine wave: 21 days 100 0 95 19 100 100 100 0 99 0
Sine wave: 28 days 100 0 96 16 100 100 100 0 99 8

III. All Models Trained with Labeled Data from Germany

White noise 0 24 17 100 0 0 100 85 4 100
Edgeworth 0 58 46 100 0 0 100 77 26 100
Reverse Edgeworth 0 5 3 100 0 0 100 90 6 99
Sine wave: 3 days 0 23 24 100 0 0 100 56 33 100
Sine wave: 7 days 0 12 16 100 0 4 100 61 0 100
Sine wave: 14 days 0 9 2 100 0 4 0 78 0 2
Sine wave: 21 days 0 7 1 100 0 4 0 13 0 0
Sine wave: 28 days 0 6 1 100 0 4 0 18 0 0

Note : The �white noise�simulations and results are the same as in Table 5 (with standard deviation = 1 in the
original simulation). We list them here for reference� as a reminder that some of the predictions are degenerate.
Each result (%) is based on 10,000 quarters of simulated data. See the text for details.
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Table 8: Simulated Data with Large Noise (Standard Deviation = 0.5)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Method PRNR MIMD NMC MBPI FT LS CS LSTM E-RF E-LSTM

I. All Models Trained with Labeled Data from Western Australia

White noise 0 0 36 100 25 19 100 0 0 0
Edgeworth 0 0 44 100 34 29 100 0 0 0
Reverse Edgeworth 0 0 29 100 34 29 100 0 0 0
Sine wave: 3 days 0 0 40 100 100 95 100 0 3 0
Sine wave: 7 days 0 0 38 100 100 100 100 2 4 1
Sine wave: 14 days 0 0 27 97 98 100 63 0 0 0
Sine wave: 21 days 0 0 22 95 100 100 49 0 0 0
Sine wave: 28 days 0 0 22 93 100 100 48 0 0 0

II. All Models Trained with Labeled Data from New South Wales

White noise 100 0 80 100 22 15 100 0 3 0
Edgeworth 100 0 87 100 39 35 100 0 2 0
Reverse Edgeworth 100 0 75 100 38 35 100 0 1 0
Sine wave: 3 days 100 0 73 100 100 100 100 0 0 0
Sine wave: 7 days 100 0 87 100 100 100 100 0 4 0
Sine wave: 14 days 100 0 88 93 100 100 100 0 48 0
Sine wave: 21 days 100 0 88 88 100 100 100 0 55 0
Sine wave: 28 days 100 0 89 87 100 100 100 0 62 0

III. All Models Trained with Labeled Data from Germany

White noise 0 24 17 100 0 0 100 85 4 100
Edgeworth 0 31 22 100 0 0 100 83 11 100
Reverse Edgeworth 0 19 13 100 0 0 100 87 7 100
Sine wave: 3 days 0 27 25 100 0 0 100 62 47 100
Sine wave: 7 days 0 18 16 100 0 4 100 79 0 100
Sine wave: 14 days 0 17 7 100 0 4 44 93 0 69
Sine wave: 21 days 0 16 5 100 0 4 33 94 0 35
Sine wave: 28 days 0 15 4 100 0 4 30 96 0 17

Note : The �white noise�simulations and results are the same as in Table 5 (with standard deviation = 1 in the
original simulation). We list them here for reference� as a reminder that some of the predictions are degenerate.
Each result (%) is based on 10,000 quarters of simulated data. See the text for details.
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Appendix B Additional Results

B.1 Combining Methods 1�4

This section investigates whether combining some or all of the existing methods leads to

better performances. We construct 11 combinatorial methods based on Methods 1�4. Each

combination comes in two speci�cations, AND and OR, depending on the logical operator

combining its constituent methods. For example, the two variants of combination (7) in

Table 9 are �Methods 1 AND 2 AND 3�and �Methods 1 OR 2 OR 3.�The former detects

cycles if all of Methods 1�3 do; the latter detects cycles if any of Methods 1�3 does.

Table 9: Accuracy (%) of Combinatorial Methods

Combination (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Constituent methods:
1. PRNR Yes Yes Yes � � � Yes Yes Yes � Yes
2. MIMD Yes � � Yes Yes � Yes Yes � Yes Yes
3. NMC � Yes � Yes � Yes Yes � Yes Yes Yes
4. MBPI � � Yes � Yes Yes � Yes Yes Yes Yes

I. Western Australia (# manually labeled observations: 24; 569)

AND 90:34 90:88 90:89 91:18 91:74 89:58 90:34 90:33 90:89 91:18 90:33
OR 91:92 89:38 90:28 89:58 89:93 90:10 89:58 89:91 90:10 89:74 89:74

II. New South Wales (# manually labeled observations: 9; 693)

AND 81:18 78:74 81:91 78:62 81:86 81:55 81:18 82:08 81:91 81:86 82:08
OR 76:18 70:96 78:38 70:96 78:31 70:96 70:96 76:03 70:96 70:96 70:96

III. Germany (# manually labeled observations: 35; 685)

AND 60:44 60:44 60:44 60:49 60:84 60:48 60:44 60:44 60:44 60:49 60:44
OR 60:69 60:48 65:48 60:68 65:34 65:48 60:68 65:34 65:48 65:34 65:34

Note : �AND�and �OR�mean the constituent methods are combined with �and�and �or�operators, respectively. We
randomly split the sample into an 80% training subsample and a 20% testing subsample 101 times. In each split, the
former subsample is used for setting parameter values, whereas the latter subsample is used to evaluate the accuracy
of predictions. All accuracy statistics are the medians from the 101 testing subsamples.

Table 9 shows that the performances of these combinatorial methods are similar to those

of their constituent methods. The ranges of median accuracy results are 89%�92% in WA,

71%�82% in NSW, and 60%�65% in Germany, which are almost identical to those of in-

dividual Methods 1�4 in Table 2. Thus, combinations do not generate materially di¤erent

predictions.
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B.2 Variants of Methods 5�7

Table 10 reports the performances of the variants of Methods 5 (FT), 6 (LS), and 7 (CS).

In Methods 5 and 6, the �max� and �HHI� variants are as explained in section 4.2 and

Appendix A.1. The �peak�variant is similar to the �max�one except that we additionally

use a peak-detection algorithm to ensure we are measuring the height of the highest (and

well-behaved) peak in the power spectrum and not some accidental maximum due to noisy

data. In Method 7, the �roots�variant is the baseline version in section 4.2. Its �integral�

and �absolute value�variants are explained in Appendix A.1.

B.3 Data Requirement and Marginal Cost of Accuracty

Table 11 reports the means of accuracy (% correct) across 101 bootstrap sample splits that

are underlying the visual summaries in Figure 2 in section 6. Table 12 shows the standard

deviations of accuracy are usually less than 1 percentage point when more than 1% of the

sample is used for training.

Figure 7 and Panel (C) of Table 11 show the �marginal costs of accuracy�(i.e., the amount

of RA work required for an extra percentage-point increase in accuracy). The marginal cost

is initially low with only a few cents, but rapidly increases as we approach the maximum

possible accuracy levels. Because the di¢ culty of accurate classi�cation in a new dataset

is unknown a priori, one cannot set realistic targets without some preliminary analysis.

Nevertheless, our �ndings in section 5 are encouraging in that only a few hundred labeled

observations are necessary to reach approximately optimal accuracy levels.
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Table 10: Performance of Automatic Detection Methods (Other Variants)

(5) (50) (500) (6) (60) (600) (7) (70) (700)
Method FTmax FTpeak FT2hhi LSmax LSpeak LShhi CSroots CSint CSabs

I. Western Australia (# manually labeled observations: 24; 569)

Parameter 1 0:12 0:14 0:04 0:21 0:23 0:44 22:50 551:47 246:08
Parameter 2 � � � � � � � � �
% correct (median) 90:11 88:40 87:61 90:15 89:66 81:83 85:47 83:42 85:14
(Standard deviations) (0:40) (0:45) (0:39) (0:36) (0:43) (0:54) (0:45) (0:54) (0:42)
of which cycling 58:24 57:31 59:12 57:92 57:10 54:13 56:41 55:92 57:14
of which not 31:87 31:09 28:49 32:23 32:56 27:70 29:06 27:49 28:00
% false negative 2:48 4:05 1:91 3:30 4:50 6:15 5:29 4:82 3:32
% false positive 7:41 7:5 10:48 6:55 5:84 12:03 9:24 11:76 11:54

II. New South Wales (# manually labeled observations: 9; 693)

Parameter 1 0:20 0:27 0:21 0:57 0:81 29:21 4:50 783:11 459:83
Parameter 2 � � � � � � � � �
% correct (median) 80:71 81:85 81:23 80:82 82:21 81:38 73:90 75:45 79:63
(Standard deviations) (0:80) (0:70) (0:83) (0:80) (0:81) (0:84) (0:89) (0:79) (0:87)
of which cycling 66:53 66:99 64:72 66:43 66:89 67:30 70:40 68:13 67:25
of which not 14:18 14:85 16:50 14:39 15:32 14:08 3:51 7:32 12:38
% false negative 5:47 4:54 6:19 4:02 4:07 4:54 0:77 3:20 3:56
% false positive 13:82 13:62 12:58 15:16 13:72 14:08 25:32 21:35 16:81

III. Germany (# manually labeled observations: 35; 685)

Parameter 1 0:24 0:90 0:67 0:62 1:93 42:96 24:50 994:19 4; 623
Parameter 2 � � � � � � � � �
% correct (median) 60:50 60:57 60:35 60:36 60:50 60:52 71:28 60:29 60:49
(Standard deviations) (0:56) (0:50) (0:53) (0:59) (0:57) (0:53) (0:42) (0:48) (0:48)
of which cycling 0:00 0:00 0:00 0:00 0:00 24:30 25:88 0:00 0:00
of which not 60:50 60:57 60:35 60:36 60:50 47:00 45:40 60:29 60:49
% false negative 39:50 39:41 39:65 39:57 39:50 15:26 14:28 39:51 0:00
% false positive 0:00 0:01 0:00 0:07 0:00 13:43 14:45 0:20 39:51

Note : See the text of Appendix sections A.1 and B.2 for the de�nition of each method.
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Table 11: Bene�ts and Costs of Additional Data

(1) (2) (3) (4) (5) (6) (7) (8)
Subsample used for �training� 0:1% 1% 5% 10% 20% 40% 60% 80%

(A) Median Accuracy (% correct)

I. Western Australia (# manually labeled observations: 24; 569)
1. PRNR 89:88 90:64 90:70 90:73 90:72 90:80 90:80 90:80
2. MIMD 90:55 91:21 91:29 91:28 91:31 91:29 91:29 91:27
3. NMC 89:33 89:35 89:34 89:36 89:36 89:36 89:35 89:34
4. MBPI 89:95 90:15 90:24 90:27 90:26 90:25 90:26 90:23
5. FT 89:29 89:98 90:06 90:06 90:08 90:12 90:15 90:11
6. LS 89:67 89:92 90:01 90:01 90:03 90:06 90:06 90:15
7. CS 84:22 84:96 85:48 85:48 85:51 85:52 85:43 85:47
8. LSTM 85:32 95:54 97:11 97:66 98:20 98:78 99:07 99:25
9. E-RF 90:78 96:53 97:86 98:27 98:59 98:87 98:96 99:04
10. E-LSTM 72:36 95:46 97:09 97:59 98:15 98:76 99:06 99:25

II. New South Wales (# manually labeled observations: 9; 693)
1. PRNR 75:78 78:12 78:51 78:50 78:54 78:49 78:49 78:55
2. MIMD 77:81 78:13 78:24 78:29 78:31 78:42 78:29 78:39
3. NMC 70:95 70:95 70:95 70:93 70:94 70:99 70:94 70:96
4. MBPI 80:47 80:74 81:25 81:27 81:35 81:40 81:48 81:59
5. FT 76:48 79:93 80:56 80:62 80:64 80:57 80:63 80:71
6. LS 77:17 80:29 80:66 80:67 80:70 80:64 80:58 80:82
7. CS 72:02 73:80 73:83 73:84 73:89 73:90 73:85 73:90
8. LSTM 60:60 78:84 86:52 87:64 88:68 89:13 89:45 89:63
9. E-RF 78:99 83:00 84:40 85:09 85:85 86:59 86:85 87:42
10. E-LSTM 44:39 77:96 86:72 87:98 89:01 89:60 89:94 90:30

III. Germany (# manually labeled observations: 35; 685)
1. PRNR 55:48 60:43 60:42 60:46 60:42 60:45 60:47 60:38
2. MIMD 60:19 60:51 60:58 60:58 60:60 60:66 60:63 60:61
3. NMC 60:42 60:43 60:44 60:44 60:46 60:47 60:43 60:53
4. MBPI 64:49 65:16 65:25 65:26 65:32 65:32 65:35 65:39
5. FT 60:42 60:42 60:42 60:43 60:40 60:46 60:45 60:50
6. LS 60:42 60:42 60:43 60:44 60:42 60:44 60:46 60:36
7. CS 70:66 71:26 71:31 71:29 71:29 71:28 71:31 71:28
8. LSTM 60:45 65:97 70:83 72:40 73:74 74:27 74:43 74:61
9. E-RF 66:38 71:86 74:78 75:04 75:30 75:79 75:79 76:14
10. E-LSTM 60:45 72:43 76:91 77:50 78:38 79:21 79:51 79:58

(B) Total Costs of Manual Labeling (US$)
I. Western Australia 3:51 35:1 176 351 702 1; 404 2; 106 2; 808
II. New South Wales 2:84 28:4 142 284 567 1; 134 1; 701 2; 268
III. Germany 6:48 64:8 324 648 1; 296 2; 592 3; 888 5; 184

(C) E-LSTM�s Marginal Costs of Accuracy (US$ per correct % point)
I. Western Australia 0:05 1:37 86:13 351 627 1; 151 2; 340 3; 695
II. New South Wales 0:06 0:76 12:95 113 275 961 1; 668 1; 575
III. Germany 0:11 4:87 57:86 549 736 1; 561 4; 320 18; 514

Note : The numbers in panel (A) indicate accuracy in the 20% testing subsample. Some or all of the remaining 80%
subsample are used as a training subsample to optimize the parameters of each model. We randomly split the sample
101 times, tune the parameters as many times, and report their median performances. The dollar costs in Panels (B)
and (C) are based on the total RA hours to manually classify cycles and the hourly wage of $13.50 (see section 3).

55



Table 12: Standard Deviations of Accuracy under Di¤erent Sample Sizes

(1) (2) (3) (4) (5) (6) (7) (8)
Subsample used for �training� 0:1% 1% 5% 10% 20% 40% 60% 80%

Standard Deviation of: Accuracy (% correct)

I. Western Australia (# manually labeled observations: 24; 569)
1. PRNR 1:94 0:64 0:33 0:11 0:12 0:16 0:22 0:37
2. MIMD 2:09 0:6 0:19 0:10 0:11 0:15 0:20 0:38
3. NMC 3:22 0:39 0:11 0:08 0:09 0:15 0:23 0:38
4. MBPI 2:34 0:46 0:11 0:09 0:11 0:14 0:22 0:36
5. FT 1:80 0:50 0:25 0:16 0:14 0:16 0:23 0:40
6. LS 1:39 0:38 0:14 0:15 0:12 0:16 0:24 0:36
7. CS 2:15 0:59 0:16 0:09 0:12 0:20 0:26 0:45
8. LSTM 23:81 1:15 0:20 0:21 0:20 0:21 6:01 0:18
9. E-RF 1:65 0:44 0:17 0:15 0:11 0:09 0:09 0:15
10. E-LSTM 23:22 1:32 0:21 0:19 5:91 0:20 0:16 0:14

II. New South Wales (# manually labeled observations: 9; 693)
1. PRNR 4:94 1:03 0:62 0:53 0:28 0:32 0:49 0:85
2. MIMD 1:90 0:98 0:47 0:28 0:30 0:36 0:52 0:88
3. NMC 12:86 0:04 0:10 0:16 0:21 0:36 0:56 0:97
4. MBPI 2:44 1:51 0:31 0:31 0:25 0:37 0:55 0:86
5. FT 6:57 1:65 0:54 0:36 0:30 0:40 0:48 0:80
6. LS 4:46 1:10 0:51 0:34 0:27 0:31 0:48 0:80
7. CS 14:34 1:01 0:43 0:17 0:27 0:41 0:61 0:89
8. LSTM 20:66 2:57 0:74 0:46 0:29 0:33 0:41 0:67
9. E-RF 6:34 0:94 0:42 0:36 0:34 0:37 0:46 0:69
10. E-LSTM 19:25 5:21 0:89 0:45 0:34 0:34 0:42 0:67

III. Germany (# manually labeled observations: 35; 685)
1. PRNR 4:35 2:06 0:11 0:08 0:12 0:21 0:31 0:49
2. MIMD 5:30 0:75 0:20 0:28 0:14 0:19 0:32 0:50
3. NMC 5:67 0:38 0:10 0:09 0:14 0:19 0:33 0:52
4. MBPI 1:64 0:84 0:27 0:19 0:16 0:22 0:28 0:52
5. FT 5:71 0:23 0:11 0:09 0:14 0:20 0:30 0:56
6. LS 6:97 0:15 0:07 0:10 0:15 0:25 0:33 0:59
7. CS 2:98 0:70 0:20 0:10 0:13 0:17 0:29 0:42
8. LSTM 0:68 1:47 1:05 1:08 0:67 0:40 0:38 0:44
9. E-RF 2:99 2:29 2:26 1:33 1:47 1:29 1:47 1:46
10. E-LSTM 0:80 2:08 0:62 0:47 0:63 0:51 0:41 0:53

Note : The numbers indicate the standard deviations of accuracy across the 101 bootstrap sample-splits.
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Figure 7: Marginal Costs of Accuracy (E-LSTM)

Note: These marginal-cost curves are based on the numbers reported in Table 11 (shown with markers) and
a splines-based interpolation (dashed lines).
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B.4 Using Only �Cleaner�Subsamples

Table 13 and Figure 8 report alternative results based only on subsamples that are either

unanimously labeled as �cycling�by all RAs or not labeled as �cycling�by any RA, thereby

ignoring ambiguous observations. Accuracy is higher overall, but relative performance rank-

ings remain similar to the baseline results.

Table 13: Performance of Automatic Detection Methods in �Cleaner�Datasets

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Method PRNR MIMD NMC MBPI FT LS CS LSTM E-RF E-LSTM

I. Western Australia (# manually labeled observations: 24; 569)

Parameter 1 �1:16 5:14 �0:20 4:85 0:14 0:23 22:50 � � �
Parameter 2 � � � 5 � � � � � �
Accuracy rank 5 4 8 6 9 7 10 1 3 2
% correct (median) 90:86 91:29 89:44 90:25 88:22 89:66 85:49 99:25 99:06 99:21
(Standard deviations) (0:29) (0:33) (0:43) (0:37) (0:39) (0:42) (0:51) (0:16) (0:14) (0:12)
of which cycling 55:45 56:98 58:26 59:69 57:22 56:61 55:80 60:09 60:44 60:68
of which not 35:41 34:31 31:18 30:57 30:99 33:05 29:69 39:15 38:62 38:52
% false negative 5:66 3:93 3:01 0:53 3:93 3:64 5:33 0:53 0:55 0:49
% false positive 3:48 4:78 7:55 9:22 7:86 6:70 9:18 0:22 0:39 0:31

II. New South Wales (# manually labeled observations: 8; 028)

Parameter 1 5:24 2:73 1:01 8:9 0:22 0:57 4:50 � � �
Parameter 2 � � � 2 � � � � � �
Accuracy rank 7 8 10 6 5 4 9 1 3 2
% correct (median) 91:22 90:39 85:65 93:17 93:68 94:03 88:61 98:75 97:44 98:70
(Standard deviations) (0:66) (0:63) (0:75) (0:49) (0:62) (0:48) (0:66) (0:24) (0:37) (0:37)
of which cycling 84:18 84:39 85:65 84:18 85:02 83:53 84:63 84:56 85:06 85:18
of which not 7:04 5:99 0:00 8:98 8:66 10:50 3:98 14:19 12:38 13:53
% false negative 1:12 1:19 0:00 1:23 1:77 1:95 0:93 0:75 0:69 0:19
% false positive 7:66 8:43 14:35 5:60 4:55 4:02 10:45 0:50 1:88 1:11

III. Germany (# manually labeled observations: 22; 232)

Parameter 1 0:74 �0:32 1:26 0:75 0:01 0:00 18:50 � � �
Parameter 2 � � � 15 � � � � � �
Accuracy rank 6 7 10 5 8 9 4 3 2 1
% correct (median) 68:93 63:98 63:44 73:34 63:60 63:50 81:76 85:34 87:41 90:37
(Standard deviations) (0:61) (0:66) (0:65) (0:56) (0:69) (0:66) (0:55) (0:58) (1:52) (0:53)
of which cycling 60:30 62:10 63:44 56:42 63:60 63:50 58:00 58:09 58:42 59:08
of which not 8:63 1:88 0:00 16:92 0:00 0:00 23:76 27:25 28:99 31:28
% false negative 3:01 1:48 0:00 6:99 0:00 0:00 6:17 5:39 4:88 3:71
% false positive 28:06 34:54 36:56 19:66 36:40 36:50 12:07 9:27 7:71 5:93

Note : These alternative results are based only on �cleaner�subsamples that are either unanimously labeled as �cycling�
by all RAs or not labeled as �cycling�by any RA. Other details follow Table 2.
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Figure 8: Gains from Additional Data in �Cleaner�Datasets

Note: These alternative results are based only on �cleaner�(i.e., less ambiguous) subsamples that are either
unanimously labeled as �cycling�by all RAs or not labeled as �cycling�by any RA.
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B.5 Ambiguous Cycles with Mixed Labels

This section investigates the extent to which algorithmic classi�cations re�ect the ambiguity

in human labels. The examples in Figure 1 are clear cycles or non-cycles that our RAs

unanimously labeled as such. However, our data also contain many ambiguous cases in which

some or all RAs chose �maybe cycling�instead of �cycling�or �not cycling.�We codify only

those station-quarters with unanimous �cycling�labels as cyclei;t = 1, but readers might be

curious how the algorithms respond to ambiguous cases in the data.

The �rst two columns of Table 14 list ambiguous combinations of manual labels and

the count of station-quarter observations in each category, respectively. All other columns

report the percentages of observations that are classi�ed as cycles ([cyclei;t = 1) by the 10

algorithms. Technically speaking, the combination of [cyclei;t = 1 and cyclei;t = 0 constitutes
a �false positive�and is treated as a prediction error in our main analysis. Nevertheless, for

the purpose of this section, we can also interpret the false-positive rate as a measure of how

these methods re�ect the underlying ambiguity in data and human judgment.

Table 14: Percentage of Ambiguous Cases Classi�ed as Cycles

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Label composition Count PRNR MIMD NMC MBPI FT LS CS LSTM E-RF E-LSTM

II. New South Wales (# manually labeled observations: 9; 693)

(yes; yes;maybe) 843 83.7 100.0 73.2 64.5 75.6 76.2 99.1 12.9 52.6 54.9
(yes;maybe;maybe) 412 78.4 100.0 65.3 56.1 65.5 63.3 97.8 7.5 23.3 24.3
(yes;maybe; no) 238 63.9 100.0 60.1 41.6 46.2 44.1 95.0 3.4 6.3 10.9
(maybe;maybe;maybe) 118 65.3 100.0 75.4 45.8 55.9 49.2 89.0 4.2 8.5 9.3
(maybe;maybe; no) 218 55.0 100.0 71.1 22.9 30.3 26.6 80.3 0.5 0.5 2.3
(maybe; no; no) 415 38.8 100.0 48.2 14.5 18.3 15.2 77.1 0.0 0.2 0.2
Mix of yes & no 172 71.5 100.0 57.0 36.0 47.1 43.0 90.1 6.4 9.3 11.0

III. Germany (# manually labeled observations: 35; 685)

(yes; yes;maybe) 6,986 0.0 0.2 2.2 22.6 0.0 0.0 37.5 5.5 29.5 40.9
(yes;maybe;maybe) 5,511 0.0 0.2 1.7 16.7 0.0 0.0 22.9 1.9 13.8 15.3
(yes;maybe; no) 748 0.0 0.1 1.9 12.8 0.0 0.0 15.9 1.6 7.6 9.8
(maybe;maybe;maybe) 4,435 0.0 0.1 1.4 12.1 0.0 0.0 16.7 1.0 6.6 6.0
(maybe;maybe; no) 2,161 0.0 0.0 2.0 9.4 0.0 0.0 10.9 0.5 3.3 3.3
(maybe; no; no) 1,013 0.0 0.0 3.8 4.3 0.0 0.0 3.7 0.1 0.7 0.4
Mix of yes & no 402 0.0 0.2 2.7 21.6 0.0 0.0 39.6 7.5 32.8 41.0

Note : �Yes,� �maybe,� and �no� correspond to �cycling,� �maybe cycling,� and �not cycling� in the original human
labels, respectively. The count of observations does not add up to the total count of manually labeled observations because
�unambiguous�cases (i.e., unanimous �yes�or �no�) are excluded.

The results suggest many methods respond to ambiguous cases in an intuitive manner.
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For example, Methods 9 (E-RF) and 10 (E-LSTM) respectively classify 53% and 55% of

the (yes; yes;maybe) cases in NSW as cycles, which seems understandable. Likewise, they

classify 23% and 24% of the (yes;maybe;maybe) cases in NSW as cycles. The fraction of such

�false positives� decreases as the label composition becomes more negative (i.e., closer to

unanimous �no�). Similar patterns emerge elsewhere as long as the algorithmic predictions

are non-degenerate. Thus, not all �prediction errors� are necessarily bad, as they could

re�ect subtle di¤erences in the underlying data and manual labels.

B.6. Heterogeneity among Human Labelers

This section investigates the extents to which human labelers are heterogeneous and how

such heterogeneity could a¤ect the cycle-detection algorithms.

Are some labelers �stricter�or �looser�than others in recognizing cycles? The answer

is �yes.�Table 15 shows the most stringent RA labels 75% of the NSW as cycling, whereas

the least stringent RA labels 87% as cycling.58 Likewise, 55%, 59%, and 62% of the German

data are �agged as cycling by individual RAs, respectively.59

Table 15: Heterogeneity among Human Labelers

Dataset New South Wales Germany
Labeler ID# 1 2 3 1 2 3
Number of labels
�Cycling� 7; 295 7; 482 8; 428 19; 711 21; 084 22; 112
�Maybe cycling� 1; 114 1; 158 838 12; 072 12; 905 12; 141
�Not cycling� 1; 284 1; 053 427 3; 902 1; 696 1; 432
Fraction of �cycling� 75:3% 77:2% 87:0% 55:2% 59:1% 62:0%

Pro�t margins (cent)
�Cycling�: mean 11:93 11:95 11:65 98:18 98:22 98:24
�Cycling�: std. dev. 5:55 5:62 5:79 3:57 3:56 3:64
Others: mean 10:85 10:70 11:76 98:81 98:82 98:82
Others: std. dev. 7:27 7:21 7:49 4:61 4:71 4:69
Di¤erence in means 1:08 1:25 �0:11 �0:63 �0:60 �0:58
p value < :001 < :001 :617 < :001 < :001 < :001

Note : The total number of manually labeled observations may not be identical to the
ones in Table 1 because this table omits observations with more than three labels.

Do the pro�t-margin statistics (the average di¤erence between �cycling�and other ob-

servations) vary across individual labelers? The answer is �yes�again. The mean di¤erence

58We do not study labeler heterogeneity in the WA data, where each station-quarter observation is labeled
only once based on the consensus of two RAs.

59The German data were labeled by six RAs in total, but most observations have only three labels. We
treat �label 1,��label 2,�and �label 3�in our anonymized dataset as individual labelers.

61



is 1:24 cents in NSW when we use the three RAs�consensus (in our baseline results in Table

3); it is 1:08, 1:25, and �0:11 cents according to individual labelers 1, 2, and 3, respectively.
Labeler 3 (the least stringent RA) turns out to be an outlier in this respect. By contrast,

the impact of labeler heterogeneity on margin gaps is much less pronounced in the German

data. The mean di¤erence is �0:47 cents based on the consensus of RAs (Table 3), whereas
the classi�cations by individual RAs lead to �0:63, �0:60, and �0:58 cents of margin gaps,
respectively.

The heterogeneity across human labelers translates into heterogeneity in the performance

of the algorithms. Table 16 summarizes the results of training each method based on each in-

dividual RA�s labels alone. Its upper half shows the accuracy (%) in terms of correctly match-

ing human labels. The general level of accuracy is high and comparable to the consensus-

based baseline results (Table 2), but some methods seem to work �better�with individual

labels in NSW than with the consensus version. Curiously, the accuracy performance sys-

tematically improves as algorithms try to replicate less stringent labelers, with the exception

of Methods 7�10 in Germany. This pattern suggests less stringent labelers tend to follow

some simple decision rules that are easily captured by the automatic methods.

The algorithmic versions of the margin-gap statistics generally agree with those based

on their respective human-label targets, but there are exceptions. First, Methods 3 and 6

produce degenerate classi�cations, which precludes the calculation of di¤erences in the �rst

place. Second, Methods 2, 4, and 7 tend to produce the mean di¤erences that are visibly

di¤erent from the manual versions in NSW. Curiously, Methods 5 and 6 lead to positive gaps

(0:19 and 0:29) for labeler 3 in NSW, even though this RA�s labels generate a negative gap

(�0:11).60 Third, Methods 1, 2, and 5 also lead to visibly di¤erent statistics in Germany.
In summary, we �nd that di¤erent training data (labels) lead to di¤erent automatic-

classi�cation results. This �nding is trivial and mechanical because the algorithms are de-

signed to replicate manual labels. Nevertheless, it also highlights the importance of not

relying too much on any single labeler. Human recognition is heterogeneous, and machines

may replicate such heterogeneity. Thus, the real question is not so much about the methods

themselves as about establishing a commonsensical �ground truth�by humans.

60This discrepancy is not entirely surprising because the p value of the negative gap is high (0:617). That
is, the di¤erence is not statistically signi�cant at any conventional level.
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Table 16: When Algorithms Are Trained by Individual Labelers

Dataset New South Wales Germany
Labeler ID# 1 2 3 1 2 3
Accuracy (% correct)
Method 0: Manual 100:00 100:00 100:00 100:00 100:00 100:00
Method 1: PRNR 81:63 82:94 90:79 60:28 62:95 64:49
Method 2: MIMD 80:64 82:46 89:97 56:30 59:46 62:00
Method 3: NMC 75:26 77:19 86:95 55:24 59:08 61:96
Method 4: MBPI 83:02 84:51 92:39 64:62 65:92 66:17
Method 5: FT 83:98 85:84 92:22 55:24 59:09 61:97
Method 6: LS 84:49 86:01 92:19 55:24 59:08 61:96
Method 7: CS 78:03 79:81 89:10 71:48 72:66 70:12
Method 8: LSTM 89:71 91:99 96:06 73:95 74:30 72:69
Method 9: E-RF 97:52 97:69 98:90 95:25 95:22 94:53
Method 10: E-LSTM 90:50 92:01 95:88 78:08 78:19 74:91

Di¤erence in mean pro�t margins (cent)
Method 0: Manual 1:08 1:25 �0:11 �0:63 �0:60 �0:58
Method 1: PRNR 0:42 0:40 �0:40 �0:78 �0:88 �1:49
Method 2: MIMD 3:93 3:37 �1:40 �0:63 �0:92 �3:96
Method 3: NMC � � � � � �
Method 4: MBPI 2:56 0:76 �1:03 �0:25 �0:75 �1:23
Method 5: FT 1:25 1:10 0:19 2:52 2:52 2:52
Method 6: LS 1:25 1:03 0:29 � � �
Method 7: CS �1:90 �1:90 �1:90 �0:68 �0:74 �0:90
Method 8: LSTM 1:48 1:80 �0:18 �1:01 �0:88 �1:01
Method 9: E-RF 1:05 1:26 �0:09 �0:69 �0:64 �0:62
Method 10: E-LSTM 1:53 1:58 �0:17 �0:70 �0:88 �0:86

Note : No pro�t-margin-gap results are shown when classi�cation results are degenerate.
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Appendix C Supplementary Plots for Section 7.2

C.1. Why Existing Methods Work in Australia But Fail in Germany Figure

9 plots histograms of the median daily change of prices/margins, which underlies the sim-

plest of the asymmetry-based methods (Method 3). Most of the manually identi�ed cycles

in Australia exhibit asymmetry (Panels I�II), whereas German cycles are not necessarily

asymmetric (Panel III).

C.2. Why Margins Correlate Positively with Cycles in Australia But Negatively

in Germany The scatter plots of Figure 10 show the means and the standard deviations

of margins are positively correlated in all datasets. As the histograms of Figure 11 show,

however, their volatility and (manually identi�ed) cyclicality are correlated positively in

Australia but negatively in Germany. Thus, margins and their cyclicality are correlated

positively in Australia but negatively in Germany.

C.3. Why Do Existing Methods Find �Positive Correlations�? Figure 12 shows

histograms of standard deviations by �cyclicality�based on Methods 3 and 4. These pic-

tures suggest the threshold rules underlying the asymmetry-based methods tend to �ag

high-volatility cases as �cycles,�because only su¢ ciently large movements can satisfy these

conditions. As Figure 10 shows, however, high volatility is a poor predictor of true cyclicality

(based on manual classi�cation) in the German data.

Figure 9: Histograms of Median Daily Change
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Figure 10: Scatter Plots of Mean and Standard Deviation

Figure 11: Histograms of Standard Deviation

Figure 12: Asymmetry-based De�nitions Pick Up Volatility
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Appendix D Additional Data Exploration

This section reports additional �ndings from the exploratory data analysis in section 7.3.

D.1 Additional Time Series Patterns: Macroeconomic Shocks

The relationship between macroeconomic shocks and price cycles seems complex. On the

one hand, the �great recession�of 2008 roughly corresponds to the period of almost no cycles

in WA, in a stark contrast with the adjacent periods in which cycles are prevalent. On the

other hand, the onset of the covid-19 pandemic in 2020:Q1 does not seem to trigger any

major change in the prevalence of cycles in NSW. Likewise, in Germany, the big drop in

2020:Q1 seems to correspond to the beginning of the pandemic, but this episode is hardly

unique. There are several other big drops (e.g., 2015:Q3, 2016:Q2, and 2018:Q1) that are

not clearly associated with business cycles.

Figure 13 overlays the fraction-of-cycling-stations data with crude oil price. Here again,

the relationship is complicated. The prevalence of price cycles in WA does seem to correlate

with oil price at �rst glance. The �rst �boom� of cycles in 2007 coincides with a large

increase in oil price from approximately $50 to $100. The second boom from around 2010

also coincides with another increase in oil price. However, their ups and downs in 2008�

2009 are not synchronized, and some of the biggest drops in oil price in recent history (in

2014�2015) fail to have any impact on the prevalence of price cycles.61 In Germany, it is also

possible to see some correlations but not decisive ones.62 Thus, we tentatively conclude that

serious investigations into the relationships between price cycles, input costs, and business

cycles would require a deeper understanding of the mechanism that generates price cycles.

61Oil price�s correlation with the fraction of cycling stations is 0:37 in WA and 0:06 in NSW.
62In fact the fractions of cycling stations in all of the 10 German regions are negatively correlated with

crude oil price (between �0:05 and �0:40).
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Figure 13: Crude Oil Price and Prevalence of Price Cycles

Note: Crude oil price is quarterly average of the monthly data on �Europe Brent Spot Price FOB� from
Thomson Reuters downloaded from the US Energy Information Administration. The legend shows only four
of the 10 LZs due to space limit.
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D.2 Additional Spatial Patterns: Cycle Correlation and Distance

in WA by Subperiod

WA�s sample period is considerably longer than NSW�s and Germany�s and spans qualita-

tively di¤erent subperiods. In Figure 14, we further investigate whether patterns change over

time in WA by showing �correlations�for each of the three six-year subperiods: 2003�2008,

2009�2014, and 2015�2020. The �rst subperiod (Period I) ends before clear weekly cycles

emerged. Hence, the extremely high �correlation�is largely an artifact of many station-pair-

quarter observations whose cycle statuses trivially match (i.e., many observations do not

show cycles at all). By contrast, Period II roughly correspond to the era in which weekly

cycles became prominent, and Period III is when crude oil price became volatile again but

gasoline price cycles remained prevalent (see Appendix D.1). This �decomposition shows

that Period I is an outlier for our purposes and that the all-time averages are closer to

Periods II and III.63

Figure 14: Cycle Correlation in WA by Subperiod

Note: The WA graphs do not show markers or lines in two distance bins (less than 1km and 50�100km)
because the WA data have relatively few pairs in these bins, which we grouped in the adjacent bins for the
purpose of visualization. The number of valid observations (i.e., station pairs with at least 12 quarters of
data in common) underlying the all-time statistics is larger than the sum of valid observations in Periods
I�III.

63The all-time averages are closer to Periods II and III partly because more valid station-pair observations
are available in later years. Note the number of valid observations (i.e., station pairs with at least 12 quarters
of data in common) underlying the all-time statistics is larger than the sum of valid observations in Periods
I�III, which is why the all-time percentage is lower than those of Periods I, II, and III in the right panel of
Figure 14 (in the largest-distance bin).

68



Appendix E Potential Biases in Adversarial Circum-

stances

This section discusses the extent to which adversarial circumstances (e.g., in antitrust cases)

could a¤ect (i) the manual labeling of data, (ii) the choice of automatic detection methods,

and (iii) the descriptive �ndings about cycles and pro�t margins.

To make our discussions concrete, we assume two adversaries, Plainti¤ (�P�) and De-

fendant (�D�), dispute whether price cycles are anti-competitive. P�s objective is to prove

that (A) price cycles exist in the data and that (B) price cycles positively correlate with

pro�t margins. D�s objective is to prove that (A�) price cycles do not exist in the data and

that (B�) even if they did, they are either negatively correlated or simply uncorrelated with

pro�t margins. Because a statistically signi�cant negative correlation could potentially invite

another scrutiny (i.e., �Does the absence of cycles indicate lack of competition?�), avoiding

any systematic pattern would be D�s best defense.

Let us �rst consider how P and D will approach task (i), the manual labeling of data.

As Appendix C.4 illustrates, human labelers make heterogeneous judgments even under the

direction of a single supervisor and working in a team with regular meetings to coordinate

their classi�cation criteria (see section 3.2). Hence, P and D can select their respective

teams of experts based on their tendencies in manual labeling. More direct maneuvering is

possible as well. P can instruct its experts to label relatively high-margin observations as

�cycles�and low-margin ones as �non-cycles.�Likewise, D would incentivize its own experts

to randomize their labels, so that the labeled data become too noisy to show any systematic

patterns. Therefore, an obvious conclusion for task (i) is that it must be performed by an

independent, disinterested party and that the same �ground truth�(labeled dataset) must

be used by both P and D. Otherwise, generating arbitrary labels will always be possible.

Once the �ground truth� is established, (ii) the choice of automatic methods is rela-

tively straightforward because it is simply a matter of training and choosing a method that

achieves the highest accuracy in replicating the ground truth without degenerate predictions.

Accuracy is a good criterion as long as the ground truth is shared by P and D. Our results

(Tables 2 and 3) show that �wrong� results are by-products of inaccurate classi�cations.

Among the 10 methods that we evaluated, Method 10 would be the most desirable in this

respect. Nevertheless, preparing several other methods and comparing their outputs would

be advisable as a sensitivity analysis.64

64If similar methods� or models with similar levels of complexity and accuracy� generate radically di¤er-

69



Task (iii)� the calculation of descriptive statistics about cycles and margins� is straight-

forward as well. After tasks (i) and (ii) are complete, the scope for manipulating statistical

�nding is limited. The �only� remaining question is whether and how to control for ad-

ditional observable characteristics of shops/�rms and time periods. In datasets with many

observed characteristics (and potential heterogeneity across units observations), determining

the appropriate level of aggregation and comparison would require nontrivial e¤orts. But

these problems are common to any empirical analysis, well-understood by seasoned econo-

mists, and not unique to the detection of price cycles. Hence, we do not discuss them here.

In summary, adversarial biases are most likely to be an issue in the manual labeling stage

rather than in the later, more technical parts of the analysis. Thus, the selection of human

labelers should be treated in the same spirit as in the selection of jury in trials.

ent patterns, that might be a symptom of issues in data cleaning, coding errors, or other technical problems
in the estimation/training of the models. Additional insights could be gained by comparing not only the
accuracy levels but also the composition of prediction errors (false negatives vs. false positives).
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