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Abstract

The state-dependent Riccati equation (SDRE) unveils a nonlinear optimal
control approach; the method is sensitive to uncertainty and disturbance
that provokes the necessity of precise modeling and omitting disturbance
from the model and environment which is occasionally impossible. In this
paper, a robust state-dependent Riccati equation is introduced using only
the pure SDRE itself. Lyapunov’s second method for stability analysis is
used to extract two tuning rules for weighting matrices of the robust ap-
proach for handling both matched disturbance and parametric uncertainty.
A fourth-order differential equation is simulated to show the effectiveness
of the suggested method and the results were compared with conventional
SDRE. The robust version could handle the matched disturbance with a
steady-state shift from the equilibrium point where the conventional SDRE
failed. Additionally, a comparison and detailed analysis have been performed
between the proposed design and sliding mode control.

Keywords: SDRE, Robust, Nonlinear, Optimal, Closed-loop, Matched
uncertainty.

1. Introduction

The state-dependent Riccati equation (SDRE) is an optimal nonlinear
controller (closed-loop), proposed by Pearson in the 1960s [1]. The struc-
ture of the method mimics the linear quadratic regulator; however, there
exists nonlinearity in the system and weighting matrices [2]. Optimality,
systematic solution, and flexibility in design were reported as the benefits of
this approach [3]. The systematic solution refers to the routine procedure of
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the SDRE after the definition of state-dependent coefficient (SDC) param-
eterization matrices, {A(x(t)),B(x(t))}; which include the dynamics of the
system in question. Arranging the SDC matrices, one could solve the Riccati
equation and find the suboptimal gain of the controller. A part of flexibility
in design is gained by non-unique state-dependent coefficient parameteriza-
tion of the system matrices, recalled as “additional degrees of freedom” [4].
The second part of flexibility could be referred to as an easy combination of
the SDRE with other techniques, such as fuzzy [5, 6], sliding mode control
(SMC) [7, 8], neural network [9, 10], etc. The motivation for combining the
SDRE with other methods is to enhance the performance including speed of
regulation, better tuning, finding an adaptive structure, robustness, etc. A
pure traditional SDRE controller is quite sensitive to model uncertainty; any
deviation in the model from real dynamic increases the error. The sliding
mode control has been one of the best options to add robust characteris-
tics to the SDRE [11]. Additionally, the robustness could be gained by a
combination of the SDRE and H∞ approach [12, 13]. Obtaining robustness
through function approximation [14], impedance control [15], integral sliding
mode [16, 17], etc. could be done successfully; however, the question is how
to present a robust SDRE method by using only the method itself. This
could be an advantage to present an independent robust-SDRE and keep the
robust design under the umbrella of the SDRE without using other meth-
ods or combinations with supplementary tools such as neural networks or
fuzzy approach. A unified design simplifies the implementation and tuning
significantly.

Disturbance and parameter uncertainty could affect the entire state-space
system which could be referred to as mismatched uncertainty, or they could
only occur in the order of differentiation, referred to as matched disturbance
and uncertainty. Sliding mode control is an effective method that could han-
dle both matched and mismatched uncertainty [18]. Wang et al. presented
an adaptive SMC for persistent dwell-time switched nonlinear systems with
matched/mismatched uncertainties [19]. Kim and Kwon investigated robust
stabilization for a balancing robot, rolling on an unleveled terrain [20]. They
proposed a disturbance compensation method for the under-actuated system
and verified the approach experimentally. Nonsingular terminal sliding mode
control was used for controlling a system with matched uncertainty and ap-
plied for wheeled mobile robot control [21]. Robust structures for SDRE were
defined using additional terms in the weighting matrix of states [14, 22, 23].
Introducing the robust terms in the cost function and weighting matrix was
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done to enhance the control law based on updated matrices. Kuo studied
chaos synchronization using robust SDRE by adding terms to the weighting
matrix and cost function as well for matched and mismatched cases; the size
of the input vector was increased to incorporate the robust terms of the per-
formance index in the augmented state-space equation [24]. This idea was
also extended to more general cases and applications such as flexible joint
arms [14, 23].

Robust optimal control uses a combination of methods to present effec-
tive structures. Dung et al. employed an event-triggered approach to han-
dle external disturbance for mobile robots [25]. A combination of adaptive
dynamic programming, zero-sum game theory, and an event-triggered mech-
anism was used to optimize an H∞ cost function. Xiong and Liu studied
robust and optimal control via a barrier penalty function method for fixed-
wing platforms in low-attitude trajectories [26]. Qiu et al. researched an
observer-based robust optimal control with uncertainty and disturbance [27].
The case study used the attitude and altitude dynamics of a helicopter. Yang
et al. presented a robust adaptive control design to handle uncertainty and
unmatched disturbances [28]. The control mechanism started the process by
estimating nonlinearly parametrized system dynamics and designed an adap-
tive parameter estimation algorithm and a robust adaptive control design for
handling unmatched disturbances, that guaranteed the global boundedness.
The adaptive robust design was also implemented on an air vehicle with par-
tial nonlinear parameterizations [29]. The mentioned works used an adaptive
mechanism and estimation to incorporate a proper signal for the uncertain
part of the dynamics. The similarity of the proposed robust SDRE is that
the adaptive robust mechanism is inside the weighting matrix of the states,
derived from the Lyapunov method. The highlighted difference between the
robust adaptive controllers and the robust SDRE could be seen in the uni-
fied compact derivation of the method in this work which could imply the
simplicity of the implementation for practical works.

In this work, the system is not augmented and the same number of inputs
will be considered in comparison with [14, 23, 24], and also the Lyapunov
function will be used to find the modified state and input matrices for robust
design. The Lyapunov function was used to show stability in [22], though here
in this work, it will set the robust tuning in addition to that; the parameter
uncertainty is mismatched and the disturbance is matched. The trade-off
between additional complexity versus better performance has been always
discussed while presenting an increment contribution to available methods.
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Original methods, such as SDRE in this case, present the basis of the control
design with simple steps and results in a fair performance. However, their
framework is defined within a limited range of systems and conditions, i.e.
systems without uncertainty or disturbance, ones with zero equilibrium point,
etc. Development of the new branches and versions from conventional SDRE
and the combination of that with other techniques enhance the performance
at the cost of more computational burden, complexity, and extra machinery.
Here the intention is to use the potential of the SDRE and present two simple
tuning rules based on the second Lyapunov stability criteria to solve one of
the most important issues of the SDRE, which is the lack of robustness in
terms of uncertainty in modeling.

The main contributions of this work are as follows. 1) Introducing a
robust state-dependent Riccati equation via the nonlinear structure of the
weighting matrices of the method itself, without input augmentation nor
combination with other methods. 2) Using the Lyapunov function for guar-
anteeing stability, two conditions have been generated for adding robustness
to the system for dealing with matched disturbance and mismatched para-
metric uncertainty. The bounds of uncertainty and disturbance are set in the
Hamiltonian and cost function to provide a new control law that regulates
the disturbed uncertain system.

The optimality of the conventional SDRE and the nonlinear design of
the controller are great advantages though the sensitivity to uncertainty and
disturbance could be listed as weak points. This work added a nonlinear
mechanism in the weighting matrices of the system to include the bounds
of disturbance and uncertainty to cover this problem. The unified design of
the proposed robust SDRE is an important feature that implies simplicity in
the design procedure. The complexity that the proposed design could handle
is the capability to control the system with uncertainty and disturbance;
additionally, it can handle disturbance with a shift in the steady-state value.
This shift in the steady-state value moves the equilibrium of the system
from zero to another point, which not all the controllers could observe and
compensate that.

Section 2 presents the main results and tuning rules for providing stability
and robust characteristics for the system. Section 3 presents the simulation
results and Section 4 presents the comparison of the proposed controller with
conventional robust designs and performs an analysis. Section 5 states the
summary of the work.

Notations : Rn is the n-dimensional Euclidean space, Rn×m is a set of
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n×m real matrix; (·)⊤ denotes a transposition of a matrix or a vector; In×n

and 0n×n show n× n identity and zero matrices. (·)† performs a generalized
inverse of a matrix and rand(·) generates a random number between [0, 1].

2. Main Results

Consider a time-invariant nonlinear affine-in-control system with matched
time-varying disturbance and mismatched parametric uncertainty:

ẋ(t) = A(x(t),η)x(t) +B(x(t),η)(u(t) +w(x(t), t)), (1)

where the state vector is presented by x(t) ∈ Rn, u(t) ∈ Rm is an input
vector, η ∈ Rp is a vector of parameter uncertainty, where η ≥ 0, and it
is limited to the upper bound η ≤ η0; A(x(t),η) : Rn × Rp → Rn×n and
B(x(t),η) : Rn × Rp → Rn×m represent state-dependent coefficient parame-
terization of the dynamics

ẋ(t) = f(x(t),η) + g(x(t),η,u(t), t), (2)

in which f(x(t),η) and g(x(t),η,u(t), t) are smooth piecewise-continuous
vector-valued functions for all x(t) ∈ Rn in t ∈ R+. The equilibrium point
is zero f(0,η) = 0, and B(0,η) ̸= 0. Moreover, w(x(t), t) : Rn × R+ → Rm

represents an unknown external disturbance vector.

Assumption 1. The disturbance vector is bounded and smooth with a steady-
state value, wb in t ∈ R+ where limt→∞w(x(t), t) = wb. Additionally,
w(x(t), t) ≤ wu holds in transient response and in steady-state condition
wb < wu.

Remark 1. It should be noted that the system’s equilibrium point without
input is zero, f(0,η) = 0; however, the matched disturbance has a steady-
state shift, wb, which imposes a non-zero equilibrium point for the whole
system ẋ(t), depending on the disturbance.

Assumption 2. The pair of {A(x(t),η),B(x(t),η)} is a completely con-
trollable parameterization of the system (2) for all x(t) in t ∈ R+. η makes
{A(x(t),η),B(x(t),η)} uncertain though it does not affect the controllability.
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A brief example to clarify Assumption 2 is the pair of A(x) =

[
0 1
0 −x2

]
and B(x) =

[
0

1 + x2
1

]
which is controllable, and adding parametric uncer-

tainty changes the pair to A(x,η) =

[
0 1 + η1
0 −η2x2

]
and B(x,η) =

[
0

1 + η1x
2
1

]
,

which make the system uncertain though the controllability matrix will not

lose its rank, Mc(x,η) =

[
0 (1 + η1)(1 + η1x

2
1)

1 + η1x
2
1 −η2x2(1 + η1x

2
1)

]
in the range of

0 ≤ η ≤ η0. Assumption 2 makes sure that the change in the uncertainty
does not violate the controllability. The same will be held on Assumption 3
on observability condition.

The control aims to look for admissible input u(t) such that the state
vector x(t), will be regulated to the equilibrium point of the system (1),
f(0,η) = 0, and the following cost function is minimized:

J(·) = 1

2

∫ ∞

0

{(u(t) +wb)
⊤R(x(t))(u(t) +wb) + x⊤(t)Q(x(t))x(t)} dt, (3)

where Q(x(t)) : Rn → Rn×n and R(x(t)) : Rn → Rm×m are positive-
semidefinite and positive-definite symmetric matrices, respectively.

Assumption 3. The pair of {A(x(t),η),Q1/2(x(t))} is a completely observ-
able parameterization of the system (2) and weighting matrix of states in
cost function (3) for all x(t) in t ∈ R+, where Q1/2(x(t)) is the Cholesky
decomposition of Q1/2(x(t)). Similar to Assumption 2, η does not violate
the observability condition.

The controllability and observability conditions, presented in Assump-
tions 2 and 3, are checked through the computation of the rank of the con-
trollability matrix:

Mc =
[
B(x(t),η) A(x(t),η)B(x(t),η) · · · An−1(x(t),η)B(x(t),η)

]
,

and observability matrix:

Mo =


Q1/2(x(t))

Q1/2(x(t))A(x(t),η)
...

Q1/2(x(t))An−1(x(t),η)

 .
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If matrices Mc and Mo are fully ranked, equal to n, in the time interval
t ∈ [0, tf ], then Assumptions 2 and 3 are satisfied.

To derive the Riccati equation and the control law, the information on the
bounds will be considered in the design since the real matrices are unknown.
If the unknown system is denoted by A(x(t),η),B(x(t),η),w(x(t), t), con-
sidering the known bounds, one could define A(x(t),η0),B(x(t),η0),wb to
design the control law and corresponding Riccati equation. The upper bound
of uncertainty could be set by the designer, based on the physical character-
istics of the model, i.e. the maximum mass/load of one component (η1 =
m1(kg), f1(N) is the unknown parameter and η0,1 = m1,max(kg), f1,max(N) is
the maximum value) such as a link of a robotic manipulator or the friction
force of that link (η2 = ffr,1(N) is the unknown and η0,2 = ffr,1,max(N) is
the maximum value). The upper bound of uncertain values results in corre-
sponding dynamics and SDC matrices, A(x(t),η0),B(x(t),η0).

Shaping the Hamiltonian with the information of the known system con-
sidering η0 and wb, provides:

H(x(t),η,u(t),λ(t), t) =
1

2
{(u(t) +wb)

⊤R(x(t))(u(t) +wb)+

x⊤(t)Q(x(t))x(t)}+ λ⊤(t)[A(x(t),η0)x(t) +B(x(t),η0)(u(t) +wb)],

where λ(t) = K(x(t),η0)x(t) is a co-state vector and it follows:

λ̇(t) = K(x(t),η0)ẋ(t) + K̇(x(t),η0)x(t).

Now, by considering the optimality conditions [3]:

∂H(·)
∂x(t)

=− λ̇(t),

∂H(·)
∂λ(t)

=ẋ(t),

∂H(·)
∂u(t)

=0,

(4)

the control law and the robust SDRE equation will be obtained. Considering
the third condition in (4), one could find

B⊤(x(t),η0)λ(t) +R(x(t))(u(t) +wb) = 0,
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and with the co-state vector definition, then the control law is found:

u(t) = −R−1(x(t))B⊤(x(t),η0)K(x(t),η0)x(t)−wb, (5)

in whichK(x(t),η0) : Rn×Rp → Rn×n is the symmetric positive definite sub-
optimal gain of the controller. The second condition of (4) satisfies system
equation (1), by substituting η → η0 and w(x(t), t) → wb. To find the
Riccati equation, the first condition is used which results in:

∂H(·)
∂x(t)

=Q(x(t))x(t) +
1

2
x⊤(t)

(
∂Q(x(t))

∂x(t)

)⊤

x(t) +A⊤(x(t),η0)λ(t)

+ x⊤(t)

(
∂A(x(t),η0)

∂x(t)

)⊤

λ(t) +
1

2
(u(t) +wb)

⊤
(
∂R(x(t))

∂x(t)

)⊤

(u(t) +wb) + (u(t) +wb)
⊤
(
∂B(x(t),η0)

∂x(t)

)⊤

λ(t) =

− K̇(x(t),η0)x(t)−K(x(t),η0)ẋ(t).

(6)

Substituting system (1) with its known bounds and steady-state value
of disturbance wb, co-state vector and control law (5) into (6), one could
present (t argument is removed for simplification):

Q(x)x+
1

2
x⊤

(
∂Q(x)

∂x

)⊤

x+
1

2
x⊤K(x,η0)B(x,η0)R

−1(x)

(
∂R(x)

∂x

)⊤

R−1(x)B⊤(x,η0)K(x,η0)x− x⊤K(x,η0)B(x,η0)R
−1(x)(

∂B(x,η0)

∂x

)⊤

K(x,η0)x+A⊤(x,η0)K(x,η0)x+

x⊤
(
∂A(x,η0)

∂x

)⊤

K(x,η0)x =

K(x,η0)B(x,η0)R
−1(x)B⊤(x,η0)K(x,η0)x

− K̇(x,η0)x−K(x,η0)A(x,η0)x.

(7)
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Equation (7) is simplified as:

{−K(x,η0)B(x,η0)R
−1(x)B⊤(x,η0)K(x,η0) +K(x,η0)

A(x,η0) +A⊤(x,η0)K(x,η0) +Q(x)}x+[
K̇(x,η0) +

1

2
x⊤

(
∂Q(x)

∂x

)⊤

+
1

2
x⊤K(x,η0)B(x,η0)

R−1(x)

(
∂R(x)

∂x

)⊤

R−1(x)B⊤(x,η0)K(x,η0)+

x⊤
(
∂A(x,η0)

∂x

)⊤

K(x,η0)− x⊤K(x,η0)B(x,η0)R
−1(x)(

∂B(x,η0)

∂x

)⊤

K(x,η0)

]
x = 0.

(8)

Equation (8) has two parts, the robust SDRE:

K(x,η0)A(x,η0) +A⊤(x,η0)K(x,η0)+

Q(x)−K(x,η0)B(x,η0)R
−1(x)B⊤(x,η0)K(x,η0) = 0,

(9)

and the necessary condition for optimality:

K̇(x,η0) +
1

2

(
∂Q(x)

∂x
x

)⊤

+
1

2

(
∂R(x)

∂x
[R−1(x)B⊤(x,η0)K(x,η0)x]

)⊤

R−1(x)B⊤(x,η0)K(x,η0) +

(
∂A(x,η0)

∂x
x

)⊤

K(x,η0)−(
∂B(x,η0)

∂x
[R−1(x)B⊤(x,η0)K(x,η0)x]

)⊤

K(x,η0) = 0.

Theorem 1. Considering Assumptions 1-3, the nonlinear system (1) with
parameter uncertainty and matched disturbance, is stabilized using control
law (5), where the control gain K(x(t),η0) is the symmetric positive-definite
solution to the robust SDRE (9), if the weighting matrices, R(x(t)) and
Q(x(t)) are defined as:

ϵIm×m ≤ R(x(t)) <
(
B†(x(t),η0)[B

⊤(x(t),η0)]
†)−1

, (10)

Qb(x(t)) < Q(x(t)) ≤ Qmax, (11)
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in which 0 < ϵ ≪ 1, and

Qb(x(t)) = [x†(t)]⊤[wu −wb]
⊤B⊤(x(t),η0)B(x(t),η0)[wu −wb]x

†(t), (12)

moreover, the upper bound is symmetric positive-definite Qmax ≫ In×n.

Proof : To check the stability of the system, a Lyapunov candidate is
chosen as V (x(t),η0) = x⊤(t)K(x(t),η0)x(t), which is V (x(t),η0) > 0 when
x(t) ̸= 0; V (x(t),η0) = 0 when x(t) = 0. The derivative of the Lyapunov
function results in

V̇ (x(t),η0) =ẋ⊤(t)K(x(t),η0)x(t) + x⊤(t)K̇(x(t),η0)x(t)+

x⊤(t)K(x(t),η0)ẋ(t).
(13)

To guarantee the stability of the uncertain system, Eq. (1) is substi-
tuted into (13). The algebraic form of the robust SDRE was also considered
for solving the optimal control, t → ∞ based on cost function (3) then
limt→∞K(x(t),η0) = Kss(x(∞),η0), and K̇(x(t),η0) = 0 is removed from
(13) which results in

V̇ (x,η0) =x⊤A⊤(x,η)K(x,η0)x+ u⊤B⊤(x,η)K(x,η0)x+

w⊤(x, t)B⊤(x,η)K(x,η0)x+ x⊤K(x,η0)A(x,η)x+

x⊤K(x,η0)B(x,η)u+ x⊤K(x,η0)B(x,η)w(x, t).

(14)

Substituting control law (5) into (14) also generates

V̇ (x,η0) =x⊤A⊤(x,η)K(x,η0)x− x⊤K(x,η0)B(x,η0)R
−1(x)

B⊤(x,η)K(x,η0)x−w⊤
b B

⊤(x,η)K(x,η0)x+

w⊤(x, t)B⊤(x,η)K(x,η0)x+ x⊤K(x,η0)A(x,η)x−
x⊤K(x,η0)B(x,η)R−1(x)B⊤(x,η0)K(x,η0)x−
x⊤K(x,η0)B(x,η)wb + x⊤K(x,η0)B(x,η)w(x, t).

(15)

Considering the known bounds of A(x,η0) and B(x,η0) for (15), and
substituting

K(x,η0)A(x,η0) +A⊤(x,η0)K(x,η0)−
K(x,η0)B(x,η0)R

−1(x)B⊤(x,η0)K(x,η0) = −Q(x),
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in the updated form of (15) result in

V̇ (x,η0) =− x⊤Q(x)x+ ω⊤(x,η0, t)K(x,η0)x− x⊤K(x,η0)B(x,η0)

R−1(x)B⊤(x,η0)K(x,η0)x+ x⊤K(x,η0)ω(x,η0, t),

(16)

where ω(x,η0, t) = B(x,η0)[−wb + w(x, t)]. Since K(x,η0) is symmetric,
Eq. (16) is simplified as

V̇ (x,η0) =− x⊤Q(x)x− x⊤K(x,η0)B(x,η0)R
−1(x)

B⊤(x,η0)K(x,η0)x+ 2x⊤K(x,η0)ω(x,η0, t),
(17)

and it must be less than zero to guarantee stability. Recalling Young’s in-
equality for products, one could rewrite (17) as:

V̇ (x,η0) =− x⊤Q(x)x− x⊤K(x,η0)B(x,η0)R
−1(x)B⊤(x,η0)K(x,η0)x+

x⊤K(x,η0)K(x,η0)x+ ω⊤(x,η0, t)ω(x,η0, t) < 0,

(18)

where K⊤(x,η0) = K(x,η0). Equation (18) is rearranged as

V̇ (x,η0) =− x⊤{Q(x)− [x†]⊤ω⊤(x,η0, t)ω(x,η0, t)x
†}x−

x⊤[K(x,η0)B(x,η0)R
−1(x)B⊤(x,η0)

K(x,η0)−K(x,η0)K(x,η0)]x < 0,

which forces the system to follow two tuning rules for weighting matrices:

Q(x(t)) > [x†(t)]⊤ω⊤(x(t),η0, t)ω(x(t),η0, t)x
†(t), (19)

B(x(t),η0)R
−1(x(t))B⊤(x(t),η0) > In×n. (20)

Based on Assumption 1, the upper bound of uncertainty, wu, is substi-
tuted into (19) and (20) and they are rewritten as:

Qb(x(t)) < Q(x(t)), (21)

R(x(t)) <
(
B†(x(t),η0)[B

⊤(x(t),η0)]
†)−1

, (22)

where

Qb(x(t)) = [x†(t)]⊤[wu −wb]
⊤B⊤(x(t),η0)B(x(t),η0)[wu −wb]x

†(t).
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Note that the unknown value w(x(t), t) is replaced with its upper bound
wu and therefore, wu − wb > 0, in (21). When the error goes to zero,
Qb(x(t)) will gain a very large value, that will cause excessive use of control
and chattering in the input signal. To avoid that problem, Eq. (21) is
bounded above by:

Q(x(t)) ≤ Qmax, (23)

where Qmax ≫ In×n and Q⊤
max = Qmax.

It was stated that B(x(t),η0) ̸= 0, however, rarely it might gain a very
small value. To make sure the definition of R(x(t)) is complete, a minimum
value of ϵ is considered to limit the lower bound of ϵIm×m ≤ R(x(t)) where
0 < ϵ ≪ 1. Then the weighting matrices (21) and (22) are defined as:

Qb(x(t)) < Q(x(t)) ≤ Qmax,

ϵIm×m ≤ R(x(t)) <
(
B†(x(t),η0)[B

⊤(x(t),η0)]
†)−1

,

which concludes the proof. □

Remark 2. Realization of Eq. (23) in implementation will be done by adding
conditions on the value of components of Q(x(t)). If one of the diagonal
components of Q(x(t)) reaches the bound Qmax, the condition will use Qmax

instead of Qb(x(t)). This does not violate the steady-state behavior of the
tuning and the controller since when Qmax is active, that means the Pseudo
inverse of error, x†(t), possesses a very large value and consequently, the
error possesses a very small value (a desirable result).

To clarify the workflow of the proposed robust SDRE controller, the block
diagram of the system is presented in Fig. 1.

3. Simulations

Consider an illustrative example, a fourth-order differential equation in
state-space form, within the framework of system (1) with state-vector x(t) =
[x1(t), x2(t), x3(t), x4(t)]

⊤ and a single input u(t) that correspond to SDC
matrices:

A(x,η) =


0 1 + η3 0 0
0 0 1 0
0 0 0 1 + η4

−η4(x
2
1 + x2

2)e
−|x1| −4η1 sin(x1 + x3) −0.6− 1

1+x2
3+x2

4
e−t −x1sign(x1) + η2 + cos(x4)

 ,
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nonlinear uncertain system Eq. (1) 

𝐱ሶ = 𝐀ሺ𝐱, 𝛈ሻ𝐱 + 𝐁ሺ𝐱, 𝛈ሻ൫𝐮 + 𝐰ሺ𝐱, 𝑡ሻ൯ 
control law Eq. (5) 

𝐮 = −𝐑−1ሺ𝐱ሻ𝐁𝑇ሺ𝐱, 𝛈0ሻ𝐊ሺ𝐱, 𝛈0ሻ𝐱 − 𝐰b 

𝐰b 

𝐊ሺ𝐱, 𝛈0ሻ 

robust SDRE Eq. (9) 

𝐀𝑇ሺ𝐱, 𝛈0ሻ𝐊ሺ𝐱, 𝛈0ሻ + 𝐊ሺ𝐱, 𝛈0ሻ𝐀ሺ𝐱, 𝛈0ሻ
− 𝐊ሺ𝐱, 𝛈0ሻ𝐁ሺ𝐱, 𝛈0ሻ𝐑

−1ሺ𝐱ሻ𝐁𝑇ሺ𝐱, 𝛈0ሻ𝐊ሺ𝐱, 𝛈0ሻ
+ 𝐐ሺ𝐱ሻ = 𝟎 

nominal SDC 

matrices 

𝐀ሺ𝐱, 𝛈0ሻ 
𝐁ሺ𝐱, 𝛈0ሻ 

input 

saturation 

weighting matrix Eq. (12) 

𝐐bሺ𝐱ሻ
= ሾ𝐱†ሿ𝑇ሾ𝐰u

−𝐰bሿ
𝑇𝐁𝑇ሺ𝐱, 𝛈0ሻ𝐁ሺ𝐱, 𝛈0ሻሾ𝐰u

−𝐰bሿ𝐱
† 

𝐰u 

weighting matrix Eq. (10) 

𝜀𝐈 ≤ 𝐑ሺ𝐱ሻ

< ሺ𝐁†ሺ𝐱, 𝛈0ሻሾ𝐁
𝑇ሺ𝐱, 𝛈0ሻሿ

†ሻ−1 

bounds Eq. (11) 

𝐐bሺ𝐱ሻ < 𝐐ሺ𝐱ሻ ≤ 𝐐max 

ref 

output 

− 

Figure 1: The block diagram of the robust SDRE controller design.

B = [0, 0, 0, 1]⊤

where the unknown parameters are η = diag(rand(4, 1))η0, in which the
upper bound is η0 = [0.3, 0.4, 0.2, 0.15]⊤ and rand(4, 1) generates a random
vector with four components between [0, 1] and diag makes it a diagonal
matrix.

Remark 3. The upper bound of η0 has been selected as an arbitrary vec-
tor since the mathematical model is not associated with a physical system.
Evidently, if the upper bound is too big and improper, it does apply a huge
uncertainty to the system and the controller will fail. For example, if the
states and initial conditions are on a scale of 1 or 2, the upper bound of
uncertainty could be around 0.5. To have a better vision of these numbers,
consider a model for an unmanned helicopter, if the mass of the system is
5(kg), the upper bound of uncertainty in the mass of the helicopter should not
be more than 5+2.5(kg), 50% uncertainty in mass which can be defined as
0.5 in the modeling, which is still a huge value for uncertainty in modeling.

The unknown parameter vector in this simulation was randomly found
η = [0.2118, 0.3718, 0.1641, 0.0060]⊤. An unknown external disturbance is
set

w(x(t), t) = rand(1)
4e−0.2t

1− |x1 − x2|
+ ds, (24)
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where rand(1) delivers a random number between [0, 1] at each simulation’s
time-step in t = [0, tf ], and ds = 0.5 is a shift value for the disturbance. A
similar discussion could be argued for the bound of disturbance as Remark
3. Based on the applied disturbance, the steady-state value is defined as
wb = ds = 0.5, and the upper bound is wu = 4.5.

The SDC matrices must be formed based on the upper bound of the
uncertainty vector which results in:

A(x,η) =


0 1 + η0,3 0 0
0 0 1 0
0 0 0 1 + η0,4

−η0,4(x
2
1 + x2

2)e
−|x1| −4η0,1 sin(x1 + x3) −0.6− 1

1+x2
3+x2

4
e−t −x1sign(x1) + η0,2 + cos(x4)

 .

The control parameters are also selected as ϵ = 0.01, Qmax = 10 × I4×4,
with the upper/lower saturation bound of the input signal umax,min = ±2.
The initial condition is chosen x(0) = [1.25,−1.75, 0.25,−1]⊤ and the ob-
jective is to regulate to the equilibrium point x(tf) = 04×1, and the time of
simulation is tf = 20(s). The simulation is performed and the state variables
are plotted in Fig. 2a, all of them successfully converged to zero. The out-
put signals of the simulation are also compared with the conventional SDRE
controller to show the superiority of the robust version. The input signals
of both systems are shown in Fig. 2b. The information on uncertainty and
disturbance was not visible to the controllers, and the control laws consid-
ered their bounds based on the proposed approach. The errors of the robust
SDRE and conventional SDRE are also illustrated in Fig. 3a, in which the
conventional SDRE failed to be regulated to zero, because of the shift in the
steady-state value of the disturbance. The error of the robust SDRE is found
0.0180 and the error of the conventional one is obtained 0.1761.

Remark 4. The plot of input signals of the robust SDRE and the conven-
tional SDRE shows similar inputs when the system reaches the steady-state
value, Fig. 2b. A question might arise as to why two signals are similar while
their errors of them are different, plotted in Fig. 3a. Control law (5) includes
wb, however, the conventional SDRE does not have this term in the input
law, u(t) = −R−1(x(t))B⊤(x(t),η0)K(x(t),η0)x(t). The existence of a shift
in the disturbance causes a steady-state error for the conventional SDRE and
it tries to compensate it as t → ∞. So, the steady-state value of the input
for the traditional SDRE is due to the steady-state error. On the contrary,
the steady-state value of the robust SDRE is due to wb, and the error of that
converges to zero. Since the comparison was done with the same w(x(t), t)
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Figure 2: (a) The state variables of the system, all states regulated to zero, the equilibrium
of the system. (b) The input signal, the conventional SDRE obtained a more aggressive
input signal in comparison with the robust version which puts more effort into the actuators
in the case of a physical model.

in (24), both input signals matched, however, the errors of them are different
and the conventional SDRE failed.

The traditional SDRE was unable to see the shift in the disturbance
and does not have any option to handle the parameter uncertainty. The
traditional SDRE is an effective method, in the domain of nonlinear optimal
control and scored many applications in different fields. One of the most
important aspects of the conventional SDRE is its flexible structure that can
handle changes in its structure such as modified SDRE for path planning [30],
combination with fuzzy [31], sliding mode control [32, 33], etc. Here in this
work, another change in the structure has been shown to gain robustness.

To verify the solution with different initial conditions, a domain of x1(0) ∈
[−2, 2] and x2(0) ∈ [−2, 2] is checked for the proposed controller that resulted
in the phase plane versus time, presented in Fig. 3b. The uncertainty was
considered similar to the previous case η = [0.2118, 0.3718, 0.1641, 0.0060]⊤,
and the initial condition for the third and fourth states as x3(0) = 0.25 and
x4(0) = −1. The corresponding errors at the final time were also reported
in Table 1. The minimum error was found at 0.0171, the median error was
0.0190, the mean error was 0.0191, the maximum error was 0.0217, and
the standard deviation was found at 0.0011. Changes in the upper bound
of Qmax also affect the error reduction. A series of simulations for various
values of Qmax is done which shows increasing the upper bound enhances the
controller, presented in Fig. 4. The corresponding errors at different times
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Figure 3: (a) The error of the system in regulation, along with a comparison with con-
ventional SDRE; in addition to the better transient performance of robust SDRE, the
conventional SDRE cannot reduce the steady-state error even if the simulation time in-
creases. (b) The phase plan for the fourth-order system with 20 different initial conditions
for x1(0) ∈ [−2, 2] and x2(0) ∈ [−2, 2] for the robust SDRE controller.

were reported in Table 2 as well.
Analysis of failure: As was stated in Remark 3, an increase in the distur-

bance and its upper bound improperly, will fail the system to be regulated
to zero. A series of analyses have been performed to study this effect briefly.
Consider all the simulation parameters the same but with only a change in the
upper bound of the parameter uncertainty vector η0 = α×[0.3, 0.4, 0.2, 0.15]⊤

and its randomly found value η = α× [0.2118, 0.3718, 0.1641, 0.0060]⊤. If one
considers different values for α = {0.1, 0.5, 1, 1.5, 2, 2.25, 2.5} as a scale for
highlighting the effect of uncertainty in the simulation, for α ≤ 2 the per-
formance of the controller is acceptable. For α = 2.25, 2.5, and more, the
controller failed to regulate the system to the equilibrium point, see Fig. 5.
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Table 1: The error of the system at the final time with respect to the different initial
conditions; 20 randomly chosen values in the domain of x1(0) ∈ [−2, 2] and x2(0) ∈ [−2, 2]
were simulated.

No. x1(0) x2(0) e(20)

1 1.61911 1.578828 0.017058
2 1.438366 -1.33313 0.02168
3 -0.39209 1.754473 0.018378
4 0.945881 0.936684 0.018501
5 1.617914 -1.48369 0.018367
6 1.834861 1.284406 0.018509
7 -1.15196 -0.8757 0.019748
8 0.823012 0.301953 0.019717
9 -1.46334 1.518763 0.017593
10 -0.45826 -0.27979 0.019049
11 -0.71128 -1.24605 0.018878
12 -0.58746 0.795487 0.01873
13 1.423481 -1.47013 0.018566
14 -0.5057 -1.90257 0.019146
15 1.590355 -1.32696 0.020772
16 -0.95428 1.076854 0.020045
17 -0.33583 1.531081 0.020185
18 -0.16811 -0.48931 0.01958
19 0.447787 1.669265 0.019033
20 -0.25368 -0.30394 0.019204

4. Comparison and Analysis

This section presents a comparison between the proposed robust control
design and conventional ones. Sliding mode control is a well-established and
effective controller in the domain of robust control, which is selected as a
candidate for comparison. The system for simulation is a disturbed uncertain
Van der Pol equation subjected to forced control input for regulation to
equilibrium point xdes = 0:

ẋ(t) =

[
0 1 + η1
−1 η2(1− x2

1(t))

]
x(t) +

[
0
1

]
(u(t) + w(x(t), t)),

where w(x(t), t) is set as Eq. (24), and η = diag(rand(2, 1))η0, in which the
upper bound is η0 = [0.2, 0.4]⊤. The upper bound of uncertainty generates
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Figure 4: The effect of the upper bound of Q(x) matrix on the error reduction; (a) error
reduction in the entire time domain, (b) a zoomed-view around 6(s) of simulation, (c) a
zoomed view at the end of simulation 14-20(s).
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Figure 5: The effect of disturbance and analysis of failure; α > 2 failed as it imposed a
huge uncertainty on the system, please revisit Remark 3.

the nominal SDC matrix A(x,η0) =

[
0 1 + η0,1
−1 η0,2(1− x2

1(t))

]
.

The steady-state value of the disturbance is wb = 0.5, the upper bound
of that is wu = 4.5, and ϵ = 0.01. The maximum bound of weighting matrix
is Qmax = 10× I2×2, weighting value of the input is Rmin = ϵ and the control
input of the system is limited by umax,min = ±2.

The classical sliding mode control, an effective approach in robust design,
is chosen for comparison. The sliding surface is set as s(x(t)) = ė(t) + λe(t)
where e(t) = x1(t)−xdes,1, ė(t) = x2(t)−xdes,2 and λ > 0 is a strictly positive
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Table 2: The role of the upper bound of Q(x(t)) on the error reduction; increasing the
value of Qmax reduces the error and the produced graphs in Fig. 4 would be similar to
Qmax = 1000.

No. Qmax e(10) e(15) e(20)

1 1 0.33212 0.136727 0.065795
2 10 0.091924 0.050451 0.01982
3 20 0.064916 0.036398 0.013243
4 50 0.050676 0.023252 0.009211
5 80 0.047126 0.020482 0.006621
6 100 0.03986 0.016851 0.006089
7 1000 0.048411 0.006318 0.00205

constant. The control law is in the form of

uSMC(t) = −f(x(t))− kSMC sign(s(x(t))),

where f(x(t)) = −x1(t) + η0,2(1 − x2
1(t))x2(t). The initial condition of the

simulation is chosen x(0) = [−1, 1.5]⊤, λ = 1 and kSMC = 2, and time of
simulation is set tf = 20(s). The phase plane of the system in the simula-
tion is shown in Fig. 6a. The input signals of the three methods are also
illustrated in Fig. 6b. The regulation error for the conventional SDRE was
gained 0.1651, SMC 0.0361, and the robust SDRE 0.0145. The close result
of the SMC to the proposed robust SDRE was gained with the cost of chat-
tering and bigger input signal, presented in Fig. 6b. In order to remove the
chattering, typical treatments such as using “arctan” function was consid-
ered and simulated to enhance the performance. Increase in the gains λ = 2
and kSMC = 10 resulted in error of SMC 0.0272, but without chattering. The
states and inputs are illustrated in Figs. 7a and 7b, respectively. This com-
parison was done to show that the performance of the proposed robust design
is acceptable. Clearly, the sliding mode control with tuning and iterations
might get closer results to optimal robust SDRE controller.

The sensitivity of the performance of the proposed design is checked in
terms of different external disturbance functions. The error of the system has
been computed as an index in response to them in the regulation case, pre-
sented in this section. The disturbance function Eq. (24) is bounded based
on Assumption 1 though it has a steady-state shift which is difficult to han-
dle via conventional SDRE. Sliding mode control handled the shift using the
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Figure 6: The simulation of the Van der Pol oscillator using the “sign” function.
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Figure 7: The simulation of the Van der Pol oscillator using the “atan” function.

correction part of the control law kSMC sign(s(x(t))) or kSMC arctan(s(x(t))).
Here a series of disturbance functions is simulated and the results are re-
ported in Table 3. The control parameters and simulation condition are
based on Section 4 and SMC with the “arctan” function. The amplitude of
disturbance requires tuning though without that, the proposed design gained
less root-mean-square error at the final time for the various types of external
disturbance, see Table 3.

5. Conclusions

This work presented a robust state-dependent Riccati equation controller
for nonlinear systems with mismatched parameter uncertainty and matched
disturbance. The disturbance has a steady-state shift and it will not tend
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Table 3: The sensitivity of the error in the regulation of the Van der Pol equation subjected
to different disturbance types. RMS stands for root mean square.

No. disturbance w(x(t), t) RMS(e(tf))
SDRE

RMS(e(tf))
SMC

RMS(e(tf)) ro-
bust SDRE

1 rand(1) 4e−0.2t

1−|x1−x2| + ds 0.1631 0.0268 0.0128

2 rand(1) 4e−0.2t

1−|x1−x2| − ds 0.1376 0.0230 0.0131

3 ds 0.1508 0.0250 8.4946× 10−12

4 rand(1)×0.1×(tf−t)+ds 0.1685 0.0261 0.0221
5 4× rand(1) + ds 0.7214 0.6809 0.5734

to zero when time goes to infinity. This made it impossible for the conven-
tional SDRE to regulate the system to zero since it only works with systems
with zero equilibrium points. The mentioned case and also the sensitivity of
the conventional SDRE to uncertainty in modeling motivated this work to
present a robust structure for the SDRE, using its own capability and design
flexibility. The stability of the robust SDRE was presented (based on the
second Lyapunov stability criteria) and delivered two tuning rules for the
selection of weighting matrices to gain stability in transient and steady-state
conditions. The analytical proof of stability was presented for the robust
design. Those obtained tuning conditions were found under the umbrella of
the SDRE without combining the method with other tools such as neural
networks, fuzzy, or other apparatus. A fourth-order differential equation was
selected as an example for the simulation study. The simulation results con-
firmed the effectiveness of the controller and outperformed the conventional
SDRE. The changes in the parameters, the effect of uncertainty on the fail-
ure, bounds, etc. have been investigated to clarify to performance of the
proposed structure.

Proposal for future study : This proposed design revealed the implemen-
tation of a robust method based on the state-dependent Riccati equation as
a unified method within the framework of nonlinear optimal control. The
application of this method could be developed for various systems such as
flapping-wing flying robots (FWFRs) which inherit complicated hybrid and
disturbed dynamics [34]. The uncertainty is rooted in the equivalence of
flapping and the base excitation model. Flapping itself also exerts a peri-
odic excitation as a disturbance to the body of the base. Hence this method
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could be a good option to handle the uncertain and disturbed dynamics of
FWFR and enhance the control performance. From the theoretical point of
view, the tracking case could be developed for the same concept through the
implementation of stationary and necessary conditions for optimality on the
Hamiltonian which includes the tracking error inside the cost function. Fol-
lowing the difference between the regulation (current work) [35], and tracking
problem [36], the mentioned references could be visited and the derivation
method could be applied considering the uncertainty and disturbance in the
system and cost function.
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