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Abstract—The OpenGPT-X project is a German initiative with
ten collaborators to build, train, and deploy a multilingual open-
source language model. Models trained within the project will
be used for pilot cases by industry partners and commercialized
through the Gaia-X Federation. Due to the substantial memory
and compute resources required for efficiently training large
language models, high-performance computing systems such as
JUWELS Booster1 are essential. This paper presents the results of
the exploration of novel hardware architecture conducted within
the scope of the project.

I. INTRODUCTION

In recent years, the field of Natural Language Processing
(NLP) has witnessed success with Large Language Models
(LLMs). The most-recent LLMs, like OpenAI’s ChatGPT [1]
and GPT-4 [2], have attracted enormous attention and shown
how LLMs can assist humans in executing tasks efficiently.

The OpenGPT-X project2 is a German initiative to build and
train large-scale Artificial Intelligence (AI) language models
for innovative language applications. The project is a collab-
orative effort of ten partners from industry and academia (see
Figure 1). The models developed within the project will be
made compatible with the Gaia-X3 infrastructure, enabling
their use in federated European applications.

Figure 1. Infrastructure of the OpenGPT-X project. Jülich Supercomputing
Centre, JSC, (blue box) provides the JUWELS Cluster and Booster HPC
modules for training models.

The key efforts in OpenGPT-X revolve around training mul-
tilingual (w.r.t European languages), open-sourced language

1https://doi.org/10.17815/jlsrf-7-183
2https://opengpt-x.de/en/
3https://gaia-x.eu/

models. In order to train LLMs, ablation studies on various
aspects ranging from data to inference are conducted. This
paper delves into initial results regarding the exploration of
novel architectures, done under the scope of the OpenGPT-X
project.

II. NOVEL ARCHITECTURE EXPLORATION

To evaluate future HPC systems for their suitability in
NLP, it is crucial to explore a wide range of novel hardware
architectures for LLM training. As an initial step in assessing
hardware capacities, two benchmarks were evaluated on the
resources available in the JURECA-DC4 supercomputer, es-
pecially the JURECA Evaluation Platform5. These resources
include NVIDIA A100 GPUs (40 GB, SXM), NVIDIA H100
GPUs (80 GB, PCIe), AMD MI250 (64 GB) GPUs, and
Graphcore GC200 IPUs (IPU-M2000 POD-4, ≈ 260 GB).
The first benchmark utilizes TensorFlow ResNet-50 CNNs,
offering insights into the overall Machine Learning capacity
of the hardware. The second benchmark, derived from the
OpenGPT-X fork of Megatron-LM6, provides us with insights
into LLM training.

The Helmholtz AI FZJ fork of TensorFlow ResNet-507

was used on the NVIDIA and AMD GPUs. In the case of
Graphcore IPUs, a device-optimized version8 by the vendor
was used, since the general TensorFlow setup is not compatible
with the IPU architecture.

Figure 2 shows heat maps of the training throughput (in
images per second) for global batch size plotted against
number of devices in a single node. The throughput scales
with the global batch size and number of devices. The ResNet-
50 model fits into a single device for all the tested hardware,
which implies the degree of data parallelism is the same as the
number of devices used. The results suggest that Graphcore
performs best for small batch sizes, and NVIDIA for large
batch sizes. AMD’s significantly lower performance warrants
further investigation. NVIDIA H100 GPUs, the latest GPU
generation, shows ≈ 1.4 − 2× performance compared to
NVIDIA A100 GPUs.

The Graphcore IPU has a unique memory architecture with
SRAM distributed into an organized set of small independent

4https://doi.org/10.17815/jlsrf-7-182
5https://apps.fz-juelich.de/jsc/hps/jureca/evaluation-platform-overview.html
6https://github.com/NVIDIA/Megatron-LM.git
7https://github.com/HelmholtzAI-FZJ/tf cnn benchmarks.git
8https://github.com/graphcore/examples.git
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ResNet-50 TensorFlow benchmark on AMD MI250 GPUs
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(a) AMD MI250 GPU
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ResNet-50 TensorFlow benchmark on Graphcore GC200 IPUs
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(b) Graphcore GC200 IPU
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ResNet-50 TensorFlow benchmark on NVIDIA A100 GPUs
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(c) NVIDIA A100 GPU
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ResNet-50 TensorFlow benchmark on NVIDIA H100 GPUs
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(d) NVIDIA H100 GPU

Figure 2. Heatmaps: GlobalBatchSize vs. #Devices. Throughput (images
per sec) scales with global batch size and number of devices for ResNet-50
model.

memory units, contributing to increased in-processor memory.
A set of attached DRAM chips (streaming memory) transfers
data to the in-processor-memory via explicit copies within
the software. Small batch sizes fit into in-processor memory,
which explains the faster throughput, when compared to large
batch sizes that would need more communication with the
streaming memory. Additionally, the IPU is not a SIMD
(Single Instruction Multiple Data) but a MIMD (Multiple
Instruction Multiple Data Stream) architecture.

Performance analysis for language model training was also
done on a single node (4 GPUs) of the NVIDIA A100
and H100 devices available in JURECA DC and the JU-
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Figure 3. Comparisons of NVIDIA A100 vs. H100 performance (TFlop/s),
using a 800M GPT model. Energy usage superimposed for first column pair.

RECA Evaluation Platform. For this, an 800 million parameter
GPT model was benchmarked using the OpenGPT-X fork of
Megatron-LM. The model fits into a single device and was
trained with a data parallelism of 4. Figure 3 shows a bar graph
plotting compute throughput in TFlop/s measured per device
for different global batch sizes. The NVIDIA H100 improves
performance by 1.5 × over the A100, aligning well with the
expectations for this latest generation of GPU platform.

Furthermore, to study energy consumption, the 800M GPT
model was trained on German data for 1 h on a single node of
the NVIDIA A100 and H100 with a data parallelism of 4 and
global batch size of 16. The total energy consumed by each
device in a node is calculated using power values logged with
nvidia-smi. A100 GPUs consume an average of 361 Wh
and H100 293 Wh, which is an 18.6% decrease.

III. CONCLUSION

The ResNet-50 benchmark results shed light on the hard-
ware’s performance characteristics. Notably, Graphcore IPUs
exhibited superior performance for small batch sizes, whereas
NVIDIA GPUs excelled with larger batch sizes. AMD’s
lower performance raised the need for further investigation.
Furthermore, the LLM benchmark revealed that the NVIDIA
H100 GPUs, outperformed the NVIDIA A100 GPUs by ap-
proximately 1.5 × while consuming less energy.

The results offer valuable insights into the hardware’s
capabilities, facilitating better-informed choices in hardware
selection and optimization within the dynamic field of NLP.
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