Edge Intelligence over Wireless: Present & *Future*

Mehdi Bennis

Professor, IEEE Fellow Head of ICON Univ. of Oulu, FINLAND

- 1. Motivation
- 2. Key Enablers
- 3. Selected Techniques & Applications
- 4. What else?

Proliferation of intelligent devices & mission-critical applications at the network edge cannot be operated with centralized and best-effort ML

Communication-efficient, low-latency, reliable and scalable (i) training; (ii) inference; (iii) control

- Federated Distillation \bigvee
- FL after Distillation

Model Output exchange

- Over the air aggregation
- Analog vs. Digital

Wireless-ML Codesign

ExtFL = FL + **Extreme Value Theory**

Extreme Queue Length FL for Vehicular URLLC Power Control

Problem. Minimize vehicular user equipment (VUE)'s avg. uplink power, subject to each VUE's **queue length reliability**

- Following extreme value theory (EVT), an extremely large queue length is characterized by the shape and scale parameters of the generalized Pareto distribution (GPD)
- Utilizing FL with EVT (ExtFL), vehicular user equipments collectively predict the GPD parameters
- ExtFL reduces communication overhead while achieving the same queue length reliability, compared to a centralized direct queue length distribution exchanging baseline (CEN)

Extreme Value Theoretic FL (ExtFL)

S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, "Distributed Federated Learning for Ultra-Reliable Low-Latency Vehicular Communications," TCOM'20

Beyond Federated (server-based) Learning

Group ADMM (without any central entity)

- Idea. Exploiting ADMM for faster training convergence without any central entity
- 1) Head devices update primal variables (weights) in parallel
- 2) Each head device transmits the weights to its (two) neighboring tail devices
- 3) Tail devices update primal variables in parallel
- 4) Each tail device transmits the weights to its neighboring head devices
- 5) Each device updates its dual variable

A. Elgabli, J. Park, A. S. Bedi, V. Aggarwal, and M. Bennis, "GADMM: Fast and Communication Efficient Distributed Machine Learning Framework," JMLR20

GADMM

GADMM, Linear Regression

Quantization

Analog Federated ADMM

Analog Federated ADMM

Federated Distillation (FD)

E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim, "Federated Distillation and Augmentation under Non-IID Private Data," NeurIPS 2018 MLPCD

Potential Extensions

Take all the above and extend:

- Arbitrary and time varying topologies
- Non-convex and stochastic problems
- 2nd order methods (work in progress)
- Bayesian learning
- RL, etc.

Proceedings EEEE

What's Next?

Creative Collision of two revolutions

Limitations

- Obsession with accuracy
 - Energy Bill? Sustainability? ightarrow
- Brittle, lacks robustness; Poor Generalization
- FL is the <u>first-step</u> towards truly intelligent systems (6G)
 - Function approximators (curve fitting + learning CORRELATIONS).
 - Lack reasoning
 - **Extrapolation + Imagination..**

Desiderata

- 1. Function of data
- 2. Minimal without compromising the sufficient effectiveness in the task
- 3. Invariant
- 4. Disentangled
- 5. Causal for extrapolating OOD
- 6. Emergent

Objective

Learning Semantic representations satisfying D1-D6 for X

Post-Shannon Era is here

THE MATHEMATICAL THEORY OF COMMUNICATION

> CLAUDE E. SHANNON and WARREN WEAVER

LEVEL A. How accurately can the symbols of communication be transmitted?

ALL 2G-5G/6G KPIs derived from Level-A

- Reproducing at one point either exactly-orapproximately message (X) selected at another point.
- Level-A: Statistical/mathematical description of information

SHANNONIAN = STATISTICS

- Leverage semantics, structure, meaning
 Utility emerges!!
- Induce behavioral change through sensing and actuation with a shared environment (emergent property!)
- Agents modeling/reasoning over other agents intents/goals/beliefs ..

SEMANTIC = STRUCTURE + STATISTICS

VisionX: Semantic Communication Meets ML

More energy-efficient

Sample efficient

How & under what conditions cooperative communication among agents emerges and is robust to deviations between agents?

Communication = Dener Transport nom data-hypothesis space

SHANNON COMMUNICATION

Information: Scalar

STATISTICS:

Symbol probability

SEMANTIC COMMUNICATION

Information: Structures,
 Categories & Spaces

STRUCTURE:
 System 1 + System 2 ML (D1-D6)

Algebraic, hierarchical, compositional

Goal: Reasoning by abstraction

- (Higher-order) object-relations-intent.
- Topologies (Object/ concept sameness)
- o Much more

Goal:

Reconstruction (level A)

GUEST ARTICLE | TELECOMMUNICATIONS

If 6G Becomes Just 5G+, We'll Have Made a Big Mistake > Iterating current tech is a bad idea; semantic communication could be the answer

BY MEHDI BENNIS | 16 DEC 2021 | 7 MIN READ |

Thank you

VisionX coming soon