6DAPose Dataset

6DAPose presents two synthetic image datasets for 6D object assembly pose estimation in robotic assembling tasks. The dataset contains 431 RGB and depth images, ground-truth object and camera pose for each assembly step and model information in BOP format. The datasets are generated by a hemisphere view sampling technique using mesh files in gazebo simulation environment. The code and instructions in GitHub : <u>https://github.com/KulunuOS/6DAPose</u>.

Dataset

Figure 2: Nema17 reducer assembly https://www.thingiverse.com/thing:8460

Method

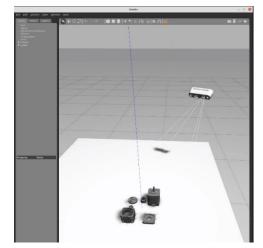


Figure 3: Gazebo simulation

Algorithm	: Assembly dataset generation
Parameter	rs:
	ϕ : yaw angle of the camera
	θ : pitch angle of the camera
	s: scale of the camera
Input	: CAD models of object assembly
Output	: I _{RGB} , I _D ; color and depth images
	I _{SEG} ; segmentation maps,
	Pobi; ground truth object poses,
	P_{cam} ; ground truth camera pose,
	K_{cam} ; ground truth camera parameters
Define and	record assembly constrains
foreach As	ssembly step do
foreac	$\mathbf{h} \ \phi, \theta, s \ \mathbf{do}$
Rea	cord $\{I_{RGB}, I_D, I_s, P_{obj}, P_{cam}, K_{cam}\}$
end	
end	

Figure 4: Hemisphere sampling algorithm

Acknowledgement

Project funding was received from Helsinki Institute of Physics' Technology Programme (project; ROBOT) and European Union's Horizon 2020 research and innovation programme, grant agreement no. 871252 (METRICS)