




### Improve your DMP with expert guidance

### **CESSDA** Webinar

10.5281/zenodo.10118731

Lisa Hirsch, AUSSDA Anne Sofie Fink, DEIC Hannah Mihai, DEIC

14 Nov 2023



cessda.eu



@CESSDA\_Data





### Mission of CESSDA

- Provide a distributed and sustainable research infrastructure
  - enabling the research community to conduct high-quality research in the social sciences,
  - contributing to the production of effective solutions to the major challenges
    facing society today.
- Facilitate **teaching and learning** in the social sciences.



### Tools & services











### Agenda

Introduction (Lisa Hirsch)

- What are Data Management Plans?
- Why are Data Management Plans so important?

How to write Data Management Plans (Anne Sofie Fink, Hannah Mihai)

2 examples

Q & A



### What are DMPs?

- O DMPS...
  - Are living documents
  - Structure and systematize your work with research data
  - View research data along the research data life cycle
  - Make data FAIRer



### Why DMPs?

- Data Management Plans and good Research Data Management go hand in hand
- Individual benefits
- Requirements by **funders**
- Plan beforehand rather than during the research process to...
  - Allow for easy project management
  - Clarify the budget needed
  - Show accountability



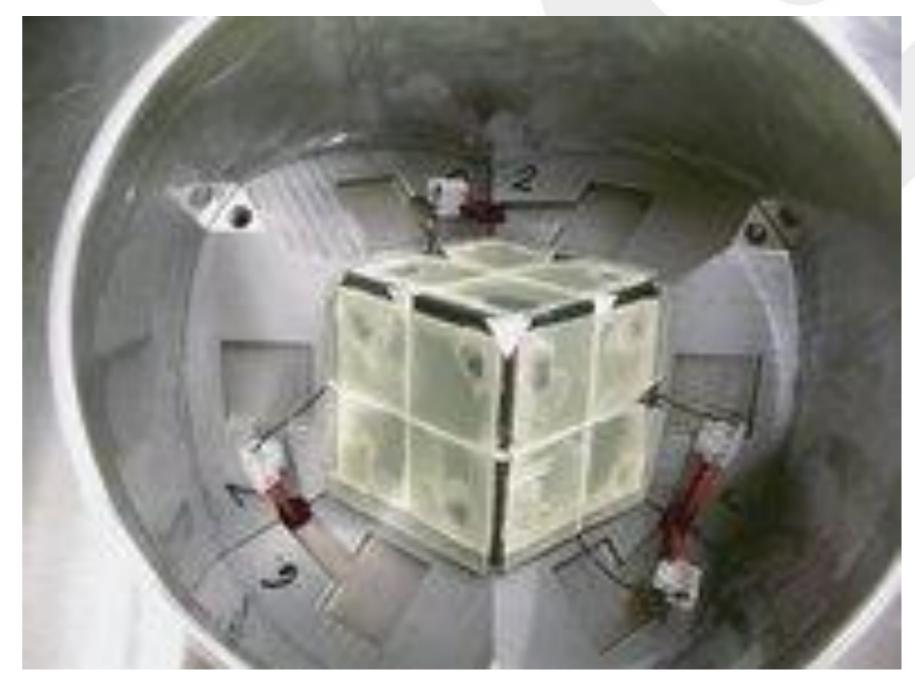
### How to write a DMP

 DMPs answer all the questions around the provenance, storage, curation and access to research data during and after your research project.



CESSDA DMEG

List of DMP questions

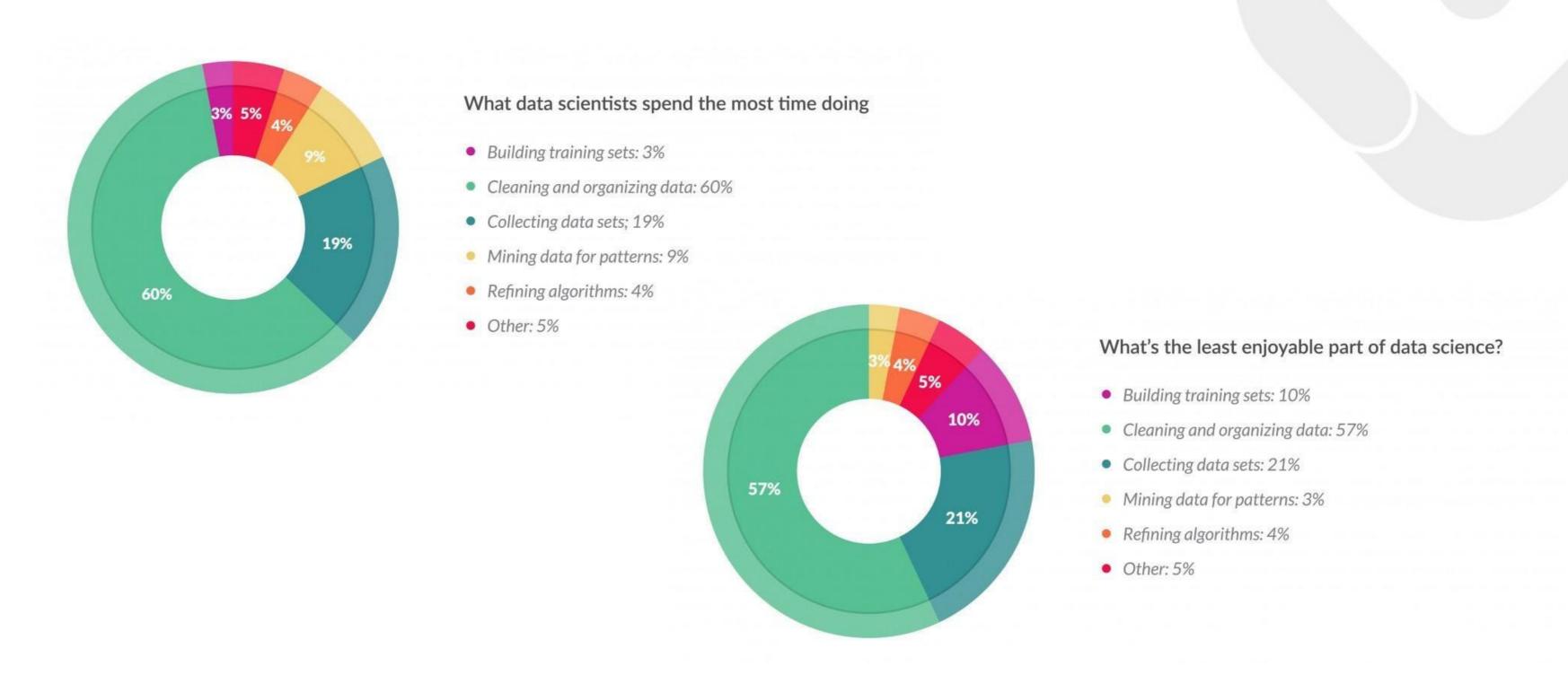



### How to write DMPs?

Anne Sofie Fink, Head of Data Management at DeiC Hannah Mihai, Data Management Consultant at DeiC








https://www.frm2.tum.de/en/frm2/news-single-view-en/article/the-new-multi-anvil-press-goes-intooperation/

https://www.gfz-potsdam.de/en/section/chemistry-and-physics-of-earth-materials/infrastructure/multi-anvil-press

Table 3. Experimental Product Compositions for Melting Experiments at 1.5-2.3 GPa

| Expt.                    | Phª                           | No.     | SiO <sub>2</sub>                                    | TiO <sub>2</sub>                                                         | Al <sub>2</sub> O <sub>3</sub>                        | Cr <sub>2</sub> O <sub>3</sub>                      | FeO                                                        | MgO                           | MnO                                                 | CaO                                                   | K <sub>2</sub> O             | Na <sub>2</sub> O                         | P <sub>2</sub> O <sub>5</sub> | Tota                                    |
|--------------------------|-------------------------------|---------|-----------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|-------------------------------|-----------------------------------------------------|-------------------------------------------------------|------------------------------|-------------------------------------------|-------------------------------|-----------------------------------------|
|                          | gl<br>ol<br>opx<br>cpx<br>gar | 5<br>26 | 45.4(2)<br>40.1(2)<br>54.0(5)<br>52.0(4)<br>43.1(2) | 0.48(2)<br>0.01(1)<br>0.06(2)<br>0.14(4)<br>0.12(4)                      | 16.3(1)<br>0.21(13)<br>8.26(74)<br>9.39(5)<br>23.8(7) | 0.03(3)<br>0.01(1)<br>0.06(2)<br>0.09(1)<br>0.14(3) | 8.95(14)<br>9.95(10)<br>6.13(7)<br>4.89(16)<br>6.39(53)    | 48.2(4)<br>30.5(4)<br>20.8(3) | 0.06(3)<br>0.03(1)<br>0.04(2)<br>0.06(2)<br>0.07(2) | 11.0(2)<br>0.30(5)<br>2.18(10)<br>13.3(6)<br>5.29(16) | 0.08(2)<br>_b<br>-<br>-<br>- | 2.16(14)<br>-<br>0.15(14)<br>0.69(5)<br>- | 0.11(4)<br>-<br>-<br>-        | 98.9<br>98.8<br>101.4<br>101.4<br>100.6 |
| Run no.                  |                               | Ph      | SiO <sub>2</sub>                                    | TiO <sub>2</sub>                                                         | Al <sub>2</sub> O <sub>3</sub>                        | Cr <sub>2</sub> O <sub>3</sub>                      | FeO                                                        | MnO                           | MgO                                                 | CaO                                                   | Na <sub>2</sub>              | O K <sub>2</sub> O                        | )                             | Total                                   |
| M5-103<br>M5-40<br>M7-16 |                               |         | 51.64<br>48.53<br>43.58                             | 0.09<br>0.52<br>0.75                                                     | 7.17<br>12.37<br>13.73                                | 0.60<br>0.12<br>0.07                                | 4.97<br>9.02<br>14.51                                      | 0.10<br>0.20<br>0.30          | 24.57<br>16.64<br>12.52                             | 10.13<br>10.89<br>13,77                               | 0.7<br>1.6<br>0.7            | 5 0.06                                    | ò                             |                                         |
|                          |                               |         |                                                     | Run#                                                                     | 24 (20)                                               |                                                     | SiO <sub>2</sub><br>TiO <sub>2</sub>                       |                               | 9.53<br>0.51                                        |                                                       |                              |                                           |                               |                                         |
|                          |                               |         |                                                     | SiO <sub>2</sub><br>TiO <sub>2</sub>                                     | 49.8 (4)<br>0.46 (8)                                  |                                                     | Al <sub>2</sub> C                                          |                               | 5.28                                                |                                                       |                              |                                           |                               |                                         |
|                          |                               |         |                                                     | Al <sub>2</sub> O <sub>3</sub><br>Cr <sub>2</sub> O <sub>3</sub><br>FeO* | 14.6 (2)<br>0.28 (11)<br>6.8 (2)                      |                                                     | FeO<br>MnO                                                 | • (                           | 7.54<br>0.15                                        |                                                       |                              |                                           |                               |                                         |
|                          |                               |         |                                                     | MnO<br>MgO<br>CaO                                                        | 0.15 (8)<br>13.3 (2)<br>12.6 (2)                      |                                                     | MgC<br>CaO                                                 | 1                             | 2.45<br>1.67                                        |                                                       |                              |                                           |                               |                                         |
|                          |                               |         |                                                     | Na <sub>2</sub> O<br>K <sub>2</sub> O<br>Cl                              | 1.58 (11)<br>0.02 (2)<br><0.04                        |                                                     | Na <sub>2</sub> 0<br>K <sub>2</sub> 0<br>Cr <sub>2</sub> 0 |                               | 1.67<br>0.07<br>0.13                                |                                                       |                              |                                           |                               |                                         |



- Because your research gets better!
- This means for yourself:
  - Increased chances of you understanding your own data after some weeks/months/years.
  - More data citations.
- This means for others:
  - Easier reuse of your data.
  - No need (or at least reduced need) to contact the author for clarification.
- Funder requirements
  - HE requires 2 DMPs in the course of the project
  - Webinar on HE requirements on DMPs: <a href="https://deic.dk/da/event/webinar-14062023">https://deic.dk/da/event/webinar-14062023</a>
- Data Sharing and Management Snafu in 3 Short Acts
  - Can I have a copy of your data?
  - I have saved it on a USB drive and don't know where it is... And the program you need to open the file can't be downloaded anymore. What the column names mean? I don't know, I have created this data years ago, I can't remember...

## The Horizon Europe DMP

- <a href="https://enspire.science/wp-content/uploads/2021/09/Horizon-Europe-Data-Management-Plan-Template.pdf">https://enspire.science/wp-content/uploads/2021/09/Horizon-Europe-Data-Management-Plan-Template.pdf</a>
  - Data Summary
  - FAIR data
    - Making data findable, including provisions for metadata
    - Making data accessible
    - Making data interoperable
    - Increase data reuse
  - Other research outputs
  - Allocation of resources
  - Data Security
  - Ethics
  - Other issues

# 2 examples of DMPs

- SSHOC DMP by Anne Sofie
- Submerse DMP by Hannah

# SSHOC DMP the OG and the follow up



#### • The <u>SSHOC Data Management Plan</u> (project starting)

- purpose of the data collection in relation to SSHOC project objectives and activities
- types and formats of SSHOC project data
- reuse of existing data
- origin of data and data usefulness
- alignment with FAIR principles
- resources needed and responsibilities within the project
- data security
- ethical and intellectual property aspects related to data.

### SSHOC data handled throughout the project duration:

- Survey data
- Case studies / pilots data
- Tools and Service data
- SSHOC Marketplace data
- SSHOC user communities data
  - Other data

#### The update of the SSHOC DMP:

#### Overall Strategy for SSHOC Data Management



#### **Ambitions for the DMP update**

- Data management guidelines
- Best practices and ambitions for data management across the project for the last stages of the SSHOC project and beyond
- Documentation of argument for the continuous updates of the SSHOC DMP aka the SSHOC DMP as a living doc

### **Building blocks for the SSHOC DMP update**

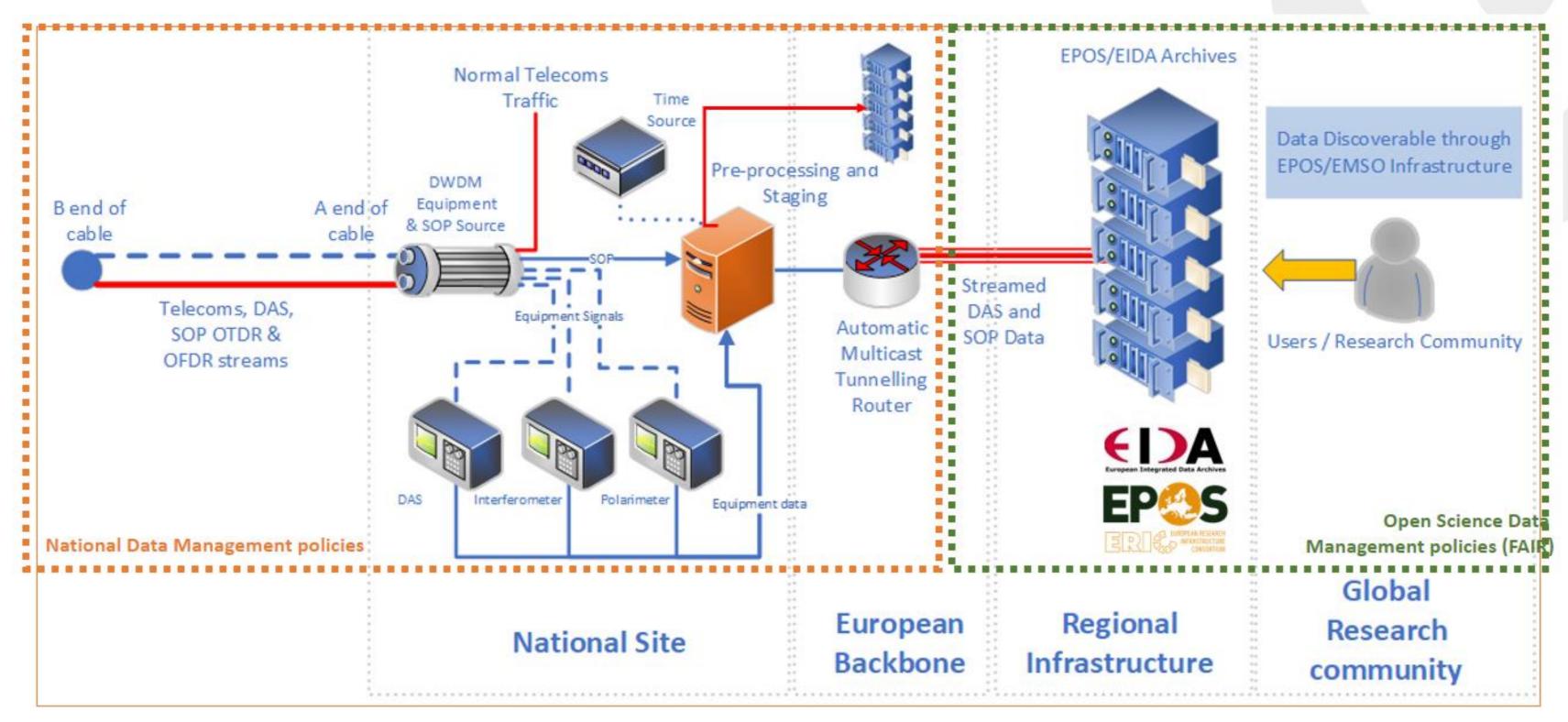
- List of alle data sets and data usage
- FAIR Overview for all data sets
- Solution for sustainability and long-term preservation for all SSHOC metadata and data
- Keep the SSHOC DMP alive

- How data management planning has supported work in the SSHOC project
- Offers transparency to the SSHOC project's compliance with the FAIR principles
- How the project supports preservation and sustainability of data sets and data usages during and after the SSHOC project



### Steps to improving the value of the SSHOC DMP

|   | From DMP with data specificity to overview of SSHOC data                                | Action point 1: List of all datasets in one scheme                                   |
|---|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|   | From specific descriptions for each data set to overall SSHOC data's FAIR accommodation | Action point 2: FAIR Overview for all data sets                                      |
|   | Focus on sustainability and long-term preservation of all SSHOC metadata and data       | Action point 3: Provide solution for sustainability and preservation more explicitly |
| S | Keeping the SSHOC DMP alive                                                             | Action point 4: Make a plan to update the SSHOC DMP                                  |
| Ţ | Ethics and GDPR – from data set unique to shared approach                               | Action point 5: Shared approach towards ethics and GDPR in SSHOC                     |
|   | Only data and metadata are covered by the DMP                                           | Action point 6: SSHOC DMP scope is data and metadata (as-is)                         |


### SSHOC DMP

- The FAIR Principles put to the front of the SSHOC DMP Follow-up
- Scoping the research data objects to plan for
- Start with dataset specifity and move to overview of data and metadata beyond the project
- Ethic & GDPR within/without
- DMP Sustainability and preservation
  - Re-use of data/digital research objects
  - Publications
  - Reproducebility of data
  - The overview of data incl. repository choice;)



### Submerse DMP





https://submerse.

### Submerse DMP



### **Challenges generally about Data Management**

The community needs to agree on

- where the data is published
- what standards to use for
  - Data formats
  - Metadata templates
  - Vocabularies

# Challenges specifically about data collection on fiber-optical cables

- New data scrubbing workflows need to be created.
- Policies for data storage need to be created.
- Involvement of National Security Agencies.
- Satisfying a number of different research communities.
- Ensuring fast Open Data.
- What data should be stored / what should be deleted?
  - Someone's trash is someone else's data...

# Q&A







# Thank you for attending!



cessda.eu



@CESSDA\_Data



Licence: CC-BY 4.0

