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Abstract—The vision of ubiquitous network connectivity to
fuel uninterrupted services to any user has materialized with
the Fifth-Generation (5G) of mobile technology and will probably
find maturity on the way to developing 6G. To reach this goal, 5G
technology and its evolution (B5G), as well as Multi-access Edge
Computing (MEC), alongside Machine Learning (ML) will play
pivotal roles. This work sheds light onto a test bed development
and initial experimentation results obtained to enable airlines´
passengers on-board an aircraft with broadband connectivity
as an advancement toward ubiquitous access. We detail our
research and experimentation activity as part of the H2020
AI@EDGE research project around a 5G network and an edge-
cloud built on top of aviation-certified hardware and off-the-
shelf servers. The edge-cloud is used to develop and test MEC
applications that can be seen as the next generation of services
offered to airlines and to airlines’ passengers and that rely on
machine learning. The 5G network is integrated into a larger
test-bed and connected to a 5G core on the ground by means of
a Low Earth Orbit (LEO) satellite backhaul such as Starlink.

Index Terms—5G, MEC, ML, LEO satellite backhaul

I. INTRODUCTION

Air travelers today desire to continue using their personal
devices for an uninterrupted connected experience, thus re-
quiring internet connectivity, unlike in the past when the
available services were limited to content locally stored on the
aircraft. Although access to the on-board Local Data Network
(LDN) remains a key component of in-flight connectivity
[1], it is equally important to provide broadband internet
access in the cabin to ensure that passengers can ubiquitously
access services. On the one hand, the traditional In-Flight
Entertainment and Connectivity (IFEC) system utilizes the
LDN, which can still benefit from new technologies such
as Artificial Intelligence (AI) / Machine Learning (ML) and
Multi-access Edge Computing (MEC) to improve maintenance
and enhance the content selection. On the other hand, the
requirement for internet connectivity on Commercial off-the-
Shelf (COTS) user devices can be met through the integration
of new generations of satcom technologies with cellular
networks like 5G, Beyond 5G (B5G) and 6G in the future.

Edge computing, as an extension of cloud computing, is
able to host many computationally intensive applications at
the network edge and closer to the consumers. This capability
makes edge computing one of the pillars of the 5G/B5G
system, especially when low latency and bandwidth efficiency
are concerned [2]. The European Telecommunications Stan-
dards Institute (ETSI) revised the concept of emerging edge
computing and introduced it as MEC to broaden its scope [3].

The ETSI MEC architecture introduced the concept of MEC
applications (Apps) that can reside inside a MEC host where
they consume compute and storage provided by the edge
Network Function Virtualization Infrastructure (NFVI). For
example, ML algorithms that can figure out how to perform
network management tasks by parsing large amounts of data
can be deployed within a MEC platform as MEC Apps. Such
a setup allows performing required tasks at the edge provided
that enough resources and data are available without going
all the way to the central cloud [4]. The 5G system, at the
same time, has native support for MEC from Third Generation
Partnership Project (3GPP) Release 15 with a focus on User
Plane Function (UPF) (re)selection, access to both LDN
and central data network (e.g., internet). Enhancements of
edge computing for different vertical domains (e.g., industrial
processes), however, have been investigated by both industry
and academia in further releases of 3GPP [5].

The MEC concept is becoming also increasingly important
for the future of the Non-Terrestrial Network (NTN), espe-
cially due to the expensive nature of the bandwidth available
over GEO satellites. With the 5G enhancements in 3GPP
Releases 16 and 17, the focus has shifted towards creating
a three-dimensional network model by incorporating NTNs.
Release 15 of 3GPP primarily dealt with frequency bands
(e.g., Ku-bands, S-bands) and antennas, while Release 16 (as
per 3GPP TR 38.821 [6]) put an emphasis on architecture,
high-level protocols, and use case identification, with further
advancements made in Release 17. In 3GPP TR 22.822 [7],
two scenarios were identified: i) satellite being used as an
access technology in 5G systems by a User Equipment (UE),
and ii) satellite serving as the backhaul between a terrestrial
gNB and the 5G core [8].

Inspired by the second use case outlined in 3GPP TR
22.822, this paper presents a scenario in which a moving plat-
form, such as an aircraft, can make use of Starlink Low Earth
Orbit (LEO) constellation satellites as a backhaul to connect
to the central 5G core on the ground. In addition, this paper
proposes a new paradigm for aircraft on-board connectivity
utilizing the capabilities of the ETSI MEC architecture. To
achieve this, we present the deployment of an edge-cloud
that harnesses on-board localized information and performs
analysis to enhance IFEC system capabilities.

The Aero Edge-Cloud presented in this paper serves as
a validation of the H2020 AI@EDGE [9] project approach,



Fig. 1: 5G and beyond Aero Edge-Cloud platform and connectivity system.

a secure and reusable artificial intelligence platform for
edge computing. Within the framework of AI@EDGE, we
introduce two MEC applications: ML-based Screen Failure
Prediction App and Content Recommendation App. The ex-
perimental implementation and findings of this work are
discussed throughout the paper. The article is structured as
follows. In Section II, we introduce the overall architecture
of an aeronautical network with a focus on integrating 5G
with Starlink for the on-board Aero Edge-Cloud. Section III
discusses two applications that are served inside the Aero
Edge-Cloud, followed by a discussion on the validation of
these applications in Section IV. Finally, in Section V, we
conclude the work and discuss future prospects.

II. ARCHITECTURE OF 5G AERONAUTICAL NETWORK

The architecture of the proposed Aero Edge-Cloud and
connectivity system on an aircraft is presented in Fig. 1. The
figure provides an illustration of the 5G system architecture
spanning across the edge site of an aeronautical network and a
ground infrastructure by means of LEO satellite connectivity.
The entire network is divided into three main parts:

i Aero Edge-Cloud: which comprises the on-board net-
work including the Radio Access Network (RAN), MEC
host, and the LDN. The existing IFEC hardware, such
as IFEC screens (or Removable Display Units (RDUs)),
and servers are also included in this part.

ii Satellite backhaul: which is assumed over Starlink LEO
constellation.

iii Ground network: consisting of the 5G core network and
the central data network (i.e., the internet).

A. Edge-Cloud in an Aircraft

For the sake completeness, the RAN in Fig. 1 includes
also two non-3GPP technologies like WiFi and Light Fidelity
(LiFi)) together with 5G to provide simultaneous and efficient
connectivity to the IFEC system (such as wireless RDUs) and
COTS user devices (e.g., smartphones). In this paper, WiFi
and LiFi are not addressed, but it is worth mentioning them
since WiFi is nowadays the dominant technology on-board
and LiFi is seen as a potential successor. From Fig. 1, the
Control Plane (CP) traffic is always directed to the ground-
based 5G core network through the satellite backhaul, while
the UPF is deployed on-board the aircraft. The Access and
Mobility Management Function (AMF) and Session Manage-
ment Function (SMF) are reached by establishing the 3GPP-
defined N1, N2 and N4 interfaces for user authentication and
session management respectively, [10].

The User Plane (UP) traffic can be either directed to
a ground network or on-board the aircraft to access LDN
content like in-flight entertainment media. As a result, users
are divided into two categories: i) IFEC users who access on-
board content and ii) regular users who mainly require internet
access. This differentiation is achieved through different Data
Network Name (DNN) directing users to the required Data
Network (DN). In practice, the 5G core assigns two IP address
pools for the users after the attach procedure and the UPF
creates two Protocol Data Unit (PDU) sessions for each pool
of IPs, as depicted by N6(1) and N6(2) in Figs. 1 and 2.
Similar to the CP signals, the N6(2) travels through the
satellite connection with one notable difference: while the
CP signals (i.e., N1, N2, and N4 interfaces) are routed to



the corresponding Mobile Network Operator (MNO) on the
ground via a Layer-3 Virtual private network (VPN), traffic
over N6(2) is sent to the ground directly to reach the internet.
In the system, the N6(1) interface sets up the PDU session
for communication between the wireless IFEC devices and
the on-board servers, specifically at the MEC host level and
the LDN. As depicted in Fig. 2, the MEC host encompasses
the MEC platform coupled with the NFVI to provide storage,
compute and network resources to run MEC applications [3].
This placement of the MEC host at the edge enhances the
accessibility of resources in close proximity to the on-board
users. The paper further explores the two MEC applications
designed for the Aero Edge-Cloud network in Section III,
which run within containers on the virtual infrastructure
managed by the Virtualized Infrastructure Manager (VIM).

The other components, indicated by the red boxes in Fig.
2, including the MEC Orchestration (MEO), MEC platform
manager, monitoring, and database, are part of the AI@EDGE
Network and Service Automation Platform (NSAP) and Con-
nect Compute Platform (CCP) [11] that will eventually be
integrated with the Aero Edge-Cloud. However, their specific
details are beyond the scope of this article and are only shown
in the figure for the sake of completeness and clarity as part
of the AI@EDGE platform.

Fig. 2: MEC integration with the on-board RAN

B. 5G Network over LEO satellite Backhaul

Geostationary Orbit (GEO) satellites provide global cover-
age with a limited number of space segments. However, the
high latency of +500ms makes them inadequate for broadband
services that require also low latency and low-cost bandwidth.
On the other hand, LEO satellites, which are located at a
closer proximity to the earth (between 500-2000 Km), offer
lower latency compared to their geostationary counterparts.
Although the lower orbit of these satellites implies a much
larger number for global coverage, different companies have

recently started deploying LEO satellite constellations to
provide high-speed internet access worldwide. In [12], the
authors made a comprehensive comparison between three
private LEO satellites (Starlink, OneWeb and Kuiper) and
found that Starlink outperforms its competitors OneWeb and
Kuiper. For our lab setup, we selected and measured a Starlink
connection performance for a single user, showing average
end-to-end latency of around 30ms and a data rate over
150 Mbps. The 3GPP release 17 [13] introduced a satellite
backhaul scenario that is positioned between the 5G core
network and the terrestrial access network to transport the
N1, N2, and N3 interfaces. In contrast, the aircraft scenario
proposed in this article considers the use of an on-board UPF
to access to the LDN and the internet. Therefore, the 5G
interfaces of N1, N2, and N4 are transported through Starlink,
as well as the N6 interface that is used for access to an external
data network such as the internet. In our aircraft network, the
N3 interface remains on board between the 5G RAN and the
UPF, as illustrated in Fig. 3.

Fig. 3: Starlink as a backhaul for the 5G and beyond Aero
Edge-Cloud system

III. AIFS OVER AIRCRAFT EDGE-CLOUD

The Artificial Intelligence Functions (AIFs) are defined as
AI-enabled end-to-end applications that are deployed across
the AI@EDGE platform [9]. This section introduces two MEC
applications, a.k.a. AIFS, for the Aero Edge-Cloud to validate
the AI@EDGE platform concept.

A. ML-based predictive maintenance

1) IFEC screens failure prediction App: The prediction
model we describe herein lies within ML-based predictive
maintenance [14] and is designed based on data gathered from
IFEC screens (i.e. RDU) in service. Normally, screens can be
in a non-functional state due to several reasons internal to
an RDU device such as temperature, aircraft type, software
release and software update, hardware type, and others. By
predicting such non-functional states, we aim at reducing



maintenance time and avoiding downtime of RDUs affecting
passengers’ quality of experience.

2) Data Collection and Aggregation: ML models depend
on the availability of reliable data sets for enabling algorithms
to make also reliable predictions. We gathered the required
data set from an existing commercial SQL database in which
data (or logs) collected from different airline aircraft are
systematically stored. Normally, such data is used by main-
tenance departments to analyze the performance of different
aircraft systems offline, including IFEC devices. The multi-
label historical failure data set for the RDU is obtained from
the overall data stored by the repair team, and it thus involves
the data-gathering process from different sources.

3) Data set overview: The gathered historical data com-
prise features that describe the state of an IFEC screen.
These features are described by an n-tuple including, but
not limited to, {id, average temperature, flight duration, last
software update,...}. Each subset of the n-tuple in the database
contains different RDU characteristics and identifies a unique
screen. The database exhaustively contains different types of
attributes described by raw data. Some data fields can be
fed in input directly to the ML model, whereas others have
to be dropped. In this way, the first step consists of pre-
processing raw data to obtain a meaningful data subset. The
data types of the remaining features are mainly categorical
(textual) and numeric. Apart from this, the data set contains
an important feature that describes whether the screen was
already broken or replaced, and it is our target label class. This
feature is represented by a binary variable with the value ”0”,
indicating the class of normally working RDU and value ”1”,
representing the class of RDU predicted to be defective by
the ML model and that must be replaced. Thus, based on the
historical values stored in the data set, we can categorize the
use case as a binary classification machine learning problem
and we conducted experiments using different algorithms [15].

B. Content recommendation App

In the literature, there are several types of content recom-
mendation systems such as popularity-based, content-based,
and collaborative filtering models [16]. Among those, the main
advantage of the popularity-based model is that recommen-
dations can be generated even for users (e.g., passengers)
whose preference for IFEC content selection is unknown. For
movie content, most of the existing popularity-based models
use the ratings from the users to calculate a popularity score
for each movie in the IFEC database [17]. The drawback of
existing airline data sets is that they lack passengers’ ratings
of the movies. However, other features such as the watching
ratio and the number of viewers for each movie can be used.
Hence, in the popularity model we propose such features
alongside the IMDb rating and the movie release year are
taken into consideration to calculate the popularity score of
a movie. The watching ratio represents the average propor-
tion of a movie watched by the passengers. The watching
ratio is calculated based on three types of records from the
airline data sets: video start, video stop, and video complete.
The video starts logging records when the user initiates to
watch a video; the video stop logging records when the user

stops the playback of a video; the video completes shows
when the video plays to completion. With these records, the
watching time can be calculated and divided by the total
run time of that movie to obtain the watching ratio. The
IMDb score is calculated with the average rating and the
number of votes, which are two features available from the
public IMDb data set. The linear formula used to calculate
the popularity of each movie is as follows: Popularity =
w1 × (watching ratio + number of viewers) + w2 ×
release year+w3 × IMDb score, where wi, i = 1, 2, 3, are
adjustable weight parameters used to emphasize/de-emphasize
the contribution of each criterion selected to output the
popularity score in the popularity-based method. We should
mention that while the weights can be assigned empirically,
they can also be the result of an optimization. According
to the computed popularity, m movies rated with popularity
score in decreasing order are displayed to the passengers’
RDU during a flight. We also point out that the result of the
recommendation may vary across different airlines and routes
based on the historical data set.

Further, we conducted a series of experiments to understand
the relationship between movies that are watched the most
by passengers and their release years based on the historical
data set gathered across three months. The results showed
that passengers tend to watch the most movies released in
recent years. However, some old movies can be still very
popular and should not be excluded from the recommendation.
Therefore, we empirically defined two different ways of
assigning weights for old and new movies. Accordingly, in
the case of old movies, a higher weight is assigned to the
watching ratio and the number of viewers compared to the
other ones. Vice versa, in the case of new movies, a higher
weight is assigned to the IMDb score and release year. In the
future, the popularity model can be tested by different airlines.

IV. IMPLEMENTATION AND VALIDATION

In this section, we present the test bed implementation of
the system components that were discussed previously. We
also point out that measurements of the different time inter-
vals required to collect pre-process data and provide content
recommendation to passengers based on the popularity-based
model is still ongoing in our test facility. Therefore, the focus
here on the ML-based model for RDUs failure prediction.

A. Aeronautical test rack development

In order to deploy the Aero Edge-Cloud network and
integrate it with the central 5G core on the ground through
Starlink, an aircraft edge-cloud test-rack with 21 RDUs was
developed as it can be seen from Fig. 4. The test-rack
reproduces the IFEC system commercially deployed on-board
an airline aircraft and the Aero Edge-Cloud is a mapping
into the aircraft edge-cloud according to a suitable network
embedding. An RDU is the 3rd generation of aviation certified
IFEC screens manufactured by Safran Passenger Innovations
and they are used worldwide by aircraft passengers to con-
sume media content from the in-flight entertainment media
server, nowadays. Besides the screens, the test-rack includes
also one Supermicro server that implements a LDN and stores



Fig. 4: The test-rack embodiment of the Aero Edge-Cloud

all the onboard media including music, movies, etc. This is a
COTS server with a very compact form factor (similar to an
aero-certified server) with 12 CPU cores and 128 GB RAM.
With this powerful hardware, it is possible to handle some
of the computation-intensive applications that run within the
Aircraft edge-cloud infrastructure. Referring to Fig. 2, the
srsLTE Stand Alone (SA) gNB 1 is deployed, alongside the
corresponding software-defined radio (i.e. Ettus X310 USRP)
2, to configure the 5G RAN onboard the aircraft. Moreover,
the Aircraft edge-cloud test-rack leverages on a Kubernetes
VIM to manage the MEC host that consists, but is not limited
to, initiation and termination of the RDU failure prediction
and recommendation system MEC Apps.

B. IFEC screens failure prediction and ML experiments

The preliminary ML experimentation activity was con-
ducted on an existing platform to run the initial tests for IFEC
screens (i.e., RDUs) failure prediction before transferring
the more advanced experimentation to the Aero Edge-Cloud.
To this extent, we created a criterion list in which four
different platforms were evaluated, including Azure 3, H2O
4, TPOT 5, and NNI 6. The criteria involved Graphical User
Interface (GUI) support, AutoML support (the process of
automating the tasks of applying machine learning), Multi-
core support (splitting the work across multiple CPU cores),
contain ensemble models (combination of more than one
model), among the most relevant. Based on these criteria,
H2O was identified as the best suited as it provides thorough
functions around autoML, multi-core support, and and built-in

1https://docs.srsran.com/en/latest/
2https://files.ettus.com/manual/page usrp x3x0.html
3https://azure.microsoft.com/en-us/products/machine-learning
4https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
5https://github.com/EpistasisLab/tpot
6https://github.com/microsoft/nni

ensemble algorithms [18]. Moreover, it gives either a layman-
friendly GUI interface in its web-based version or freedom of
personalized coding in its coded-based.

A pre-processed data set (remove duplicates, null val-
ues, etc.) was divided into a part comprising 20% of the
meaningful data for testing and an 80% part for training.
Referring to the problem described in Sect. III-A, the IFEC
screens failure predictions stands as a binary classification
problem. Regarding this, H2O AutoML provides several in-
built algorithms that we aim to compare: XGBoost Gradient
Boosting Machines, H2O Gradient Boosting Machines, Dis-
tributed Random Forests (DRF), Generalized Linear Models,
and two Stacked Ensemble models (generated by combining
other base models). During each training iteration, each model
was evaluated using the Area Under The Curve (AUC) of the
corresponding Receiver Operating Characteristic (ROC) as a
performance indicator. The 0 ≤ AUC ≤ 1 allows ranking
the algorithms and their capability of distinguishing between
target classes. To address instead the data set imbalance, the
built-in auto-balancing method based on SMOTE (Synthetic
Minority Over-sampling Technique) [19] was used. In each
training iteration, the top-performing model (i.e., showing
the highest AUC) was selected and afterward the F1 score
was calculated during the testing phase (i.e., on the 20%
of the whole data set). AUC and F1 scores are commonly
used metrics for evaluating classification performance when
the data set is imbalanced. The data set that was initially
used for training and testing the algorithms mentioned above
included all features shown in Fig. 5 with their importance
weight. The experiments reveal that very low-weight features
have marginal contribution to the F1 score, but can largely
affect the computation time during training. We clarify that
the training time is an H2O platform indicator that includes
all classification algorithms. Hence, the training and testing
experiment was repeated with the top 12 most important
features and then with the top 6 features as discussed below.
Training and testing experiments were conducted on a Dell
PowerEdge server with AMD EPYC 7402P processor, 24
CPU cores, 64 GB of RAM with Linux OS Kernel version
4.19 and Debian 10 distribution. We further specify that
training iterations were repeated 10 times for the two data
sets with the top 12 and 6 features, as mentioned already.
The training time and F1 score results are shown in Fig. 6
and in Fig. 7, respectively. Training time was computed in
the H2O Web-based version (indicated as Flow in the figure)
and H2O Code-based version (indicated with R in the figure).
Fig. 6 allows us to conclude that H2O Code-based version
provides lower training time. In addition, the AUC rank that
was computed at each training iteration allows us to select the
DRF algorithm as the one with the highest AUC value (i.e.,
0.9865 against 0.9861 for the Stacked Ensemble). Referring
to Fig. 7, the F1 score of the DRF algorithm was computed
in H2O Web-based and Code-based comparing again the top
12-feature and 6-feature data sets. The 12-feature data set in
the H2O Code-based version provides the highest F1 score.
We conclude that the IFEC Failure Prediction App can rely
on the H2O Code-based platform with the DRF algorithm.

https://docs.srsran.com/en/latest/
https://files.ettus.com/manual/page_usrp_x3x0.html
https://azure.microsoft.com/en-us/products/machine-learning
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://github.com/EpistasisLab/tpot
https://github.com/microsoft/nni


Fig. 5: Overall features importance ranking

Fig. 6: Training time for all algorithms in H2O web-based
(denoted as Flow) and Code-based (denoted with R) using
top 12 and top 6 features data sets.

Fig. 7: F1 score of DRF in H2O Web-based and Code-based
version for top 12 and 6 top features data sets.

V. CONCLUSION AND FUTURE WORKS

This article presented a 5G and beyond test-bed imple-
mentation for an aeronautical environment with the addition
of LEO satellite backhaul. As mentioned, the work was
developed as part of the H2020 AI@EDGE project. The
system we have presented is divided into three distinct parts:
the on-board Aero Edge-Cloud network, which leverages the
paradigms of the ETSI MEC; the Apps used to deliver ML-
based predictive maintenance for IFEC screens, as well as
popularity-based content recommendation for the airlines; the
increasing opportunity provided by rising LEO constellations
such as Starlink. Our test bed results already allowed us
to test the ML-based IFEC screens failure prediction App,
which exhibits an efficiency of 87% using standard model
validation techniques. The second developed MEC App, the

recommendation system, was mostly discussed and takes into
account new parameters such as the passenger’ watching ratio,
the number of viewers in previous months, and the release
year, which were derived from historical data sets obtained
from various airlines. This innovative approach provides a
new dimension to creating different recommendations tailored
specifically to inflight passengers uniquely taking into account
the airline and the airplane route. In future work, we plan
to simulate the effect of mobility on the system to fully
demonstrate the capabilities of this innovative cutting-edge
aeronautical network design.
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