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Abstract. The usefulness of computer-based tools in supporting singing ped-
agogy has been demonstrated. With the increasing use of artificial intelligence
(AI) in education, machine learning (ML) has been applied in music-pedagogy
related tasks too, e. g., singing technique recognition. Research has also shown
that comparing ML performance with human perception can elucidate the usabil-
ity of AI in real-life scenarios. Nevertheless, this assessment is still missing for
singing technique recognition. Thus, we comparatively evaluate classification and
perceptual results from the identification of singing techniques. Since computer-
assisted singing often relays on visual feedback, both an auditory task (recogni-
tion from a capella singing), and a visual one (recognition from spectrograms)
were performed. Responses by 60 humans were compared with ML outcomes.
By guaranteeing comparable setups, our results indicate that ML can capture dif-
ferences in human auditory and visual perception. This opens new horizons in the
application of AI-supported learning.
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1 Introduction

Singing techniques, as well as the strategies to teach them, have evolved over the his-
tory, in correspondence with chronological and geographical factors influencing music
development [1]. Nevertheless, singing pedagogy has been mostly based in oral tradi-
tion, which is the reason why the description of how to perform such techniques is, in
some cases, vague and imprecise [2]. Due to this, while experienced singers and teach-
ers can naturally evaluate the quality of singing by simply following their intuition [3],
this task might be particularly challenging for beginners.

The advantages of using computer-based applications to support teaching and learn-
ing have been shown [4]. Within music pedagogy, the use of computer-assisted singing
tools, able to enhance singers’ awareness, have become of common use in combination
with traditional pedagogy [5]. Indeed, some of these tools have shown to be particularly
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effective in supporting beginners’ training [6]. Due to the ubiquity of artificial intelli-
gence (AI), machine learning (ML) methods have also been applied in the automatic
assessment of singing quality [7]. Similarly, research on the automatic recognition of
specific singing techniques has recently gained popularity [8, 9].

Nevertheless, the development of ML tools to support singing training is still on
its infancy, which comes along with not yet well-defined use-cases and prevents a real
connection between music pedagogy and the AI field. In this work, we present a pre-
liminary study aimed to pave the way for future research on the use of AI in singing
pedagogy. Since it has been shown that assessing how well a ML algorithm performs
in comparison to humans can bring light about the utility of AI in real life [10–13], we
assess, for the first time, the performance of ML methods in singing technique classifi-
cation with respect to humans. By evaluating the perceptual ratings of two participant
groups (with and without musical expertise) in comparison to ML we aim to: (i) assess
how different feature representations perform in comparison to different learners level;
and (ii) try to define potential applications of ML in singing education scenarios.

2 Related Work
The use of technology as an auxiliary educational tool has shown to successfully en-
hance singing pedagogy [14]. This is achieved by integrating acoustic voice analysis
in the learning context as well as by using it as a biofeedback for singers’ training
[15]. Indeed, analysing audio recordings and computer-based feedback are two impor-
tant elements of up-to-date singing pedagogy [16]. In particular, it has been shown
that using visual representations of vocal properties effectively supports learners [5].
For instance, the understanding of phrasing can be enhanced by illustrating vocal pres-
sure [17]. ALBERT [18] and VOXed [19], aiming to promote a more effective singing
learning, are tools developed for real-time educational visual feedback. Finally, the use
of computer-based tools complementing traditional pedagogy has shown to effectively
promote curiosity and motivation [20], two essential aspects for a successful learning.

Within AI, the automatic classification of singing techniques has gained relevance,
which lead to the development of dataset such as VocalSet [8] or J-POP [21]. Research
on VocalSet showed that features learned from multi-resolution-spectrograms can out-
perform the original baseline, based on a Convolutional Neural Network (CNN), with a
much less sophisticated architecture, i. e., Random Forest [9]. Similarly, a recent work
on automatic recognition of paralinguistic singing attributes, e. g., vocal register and
vibrato, has confirmed that feeding traditional ML models, such as Support Vector Ma-
chine (SVM), with spectrograms is a suitable approach for singing-related tasks [22].

3 Methodology
3.1 Dataset, Preprocessing, and Evaluation Metrics
In this work, we use VocalSet [8], a dataset consisting of 3 560 audio instances (10.1
hours of recordings) produced by 11 male and 9 female singers performing 17 different
singing techniques. As in the original baseline, the experiments were performed by
considering only 10 singing techniques (1 736 audio instances), i. e., the most relevant
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Singing technique Number of instances Duration
Belt 205 26.24
Breathy 200 28.00
Inhaled 100 9.95
Lip Trill 202 24.40
Spoken 20 4.06
Straight 361 71.65
Trill 95 18.45
Trillo 100 14.54
Vibrato 255 57.79
Vocal Fry 198 34.10

Table 1: Overview of the samples from VocalSet
used in the experiments. For each singing tech-
nique, the total number of instance and overall
duration in minutes is given.

Fig. 1: Distribution of chunks across singing
techniques. Besides the total, those used in the
user study and as test set in the machine learn-
ing experiments, are displayed.

in practice: Belt, Breathy, Inhaled, Lip Trill, Spoken, Straight, Trill, Trillo, Vibrato, and
Vocal Fry. In Table 1, the frequency distribution of the used audio instances across the
singing techniques, as well as their duration in minutes, is indicated.

Following the pre-procesing guidelines used in the baseline of VocalSet [8], the
silence at the beginning, middle, and end of the audio files were removed and the in-
stances were split into chunks of approx. 3 seconds length. The distribution of the re-
sulting 3 934 audio chunks across the corresponding singing techniques is displayed in
Figure 1 (cf. Total). For the user study and as a test set for the ML experiments, the
chunks extracted from the audio instances produced by singers F2, F6, M3, and M11
(i. e., 777), were considered (cf. Test Set in Figure 1). These singers were selected as
they produced samples for all the considered techniques.

The experimental results, for both the user-based and the ML experiments, will be
evaluated in terms of Unweighted Average Recall (UAR), precision, and recall. UAR,
also known as Balanced Accuracy, is the recommended metric for datasets with an
imbalanced distribution of samples across classes [23]. Besides precision and recall,
confusion matrices will be used to interpret confusion patterns amongst classes.

3.2 Singing Techniques

To enable a better interpretation of the results, a brief description of each singing tech-
nique (illustrated by a spectrogram generated with Praat, cf. Figure 2), is presented.
Since not all the techniques are produced through the same vocalisations in VocalSet,
the spectrograms display a variety of them, i. e., arpeggios, long tones, and scales.

The sound produced by the technique Straight is natural, without any pressure or
ornamentation. This is what we typically refer to as ‘normal’ singing, with the complete
elimination of vibrato [24], which is shown by the horizontal lines in the spectrogram
representing the pitch (cf. Figure 2a). In contrast, when singing Vibrato, the fundamen-
tal frequency and amplitude are intentionally altered by the singer [25], oscillations
clearly visible in the spectrogram generated from the same instance (cf. Figure 2b).

Vibrato is often confused with the technique Trill. However, Vibrato should sound
like one single tone rather than two different ones, which is expected in Trill [24]. This
is achieved by producing oscillations that do not exceed a semitone beyond the main
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(a) Straight (b) Vibrato (c) Belt

(d) Lip Trill (e) Inhaled

(f) Trill (g) Trillo (h) Breathy

(i) Vocal Fry (j) Spoken

Fig. 2: Spectrograms displaying each of the evalauted singing techniques. All of them
are generated from samples performed by the female singer F1 producing the vowel ‘a’
except Spoken, for which a text is read. The used vocalisations are: arpeggio (Straight,
Belt, Vibrato, Lip Trill); long tone (Inhaled, Trill, Trillo); scale (Breathy, Vocal Fry).

tone [26]. On the contrary, Trill is perceived as a fluctuation between two clearly distin-
guished pitches [24]. This can be observed in the spectrogram (cf. Figure 2f), where the
regular pitch oscillations are clearly defined contrasting with a dark background which
indicates much less presence of upper and lower tones.

Trillo is a singing technique described as a rapid Trill similar to the sound of a
‘bleating goat’ [24]. It sounds like a quick repetition of one single note and is produced
by larynx movement. In the spectrogram (cf. Figure 2g) it can be observed that the pitch
oscillations are much less pronounced than for Trill. Another distinguishable property
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are the pitch breaks visible in the spectrogram, which are due to breaks needed by the
singer to catch air when performing this exhausting technique.

In comparison to ‘normal’ singing, Belt is produced through a higher subglottal
pressure and by keeping more firm vocal cords adduction, which results in higher sound
levels [25, 27]. This technique sounds ‘forced’, i. e., it is not perceived as relaxed singing
but rather uptight. Belting is referred to as raising the chest voice above the typical
register and implies a higher level of physical effort [28]. This can be observed in the
spectrogram by the rather straight and tense pitch lines (cf. Figure 2c).

The technique Lip Trill, often used as a warm up exercise, is done by continuously
vibrating with the lips while simultaneously maintaining phonation [29]. This technique
is the only one where the mouth and lips remain closed, something distinctive in the
spectrogram, where there is barely any black background (cf. Figure 2d).

Another characteristic technique is Inhaled, as its main feature is that, unlike all
the other techniques, the sound is produced using an inspiratory airflow instead of an
expiratory one. Therefore, the sound is generated while the singer inhales [30], which
can be observed in the spectrogram by less clearly defined pitch lines (cf. Figure 2e).

The technique Inhaled sounds, to some extent, similar to the techniques Breathy and
Vocal Fry. In Breathy, a low subglottal pressure is combined with a less efficient adduc-
tion of the vocal cords [31]. This results in a sound characterised by audible airflow,
which is shown in the spectrogram by broader and blurrier pitch lines (cf. Figure 2h).
In Vocal Fry, characterised by lower subglottal air pressure and transglottal air flow,
the vocal folds are shortened, even when frequency increases [32]. This is shown in the
spectrogram by diffuse and irregular pitch lines (cf. Figure 2i).

Finally, Spoken, in contrast to singing, is the only technique that does not require the
control of the pitch. The distinguishing feature visible in the spectrogram is a grid-like
pattern (cf. Figure 2j) where the horizontal lines (relatively stable) represent the pitch
and the vertical ones (unequally spaced out) correspond to the words’ articulation.

3.3 User Study
The user study consists on two experiments performed by different groups: (i) musically
trained individuals (task based on auditory perception); (ii) non-musically trained indi-
viduals (task based on visual perception). Both experiments were performed through a
web-based interface and began with an example (either an audio or an spectrogram) of
each singing technique. Then, an explanation of the task, presented as a multiple choice
test, was given. For each sample, the participants could choose one singing technique
out of the ten given possibilities. 60 volunteers (31 female, 29 male; µ = 32.3 years)
participated in the study. Most of them were Austrian (43), the rest were German (14)
and Australian (3).4 They were recruited through the authors’ social networks and con-
sent, requested through the interface, was a requirement to take part in the experiment.5

In the auditory experiment, the participants were expected to identify the singing
techniques by listening to the audio excerpts. Since a trained ear is necessary for this
task, in the auditory task only participants with a musical education (9 female, 11 male)

4 Due to the imbalanced distribution of participants, nationalities’ role will not be evaluated.
5 The procedures used in this study adhere to the tenets of the Declaration of Helsinki. Partici-

pants consented the use of their anonymous responses only for research.
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took part. Their formal training included choir conductor, singing, and vocal studies. In
the visual experiment, the participants were expected to identify the techniques by look-
ing at spectrograms generated from the audio excerpts. Spectrograms were chosen since
typically used in singing lessons [16], specially to support beginners [33]. Since for the
auditory task a trained ear is needed, the visual task was considered a more suitable
alternative for the participants without musical background (22 female, 18 male).

In order to avoid fatigue, the 777 excerpts were randomly distributed across the
participants. For the auditory task, this was made in a way that each would annotate
between 75 and 80 audio chunks. Since we expect the evaluation of spectrograms to
required more time than assessing audio samples, in order to preserve the reliability
of the experiment, for the visual task each participant would annotate between 37 and
41 images. In both experiments, in order to prevent individual biases, each sample was
evaluated by two different participants, which lead to 1 554 annotations per task.

We are aware that assessing two user groups (experts and non-experts), makes the
setups not comparable within the user study. However, the final goal of this study is to
make a one-to-one comparison between perception (auditory as well as visual) and ML.
In addition, in base of the principle that learning should be tailored to individuals capa-
bilities [34] (which are not the same for musically trained users and non-trained ones)
we believe that considering the same task for both user-groups would heavily penalise
the non-trained group. Thus, to perform a fair comparison of trained and non-trained
users with the ML algorithms, two different perceptual experiments were performed.

3.4 Machine Learning Setup

Following previous works on singing classification [8, 22], both traditional models and
neural-based were implemented. Due to space limitations, the results for the traditional
models (outperformed by the neural ones) will not be reported. A Neural Network (NN)
and a Convolutional Neural Network (CNN) were implemented in the tensorflow frame-
work. The NN, presenting eight layers, Relu as activation function, and categorical
crossentropy as loss function, was trained for 40 epochs. The CNN was implemented
as in the VocalSet baseline [8], i. e., consisted of seven convolutional layers, seven max
pooling layers, learning rate of 0.001, a momentum of 0.6, and categorical crossentropy
as loss function. It was trained for 30 epochs.

Two type of features were considered: Mel-Frequency Cepstral Coefficients (MFCCs)
and spectrograms. They were chosen as suitable representations according to state-of-
the-art literature [35] and their corresponding outcomes will be compared with the au-
ditory and visual perceptual results, respectively. The features were extracted from the
audio files (sampling rate: 44100 Hz) with default parameters of the librosa package:
fft-size of 2048; frame size of 93ms; and frame step of 23ms. For the MFCCs, the first
20 coefficients were extracted. As already mentioned, the 777 excerpts produced by the
singers F2, F6, M3, and M11 were used as test set and the remaining 3 157 excerpts as
training set. By this guaranteeing a comparable setup w. r. t. the user study, where only
the 777 excerpts were assessed.

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

435



Belt

Brea
thy

Inh
ale

d
Lip

 Tr
ill

Sp
oke

n

Str
aig

ht Tri
ll

Tri
llo

Vibr
ato

Voca
l Fr

y

Predicted label

Belt

Breathy

Inhaled

Lip Trill

Spoken

Straight

Trill

Trillo

Vibrato

Vocal Fry

Tr
ue

 la
be

l

80.8 0.6 0 0 0 5.8 1.9 0 9 1.9

0 82.7 6 0 0 8.7 0 0 2.7 0

0 7.7 75.4 0 0 0 0 0 0 16.9

0 0 0 100 0 0 0 0 0 0

0 0 0 0 100 0 0 0 0 0

12.5 11.5 1 0 0.8 62.5 1 1.8 6 3

1.9 1.9 1.9 0 0 1 63.5 18.3 10.6 1

0 2.6 6.5 0 0 1.3 13 70.1 5.2 1.3

4.9 0.3 0 0 0.3 2.9 25.2 8.7 55.7 1.9

4 4 7 0 0 8.8 0 1.3 2.6 72.2

62.4 65.3 57.6 100 87.9 82.5 41 49.1 73.2 82.8

Auditory Experiment (musically trained users)

Belt

Brea
thy

Inh
ale

d
Lip

 Tr
ill

Sp
oke

n

Str
aig

ht Tri
ll

Tri
llo

Vibr
ato

Voca
l Fr

y

Predicted label

Belt

Breathy

Inhaled

Lip Trill

Spoken

Straight

Trill

Trillo

Vibrato

Vocal Fry

Tr
ue

 la
be

l

22 18.7 1.3 7.3 0.7 18.7 2 2.7 15.3 11.3

13.5 37.8 4.1 6.8 1.4 8.8 0.7 2 9.5 15.5

3.2 6.5 54.8 1.6 8.1 22.6 0 0 0 3.2

12.7 0.8 4.2 69.5 1.7 0 1.7 2.5 5.1 1.7

0 0 0 3.8 73.1 0 3.8 0 15.4 3.8

10.1 17.5 7.4 11.4 5.3 32.3 2.1 2.9 5.8 5.3

1 5 8 4 1 4 27 26 22 2

5.4 5.4 13.5 6.8 8.1 6.8 8.1 31.1 12.2 2.7

4.5 3.1 3.1 4.9 3.1 0.3 24 8.7 41.7 6.6

2.4 13.8 9 36.2 6.7 4.3 3.3 0.5 8.6 15.2

25.2 27.7 28.1 33.2 24.1 62.2 21.8 24 50.4 26.7

Visual Experiment (musically non-trained users)

Belt

Brea
thy

Inh
ale

d
Lip

 Tr
ill

Sp
oke

n

Str
aig

ht Tri
ll

Tri
llo

Vibr
ato

Voca
l Fr

y

Predicted label

Belt

Breathy

Inhaled

Lip Trill

Spoken

Straight

Trill

Trillo

Vibrato

Vocal Fry

Tr
ue

 la
be

l

92 0 0 0 0 0 0 0 8 0

5.6 40.3 0 1.4 5.6 5.6 0 0 0 41.7

0 3.2 45.2 0 3.2 0 3.2 12.9 0 32.3

0 0 0 98.1 0 0 0 0 0 1.9

0 0 0 7.7 84.6 0 0 0 7.7 0

21.1 1.6 1.1 0 0.5 42.6 2.1 5.3 15.8 10

6 0 2 0 0 6 40 24 16 6

0 0 5.4 2.7 2.7 2.7 21.6 51.4 5.4 8.1

30.9 0 0 0 0 3.4 4 0 53.7 8.1

13.2 5.7 0 27.4 4.7 0.9 0 0.9 7.5 39.6

39.2 74.4 73.7 62.4 47.8 85.3 51.3 41.3 59.3 35

ML Experiment (NN - MFCCs)

Belt

Brea
thy

Inh
ale

d
Lip

 Tr
ill

Sp
oke

n

Str
aig

ht Tri
ll

Tri
llo

Vibr
ato

Voca
l Fr

y

Predicted label

Belt

Breathy

Inhaled

Lip Trill

Spoken

Straight

Trill

Trillo

Vibrato

Vocal Fry

Tr
ue

 la
be

l

72 0 0 0 0 20 0 0 8 0

2.8 80.6 1.4 0 1.4 4.2 0 0 6.9 2.8

0 22.6 45.2 3.2 0 12.9 3.2 9.7 0 3.2

0 0 0 83.3 0 0 7.4 0 1.9 7.4

0 15.4 0 0 38.5 0 0 0 23.1 23.1

15.8 6.3 2.1 0 0 60.5 1.6 1.6 5.8 6.3

2 4 0 0 0 8 22 26 38 0

0 0 5.4 0 0 2.7 21.6 37.8 18.9 13.5

12.1 0 0 0 0 2 2.7 4.7 76.5 2

8.5 8.5 0.9 3.8 0 10.4 2.8 2.8 5.7 56.6

47.4 64.4 63.6 90 83.3 73.7 32.4 32.6 66.3 66.7
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Fig. 3: Confusion matrices for: perception in the auditory task (UAR= 76%); percep-
tion in the visual task (UAR= 41%); classification from a Neural Network (NN) fed
with MFCCs (UAR= 59%); and classification from a CNN fed with Spectrograms
(UAR= 57%). Darker cells indicate higher values (%); rows encode real labels. Re-
calls are given in the diagonal; precisions are shown in the last row of each matrix.
Note that the UAR is an overall measure computed from the whole confusion matrix.

4 Results

4.1 User Study

As expected, the experimental outcomes show a higher performance from the musically
trained participants: UAR= 76% for the auditory task w. r. t. to a UAR= 41% for the
visual one. In Figure 3 the confusion matrices for both experiments are displayed. The
higher recall and precision achieved by musically trained users is shown for all the
techniques, which is displayed by a well defined diagonal and a darker precision row
for the auditory results. The confusion between singing techniques experienced by users
without musical training is shown by the spread of responses across the matrix as well
as by the lower precision (cf. light colour of the last row) for the visual results.

Remarkable results are shown for the techniques Lip Trill and Spoken, recognised
with the highest recall in both experiments: in the auditory, both techniques achieved
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100% recall; in the visual experiment, they achieved 69.5% and 73.1%, respectively.
Indeed, these two techniques are particularly distinctive w. r. t. the others, which make
them more easily recognisable. As mentioned in Section 3.2, from an auditory point
of view, Lip Trill is the only technique produced with a closed mouth and Spoken is
the only one for which the pitch is not controlled. Although these aspects are visible in
the spectrograms, it is important to note the low precision achieved for both techniques
in the visual task: 33.2% and 24.1%, respectively; which indicates that despite their
characteristics, these techniques are often wrongly chosen by the non-experts group.

Beyond the expected performance differences between listeners’ groups, a promi-
nent confusion pattern is common in both experiments, i. e., samples from Vibrato are
wrongly identified as Trill. In both tasks, the amount of misclassifications is nearly half
of the correctly identified samples. For the auditory experiment, 25.5% misclassifica-
tions vs. 55.7% correct hits; for the visual one, 24% misclassifications vs. 41.7% correct
hits. The confusion pattern is also shown in the opposite direction, i. e., Trill instances
are wrongly identified as Vibrato, a result consistent with previous research showing
that Trill might be similar to Vibrato performed with an ‘exaggerated extent’ [36]. The
described confusion pattern involves Trillo as well, i. e., Trill and Trillo are misclassi-
fied not only as Vibrato, but also amongst themselves. Indeed, the three techniques are
similar, since produced by modulating the fundamental frequency (cf. Section 3.2).

Finally, a prominent confusion is displayed for the visual experiment, i. e., Vocal
Fry is wrongly identified as Lip Trill. The percentage of misclassifications exceeds by
far the amount of correctly identified instances: 36.2% vs 15.2%. The pattern is not
shown for the auditory experiment, which suggest that this type of confusion relates to
similarities in the spectrograms difficultly disentangled without audio information.

4.2 Machine Learning

Amongst the evaluated algorithms and feature sets, the best performing model was
the NN fed with MFCCs (UAR= 59%) followed by the CNN fed with spectrograms
(UAR= 57%). Confirming the results shown in both perceptual experiments, Lip Trill,
and to some extent Spoken, are also the two techniques best recognised by the model
fed with MFCCs: 98.1% and 84.6% of recall, respectively; cf. diagonal in Figure 3 (NN
- MFCCs). This was also shown for the model fed with spectrograms concerning Lip
Trill, achieving the highest recall (83.8%), but not for Spoken, reaching only 38.5% re-
call; cf. Figure 3 (CNN - Spectrograms). It is important to note, that despite the low
recall for Spoken, the precision for this technique is lower for the NN than for the CNN,
which indicates that the promising recall is only due to the high confusion attracted by
the class; the same is displayed for the visual experiment but not for the auditory one.

The results from the model trained with MFCCs show that except for Belt (recall=
92%), all other techniques achieved a considerably lower recall: 39.6%≤recall≤53.7%.
Belt was also well recognised in the auditory experiment but not in the visual one,
which suggests that acoustic properties characteristic of this technique, recognisable
by ear, can be better captured by specific acoustic features such as MFCCs than by
spectrograms. In fact, this is to some extent confirmed by the lower recall for Belt
achieved by the CNN trained with spectrograms, i. e., 72%.
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As shown in the user study, the most prominent confusion pattern displayed by the
ML results is between Trill, Trillo, and Vibrato. This is clearly shown by the misclassifi-
cation of Trill instances as Trillo: 24% and 26% for the model trained with MFCCs and
spectrograms, respectively; as well as those misclassified as Vibrato: 16% and 38%,
respectively. However, unlike in the user study, this confusion is not displayed in the
opposite direction for the ML task, i. e., almost no instances of Vibrato are wrongly
classified as neither Trill nor Trillo, misclassifications ≤ 4.7% for both models.

Interestingly, Vibrato is particularly well classified by the CNN, i. e., the model
trained with the spectrograms (76.5%). This is also shown, to some extent, by the non-
trained user participating in the visual task, for whom this technique is identified as the
fourth best (41.7%). Differently, in the auditory study, Vibrato was the technique worse
recognised (55.7%), and also for the NN (model trained with MFCCs), Vibrato was
by far worse classified than for the CNN (53.7% vs 76.5%). This suggest that spectro-
grams are more suitable than acoustic features for characterising Vibrato’s properties,
something observable both perceptually and from a computational point of view.

Finally, another prominent confusion pattern shown by the model trained with MFCCs
is given by the high percentage of Breathy and Inhaled samples wrongly classified as
Vocal Fry: 41.7% and 32.3%, respectively. This is partially mirrored by the results from
the user study. A major confusion of Inhaled towards Vocal Fry is shown in the auditory
task (16.9%); while a major confusion of Breathy towards Vocal Fry is shown in the vi-
sual experiments (15.5%). However, this confusion pattern is not shown for the model
trained with spectrograms, for which the misclassification is shown between Breathy
and Inhaled themselves: 22.6% of Inhaled samples are wrongly classified as Breathy.
This suggests that training a ML model with acoustic features such as MFCCs might
enable to artificially mirror, and even amplify, perceptual patterns shown by humans
assessing different modalities. Something not possible when using spectrograms.

5 AI in Singing Education: Future Directions
Within the e-learning context, the most obvious use-case for a system able to recog-
nise singing techniques is to provide feedback during students’ training. For instance,
since the singing technique Breathy, sometimes also referred to as Rough, is not de-
sired in most genres [22], the ML-based application would first detect Breathy singing
and subsequently suggest exercises to prevent it. Our comparative results confirm pre-
vious works on human vs. machine speech identification [13], indicating that the most
predominant perception patterns shown by humans can be mirrored by ML. Neverthe-
less, while our models outperform non trained users, they are still less accurate than
musically trained individuals. This indicates that standard ML architectures (as those
used in this study) could be useful in providing feedback to beginners; however, more
sophisticated models should be developed to meaningfully support advanced learners.

Our experimental outcomes also show that ML can capture confusion patterns com-
ing from different perceptual modalities. This type of parallelism might be particularly
informative when integrated in a XAI system, i. e., a ML systems which besides giv-
ing a prediction, is also able to provide a human-understandable reasoning justifying
it. Thus, an XAI assistant could propose specific warm-up exercises depending on the
singers’ voice [37], subsequently assess whether the performed technique match the
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target, and finally illustrate (either visually or acoustically, depending on which feature
representation is more informative), the predicted class (performed by the student) with
respect to the target one (performed by a professional singer of the system’s database).

Similarly, in base of our results, an XAI assistant could also highlight the most
prominent confusion patterns shown for both perception and classification, i. e., the
confusion between Trill, Trillo, and Vibrato. By displaying not only a visual (qualita-
tive) representation but also precision (quantitative) measures achieved by the model,
learners might gain a more objective understanding of the similarities between tech-
niques, something that beyond being perceived, can also be measured. At the same
time, this would also illustrate real challenges in distinguishing amongst some tech-
niques, which would encourage a more constructive learning experience. We believe
that the use of intelligent systems as the one just described, specially when including an
XAI component, would promote in first place exploration, motivated by the curiosity of
interacting with the XAI assistant. Furthermore, another important expected outcome is
to encourage the students to carefully evaluate their own performance, both visually and
acoustically, which would lead to the development of self-reflective and critical skills.

Needless to say that such a system, in particular considering that the current re-
sults are way below human proficiency, would be expected to be used as a complemen-
tary tool to traditional teaching, i. e., supporting the student (specially during individual
learning), but used under the close supervision of the teacher. Indeed, a full develop-
ment of the system, including an user interface as well as a usability assessment in a
real pedagogical scenario, is still to be done and constitutes one of our future priorities.
In this process, a continuous monitoring from singing educators, critically assessing the
potential of the system in complementing their own practice, is essential.

Finally, beyond supporting vocal training, the recognition of specific singing tech-
niques in a song might also enable the classification of a given piece into a musical
style or genre. For instance, the use of the Belting technique, particularly for women, is
typically used in pop genre [38] while Vibrato is a strong indicator of operatic singing
style [39]. The application of this technology in the context of automatic genre classifi-
cation is clearly relevant for music recommendation systems [40]. Similarly, an efficient
singing detection system could also be utilised for an e-learning application aimed to
support students’ understanding of musical genres in relationship to singing styles.

6 Conclusions

We presented a comparative assessment of humans’ and ML performance in singing
technique recognition. Our study shows that some confusion patterns typical of percep-
tion are mirrored by ML, which highlights the potential of supporting education with
AI to illustrate (and further understand) perceptual processed. Our results also indicate
that ML can capture patterns displayed by different perceptual cues: auditory and vi-
sual. This suggests that AI could be of interest to enhance learning through different
perceptual modalities. The presented results seem to encourage further research on the
application of XAI in singing pedagogy, which could promote students’ reflective and
critical skills, by this enhancing the outcomes of a student-centered learning process.
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