Review of the Indicators for Power Electronics and Sustainability

(document for public release)

Work Group CEPPS Convertisseurs Électronique de Puissance Plus Soutenable Indicators Topic

https://seeds.cnrs.fr/gt-convertisseurs-electronique-de-puissance-plus-soutenables/

<u>Writters :</u>

- Hugo HELBLING (hugo.helbling@univ-lyon1.fr),
- Florentin SALOMEZ (florentin.salomez@grenoble-inp.fr)

Version 02/11/2023

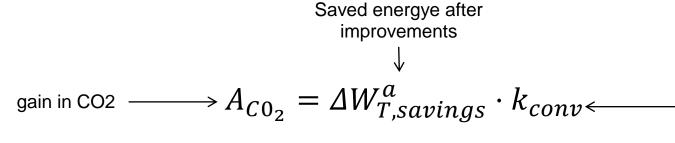
Table of contents

- Version tracking
- Identification of indicators for sustainability in power electronics (PE)
- Identification of indicators for sustainability not directly applicable in PE

Version tracking

- Versions :
 - 17/04/2023 Creation of the document H. Helbling, F. Salomez
 - 30/06/2023 Formatting the document for public release F. Salomez
 - 02/11/2023 English Translation F. Salomez

A. Identification of indicators for sustainability in power electronics (PE)


These indicators are applicable to electrical engineering, and power electronics in particular.

List of indicators

- 1. Gain in CO2 eq. emissions
- 2. Health index of power transformer
- 3. Carbon Payback Period
- 4. Energy Payback Period
- 5. Reduction in GHG emissions
- 6. Simplified LCA on embodied energy
- 7. Residual Value
- 8. Power efficiency
- 9. Life Cycle Efficiency
- **10.Volumic Power Density**
- 11.Mass Power Density

12.Mean Time Between Failure

A01. Gain in CO2 eq. emissions

$[tons CO_{2,\acute{e}q}]$	_	MWh		tons $CO_{2,\acute{e}q}$
an		an	•	MWh

C02 rate of the energy mix comes from "European Investment Bank", *EIB Project Carbon Footprint Methodologies: Methodologies for the Assessment of Project GHG Emissions and Emission Variations*, 2020.

Title	The impact of Power transformers on the Energy Performance Indicators of the power distribution grids of industrial end-users transitioning towards environmental sustainability	Life Cycle Phases Raw material extraction	considered
Year	2021	Manufacturing	
DOI	<u>10.1109/MPS52805.2021.9492714</u>	Distribution/Transport	
Publication Type	International Conference	Use Preservation of functional value (Repair,	X
Sub-field in electrical engineering	Power Grid, transformer (Textile, Aluminium, Chemical, automotive industries)	Refurbishment, Reconfiguration, etc.) Recycling	
Related Inidcators and energy flux	GHG (Green House Emission)	End of Life	

A02. Health index of power transformer

Without unity between 0 and 1

$$HI = 0.6 \cdot \frac{\sum_{i} K_{i} \cdot HIF_{i}}{\sum_{i} 4K_{i}} + 0.4 \cdot \frac{\sum_{j} K_{j} \cdot HIF_{j}}{\sum_{j} 4K_{j}}$$

- K_i, K_j : weighting factor
- *HIF_i*, *HIF_j* : health index factors (almost 20 : load history, power factor...)

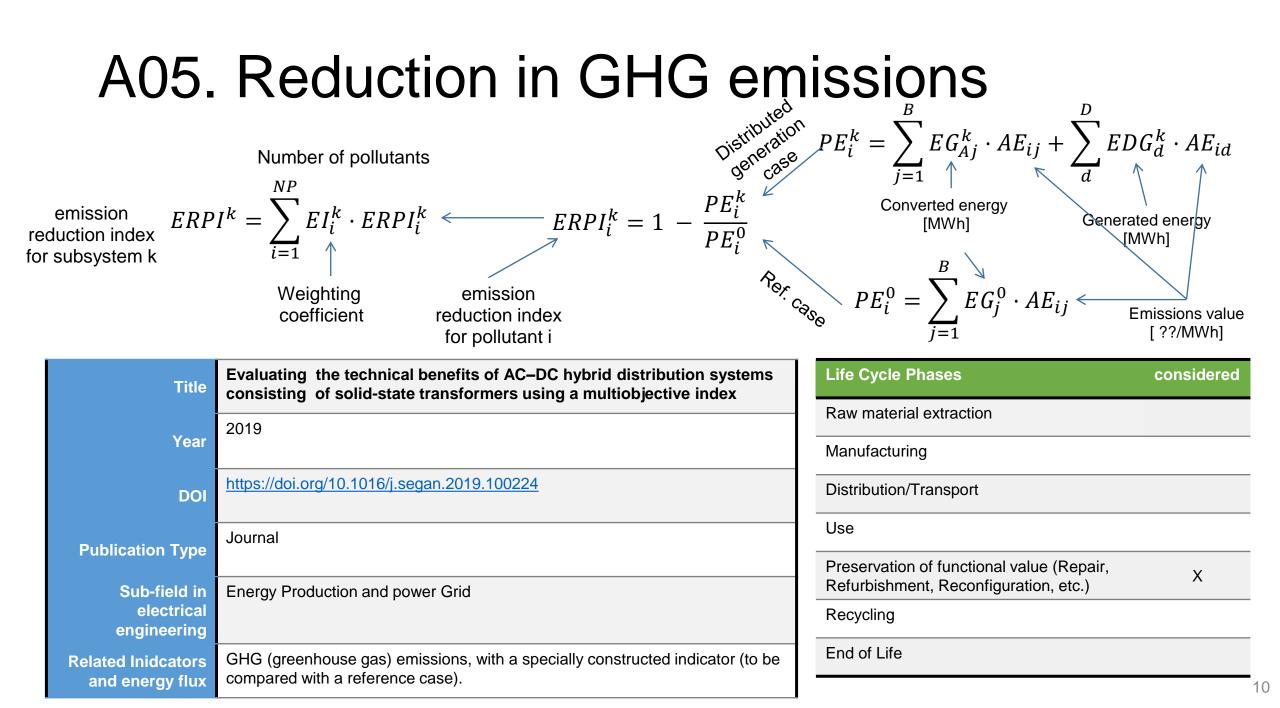
Approximately 40% of the faults are due to the Load Tape Changer, GT CIGRE

Title	An approach to power transformer asset management using health index	Life Cycle Phases	considered
	2009	Raw material extraction	
Year		Manufacturing	
DOI	<u>10.1109/MEI.2009.4802595</u>	Distribution/Transport	
	Journal	Use	Х
Publication Type	Dower Transformer for the grid with winding	Preservation of functional value (Repair, Refurbishment, Reconfiguration, etc.)	
Sub-field in electrical engineering	Power Transformer for the grid, with winding	Recycling	
Related Inidcators and energy flux	Prediction of transformer health for maintenance, replacement	End of Life	

A03. Carbon Payback Period

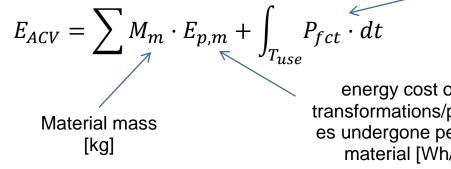
Payback period = $\frac{\text{Lifetime emissions}}{\text{Annual emission displacement}}$ [An] = $\frac{[\text{gCO}_{2,\text{éq}}]}{\left[\frac{\text{gCO}_{2,\text{éq}}}{An}\right]}$

[1] R. C. Thomson, « Carbon and energy payback of variable renewable generation », The University of Edinburgh, 2014. Consulté le: 23 janvier 2023. [En ligne]. Disponible sur: <u>https://era.ed.ac.uk/handle/1842/8875</u>

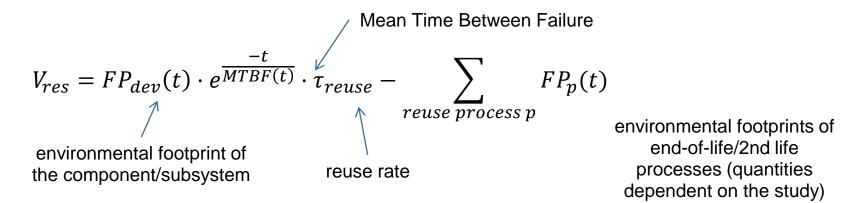

Title	Full life cycle assessment of two surge wave energy converters	Life Cycle Phases	considered
	2019	Raw material extraction	Х
Year		Manufacturing	Х
DOI	https://doi.org/10.1177/0957650919867191	Distribution/Transport	Х
Publication Type	Journal	Use	Х
Sub-field in	Energy production	Preservation of functional value (Repair, Refurbishment, Reconfiguration, etc.)	х
electrical engineering		Recycling	Х
Related Inidcators and energy flux	GHG (Green House Emission)	End of Life	Х

A04. Energy Payback Period

Payback period = $\frac{\text{Lifetime energy consumption}}{\text{Annual energy production}}$ [An] = $\frac{[kWh]}{[\frac{kWh}{An}]}$


[1] R. C. Thomson, « Carbon and energy payback of variable renewable generation », The University of Edinburgh, 2014. Consulté le: 23 janvier 2023. [En ligne]. Disponible sur: <u>https://era.ed.ac.uk/handle/1842/8875</u>

Title	Full life cycle assessment of two surge wave energy converters	Life Cycle Phases	considered
	2019	Raw material extraction	Х
Year		Manufacturing	Х
DOI	https://doi.org/10.1177/0957650919867191	Distribution/Transport	Х
Dublication Ture	Journal	Use	Х
Publication Type Sub-field in	Energy Production	Preservation of functional value (Repair, Refurbishment, Reconfiguration, etc.)	Х
electrical engineering		Recycling	Х
Related Inidcators and energy flux	Embodied energy	End of Life	Х


A06. Simplified LCA on the embodied energy

Used energy during use phase

Title	Eco-Dimensioning Approach for Planar Transformer in a Dual Active Bridge (DAB) Application	Life Cycle Phases	considered
	2021	Raw material extraction	Х
Year		Manufacturing	Х
DOI	https://doi.org/10.3390/eng2040035	Distribution/Transport	
Dublication Trans	Journal	Use	Х
Publication Type	Dower Flootronico, Magnetico	Preservation of functional value (Repair, Refurbishment, Reconfiguration, etc.)	
Sub-field in electrical	Power Electronics, Magnetics	Recycling	
engineering Related Inidcators	Embodied energy	End of Life	Х
and energy flux			

A07. Residual Value

Title	Design for Reuse: residual value monitoring of power electronics' components	Life Cycle Phases	considered
Year	2022	Raw material extraction Manufacturing	
DOI	https://doi.org/10.1016/j.procir.2022.05.227	Distribution/Transport	
Publication Type	Journal	Use Preservation of functional value (Repair,	X
Sub-field in electrical engineering	Power Electronics, Magnetics	Refurbishment, Reconfiguration, etc.)	X
Related Inidcators and energy flux	Estimation of the residual value for a 2nd use (here generalized, in the article estimation of the remaining lifespan)	End of Life	

A08. Power efficiency (known as conventional)

$$\eta = \frac{P_{\text{out}}}{P_{in}} = \frac{P_{converted}}{P_{converted} + P_{losses}}$$
$$[\%] = \frac{[W]}{[W]}$$

Title	-	Life Cycle Phases	considered
Year	-	Raw material extraction	
Tear		Manufacturing	
DOI		Distribution/Transport	
Publication Type	-	Use	X
Sub-field in electrical	Electrical engineering in general	Preservation of functional value (Repair, Refurbishment, Reconfiguration, etc.)	
engineering		Recycling	
Related Inidcators and energy flux	energy	End of Life	

A09. life cycle efficiency

$$\begin{aligned} & \underset{\substack{\text{fife} \\ \text{fife} \\ \text{fif$$

A10. Volumic Power Density

$$\rho = \frac{P_{converted}}{Vol_{converter}}$$

$$[W.\,m^{-3}] = \frac{[W]}{[m^3]}$$

Title	-	Life Cycle Phases conside
Year	-	Raw material extraction indirectly
		Manufacturing
DOI	-	Distribution/Transport
Publication Type	-	Use
Sub-field in electrical	Electrical engineering in general	Preservation of functional value (Repair, Refurbishment, Reconfiguration, etc.)
engineering		Recycling
Related Inidcators and energy flux	Volume of system components, indirectly mass of useful raw material (≠ of extracted)	End of Life

A11. Mass Power Density

$$\rho = \frac{P_{converted}}{m_{converter}}$$

$$[W. kg^{-1}] = \frac{[W]}{[kg]}$$

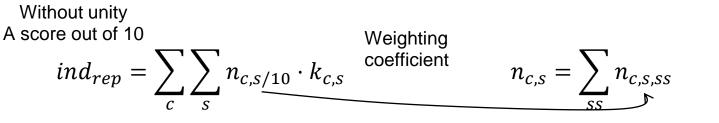
Title	-	Life Cycle Phases consid
Year	-	Raw material extraction indirectly
		Manufacturing
DOI		Distribution/Transport
Publication Type	-	Use
Sub-field in electrical	Electrical engineering in general	Preservation of functional value (Repair, Refurbishment, Reconfiguration, etc.)
engineering		Recycling
Related Inidcators and energy flux	Mass of system components, indirectly mass of useful raw material (≠ of extracted)	End of Life

A12. Mean Time Between Failures

Mean Time Between Failures

 $MTBF = \frac{\text{Time of use} - \text{Time of failure}}{\text{Number of failure}}$

Title	-	Life Cycle Phases	considered
		Raw material extraction	
Year		Manufacturing	
DOI	-	Distribution/Transport	
Publication Type	-	Use	
Sub-field in	Lifetime estimator	Preservation of functional value (Repair, Refurbishment, Reconfiguration, etc.)	indirectly
electrical engineering		Recycling	
Related Inidcators	Lifetime estimator	End of Life	indirectly
and energy flux			17


B. Identification of indicators for sustainability not directly applicable in EP

These indicators are not directly applicable in EP, and require adaptation work.

List of indicators

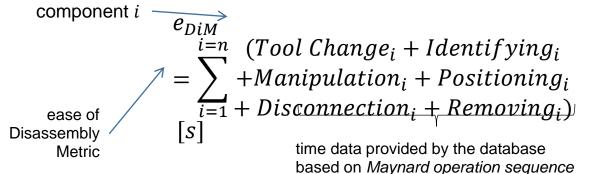
- 1. Repairability index France
- 2. Ease of disassembly

B01. Repairability index France

5 criteria *c* represented by a score out of 10 for each subcriteria *S* each sub-criterion is itself the sum of sub-subcriteria

Critères c

C1	Documentation			
C2	Disassembly access			
C3	Availability of spare parts			
C4	Price			
C5	Device class specific			


aggregate of a lot of information: availability of parts (manufacturer, distributor, repairer, etc.), number of disassembly steps, type of fixings, documentation... => possible bias/masking effects

Title	Indice de réparabilité	Life Cycle Phases considered
Year	2021	Raw material extraction
DOI	https://www.indicereparabilite.fr/grilles-de-calcul/ https://www.ecologie.gouv.fr/indice-reparabilite	Manufacturing
Publication Type	Documents, gouvernment website	Distribution/Transport Use
Field	Repair of consumer items (smartphones, laptops, televisions, lawn mowers, porthole washing machines, top washing machines, dishwashers, vacuum cleaners, high-pressure cleaners)	Preservation of functional value (Repair, Refurbishment, Reconfiguration, etc.)
Related Inidcators and energy flux	Score for repair	Recycling End of Life

<u>autres systèmes :</u> S. Dangal, J. Faludi, et R. Balkenende, « Design Aspects in Repairability Scoring Systems: Comparing Their Objectivity and Completeness », *Sustainability*, vol. 14, nº 14, Art. nº 14, janv. 2022, doi: .<u>10.3390/su14148634</u>

B02. Ease of disassembly

Ease of disassembly modelled in [s]

technique (MOST)

1	2	3	4	5	6	7	8	9	10	11	12	13
Disassembly sequence of components	Disassembly sequence of connectors of components	Number of connectors	Number of product Manipulations	Identifiability (0,1)	ТооІТуре	Tool Change (s)	Identifying(s)	Manipulation (s)	Positioning(s)	Disconnection (s)	Removing(s)	eDiM(s)

worksheet

Title	Ease of disassembly of products to support circular economy strategies	Life Cycle Phases considered						
	2018	Raw material extraction						
Year		Manufacturing						
DOI	10.1016/j.resconrec.2017.06.022	Distribution/Transport						
	Journal	Use						
Publication Type		Preservation of functional value (Repair, X						
Field	Mechanical disassembly only (BDD MOST does not have data for operations on PCB (desoldering, etc.)	Refurbishment, Reconfiguration, etc.)						
Related Inidcators and energy flux	Disassembly time	End of Life						