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Abstract 
In this study, we focus on subtask 2 of the BioRED track for extracting and analyzing biomedical 

entities and their relationships from biomedical literature. We developed an end-to-end 

framework that uses a series of Large Language Models (LLMS), such as the Flair model, to 

identify various biomedical entities and pass them to BioBERT for relation extraction. To 

augment the system's performance, we incorporated coreferencing resolution along with the use 

of resources like CRAFT and Pubtator to enrich our training data for Named Entity Recognition 

(NER). Moreover, we applied similarity measures for the linguistic contexts of named entities to 

match their mentions over longer distances. We used positional data to assess the odds that the 

relations we found might be novel.  Finally, we used PheKnowlator, a graphical knowledge base, 

to get insights into the contextual environment of the entities and weigh the likelihood of them 

participating in particular relations. Although our work is preliminary, these techniques show 

promise for finding relations between entities in biomedical papers, even when the relations are 

subtle, when they span longer distances, or when they are implied rather than stated directly.  

Introduction 

Extracting biomedical entities and the relations between them is critical to advancing 

researchers’ understanding of biomedicine (1-4). Publications like the ones in PubMed/PMC 

provide a rich source of these entities and the relations that connect them, but also pose 

challenges due to their unstructured natural language: entity mentions can take many forms, and 

relations between them can be distant, implicit, or constructed by many smaller relations. 

Advancements in machine learning and natural language processing are pivotal in biomedical 

text mining. Large language models like BioBERT and Flair are carving a path through complex 

tasks like Named Entity Recognition (NER) and Relationship Extraction (RE) (5,6). BioBERT's 

specialized pre-training on biomedical corpora enables a more nuanced contextual 

understanding, while Flair’s strength lies in contextual string embeddings. We used both models 

within the BioCreative VIII Track 1 (BioRED) tasks (7). We also examined the effectiveness of 

additional techniques to better understand the input data, augment sparse training data, and 

validate certain outputs.  Techniques like coreferencing resolution associate different expressions 

with single entities, enriching the presence of biomedical mentions (8). Knowledge graphs offer 

structured representations of interconnected biomedical entities and can validate extracted 

relations (9). Cosine similarity is instrumental in analyzing and comparing contextual similarities 

between entity pairs potentially in a relationship (10). We are also exploring positional 
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information about where novel relations are presented in the title and abstract to see if this aids in 

distinguishing novel versus established relations.  

 

Material and Methods 

Database 

For the NER and ID mapping tasks, 16833 entities spanning the 6 biological entity types in the 

BioRED training data were used for training NER models in addition to 17847 already 

harmonized and standardized annotated entities from PubTator (11) that belong to the 6 entity 

types from BioRED. Only the matching entity types (CHEBI, PR, and CL) were selected from 

67 CRAFT fully annotated articles (12) for the NER task only. Also, 6456 mentions of the 

BioRED entities were identified using the coreferencing technique. 

For the RE task, we paired the types of entities that can have relations with each other based 

on the BioRED task entities matching reference. We allowed the relations to span one, two, 

three, or four sentences. Later, we filtered them down using cos similarity to 29,120 samples 

from BioRED and downloaded 3326 single sentences from PubMed for the underrepresented 

classes (Bind, Cotreatment, Drug Interaction, and Conversion) based on the presence of certain 

cues from a list we built to represent each class, such as: (“bind”, “dual therapy”, “converted to”, 

“drug-drug interaction”). 

Methodology 

Phase 1: Our pipeline begins with identifying the BioRED-selected set of entity types. We 

trained seven Flair models for each entity using the BioRED training set, fine-tuning the 

embeddings with the PubMed and PMC corpus. Using the SequenceTagger class, the models 

have a hidden size of 256, stacked embeddings, and a CRF for sequence modeling. Additionally, 

we developed another integrated Flair model for all six entities using PubTator data and another 

model based on the CRAFT full-text articles, for the entity types: Chemical and Cell line. The 

comprehensive coverage of full articles provides more context around the entities, which is 

useful for tasks that require understanding beyond the abstract. 

Figure 1. The four-phase process of extracting Biomedical entities and relationships from 

abstracts: Phase 0 begins with the raw abstract, Phase 1 involves Named Entity 

Recognition (NER) to identify entities, Phase 2 connects related entities, and Phase 3 

highlights the textual relations between these entities. 



Phase 2: extracted entities are mapped to relevant identifiers. We gathered 500K mapped 

entities from PubTator articles, using them as a reference dictionary to link entities with their 

appropriate IDs. The focus then shifts to pairing related entities. In this pursuit, a couple of 

approaches were tested. We initially used the brute-force method of pairing sequential entities in 

text. it faced the issue of lengthy context spans including irrelevant text. To counter this, the 

strategy was adjusted to extracting relationships within single sentences only to ensure that the 

text relevance is maintained. Using fine-tuned BioBERT, our second approach is based on a 

binary classifier that categorizes text into having a relation or not. Here, statements that contain 

pairs of entities are the positive samples, while the negative examples are the ones that don’t 

have any pairs. For the second approach: instead of only focusing on single sentences, we opted 

to regulate text segment extraction around entities based on their contextual similarity, assessed 

using the 'paraphrase-distilroberta-base-v1' 

Sentence Transformer model that feeds to 

cosine similarity functions. Only contexts 

with a similarity score above 0.5 were 

chosen for the classifier's training. Table 1 

provides insights into the optimal window 

sizes derived from various tests and manual 

evaluations. 

 The final step in this phase examines the 

use of knowledge graphs to validate the 

binary model predictions by verifying 

existing paths between entities to confirm 

their relationships. We used PheKnowLator (13), a knowledge graph that integrates ontologies 

from multiple domains, including biomedical ontologies, literature, and databases, providing a 

rich and comprehensive representation of biomedical Knowledge. For traversing the graph data, 

we used the Depth-First Search (DFS) to note already visited nodes, ensuring an efficient and 

loop-free exploration. Importantly, there is no restriction on the length of the paths explored. 

This can ensure that identified relationships between entities are not only existent but also 

biologically or clinically meaningful. 

Phase 3: We categorized the extracted sentences based on the types of relationships they 

represent and determined their novelty. To accomplish this, we trained two fine-tuned BioBERT 

models. The fine-tuning for all BioBERT models included adding a dropout layer for 

regularization, two fully connected linear layers for transformation, and a LogSoftmax activation 

function to ensure that the output values can be interpreted as log probabilities for each class, 

facilitating effective multi-class classification. The initial model classifies the input text into one 

of the 8 relationships as outlined by BioRED, while the second one determines if the identified 

relationship presents novel information—essentially distinguishing between key findings of a 

manuscript and previously established knowledge. 

Results and Discussion 

For run1: using subtask 2 test data, which consists of abstracts only, the NER models effectively 

extracted biomedical entities, primarily utilizing the PubTator-trained model for all entity types 

extraction. For sequence variants, a distinct model from the BioRED seq-var training dataset was 

used. The CRAFT model served as a validation mechanism for PubTator extractions. We also 

Table 1: representing the suggested window 

size for context similarity measure based on 

the average text length and number of 

sentences in the text. 
Number of 

sentences spanning 

entities 

Ave. Text 

Length (Word 

Count) 

Window 

Size 

1 0 - 30 Full text 

2 30 - 53 20 

3 53 - 75 30 

4 75 - 95 40 

 

 

 



used PubTator annotations dataset for ID mapping, yielding a precision (72.36%) surpassing the 

average in the normalization task (69.02%). Overall, the integration of PubTator annotations, 

whether for NER model training or ID mapping, demonstrated noteworthy performance 

compared to the average F1 scores (76.87% and 63.36%) for NER and ID respectively. Run 2 

was omitted, as its results closely mirrored Run 1. Table 2 represents each task’s results over the 

different runs. Conversely, there was a significant decline in scores starting from the entity 

pairing task, which persisted in subsequent tasks. We attribute this low pairing performance to 

factors: (a) the sub-optimal brute-force pairing approach of only single sentences carrying entity 

pairs and (b) our entity set in this trial lacked 26.86% of its true positives. We also believe that 

the (Relation, Novelty) low performance is also caused by the initial incorrect pairings. 

Table 2: Performance metrics of different NLP tasks across multiple runs, showcasing Precision 

(P), Recall (R), and F1-score (F) values. 

Task Run1 (P/ R/ F) Run3 (P/ R/ F) Run4 (P/ R/ F) 
NER 0.72/ 0. 73/ 0.72 - - 

Normalization (ID) 0.72/ 0.60/ 0.65 - - 
Entity pair 0.31/ 0.03/ 0.06 0.29/ 0.10/ 0.15 0.19/ 0.38/ 0.25 

Entity pair+Relation type 0.16/ 0.01/ 0.03 0.14/ 0.04/ 0.07 0.08/ 0.18/ 0.11 
Entity pair+Novelty 0.18/ 0.01/ 0.03 0.18/ 0.06/ 0.09 0.13/ 0.27/ 0.17 

Entity pair+Relation type+Novelty 0.09/ 0.01/ 0.01 0.08/ 0.03/ 0.04 0.05/ 0.12/ 0.07 

For Run 3, with the availability of the subtask1 test data, which included the annotated gold 

standard entities zalong with the abstracts, we had access to the complete list of entities for 

pairing. We opted for the binary classifier approach to validate possible pairings instead of using 

the brute-force algorithm, focusing still on single sentences containing relations. The precision 

remained consistent, indicating a similar true positive to the false positive ratio for the extracted 

pairs in this sample. Notably, there was an increase in recall to 10%, meaning that the model 

identified 10% of the correct pairs. This positive outcome prompted us to evaluate larger text 

segments encompassing the entities using the same binary classifier approach for run 4. 

Run 4: we started using cosine similarity in this run as we started increasing the text 

containing relation spans. We examined contextual proximity for entity pairs across up to four 

sentences. Of 800K refined segments, 384K were deemed relation-bearing by our binary 

classifier. This run yielded 38% recall, which is near the subtask 2 entity pairing recall average 

(40%). However, the precision dropped, indicating increased false positives. Therefore, we 

anticipate that a higher filtering similarity threshold (> 0.5) is required to extract the very close 

context surrounding entities, and larger spans (4+ sentences to have relations) can decrease False 

positives.  

For the PheKnowLator trial, we verified 292 relationships amongst entity pairs, from 207 

abstracts. On the other hand, when considering a brute-force pairing strategy, which produced 

1778 entity pairs from the same number of abstracts, it potentially included a huge number of 

possible false positives and non-informative relations. This comprehensive verification 

procedure highlights the accuracy and reliability of the relationships identified using KGs as 

references. 



Future Directions 

We conducted a simple analysis to determine the position of novel relations (spanning only 

single sentences) in the abstracts of the training dataset, hypothesizing that they're typically 

found at the end of the abstracts. By analyzing their normalized positions, we found around 32% 

of these novel relations exist in the last 86% section of the abstracts. Further samples can prove a 

significant location which in turn, can aid in validating the novelty model's predictions by 

examining the position of the novelty statement in the abstract. 

A conjunction technique can improve deciphering complex relationships and entities within 

scientific texts, providing a simpler and more clear association between related entities. We hope 

to use it for 2+ entities composing relation. 
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