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Abstract—In this study we propose a novel approach to audio
phylogeny, i.e. the detection of relationships and transformations
within a set of near-duplicate audio items, by leveraging a deep
neural network for efficiency and extensibility. Unlike existing
methods, our approach detects transformations between nodes
in one step, and the transformation set can be expanded by
retraining the neural network without excessive computational
costs. We evaluated our method against the state of the art using
a self-created and publicly released dataset, observing a superior
performance in reconstructing phylogenetic trees and heightened
transformation detection accuracy. Moreover, the ability to detect
a wide range of transformations and to extend the transformation
set make the approach suitable for various applications.

Index Terms—audio phylogeny, audio provenance, audio trans-
formation detection, audio forensics

I. INTRODUCTION

Audio provenance analysis seeks to trace and authenticate
the origin and history of audio content. One crucial subdomain
is audio phylogeny, which aims at detecting relationships and
transformations within a set of near-duplicate audio items
created by derivation and modification, thereby reconstructing
a phylogenetic tree as depicted in Figure
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Fig. 1. Audio phylogeny analysis: from a set of near-duplicates to a directed
graph with an identified root item

Audio phylogeny can be used within various domains,
including e.g. content tracking, metadata propagation and
intelligent de-duplication in production archives. However,
several key applications lies within the field of media forensics,
where it can be used, e.g.,

o to detect the root item within a dataset and trace its
derivations, with the purpose of identifying the source and
track the propagation of media content within networks;
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¢ to deliver information about specific transformations be-
ing performed upon a given item, which can be used to
falsify claims about how items were created and modified;

« to decide about which higher-quality, ‘upstream’ items to
focus on during forensics analysis, thereby improving the
accuracy of subsequent analysis steps.

The methodological foundations for multimedia phylogeny
were provided by Dias ef al. in [1]] and later extended in [2],
starting with a focus on images. Since then, these approaches
have been adapted and extended to other modalities, leading
to the emergence of subdomains of video, text, and, most
recently, audio phylogeny. As for the latter, three methods
have been proposed so far: Nucci et al. [3] proposed an
initial “brute force” approach that applied a broad range of
transformations from a predefined set 7, including respective
parameter combinations, to every node pair in the examined
near-duplicate set, resulting in a computationally highly de-
manding system. Maksimovi¢ et al. [4] and Verde et al. [5]]
then improved the original work by introducing detection
functions designed to recognize specific audio transformations,
providing comparable detection performance at reduced com-
putational complexity. However, several key requirements for
the forensics domain still needed to be addressed:

o Extensibility: Being able to extend the predefined set 7 to
cover additional audio transformations is important, but
so far, was difficult and time-consuming to implement
with the given approaches.

o Computational efficiency: The computational cost of the
proposed approaches was still too high for many practical
applications, particularly for large datasets or low-latency
demands, even more so if the aforementioned requirement
related to extending 7 comes into play.

o Transformation detection: In many situations, it is not
only necessary to determine whether a direct parent-child
relation exists between file pairs, but also to detect which
transformations were applied, e.g. to recover a missing
chain of custody.

To address these requirements, we propose a novel approach
for audio phylogeny analysis that relies on a Deep Neural
Networks (DNN) to detect the most probable transformation
that has occurred between every pair of audio items (files)
within a near-duplicate set. For this purpose, the following
sections will first provide an overview of the current state of
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the art, followed by a detailed description of our proposed
approach, including architecture, training process, and infer-
ence procedures of our DNN-based classifier. In the evaluation
section, we then compare the proposed approach against the
state of the art, and demonstrate its extensibility by expanding
the set of detected transformations. Finally, we conclude by
affirming the approach validity in relation to the discussed
requirements, also suggesting potential avenues for future
research and development.

II. LITERATURE REVIEW

The field of multimedia phylogeny was pioneered with Dias
et al. [2]], where the process of constructing a phylogeny tree
from a set of near-duplicate is described along three steps:

1) Near-duplicate set definition: This involves identifying a
set of documents believed to originate from a common
source and/or having experienced analogous modifica-
tions, assuming a set of transformations that is denoted
as 7.

2) Dissimilarity matrix calculation: For each near-duplicate
set, a matrix represented as D is determined, capturing
the degree of similarity or dissimilarity among document
pairs. Typically, this matrix is asymmetric, thereby re-
flecting the directional aspect of the transformations.

3) Optimum branching algorithm: The matrix D is then
fed into an optimum branching algorithm, resulting in a
tree-like graph that depicts the evolutionary ties between
the documents: Each node represents an individual doc-
ument, and each connection represents the transforma-
tions performed upon parent document to generate its
subsequent child document.

As for image phylogeny, building on the aforementioned
approach, several optimizations have been proposed over
the years, e.g. aiming at the dissimilarity matrix calculation
[6]], the branching algorithm [7]], or approaches that go be-
yond near-duplicate set analysis, targeting so-called phylogeny
forests and multiple parents sets [§]—[11]. Up until the most
recent studies from [12]] and [[13]], which dealt with the more
complex scenarios of multiple parent phylogeny. The topic
of video phylogeny, on the other hand, followed with [14],
in which the image phylogeny techniques presented in [2]]
were applied to frames within near-duplicate videos. In further
works, more demanding video phylogeny approaches were
presented, addressing videos that are temporally misaligned
[15], as well as video phylogeny forests and the possibility of
multiple parent videos [16].

As for audio phylogeny (AP) analysis, which is the focus of
our work, only three approaches have been published so far.
They are described in the following, with their main elements
being summarised in Table [I]

1) AP via brute force analysis: Inspired by the existing
work in image phylogeny, Nucci et al. [3] proposed
a phylogeny approach that analyses a pool of near-
duplicate audio tracks. We use the ‘brute force’ as
it applies all possible combinations of transformations

and parameters (up to two cycles) to the near-duplicate
parent audio file prior to computing its similarity with
a potential child audio file. The most time-consuming
operation of the approach is the estimation of the trans-
formation 7 and parameters (3 required to obtain the
dissimilarity matrix.

2) AP via detection functions: Having a focus on encoding
detection and exact transformation estimation, Maksi-
movi¢ et al. [4] uses multiple detection functions, to
identify particular audio transformations, reducing the
associated computational cost when estimating the most
likely transformation, denoted as 7, and its parameters
B.

3) AP via geometric transforms: Aiming at an audio phy-
logeny analysis approach that reduces the computational
cost of brute force transformation detection, Verde et
al. [5] use 2D spectrogram representations of audio
tracks in order to find a correlation between audio trans-
formations and detected geometrical transformations via
estimated affine transformation parameters. This allows
for an estimation of whether transformations like time
stretch, pitch shift, or trimming have been applied be-
tween two analyzed audio files. Additionally, the pres-
ence of dimming in the spectrogram may suggest that
fade in/out or mp3 encoding operations have occurred.

While the ‘brute force’ approach by Nucci et al. [3] lacks
extensibility and computational efficiency, both Maksimovié
et al. [4] and Verde et al. [5] achieved improvements in terms
of computational efficiency. Even though the approach by
Maksimovic et al. [4]] restricts the number of transformations,
there is a number of them to be applied on every pair of
audio files. Likewise, Verde et al. [5] improves the efficiency
of [3]] but still uses computationally demanding operations in
order to detect parameters of time-/pitch- shifting or trim-
ming which are repeated up to two times. Furthermore, both
approaches cannot be considered extensible because every
new transformation introduced in the analysis set requires the
implementation of a specific detection function.

To overcome the aforementioned lack of extensibility while
keeping computational complexity at bay, we propose to
leverage the power of neural networks to automatically learn
and detect audio transformations without the need for explicit
feature engineering. This allows for easy addition of new
transformations to the system and improves the extensibility
of the approach, without significant effort needed to manually
design transformation detection functions. Furthermore, by
utilizing neural networks for transformation estimation, our
proposed approach reduces the number of transformations that
need to be applied to every pair of audio files, thus improving
scalability for large datasets and real-time applications.

III. PROPOSED METHOD

Let us denote a set of audio files with A = {ay}, k € [1, K].
In the following, we are going to assume that all files in A
were created starting from a single source audio file, that we
refer to as root, and that A is a set of near-duplicate audio



TABLE I
SUMMARY OF THE STATE-OF-THE-ART APPROACHES FOR AUDIO PHYLOGENY (AP)

AP via brute force [3|

AP via detection functions [4]

AP via geometric transforms [5]

Trim / Fade: 0. . .3 seconds
Mp3 encoding: 256,192 kbps
Aac encoding: 256,192,128 kbps

Transformation set 7~

Trim / Fade: 0. .. 3 seconds
Mp3 encoding: 320,192,128 kbps
Aac encoding: 320,192,128 kbps

Trim / Fade: 0 . ..3 seconds
Time stretch: —10% ...+ 10%
Pitch shift: —1 ...+ 1 semitones
Mp3 Coding: quality factor 2,3,4

Transformation detection  none

custom detection functions

time and pitch (affine transform)
Mp3 and fade in/out (dimming)

Dissimilarity measure SNR ratio between time signals

Euclidean distance between features

MSE between spectrograms

Branching algorithm Oriented Kruskal [2]

Oriented Kruskal [17]

Chu-Liu optimum branching [_2]

files related one to another by a parent-child relation: Given a
pair of files (a;, a;), # j, a parent-child relation a; — a;

T1,7T25.-

exists if and only if a; was created by applying one or more
transformations 7y, 7o, ... to a;, where each transformation is
drawn by a finite set 7 = {7, },b € [1, B].

In the following, we are going to propose an algorithm to
reconstruct the entire set of parent-child relations and most
likely transformations thereof, composed of three steps:

1) Audio transformation estimation (Section [[II-A):

Given a pair of files (a;,a;) estimate the probabilities
pT = {pi;} associated to all possible parent-child

relations a; — a; due to a single transformation 73;
Tb

2) Dissimilarity matrix calculation (Section [[TI-B):
Given the entire set of files .4 and the aforementioned
probability vector p, determine a dissimilarity matrix
D = {d,;} quantifying the dissimilarities between each
pair of files (a;,a;);
3) Phylogeny tree reconstruction (Section [[II-C):
Given the dissimilarity matrix D, reconstruct the entire
phylogeny tree.
The overall workflow and the interactions between the three
steps are also depicted in Figure [2]

A. Audio transformation estimation

The goal of this first step is to determine the most likely
transformation 7, which has occurred between each pair of
files (a;,a;) in the analysis set .A. The seminal work by Nucci
et al. [3| realized this step by means of an exhaustive search,
which, however, is highly demanding and nearly unfeasible
for large datasets. This issue was partially addressed by
Maksimovié et al. [4], who proposed a two-step procedure
based on a first coarse search followed by a refinement to
reduce the required amount of computation.

In this work, instead, we propose to address the trans-
formation estimation in a single step. Given a pair of input
audio files (a;, a;), we interpret the transformation estimation
as a closed-set classification problem, in which each class
represents one possible transformation 7,. The probability of
each transformation can thus be computed, e.g., by reading
the b-th output of a neural network DNN(-) trained ad-hoc:

pl; ={pis} = {p(t | (ai,a;))} = DNN(az,a;). (1)

Transformation estimation

a b

Phylogeny tree
a
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Fig. 2. Complete audio phylogeny analysis system with transformation
prediction via DNN classifier, dissimilarity calculation, and tree reconstruction

More in detail, we propose to realize the transformation
estimation as follows:
1) Map the input pair of audio files (a;, a;) to the difference
of their mel-spectrograms (M;, M;):

Xi; = (M; — M;) = melspec(a;) — melspec(a;), (2)

where M;, M; € RT*F with T denoting the amount of
frames and F' the amount of mel-frequency bins.
2) Extract ResNet50 emmebeddings yl‘-”;"b from the input

matrix X:
yf}“b = ResNet50(X;;), 3)
where y;,}nb c R2048.

3) Feed the embeddings yf}“b to a feed-forward classifica-
tion network FF(-) to compute the class probabilities:

ply = {pis} = FF (45]") - )
In order to interpret the output layer as class probabilities,
we used one-hot encoding for each transformation in the set,

and trained the network using Binary Cross Entroy (BCE) loss.
Further details on the structure are reported in Table



TABLE II
STRUCTURE OF THE FEED-FORWARD NETWORK FF (-) FOR
TRANSFORMATION CLASSIFICATION

Layer  Type Nb Neurons  Output function  Parameters
1 Dropout  2048-2028 Linear 25%
2 Linear 2028-B Softmax

B. Dissimilarity matrix calculation

Given a pair of audio files (a;,a;) in the analysis set A,
the goal of this step is to compute a dissimilarity score d;;
between the two files, and to store it in a global dissimilarity
matrix D := {d;;}.

We propose to perform this step by leveraging the
transformation-probability vector pz; Let us denote with 73
and 7 the two most likely transformations, i.e., the ones
corresponding to the first and second largest elements in pg
The matrix D can be built by applying the following procedure
to each input pair of audio files (a;, a;):

1) Apply the two most likely transformations to the candi-

date parent file a;, and retrieve the corresponding mel-
spectrograms:

M} =
{0
2) Use the mel-spectrograms to compute possible dissimi-

larity values between the candidate child file a; and its
possible parent a;:

melspec (71 (a;)) ,
melspec (72 (a;)) .

®)

di; = ||M; — MjylJ3,
di; = |IM} — M]3, (6)
diy = | M7 — M]3,

where ||-|2 denotes the squared [?> norm, and with

the notation d?j we underline that the dissimilarity is
computed without applying any transformation to a;.
3) Determine the final dissimilarity score d;; for the current

pair (a;, a;):
dij = min (d7}, djj, di;) | (7

with the remark that in the general case, we would
expect d;; # dj;, and hence the procedure does not
return a distance.

C. Phylogeny tree reconstruction

In the last step, the dissimilarity matrix D is used to recon-
struct the entire phylogeny tree. Similarly to the approaches in
[3[l, [4], we propose to perform this last operation by applying
the Oriented Kruskal algorithm, as detailed in [2]], to transform
D in a directed graph which corresponds to a phylogeny tree.

As depicted in Figure [2] the nodes of the tree represent
files, the connections between the nodes correspond to parent-
child relations (and transformation thereof), and it is possible
to identify a unique root for the whole near-duplicate input
set.

IV. EVALUATION

The algorithm presented in the previous section was eval-
uated in two phases: In the first phase, we compared the
performance and scalability of the proposed approach against
state-of-the-art methods, using a base set of transformations
the pre-existing algorithms have been designed for. In the
second phase, we tested the adaptability of the proposed
approach to new demands by extending the set of considered
transformations and evaluating the resulting performance.

A. Training setup

The network for transformation detection was trained on a
private dataset, composed of 32000 high-quality files, which
did not undergo any quality-degrading modification after being
recorded.

Given a set of transformations under analysis 7 = {7},
each file in the training dataset was split into non-overlapping
segments of 4 seconds. Each segment was processed by all
transformations in the set to produce B variants of the original
signal, with B being the amount of transformations. Each
variant was also re-processed again by all transformations.
Every parent-child relation a; — a; created following this

two-generations procedure was laTl;eled accordingly to produce
the expected values of the output vector pz;

We configured the network to process audio signals of 3
seconds length, extracting mel-spectrograms using a window
length of 46.4ms and hop size of 5.8ms. Therefore, the input
spectrograms have T' = 517 frames and F' = 256 frequency
bins. The network was trained with stochastic gradient descent
using a batch size of 10 samples. The initial learning rate was
le-3, and was reduced by 10% every 10 epochs, for a total
number of 30 epochs.

B. Comparison with the state of the art

To evaluate our method against the existing state of the art,
we considered the following base set of transformations:

Ty = {none, mp335, Mp3; 9o, MP31 5,

aacsaq, AaC192, AaC1 28, fade, trim },

®)

in which trim and fade may occur with variable length between
0.5 and 3 seconds. This set of transformations is equivalent to
the ones used in [3] and [4]], which are the implementations
that we selected for the comparison.

We then collected 6 high-quality source files (3 containing
speech signals and 3 containing music), which were not
exposed to any quality degrading transformations in the past
and could thus be used to create annotated tests of phylogeny
trees composed of near-duplicates. These trees were created
by selecting one of the transformations from the previously
defined set 7 \ {none}, to be applied firstly on the root and
then on a randomly selected parent in a near-duplicate set until
the number of files in the test set reaches 20. These template
trees were then applied on every of 6 root audio files, leading
to a base test set S, composed of 60 phylogeny test trees with
20 nodes each.



TABLE III
COMPUTATION EFFICIENCY ON A SMALL TREE WITH 10 NODES

Proposed
32.7 31

Approach from [4]  Brute force [3]

207.3

time in s

All calculations performed on the same machine

The evaluation metrics used are the ones originally proposed
in [2] and then adopted as standard for evaluating a reconstruc-
tion of phylogeny trees. The amount of correctly reconstructed
roots R, edges E (parent-child links), leaves L (nodes with
no children), and ancestry A (lists of all children derived
from every node) between ground truth Audio Phylogeny Tree
APT,, and reconstructed one APT,, is measured as follows:

1, If Root(APTyt) = Root(APT)
0, Otherwise

Root: R(APTy, APT,) = {

E E
Edges: E(APT,,, APT,) = |Bgt N Ey|
|Egt|
|Lg N Ly
Leaves: L(APTy, APT,) = m
|Age N Ayl
Ancestry: A(APT,, APT,) = m

Figures [3| to [] show the results on the evaluation set S, for
the proposed approach and for the state-of-the-art methods by
Maksimovi¢ et al. [4], and Nucci et al. [3]].

Unlike the existing state-of-the-art methods, our algorithm
was able to identify correctly the root of all phylogeny trees
in S, independently from the amount of nodes which were
pruned. The amount of edges and leaves which were identified
correctly is systematically higher than in [4]], and decrease at a
slower pace than in [3]], even though the pre-existing proposal
is based on an exhaustive search. Lastly, our method retrieves
the highest amount of parent-child relations across generations,
as reflected by the ancestry measure being the highest.

In summary, our approach managed to outperform the
state of the art in terms of sheer performance. A reason
which might explain why the two state-of-the-art approaches
performed worse than we would have expected could be
that, occasionally, the evaluation set S, might present a low
dissimilarity score between audio files that do not have a direct
link due to the random selection of transformations. Whenever
this happens, the low dissimilarity values between one node
and many potential parents could lead to ambiguous results in
the tree reconstruction of the two pre-existing methods.

In addition, the execution time needed for the reconstruction
(as reported in Table of a small test tree of 10 nodes is
considerably lower than the time needed by the brute force
approach [3[]. On the contrary, if we compare our execution
time to the one achieved in [4]], our approach took 1.7 seconds
longer: The advantage of our proposal compared to [4] is thus
not the sheer execution time, but rather its extensibility and
expected efficiency invariance when the set of transformations
under analysis 7 is augmented.

TABLE IV
TRANSFORMATIONS DETECTION TEST

1st and 2nd best transformation

98.2%
96.0%

Ist best transformation

87.4%
83.5%

set Sp,
set Se

C. Extensibility and transformation detection

In this section, we test the extensibility of our approach
with new transformations, as well as its transformation detec-
tion capabilities — requirements that are not satisfied by the
existing state of the art. Therefore, we performed additional
experiments by considering an extended set of transformations:

T. =Ty N {pitchup,pitchdown,timeumtimedown}, 9)

aiming at the detection of pitch shifting (up or down) and time
stretching (speed up or slow down).

This extended set of transformations was used to generate
a new set of phylogeny trees S., using the same generation
procedure described in the previous section. Pitch shifting was
applied randomly between -1 and +1 semitones, while for time
stretching, we considered values between 0 and 10% of speed
up/slow down. Once again, we started from 6 files to produce
a total of 60 phylogeny trees of near-duplicates, composed
by 20 nodes each. Both datasets we created, S, and S,, are
publicly available onlineﬂ

We retrained our DNN model while extending our training
dataset to cover all 13 transformations as in Equation (9).
Figure [6] shows the results of the newly trained model with
13 classes on the dataset S.. It shows, that the results are at
a similar level as the ones we achieved on a set with a lower
number of transformations S; as presented in Figure

We have further tested if the performance changed when we
use a model trained on 13 classes on a dataset S, and come
to the conclusion that the performances stayed equivalent as
shown in Figure

In order to identify the performance of our DNN classifier
on predicting the transformations between nodes in phylogeny
trees, we have evaluated the amount of correctly detected
transformations in both evaluation sets S, and S,. The results
of this test are shown in Table

V. CONCLUSION AND FUTURE WORK

We presented a novel approach to audio phylogeny, address-
ing the challenge of transformation detection between two
near-duplicate audio files using a neural network.

The proposed method outperformed the current state of the
art while maintaining computational efficiency, and retained its
performance after expanding the initial set of transformations,
showing that it can be extended at a minimal cost. Thanks
to its transformation detection performance, we believe that it
can support many media forensic applications.

I'M. Gerhardt er al., IDMT audio phylogeny dataset, version 1.0.0, Zenodo,
2023. poI: [10.5281/zenodo.8135331) [18]
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Fig. 3. Reconstructed phylogeny trees results for
proposed approach, on the set Sp
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Fig. 6. Reconstructed phylogeny trees results for
proposed approach, on the set Se

future research, we want to experiment with neural

networks that are more suitable for audio input, and further to
explore the complexity of multi-parent audio phylogeny.
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