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Welcome Message from General Chair

We are pleased to welcome you to the 16th edition of CMMR which will be held
as a face-to-face event. CMMR 2023 will be held in Tokyo in November 2023 jointly
organized by the CMMR 2023 executive committee and the CNRS - Laboratoire de
Mécanique et d’Acoustique, Marseille, France, and will be the first face-to-face social
lively activity for CMMR in four years. All presentations and conference events will
take place on-site. We hope that by participating in CMMR 2023 and actively interact-
ing with each other, you will be able to intensively exchange ideas, gain rich inspiration,
and make great progress in your research.

Since there has been a long and winding road to the in-person CMMR 2023, I would
like to take a moment to reflect on it here. Originally, the CMMR 2020 Committee was
formed in the spring of 2019 to prepare for CMMR 2020 to be held in November in
Tokyo. However, CMMR 2020 was cancelled and postponed for one year because the
corona pandemic showed no sign of abating at that time. The call for papers for CMMR
2021 was issued in January 2021 without it having been decided whether to hold the
conference in-person or online, but in April of the same year the decision was made
to hold CMMR 2021 completely online after all. In CMMR 2021 held in November,
we had 33 technical papers, 13 musical works, and 264 participants from around the
world. However, the experience of organizing and managing CMMR 2021, which was
a completely online international conference, provided an opportunity to realize the
irreplaceable value of holding international conferences in-person.

We had been struggling with the global corona disaster for almost three years. At
last, I thought we came to the point where we could foresee the end of COVID-19 infec-
tion. We considered that if CMMR were to be held in November, 2023, by that time the
world would be steadily recovering and bustling with activity. Therefore, the CMMR
2023 Committee was formed in the spring of 2022, with the aim of holding CMMR
2023 in-person, in Tokyo. Most of the CMMR 2021 Committee members agreed with
the intentions and so joined the CMMR 2023 Committee. In this way, the CMMR 2023
began its activities. Incidentally, three years of constrained online activity has con-
versely led us to notice a new format of participation in international conferences with
wider coverage and greater flexibility. Thus, CMMR 2023 aims at realizing a CMMR
that combines a face-to-face international conference with online broadcasting service
to the audience around the world.

The conference theme established for CMMR 2023 is “Music: Bridge after the tur-
moil.” Here, the bridge has several meanings. Firstly, it is a bridge that connects re-
searchers who have been divided by the Corona disaster. Also, it is a bridge connecting
the multidisciplinary research fields that CMMR is aiming for, and a bridge between the
CMMR’s of the past and the CMMR’s of the future. Then, music, which is the subject
of CMMR, is also a bridge to bring different things together, a bridge to unite things
that are far apart, and a bridge to overcome academic challenges. By considering music
as a bridge in this way, we can certainly deepen the multidisciplinary research centered
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on music and informatics. I look forward to discussing music as a bridge with you all
at CMMR 2023.

CMMR 2023 is delighted to include three keynote speakers who will deliver speeches
based on the conference theme “Music: Bridge after the turmoil”; Dr. Shigeki Sagayama
(Visiting Professor, Univ. of Electro-Communications, Japan), Dr. Yi-Hsuan Yang (Full
Professor, the College of Electrical Engineering and Computer Science, National Tai-
wan University), and Dr. Tatsuya Daikoku (Project Assistant Professor, International
Research Center for Neurointelligence, The University of Tokyo, Japan). These three
keynote talks will surely open the door to new multidisciplinary research for individual
participants. In addition, we are honored to offer three special sessions that are timely
and in keeping with the conference theme: Singing information processing organized
by Dr. Tomoyasu Nakano (National Institute of Advanced Industrial Science and Tech-
nology (AIST)), Music and Sound Generation: Emerging Approaches and Diverse Ap-
plications organized by Dr. Taketo Akama (Sony Computer Science Laboratories, Inc.),
and Computational Research on Music Evolution organized by Dr. Eita Nakamura (Ky-
oto University).

CMMR 2023 is grateful to the following association and companies for their finan-
cial support:
· Distinguished Sponsor: Special Interest Group on Music and Computer (SIGMUS,

IPSJ),
· Gold Sponsor: Piano Teacher’s National Association of Japan (PTNA),
· Silver Sponsor: Yamaha Corporation, and
· Commercial Sponsor: Crypton Future Media, Inc.

Thanks to their support, we are able to hold the productive, impressive, and well-
organized international conference. We would like to express our deepest gratitude to
all of them.

On behalf of the CMMR 2023 Committee, I hope that many of you will be reunited
with colleagues and that newcomers will also join us, sparking lively discussions and
embarking on new research journeys.

Keiji Hirata
General Chair of CMMR 2023
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Message from Scientific Program Chairs

We would like to thank you for attending the 16th International Symposium on
Computer Music and Multidisciplinary Research (CMMR 2023).

When we decided to hold CMMR 2020 in Japan, we set the following three goals:

– To let worldwide researchers, engineers, and musicians engaged in the computer
music field gather and communicate with each other in the face-to-face manner.

– To let participants enjoy staying in Japan.
– To let participants understand the high activity of the Japanese computer music

research community.

Because of COVID-19, however, we had to postpone the CMMR 2020 by one year,
and ended up holding CMMR 2021 online. Therefore, we could not achieve any goals
mentioned above. On this occasion, we are honored to hold CMMR, for the first time
in the Far East, in person.

To rebirth CMMR as a face-to-face conference, we set the conference theme to
“Music: Bridge after the Turmoil” (The general chair will explain the meaning of this
theme in Welcome Message from General Chair). To encourage face-to-face communi-
cation, we have prepared three presentation formats (oral, poster, and demo) and have
asked all presenters to participate onsite, avoiding a hybrid form. We received more
than 80 long/short papers and 30 demo papers from Asian, European, and American
countries. Accepted long and short papers were allocated to oral or poster sessions ac-
cording to the authors’ preferences and the reviewers’ recommendations. As a result, 12
oral sessions (including special sessions), 3 poster sessions, and 3 demo sessions will
be organized at the conference.

We hope that all of you stay safely in Tokyo and enjoy participating in CMMR
2023.

On behalf of the CMMR 2023 Scientific Program Chairs,
Tetsuro Kitahara
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Deep Learning-based Automatic Music Generation:
An Overview

Yi-Hsuan Yang

College of Electrical Engineering and Computer Science,
National Taiwan University

This talk aims to provide a tutorial-like overview of the recent advances in deep gen-
erative models for automatic music generation. The talk has four parts. In the first part, I
will briefly mention data representations for symbolic-domain and audio-domain music
that have been employed by deep generative models. In the second part, I will use MIDI
music generation to demonstrate the use of sequence models such as the Transformers
to build the language model (LM) for symbolic-domain music, with a special focus on
the modeling of the long-range temporal dependency of musical events. In the third
part, moving forward to the audio domain, I will review advances in timbre synthesis,
generative source separation, Mel-vocoders, and audio codec models, to demonstrate
the development of audio encoders and decoders for music, capable of generating short
audio excerpts of music with high fidelity and perceptual quality. In the final part, I
will talk about how we can build upon technologies developed in the previous parts to
create LMs for audio-domain music, and their applications to singing voice generation,
accompaniment generation, as well as text-to-music in general. I will conclude the talk
with a few open challenges in the field.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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17 Years with Automatic Music Composition System
“Orpheus”

Shigeki Sagayama

Professor Emeritus, Graduate School of Information Science and Technology, The University of
Tokyo Visiting Researcher, Graduate School of Informatics and Engineering, The University of

Electro-Communications

Our research on automatic music composition was started at the University of Tokyo
in 2006 after a long experience in speech recognition and synthesis, music processing,
and other related areas. Naturally, we took the probabilistic model approach toward
computational melody generation to directly reflect the music-theoretic and linguis-
tic knowledge and requirements rather than the machine learning approach to avoid
collecting a enormous training data for imitating existing music pieces. To simulate
well-trained human composers hardly violating music rules, we formulated melody
generation as finding the safest path of state transitions in a Hidden Markov Model
of time and pitch of notes so that resulted melody along the path best satisfies musi-
cal and linguistical probabilistic constraints and user’s preference while wide variety
of outcome is guaranteed within correctness in academic music criteria. Model prob-
ability is empirically defined as the appropriateness mainly based on music theory of
harmony and pitch-accent prosodic rules of Japanese language, and the optimal (i.e.,
least problematic) path is efficiently derived by a modified Viterbi algorithm similarly
to speech recognition. The current web-based version (“Orpheus” ver 3) for Japanese
lyrics (https://www.orpheus-music.org/) was launched in 2012 along with the duet gen-
eration and voice and accompaniment sounding functions and became one of most pop-
ular music composition services that created 0.7M music pieces and received 19M ac-
cess count through the internet during recent 4 years and has been often introduced by
media (TV, radio, net news, newspapers, books, etc.) to the public as an example of
generative AI. Our 11-year experience of web-based service led us to further issues.
To think of the universal melody generation model across both stress/pitch-accent lan-
guages (and hopefully tone languages in addition), 2-dimensional HMM is discussed
instead of out current rhythm-tree approach. To truly assist the user’s creativity and to
enhance their composition skills, we discuss the user interface for automatic composi-
tion as a composer’s workbench. Also, automatic music interpolation is discussed for
mid-skilled users in music composition to interactively complete the music piece from
fragments of melody, sub-melody and harmonies provided by the user. Music (partic-
ularly, highly theoretically and academically sophisticated European classical music)
can be positioned anywhere between the pair of extremes of artificial intelligence such
as correctness-first math formula processing and eloquence-first natural language pro-
cessing to consider the future research direction (possibly, a mixture of both).

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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Exploring the Neural and Computational Basis of
Statistical Learning in the Brain to Unravel Musical

Creativity and Cognitive Individuality

Tatsuya Daikoku

Graduate School of Information Science and Technology
The University of Tokyo

Music is ubiquitous in human culture. The interaction between music and the human
brain engages various neural mechanisms that underlie learning, action, and creativity.
Recent studies have suggested that “statistical learning” plays a significant role in musi-
cal creativity as well as musical acquisition. Statistical learning is an innate and implicit
function of the human brain that is closely linked to brain development and the emer-
gence of individuality. It begins early in life and plays a critical role in the creation and
comprehension of music. Over time, the brain updates and constructs statistical mod-
els, with the model’s individuality changing based on the type and degree of stimulation
received. However, the detailed mechanisms underlying this process are unknown.

In this talk, I will present a series of my “neural” and “computational” studies on
how creativity emerges within the framework of statistical learning in the brain. Based
on these interdisciplinary findings, I propose two core factors of musical creativity,
including the critical insight into cognitive individuality through “reliability” of predic-
tion and the construction of information “hierarchy” through chunking. Then, I will also
introduce a neuro-inspired Hierarchical Bayesian Statistical Learning model (HBSL)
that takes into account both reliability and hierarchy, mimicking the statistical learning
processes of the brain. Using this model, I will demonstrate a newly devised system
that visualizes the individuality of musical creativity. This study has the potential to
shed light on the underlying factors that contribute to the heterogeneous nature of the
innate ability of statistical learning, as well as the paradoxical phenomenon in which in-
dividuals with certain cognitive traits that impede specific types of perceptual abilities
exhibit superior performance in creative contexts.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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Controllable Automatic Melody Composition Model
across Pitch/Stress-accent Languages

Takuya Takahashi1, Shigeki Sagayama1 and Toru Nakashika1 ⋆

The University of Electro-Communications, Tokyo, Japan
{takahashi,sagayama,nakashika}@uec.ac.jp

Abstract. This study proposes a model for automatically composing linguisti-
cally and musically natural song melodies reflecting the linguistic characteristics
of both pitch-accent (e.g., Japanese) and stress-accent (e.g., English) languages
as well as user’s intentions. We have designed and provided publically, for more
than 10 years, an automatic composition system (called “Orpheus”) for Japanese
lyrics. Extending the principle for lyrics written in stress-accent languages, a new
compositional model was constructed by introducing a melodic rhythm generator
formulated by a probabilistic model considering the relationship between stress
of lyrics and rhythm intensity (linguistic naturalness and music theory) and the
rhythm style chosen by the user (controllability). The parameters of the proposed
model can be learnt from domain knowledge without large amounts of data. In
our experimental evaluation, the proposed system achieved ratings equal to or
better than state-of-the-art deep learning approaches in terms of musical coher-
ence, singability and listenability.

Keywords: Automatic music composition, Lyric to melody, Music theory, Lin-
guistic naturalness for melody, Controllability

1 Introduction

Automatic music composition is one of the most interesting and challenging tasks in
generative AI (such as ChatGPT 1), as interest in generative AI has grown in recent
years. How would users want to use automatic composition technologies? We believe
automatic composition technologies should be an assistive tool that users can use for
their creative activities so that beginners can compose music with only their intention
without knowledge of composition theory which takes time to learn, and experts can
gain new inspiration from the generation from AI composers. We are particularly inter-
ested in building a universal model for generating song for singing automatically based
on user-given lyrics, that follows Western musical norms.
⋆ This work was supported by Grant-in-Aid for Scientific Research (B) No. 21H03462 from

Japan Society for the Promotion of Science (JSPS).
1 https://openai.com/blog/chatgpt

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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State-of-the-art data-driven methods of deep learning from large amounts of data
[1–3] have been proposed for automatically generating music from lyrics. Although
such methods can cleverly learn patterns in the training data and generate coherent
music that is close to the training data, difficulties in collecting large amounts of paired
data, controllability to reflect user intent, diversity of generation (avoiding plagiarism)
and musical accuracy (adherence to music theory) are often discussed. For example,
Zheng et al. [4] reported owing to their subjective experiments that melodies generated
by the deep learning models proposed by Sheng et al. [2] and Ju et al. [3] are difficult
to sing and listen to the lyrics. Besides, DeepBach trained on Bach chorales using deep
learning cannot generate pieces that adhere to music theory such as musical prohibition
as Fang et al. [5] and Karatsu et al. [6] argued. Such reports may suggest that it is
difficult for state-of-the-art deep learning approaches to learn singability, listenability
and music theory.

Can we then rule and model the composition process in the automatic composition
of songs, in addition to learning patterns from data like deep learning methods? For
example, Oliveira et al. [7] investigated the relationship between stress syllables and
melodic rhythm in 42 Portuguese songs and reported a correlation between stress and
melodic rhythm (referred to as the stress-rhythm constraint). In an attempt to gener-
ate melodies from English lyrics, a method based on the stress-rhythm constraint and
n-gram models was proposed by Monteith et al. [8]. Zhang et al. [4] report improv-
ing melodies generated by the latest deep learning methods (Sheng et al. [2], Ju et al.
[3]) adjusting melody generation process based on linguistic naturalness constraints for
tone languages and stress-accent languages similar to Monteith et al. [8] However, the
approach of Zhang et al. [4] requires large amounts of data to train base deep models
and leaves issues in terms of diversity, adherence to music theory and user controllabil-
ity. We (Fukayama et al.) [9] previously proposed Orpheus, which generates the pitch
of a melody based on the Japanese lyrics, music theory and user intentions (melodic
rhythm, chord progression, register, etc.). As statistically demonstrated by Watanabe
et al.[10], for lyrics in pitch-accent languages such as Japanese, the correlated nature
of lyric prosody and the vertical movement of melodic pitch (called prosody-pitch con-
straints) is incorporated as a linguistic naturalness constraint in the melodic pitch gener-
ation model of Orpheus [9]. Orpheus [9] has been operating as a Web service (Orpheus
v3) for more than 10 years, has over 15,000 subscribers, and has composed more than
500,000 songs. For simplicity, this approach is referred to as “Orpheus v3”.

In addition to the principle of melody generation from lyrics in pitch-accented lan-
guages in Orpheus v3, melody generation from lyrics in stress-accented languages was
also expected. In this study, a model that can automatically generate a natural melody
based on a given lyric written in pitch/stress-accent languages and user’s intention was
realized by a combination of pitch generator from Orpheus v3 considering prosody-
pitch constraints and music theory and a newly proposed rhythm generation model
considering stress-rhythm constraints and music theory. Since each generator in the
proposed model is formulated in probabilistic models, it can learn the probabilistic pa-
rameters from domain knowledge with explicit consideration of linguistic naturalness
for both aspects of pitch and rhythm, music theory and user’s intention without a large
amount of data as in deep learning. Moreover, as Orpheus v3 users had commented that
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Fig. 1. Conceptual diagram of a singing song generation model based on path-finding. The red
path represents acceptable melodies and the blue represents unacceptable melodies.

they found it difficult to sing due to the fact that the sentence breaks did not match the
bar line, it was also hypothesised that placing sentence beginnings on stronger beats
would improve singability and listenability in pitch-accented languages. The composi-
tional principles of the proposed model were evaluated objectively in terms of linguistic
naturalness, as well as subjectively by the audience.

2 Melody Generation Model

Since melodic composition from lyrics is the problem of assigning notes to lyric sylla-
bles, it can be understood as the problem of finding a path on a grid of points on a two-
dimensional plane of time (e.g. 16th note resolution) and pitch (e.g. semitones) to each
syllable, as shown in Figure 1. Although pathways, i.e. pitch and rhythm combinations,
are vast, the pathway cost of finding a valid melody with respect to domain knowledge
of music theory, linguistic naturalness and user intent can be defined mathematically.
Such a model for simultaneously generating the rhythm (onset time and duration) se-
quence (r̂1:N ) and the pitch sequence (p̂1:N ) optimised to the compositional conditions
including lyrics (z) can be formulated as the maximisation of a probabilistic model:

r̂1:N p̂1:N = arg max
r1:N ,p1:N

p(r1:N , p1:N |z) (1)

where r1:N and p1:N are random variables. However, since Equation 1 is too computa-
tionally complex, we assumed in Orpheus v3 that pitch and rhythm are independent and
rhythm is given in advance, and the melodic pitch generator argmaxp1:N

p(p1:N |z) was
realised by applying the Viterbi algorithm in a probabilistic model that follows Markov
processes. In this paper, by introducing a rhythm generator (argmaxr1:N p(r1:N |z)),
which considers the musical domain knowledge, to the pitch generator of Orpheus v3,
we propose a new melody generation model with high controllability that optimised to
all aspects of user intention, music theory and linguistic naturalness in terms of both
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Fig. 2. Example of a rhythm tree for rhythm generation from each rhythm family. The rhythm
coefficients at the bottom represent the importance of each onset event to the rhythm family.

rhythm and pitch. Note that this is an approximate solution of Equation 1 due to com-
putational complexity, i.e. the vertical (pitch) and horizontal (rhythm) axes of Figure 1
are optimised separately. The next section describes the proposed rhythm generators.

2.1 Melodic rhythm generator

Overview What are the requirements for melodic rhythm generation models in creative
automatic composition systems for users? It is not easy to create rhythm from scraps
without studying the composition techniques. However, it is natural to want to compose
the same section, e.g. the first and second choruses, with similar melodic-rhythmic pat-
terns as suggested by Fukayama et al. [9]. This means that the rhythmic pattern should
be controllable from section to section.

Melodic rhythm generation in Orpheus v3 In Orpheus v3, the rhythm generator
is represented by “rhythm tree structure.” As shown in Figure 2, a rhythm tree has a
rhythm called a ”standard rhythm,” which is a good representation of its rhythm gener-
ator, and it is expanded and integrated so that they are perceived as similar to standard
rhythms, even if the number of notes changes. By providing the rhythm tree that can
generate similar rhythm patterns for each number of notes, users can control the melodic
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rhythm by setting a rhythm family for each section. Rhythm trees in Orpheus v3 do not
take into account the linguistic naturalness of the lyrics, as they are defined before the
lyrics are input.

Melodic rhythm generation model considering rhythmic style, accent position and
duration We aimed at an automatic generation model of melodic rhythms that pre-
serves the rhythm family selected by the user as before, while also ensuring the lin-
guistic naturalness of the lyrics by considering the relationship between syllable stress
intensity and rhythmic intensity. Given a syllable feature vector sequence mathbfs1:N ,
such a model that generates a rhythmic sequence r1:N containing N onset events can
be modelled by dynamic Bayesian networks (DBNs) as follows:

p(r1:N |s1:N ) ∝ p(s1:N |r1:N )p(r1:N )

≈ p(r1)p(s1|r1)
N∏
i=2

p(si|ri)p(ri|ri−1)
(2)

where rhythm sequence generation probabilities are approximated by Markov process
and the i represents the consecutive numbers of syllables and not the rhythmic time.

Figure 3 shows the trellis of the proposed DBNs, in which horizontal nodes repre-
senting the onset events (16th-note resolution) and nodes are developed for the number
of syllables in the vertical direction. Horizontal transition jumps are permitted to rep-
resent the duration of rhythmic events, while vertical jumps are not permitted as the
syllables should be in sequence. However, the position of the rests has to be provided
by the user same as the syllables.

The rhythm sequence with the highest likelihood generated from the proposed DBNs
can be efficiently obtained using the Viterbi approach [11] and the rhythm sequence is
assumed to respect rhythm family and linguistically naturalness. Finally, a melody is
generated by combining the most likely rhythm generated by the proposed rhythm gen-
erator and the most likely pitch sequence generated by the Orpheus v3 pitch generator.
The following sections describe how each probability parameter is learnt.

Linguistic naturalness constraints The p(si|ri) serves as a term to guarantee the
linguistic naturalness of the lyrics. The si is the feature vector of the syllable, which
includes the syllable stress intensity si,stress and the syllable length si,length. Assuming
the independence of each of them,

p(si|ri) = p(si,stress|ri)p(si,length|ri) (3)

p(si,stress|ri) can be formulated based on the findings of Oliveira et al. [7]. As-
suming that si,stress follows a normal distribution with mean as the rhythmic intensity
ri,intensity and standard deviation as 1 empirically,

p(si,stress|ri) =
1√
2π

e−
1
2 (si,stress−ri,intensity)

2

(4)

where ri,intensity can be determined by music-theoretic knowledge, for example, the
rhythmic intensity can be set heuristically as shown in Figure 3 based on music-theoretical
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Fig. 3. An example of the path-finding trellis of the rhythm generation DBNs at 16th note reso-
lution in 4/4 time when not syncopated. The rhythmic intensity is determined heuristically based
on music theory knowledge and the state likelihood of each node is calculated based on the dif-
ference between the rhythmic intensity and syllable stress intensity as an example.

knowledge. In terms of p(si,length), it would be possible to formulate syllable length
(si,length) following a normal distribution with mean as rhythmic duration (ri,duration)
same as Equation 4. However, in this study, only rhythm events with stress-syllable and
too short duration (sixteenth notes) were penalised from the point of view of singability,
and all other values were given the same probability. In this way, the model can consider
both music theory and linguistic naturalness.

Rhythm family constraints The p(ri|ri−1) is the transition probability of a rhythmic
event and can be trained on the basis of the rhythm trees defined in Orpheus v3 to gen-
erate rhythm based on user-specified rhythm families. We hypothesise that in a rhythm
tree, the smaller the number of pitch accents, the more characteristic rhythmic patterns
remain, and the higher the number of pitch accents, the more redundant patterns are
injected. Thus, by calculating how many times an onset event appeared vertically for
the entire rhythm tree, as shown in Figure 2, rhythm coefficients, which indicate how
important each onset event was for that rhythm family, can be calculated. This rhythm
coefficient was normalised by dividing it by the sum of the rhythm coefficients within
the rhythm family and was the likelihood for onset event. The parameters in the rhythm
generation models trained with such likelihoods can generate essential patterns within
the rhythm family with high priority. The inclusion of such likelihoods in the model is
expected to generate melodic rhythms that respect the user’s chosen rhythmic family.

3 Experimental Evaluation

In this experiment, the naturalness and coherence of the melodies generated by the pro-
posed automatic composition system from Japanese and English lyrics were assessed
objectively and subjectively.
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3.1 Input data and proposed model setup

The stress accent intensity of lyrics was determined as follows.

– Japanese: Strong accent (1.0) placed at the beginning of a phrase. Accent values
for other syllables were set to 0.0.

– English: 1.0 was placed on the primary accent and 0.75 on the secondary accent,
and if the accented word was a weak form (e.g. preposition), the accent value was
multiplied by 0.25. Accent values for all other syllables were set to 0.0.

The prosodies of lyrics were determined as follows.

– Japanese: Morphological analysis results from Mecab 2 are used.
– English: Only intonation within words was restricted, with reference to the F0 of

the speech sound of the lyrics. Other pitch changes were allowed freely.

All rhythm families used in this experiment were non-syncopated 4/4 time rhythm pat-
terns, and the intensity values for each onset event in one bar with 16th note resolution
were set to the same values as in Figure 3, based on music-theoretical knowledge.

3.2 Objective evaluation

Experimental condition Objective evaluation experiments investigated the reflection
of linguistic naturalness constraints in the melodies generated by the proposed model
and Orpheus v3. A total of 12 songs, which were generated by each of Orpheus v3 and
the proposed model based on a combination of 4 randomly selected rhythm families
and their accompanying composition conditions (such as chord progression, accom-
paniment, drums, etc.), and 3 nursery rhyme lyrics (London bridge, Amazing grace,
Scarborough Fair; opening eight bars of lyrics), were evaluated.

Results Rhythmic naturalness was assessed by the mean square error between the
rhythmic intensity of each rhythmic event in the generated melody (Er(ri) from Equa-
tion 4) and the stress intensity of the phoneme corresponding to each rhythmic event in
the lyrics as defined in section 3.1. Rhythm naturalness was about 0.296 for Orpheus v3
and 0.195 for the proposed method. In this way, the melodies generated by the proposed
method are more consistent regarding the relationship between stress and rhythm.

Pitch naturalness was similarly evaluated for all syllables in the lyrics by the per-
centage of match between the transition direction of the melodic pitch (up or down)
and the prosody of the syllable (up or down). As a result, Orpheus v3 and the proposed
method achieved almost the same values, 0.991 and 0.994 respectively. Therefore, even
if the proposed rhythm generator is introduced, the existing pitch generators are still
functioning adequately.

Figure 4 shows an example of the song actually generated from the proposed model
and Orpheus v3 respectively, based on the same lyrics and compositional conditions.
As can be seen from these figures, the knowledge obtained in the objective evaluation
experiment can be found concretely. Further examples of generated scores and sound
sources can be found on the URL 3.

2 https://taku910.github.io/mecab/
3 https://coconuts-palm-lab.com/cmmr2023
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Fig. 4. Examples of generated melodies for the comparative and proposed methods when English
and Japanese lyrics are used as input.

3.3 Subjective evaluation (Rhythm family)

Assessment conditions This experiment evaluated the similarity of melodic rhythms
generated by the proposed model or Orpheus v3 for lyrics based on the same rhythm
family but with different numbers of syllables and different accents. In this experiment,
participants were asked to subjectively rate the rhythmic similarity of melodies gen-
erated by a combination of three nursery rhymes and three randomly selected rhythm
families, similar to the objective assessment experiment. The evaluation is conducted
with the XAB test, where X and A or, B are melodies generated from the same rhythm
family. Users were instructed to listen to X first, then A and B, and to choose from A or
B whichever they felt was closer to X in terms of rhythmic pattern.

Stimuli In addition to the melody, accompaniments and drum patterns generated from
pre-prepared compositional conditions were assigned to each of the three rhythmic fam-
ilies to facilitate the capture of the beat and chord progression. The MIDI data generated
from the models were synthesised using FluidSynth [12] at 44100 Hz, using the Fluid
R3 sound font. Note, however, that as this is an experiment to assess the similarity of
rhythmic patterns, the melody is played on a saxophone to make it easier to distinguish
from the others, and the singing voice is not included in the sound source.
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Participants and procedure The experiment was conducted online. The 25 partici-
pants in the experiment were all Japanese, with an average age of about 25. 80% of the
participants had not trained musically for more than two years. The experiment began
with an investigation of the participants’ backgrounds, which included a survey of their
age, country of residence and musical background based on Goldsmith-MSI 4. In the
main part of the experiment, participants were given just one question with answers in
a similar format to the actual XAB test for a tutorial on the XAB test, and after gaining
an understanding of the XAB test, they answered 10 XAB tests per person.

Results The results of the XAB test on rhythmic similarity showed that the proportion
of selecting sound sources containing melodies generated from the same rhythmic fam-
ily as sound source X was about 75% in both the proposed model and Orpheus v3. The
results suggest that the proposed model can generate melodic rhythms with comparable
rhythmic control performance to Orpheus v3 while it respects user-selected rhythmic
families as well as linguistic naturalness constraints. There was concern that the con-
straints of linguistic naturalness might break the rhythmic patterns of the rhythm family,
but this may suggest that probabilistic parameter learning with rhythm coefficients is a
reasonable representation of the original rhythmic patterns.

3.4 Subjective evaluation (Generated melody assessment)

Assessment conditions This experiment aims to subjectively assess the consistency,
singability and listenability of the melodies generated by the proposed model and the
comparative method. For comparison, we used Orpheus v3 as a baseline for English
lyrics, and also compared it with SongMASS[2], TeleMelody[2], SongMASS + Relyme
[4], and TeleMelody + Relyme [4], respectively. In the case of melody generation with
Japanese lyrics, since it was not possible to prepare Japanese lyrics/melody pair data
for training the latest deep learning methods and Relyme [4] principles were targeted at
Chinese and English lyrics, only the proposed method was compared with Orpheus v3.

Stimuli The English lyrics were picked from the three lyrics used by Zhang et al.
[4] 5 as test data in order to conduct fair test. For the Japanese lyrics, three well-
known Japanese children’s songs (Donguri Korokoro, Okina Noppo No Furudoke and
Urashima Taro) were selected. The singing voice based on the lyrics was synthesised
by the Maki Tsurumaki sound source on Synthesizer V. The deep learning method un-
der comparison does not have the support for generating accompaniment or drums,
so for fair evaluation, the English lyrics experiment used only the singing voice and
melody guide (played on a saxophone), excluding the accompaniment and drums. In
the Japanese comparison experiment, the sound sources were synthesised using Flu-
idSynth (same as section 3.3) according to the MIDI of the melody, accompaniment
and drums generated from each model and combined with the singing voice.

4 https://www.gold.ac.uk/music-mind-brain/gold-msi/
5 https://ai-muzic.github.io/relyme/
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Fig. 5. Results of subjective experimental evaluation. v3 stands for the Oprheus v3 baseline
method [9], SM for Songmass [2], TL for Telemelody [3] and R for Relyme [4] in combina-
tion with the methods of [2] and [3], respectively.

Participants and procedure The experiment was conducted online. The participants
were 25 people who also took part in the experiment in section 3.3. Participants an-
swered five-point Likert scale questions on three aspects of musical coherence, singa-
bility and listenability for songs generated from English (25) and Japanese (15) lyrics.
However, to clarify which syllables were assigned to which notes and to minimize the
effect of the singing synthesis, participants were presented with an image of the melodic
score as well as the sound source simultaneously. In addition, we reminded participants
that singing synthesis and playing instruments are not the scopes of our study.

Results The mean and standard error statistics of the experimental results are sum-
marised in Figure 5. For English lyrics, the proposed method was rated significantly
higher than the baseline method, Orpheus v3, on all items of coherence, listenability
and singability. When comparing state-of-the-art deep learning methods with the pro-
posed method, the proposed method obtained significantly higher ratings for coherence
than some deep learning models (SM, SM(+R)) and for listenability than most deep
learning models, respectively. Although there were no significant differences between
the deep learning method and the proposed method, most of the participants in this
experiment were not music experts and therefore had difficulty in assessing singability.
Since there are no items where the proposed method is significantly inferior to the state-
of-the-art deep learning methods, it suggests that the proposed method may be equal to
or superior to the state-of-the-art deep learning methods in English lyrics. In addition,
focusing on the standard errors, the fact that the latest deep learning methods have large
standard errors while the proposed method has small standard errors seems to indicate
the robustness of the proposed method.

For Japanese lyrics, all items were rated significantly higher for the proposed method
than for the baseline method Orpheus v3. This may be because the placement of the ini-
tial syllable of a passage on a stronger beat might sharpen the semantic break in pitch-
accent language. The results suggest that there is a clear relationship between semantic
delimitation and melodic rhythm in the pitch-accent language, and that the proposed
rhythm generator works effectively in the pitch-accent language.
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However, as this experiment was conducted with 25 Japanese subjects, there is a
bias, and therefore a similar experiment needs to be conducted with more participants
and not only with native speakers of Japanese, but also with native speakers of other
languages, in order to make a more generalised assessment.

4 Discussion

The results of the evaluation experiments show that the proposed method can gener-
ate melodies that respect the rhythmic pattern of the user-selected rhythm family, while
taking into account linguistic constraints such as stress-rhythm constraints and prosody-
pitch constraints. It has also been shown that the consideration of linguistic naturalness,
as incorporated in the proposed method, improves singability and listenability com-
pared to the baseline method. The proposed method, trained only on domain knowledge
without training on large amounts of training data, was rated as good as or better than
state-of-the-art deep learning methods.

Since pitch and rhythm are optimised separately in the proposed model, it is difficult
to add constraints considering pitch and rhythm simultaneously. For example, when
singing in the high register, a series of notes with short duration makes singing difficult
and non-chord tones, such as neighbour and passing tones, are known to have weak
beats and short duration. In order to apply such knowledge as a constraint for melody
generation, it is necessary to consider path-finding on a 2D plane, as shown in Figure
1, and thus to study how to solve the problem of the computational cost of Figure 1.

In order to realise a universal compositional principle, it is expected to support
lyrics in tonal languages in addition to stress and pitch-accented languages. For tonal
languages, this can be resolved by DBNs with states that take into account the possibil-
ity of pitch transitions occurring within a single syllable.

The proposed model is formulated by a hidden Markov model, which means that
the computational complexity increases exponentially when trying to consider long
contexts. From the results of the experimental evaluation, it seemed possible to gen-
erate melodies that could convince the audience by considering local music theory and
linguistic naturalness. However, a longer context might allow the model to take into
account song styles (e.g. genre, artist) in the training data and add user-selectable com-
positional styles to the compositional conditions.

5 Conclusion

This study proposed a probabilistic model that targets the generation of the most lin-
guistically and musically natural song melody based on the user’s input lyrics and com-
positional conditions. In addition to the melodic pitch generator considering relation-
ship between prosody and melodic pitch of lyrics that have been considered in our
previous research (Orpheus), the proposed system introduced a melodic rhythm gener-
ator in which the probability parameters are learned so that the stress of lyrics and the
melodic rhythm intensity are consistent while respecting the rhythm style selected by
the user. The results of the experimental evaluation showed that it is possible to gen-
erate melodies that are reasonable in terms of linguistic naturalness and music theory,

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

16



while maintaining the same level of controllability as the previous Orpheus v3. Subjec-
tive evaluation experiments showed that the melodies generated by the proposed model
were equal to or better than state-of-the-art deep learning methods in terms of musical
coherence, singability and listenability.

In the future, by solving the problem of computational complexity, the aim is to
build a model that simultaneously considers pitch and rhythm, which can make use of
vocal and other music-theoretical knowledge such as non-chord tones. We will also ex-
plore how knowledge from deep learning methods that can consider longer-term context
can be used in the proposed model.
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and Eliseo Fuentes-Martı́nez1 ⋆

1 Universidad de Alicante
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Abstract. In recent years, Optical Music Recognition (OMR) technologies have
experienced a notable boost thanks mainly to the use of new pipelines based on
machine learning, specially on deep neural networks. These methods are usually
studied just from the point of view of the accuracy of the output of the networks.
However, from a practical perspective in a real-world context, this is not enough.
In this paper we present a design of a tool devised for allowing the scientific study
of the complete OMR workflow in different scenarios and notations, including
both the possibility of analyzing the real impact of improvements in automatic
recognition models and how they are integrated for practical purposes in the work
of the transcriber.

Keywords: Optical music recognition, encoding, transcription, user experience

1 Introduction

Digitizing sheet music and other music-related documents can provide several benefits,
including easier access for researchers, music practitioners, musicologists, and the gen-
eral public, as well as preservation of musical heritage. Digitized sheet music can be
searched, played, analyzed, and annotated using specialized software tools, allowing for
new discoveries and insights into musical history and culture.

One notable example of an effort to digitize music collections into digital images
is the International Music Score Library Project3 (IMSLP), which aims to create a vir-
tual library of public domain sheet music. The IMSLP has digitized thousands of scores
from various composers and genres, making them freely available for download and use.
Other organizations and institutions, such as libraries, museums, and universities, are
also scanning their music collections into image files to increase access and preserve
musical heritage.
⋆ This work has been supported by the Spanish Ministerio de Ciencia e Innovación through project Mul-

tiScore (No. PID2020-118447RA-I00), supported by UE FEDER funds.
3 https://www.imslp.org (accessed April 19th, 2023).

This work is licensed under a Creative Commons Attribution 4.0 International License (CC
BY 4.0).
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As a matter of fact, having the musical content information, i.e., the audio and the
scans, not digitally encoded ends up being a waste of resources given that current music
information retrieval pipelines require it. By this means, we cannot consider a score
digitization process as finished until the digital score version encoding is produced.

Alfaro-Contreras et al. [3] showed that the most efficient way to obtain these digital
scores is to resort to an automated reading of documents by using the so-called Optical
Music Recognition (OMR) [5]. This technology has achieved different levels of recog-
nition accuracy depending on the type of documents, the quality of the medium, and the
type and complexity of the notation. But still, in most cases, the OMR does not yield
perfect results. The need of post-editing depends on the tasks to be performed on the rec-
ognized content. Some projects such as F-Tempo4 directly use—possibly with errors—
OMR output to approximate perform searches. When requiring a curated transcription, a
manual correction process has to be done. For instance, this pipeline was used to encode
a large number of files of the KernScores repository.5

The low accuracy of OMR is not the only obstacle in real use-cases. There is no
OMR system yet able to process the whole set of sysmbols found in early notations.
The processing of orchestral scores of varying layout, the presence of ossias, or dealing
with works where the different parts are written in separate sheets, make it even more
challenging. This is why, in many real projects, the encoding process is eventually per-
formed by transcribers using computerized notation tools such as Finale6, Dorico7, Mus-
eScore8, or Sibelius9. In projects such as Didone [26], around 4 000 Eighteenth-Century
Italian Opera arias are being manually copied in Finale to be later stored into MusicXML
files [13]. The same approach was used to obtain the encodings of the modern version of
the renaissance works from the “Josquin Research Project” (JRP).10

In this scenario, the main advances in OMR are achieved by modern artificial in-
telligence techniques based on machine learning, namely deep learning [5]. Improve-
ments are attained through the correct selection of neural network architectures and the
availability of training data in sufficient quantity and quality for those architectures.
The research-oriented OMR tool “Music Recognition, Encoding, and Transcription”
(MuRET) [19] was introduced to push the development of both OMR techniques and
the creation and curation of datasets. This tool was developed with JavaFX11 as a desk-
top application. It included our first OMR models [8], which allowed for the curation of
a number of training sets and the development of new OMR approaches [24, 9].

Once the usefulness of MuRET became clear, we decided to port it to a web appli-
cation for two main reasons. The first is that the technology is continuously evolving,
which made it difficult to deploy the application on a daily basis. The second, and more
important, is to naturally maintain a growing repository of both ongoing transcription
documents and trained OMR models shared among all users. Having evaluated this re-

4 https://f-tempo.org (accessed April 19th, 2023).
5 http://kern.ccarh.org/ (accessed April 19th, 2023).
6 https://www.finalemusic.com (accessed April 19th, 2023).
7 https://www.steinberg.net/dorico (accessed April 19th, 2023).
8 https://musescore.org (accessed April 19th, 2023).
9 https://www.avid.com/sibelius (accessed April 19th, 2023).

10 https://josquin.stanford.edu (accessed April 19th, 2023).
11 https://www.oracle.com/es/java/technologies/javase/javafx-overview.
html (accessed April 19th, 2023).
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search oriented OMR online tool in real scenarios, in this paper the main decisions to
build it are described with which we expect to contribute to the improvement of ongoing
and future OMR investigations.

The paper is organized as follows. Section 2 details other alternatives to MuRET that,
due to the fact that this tool is eminently research-oriented, may be most suitable to be
used in transcription projects. Next, the requiresments taken into account in Section 3
and decisions made during the development of the current online version are discussed
in Section 4 that may be useful for other similar projects. Finally, conclusions will be
drawn and future works outlined in Section 5.

2 State of the art

There are several Optical Music Recognition (OMR) tools available to transcribe Com-
mon Western Modern Notation (CWMN). Only one open-source Audiveris12 is available,
and a number of commercial packages such as SmartScore13, PhotoScore14, or PlayScore
215. The effectiveness of each tool can vary depending on the complexity and quality of
the sheet music being analyzed. A brief analysis of them for recognizing music theory
books can be found in [14], that shows how far they are from retrieving successful results
on complex scenarios.

The transcription of notations other than CWMN is very restricted to very few ap-
plications. In the context of the SIMSSA project [11], two applications in the past years
have been used to automatically extract musical information from images, although they
are no longer maintained: Gamut and Aruspix [17]. In addition, within this project, an
OMR meta-workflow called Rodan was built in which users can create their own sys-
tems using predefined image processing and machine learning blocks [12]. Although not
designed for any specific notation, most of the existing blocks are intended for neume
recognition. More recently, another approach based on convolutional neural networks
was developed specifically for mensural notation, which reported high accuracies [25].

Given this context, to the best of our knowledge, no tool ready to deal both with
handwritten and printed sources of several kinds of notation is available other than our
proposal MuRET.

3 Requirements

The ultimate goal of MuRET is to facilitate OMR research from a holistic perspective.
This means that the tool must support the research of all individual steps of the workflow
to obtain a final digital score from the different images, considering both the automatic
processes and user manual interactions. Being this a research tool, it must be prepared to
be scaled to any possible scenario in terms of notation type, parts arrangement, document
layout, calligraphies and fonts, and transcription purposes.

12 https://github.com/Audiveris/audiveris (accessed April 19th, 2023).
13 https://www.musitek.com (accessed April 19th, 2023).
14 https://www.neuratron.com/photoscore.htm (accessed April 19th, 2023).
15 https://www.playscore.co (accessed April 19th, 2023).
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From an end-user point of view, the user should be first allowed to manage collections
of works made of digital images of any format and resolution. For transcribing a new
work, the constituent elements in each image such as pages, staves, and lyrics must be
identified. Then, in the case of being a polyphonic work, they must be assigned to the
different instruments, voices, or parts. The contents in staves and text regions must be
recognized using a variety of approaches that, after being combined, will make up a
final digital score that will be exported to standard encoding formats. All possible aids
that the machine can compute, such as displaying early notations in modern forms, or
hints in the final scoring-up, should be provided. Additionally, the tool must incorporate
process-oriented functionalities, as an aid to account for the current status of work on
several simultaneous works, or the inclusion of comments both for the whole work or
elements inside it.

Ultimately, the system must be able to perform all processes in an assisted manner,
so that the output of the various automatic classifiers is corrected when necessary by the
user as quickly as possible.

From the OMR process research perspective, the tool must be ready to accommodate
different approaches to convert a set of input images into a digital score. For each of
those approaches, in the case of being based on machine learning, the extraction of new
training sets from the already processed works and the posterior training, upload, and use
of new models, must be supported. For analyzing the actual behavior of any paradigm
and model besides the usual model performance metrics, all actions of the user must be
recorded and categorized for being later analyzed.

Several non-functional requirements arise that can influence the design of the tool.
It must allow the simultaneous transcription of the same work by different, possibly
remote, users. To allow the accommodation of new repertories with a minimum amount
of effort, and to make the user unconcerned about formats and resolutions, the use of IIIF
framework16 for exchanging the processed works to other external tools is recommended.
Finally, the system must be usable with a standard computer setup.
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Fig. 1: Domain model. Some classes and relations, and all attributes have been omitted
for easier reading.

16 https://iiif.io (accessed April 19th, 2023).
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4 Solution design

The current online version of MuRET 17 presents a possible approach to solve all the
requirements detailed above. In order to implement it, several decisions have been made
that will be described in this section.

The system has been structured using a three-tier web architecture style. The pre-
sentation layer has been solved using Angular with the Redux pattern18, the application
layer has been implemented using Spring Boot19, and the data layer served by a Mari-
aDB20 relational database.

All the system data is eventually stored in records of the database that is converted
to the object-oriented hierarchy shown in Fig. 1 through the Hibernate Object-Relation
Mapping (ORM)21. The names of the classes can be easily understood from the explana-
tion in the following lines.

4.1 User collections and images

Users must be registered by a system administrator to work on the tool. No self-registering
process is offered. All works are organized into collections and sub-collections, whose
access is granted by the administrator.

A document is the core entity of a transcription project. After being uploaded as indi-
vidual image files or inside a PDF document, the images of a document to be transcribed
are grouped, at least, into one default section. This is useful for dealing with compound
works such as masses and operas. Images and sections can be deleted, edited, and re-
ordered. Images that contain cover sheets, or non-musical content, can be hidden for
subsequent automatic recognition processes. Users are allowed to assign to each work
metadata such as the notation type, manuscript type (printed or handwritten), composer
and printer.

For the purpose of helping the user in daily work tasks, the work in progress and
image recognition annotations stages can be marked up to the final transcription (see
buttons to mark this progress below in the bottom-right of Fig. 5c).

4.2 Document analysis

After organizing the images, the first step to transcribe a work, known as document anal-
ysis, is to segment each image into separate components, a series of regions of different
types such as staves and lyrics are identified (Fig. 2). Usually, each image contains just
one page, but it is also usual to receive scans of books where images contain several
pages as in the case of the image in that figure. This process can be performed either
manually by drawing bounding boxes on top of the image and assigning a region type to
each drawn box, or by using an automatic classifier that identifies the different segments
in the image. Across MuRET, when an operation can be performed automatically, the

17 https://muret.dlsi.ua.es/muret
18 https://angular.io and https://redux.js.org (accessed April 19th, 2023).
19 https://spring.io/projects/spring-boot (accessed April 19th, 2023).
20 https://mariadb.org (accessed April 19th, 2023).
21 https://hibernate.org/orm/ (accessed April 19th, 2023).
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user can select and apply a classifier (see the two available models of the drop-down
control at the top-right of the Fig. 2), and correct the output if necessary. Classifiers are
run currently in the user browser using TensorFlow.js. 22 This decision has the advan-
tage that it allows avoiding collapsing the server machine when several users are using
MuRET at the same time running different models that have to be loaded in memory.
The main drawback is that the used models have had to be tuned to keep their size at the
minimum for being used in standard computers.

Fig. 2: Document analysis screenshot. In this example, only the staves and lyrics regions
are segmented. The snapshot shows two possible classifiers to perform a document anal-
ysis (top-right), and controls to rotate, manually or automatically, the image (top-center).
The current catalog of region types shown at the left of the image can be easily modified.

4.3 Part management

Most of the sources to be processed are polyphonic, consisting of several voices, instru-
ments, or parts. There is a variety of arrangements, such as works made of parts dis-
tributed across pages (the image in Fig. 2 corresponds just to a part), choir-books where
the same page contains two voices (Fig. 3b), ensembles or orchestral scores (Fig. 3a).
The kind of book to transcribe could be of a totally different nature. For instance, it can
be a compilation of songs not related to any instrument, such as a jazz Real Book, or be a
catalog containing lists of incipits. In some cases, the volume to be transcribed describes
music theory as it is the case of music treatises [14], where most of the content is textual
with some illustrative music examples. The process of dealing with parts is performed
currently manually. In all cases, the internal implementation of all those situations is re-
duced to the case where the whole image or page is linked to a part, or when each region
must be assigned to a part. The system is also prepared to deal with chorale layouts with
two staves for four voices. In that case, each individual symbol inside the region must be
linked to each part. For reducing user effort, the system offers aids to manage the set of
instruments and to reuse the different layouts between pages.

4.4 Region contents recognition

Once the different staves are identified and assigned to the part they belong to, the musi-
cal contents inside the image crop that corresponds to each region must be recognized and
22 https://www.tensorflow.org/js (accessed April 19th, 2023).
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(a) Parts in orchestral score (b) Parts in choir book

Fig. 3: Different parts and arrangements. All regions must be attributed to a part.

encoded. Currently, lyrics can be encoded as text but they are just stored in the database
without any further treatment (Fig. 4a). New region types can be easily incorporated in
the future. There are several approaches that can be followed to obtain an encoding from
the image, either manually or by applying an automatic classifier. The first consists of
manually tracing the graphic symbols so a classifier [8], by using both the stroke (Fig. 4b)
and the image obtained from the bounding box that encloses the stroke, identifies each
symbol among a set of possible agnostic symbols [7] (i.e. graphical symbols without an
attributed musical meaning yet), and the vertical position in the staff as an absolute value
regardless the clef. Although we use this symbol-agnostic concept where we identify
complete glyphs, we could easily adapt it to recognize primitives (note head, stem, etc.)
as proposed in [16].

(a) Lyrics. See text transcribed at the bottom of
the snapshot.

(b) Strokes

(c) Bounding boxes of agnostic symbol

(d) Staff-level end-to-end

Fig. 4: Transcription of regions.
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An alternative is just to draw the bounding box surrounding each symbol to use just
the image clipping as input information for the classifier [15] to identify the agnostic
symbol type (Fig. 4c). In either of the two options, an agnostic symbol sequence is ob-
tained, i.e., a sequence of symbols ordered from left to right, top to bottom. For instance,
the beginning of the agnostic sequence in Fig. 4c is: clef.G2:L2 digit.2:L4
digit.4:L2 note.8th:L1 note.8th:S1 verticalLine:L1. The render-
ing of the bottom staff is performed by using fonts that have a glyph for each agnostic
symbol that are just placed in the position of the symbol in the image. For white mensural
notation, the Capitan [20] font is used that was developed on-purpose, and for modern
notation, Petaluma font23 has been utilized.

The next possibility is to use a staff-level end-to-end classifier that identifies the
agnostic symbols in the image in such a way that the sequence order is respected but
the bounding boxes of each symbol are not detected but their approximate horizontal
position [7] (dashed lines in Fig. 4d show those approximate positions). The user can
move and correct any of the symbols. In that case, to take advantage of the interaction
for obtaining a new training sample, the bounding box is drawn (see the second flat in
the key signature in Fig. 4d).

4.5 Music encoding of individual staves

The agnostic sequence must be converted to a meaningful music encoding denoted as
semantic encoding [7]. For example, the sequence of three flats at the beginning of the
agnostic sequence in Fig. 4d must be converted to a EZ major (or its relative minor) key.
When encoding the pitch of the notes, this key signature must be taken into account for
correctly assigning if necessary the right accidental. This translation from agnostic to se-
mantic (Fig 5a) can be performed either using a rules-based automaton transducer [20],
or translation technologies based on machine learning approaches [1]24. For early nota-
tions, a valid conversion into modern notation is performed with any consideration of
transposition or metric change (Fig. 5c). The rendering of the bottom staff is delegated
to Verovio [18], through a previous conversion of our internal format introduced below
into MEI (Fig. 5b). If the staff to convert is not the top staff, the contextual information
from previous staves, such as the previous time signature, is propagated. The conversion
to Plaine and Easie Code [4] for cataloging in RISM25 is performed by that library as
well.

It is important to note that MEI or Verovio do not always support all required features.
For instance, bar-lines crossing a note in late mensural notations or the rendering of
signum congruentiae. In those cases, our principle has been to internally store a specific
tag for each unsupported feature and print text marks to visualize them.

A key decision taken to design MuRET was the method to store those semantic se-
quences. We have not chosen any standard format as the internal encoding, but an ad-hoc
representation extended from the Humdrum [23] formats **kern and **mens [21] in
what we name **skm. Later, when exporting the final encoding, standard formats are

23 https://www.smufl.org/fonts/ (accessed April 19th, 2023).
24 Note that there is an agnostic representation for dealing with more complex situations such as the

presence of chords [2]. In any case, the workflow is the same regardless of the agnostic encoding.
25 https://rism.info/ (accessed April 19th, 2023).

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

25



(a) Agnostic to semantic

(b) MEI conversion of semantic content

(c) Modern transcription

Fig. 5: Semantic contents recognized from the image.

used. This has allowed us to adapt the format to encode specific situations that were not
possible with standard **kern/**mens when we required it (e.g. custos symbol, the po-
sition of rests, canceling accidentals in mensural notation, or dots after a barline). This
encoding contains also information about the agnostic symbol each semantic element is
related to, which allows for later exporting this kind of graphical information to formats
such as the facsimile element in MEI. The choice of extending Humdrum formats and
not other more comprehensive ones such as SCORE [23], MusicXML [13] or MEI [22],
is the ease with which users can fully manually encode or correct the output of the clas-
sifiers. In any case, the translation process generates a sequence of objects of a musical
object-oriented hierarchy that are just converted into **skm in order to serialized them
allowing its presentation in the interface and storage.

MuRET does not include yet the direct recognition from the image to the **skm
encoding because we have experimented to be faster and more accurate to use this inter-
mediate representation as shown in [6]. If a classifier was proven to yield better results,
both the transcription and correction processes, it could be easily introduced in the ap-
plication.

4.6 Scoring up and exporting

Finally, when all previous steps have been finished, the user can select the images (Fig. 6a)
that want to be used to generate a final score (Fig. 6b). This operation is accomplished by
concatenating all the staves in the selected images grouped by the parts they belong to,
exporting them from our internal format to MEI, and letting Verovio engrave the score.
In order to share the transcription with external services, the previous MEI can be ex-
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ported as it is rendered by Verovio. MuRET also is able to convert to a parts-based MEI
format including graphical information in the facsimile element (Fig. 6c). This function-
ality was included for exchanging information with specialized tools such as MP-Editor
to perform scoring-up processing in mensural notation [10].

(a) Image selection (b) Score preview

(c) Parts based MEI includ-
ing facsimile (see more de-
tails in [10]).

Fig. 6: Previsualizing and exporting

4.7 Model training

As mentioned above, the classifiers that support the automatic processes use machine
learning models, that need training data for being built. The system allows downloading
different training sets from selected collections and works. This training data is just a set
of JSON files containing an export of the objects in our internal data model (Fig. 1). After
being trained offline, these models can be uploaded again to the system. This incremen-
tal workflow, i.e., fixing the output of the different classifiers, downloading datasets with
corrected data, building new models, and uploading them to improve the performance
of the system, is being shown in our transcription projects to be a proper way to pro-
ceed. Using this approach for transcribing a work by Jacob van Eyck, printed by Paulus
Matthijsz in 1649, the recognition and post-editing effort were reduced by a factor of 10,
allowing the end user to obtain a complete and correct encoding of a standard book page
in under one minute per page.

4.8 User action logging and user experience

Some models perform better than others in a theoretical way, but the corrections required
to fix their outputs lead to a higher effort by the user. This can be measured by analyzing
the actions each individual user performs on the tool that is logged and conveniently cat-
egorized into meaningful operations, such as the editing of regions, symbols, semantic
content, part management or classifier use. The timestamps of all operations is also reg-
istered, as well as the document, region or symbol involved in each operation. Currently,
we have stored more than 300 000 actions from different users.

These action logs have helped us to improve the user experience of the system by
evincing many operations that are frequent and repetitive, decreasing the final through-
put. These issues, such as those related to the feedback of the system in error messages,
long actions, or the graphical design of interaction controls, have been gradually cor-
rected or taken into account to include new capabilities to the system.
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5 Conclusions and future work

This paper has depicted the main blocks required to integrate an OMR system scalable
to work with any kind of notation and scenario that besides being useful for real tran-
scription projects can help in the improvement of OMR research.

This tool is being continuously improved as new features in projects arise. Most of
the effort is performed on improving the OMR models by using the increasing quantity
of already transcribed works of different kinds. We are working towards addressing the
current weaknesses of the system, namely: adding new front-end deep learning frame-
works and formats such as ONXX 26, the direct use of the IIIF manifest from servers
without the need of uploading any image to the system, the possibility of performing an
automatic classification of a whole work to be later corrected to complement the current
totally interactive workflow, the possibility of directly training models online, and the
endless task of improving the user experience of the tool.
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Abstract. Rap battle is a competition in which two rappers improvise rap verses
alternately, and a verse is composed of multiple sentences uttered in one turn by a
rapper. In this paper, we propose a method for generating response verses that are
semantically related and rhyme with the opponent’s verse in rap battles. Our ap-
proach uses a language generation model BERT2BERT to generate rap sentences
and constructs a verse by appropriately arranging them using a BERT model.
When generating rap sentences, it is important to include words that rhyme with
a specific word in the opponent’s verse, but it is difficult to include such words
using a conventional sentence generation model that generates sentences in a for-
ward direction from the beginning of the sentence. To address this issue, our pro-
posed method trains the model to generate sentences in a reverse direction from
the end of the sentence, which enables the model to generate rap sentences that
highly likely have rhymes at the end. To train the model, we constructed our own
rap battle corpus consisting of 6,791 verses. Our experimental results demonstrate
that our proposed method outperforms a method that uses a conventional model
generating sentences in a forward direction.

Keywords: Rap battle, Verse generation, BERT2BERT, Rhyme, Answer

1 Introduction

A rap battle is a competition where two rappers perform improvised rap alternately.
The rap that is delivered in one turn is called a verse, and a single verse is generally
composed of several rap sentences. Figure 1 shows an example of a rap battle. Rapper
A delivers the verse “My rhymes hit you harder than a train.” Rapper B responds to
that verse with “It’s like a toy train. You don’t know my pain.” The rap battle ends
⋆ This work was supported by JSPS KAKENHI Grant Numbers JP21H03775, JP21H03774,

JP21H03554, JP22H03905.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

30



Fig. 1. An example of a rap battle.

after repeating these responses several times. In rap battles, the winner is determined
by the audience or judges. The quality of the verse is one of the important factors in
determining the winner.

The quality of the verse is typically determined by rhymes, answers, and flows [1].
Flow refers to the expression style, such as rhythm and accentuation, of the rapping
(singing) voice by a rapper. On the other hand, rhymes and answers depend on the text
of the verse, as shown below.

– Rhyme refers to a pair of words with the same vowel sequence. For example, the
pair of “train” in verse 1 and “pain” in verse 2 of Figure 1 is a rhyme because both
of them have the same vowel sequence “ein.”

– Answer refers to a response verse that is related to the opponent’s verse. For exam-
ple, the verse “It’s like a toy train.” in verse 2 of Figure 1 is an answer because it is
semantically related to the verse 1.

High-quality verses need to reflect both rhyme and answer, and in rap battles, it is
necessary to respond immediately with such verses to the opponent’s verses.

Rap battle competitions are held in many countries. For example, there is the “True
Freestyle Rap Battle” in the U.S. and the “UNPRETTY RAPSTAR” rap battle TV pro-
gram in Korea. In Japan, rap battle competitions such as “Gaisen MCBATTLE” and
“Sengoku MCBATTLE” are also popular. In addition to such competitions in which
professional rappers participate, there are also many competitions in which amateur
rappers participate. In amateur rap battles, it is also important to respond to a verse with
rhymes and answers, but it is not easy, especially for beginners, to come up with such a
verse immediately in response to an opponent’s verse. If there were a system that could
automatically generate high-quality verses for any given verse, such people would be
able to practice rapping by referring to the generated verses.

In this paper, as a first step toward realizing such a system, we propose a method for
generating a verse with both rhymes and answers in a rap battle. We do not deal with
flows since we focus on the text of the verse. In the proposed method, a language gener-
ation model, BERT2BERT, is used to generate the verse. More specifically, the method
is composed of two steps: generating rap sentences and ordering rap sentences. In the
first step, given a sentence in the opponent’s verse as input, we generate rap sentences

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

31



considering the rhyme based on the input sentence. While sentence generation models
usually generate a sentence in the forward direction from the beginning of the sentence,
we generate a rap sentence in the reverse direction from the end of the sentence so that it
can contain a rhyme at the end. Although there are a large number of words that satisfy
a particular rhyme, our method searches for appropriate words based on the opponent’s
verse so that the answer can also be taken into account. Since multiple rap sentences
are generated in this step, the second step aims to construct an appropriate verse by
ordering the generated rap sentences by predicting next sentences using BERT [2].

Our contributions can be summarized as follows.

– We propose a verse generation method that takes into account rhymes and answers
in rap battles and generates sentences from the end of the sentence.

– To train the model of the proposed method, we develop a training corpus consisting
of 6,791 rap battle verses.

– We conduct evaluation experiments and show that the proposed method outper-
forms a method that generates sentences from the beginning of the sentence.

2 Related Work

2.1 Text Generation

In recent text generation methods, deep learning is commonly used. For example, in
the early stages, seq2seq [3] models using autoregressive structures such as RNN [4]
and LSTM [5] were employed. The seq2seq model has an Encoder that aggregates
text information and a Decoder that generates texts from the aggregated information,
and is also known as an Encoder-Decoder model. Subsequently, a mechanism called
Attention that generates texts by selecting text information effectively was proposed.
More recently, a model called Transformer [6], which uses Attention, has been pro-
posed. Transformer is an Encoder-Decoder model with a large number of parameters
and Attention.

BERT and GPT-2 are well-known models that use Transformer. BERT [2] is a
general-purpose feature extractor for natural language texts and is a multi-layered
Encoder-only model of Transformer. It can consider the context of the text because it
takes account of the information of the text from both directions. GPT-2 [7] is a multi-
layered Decoder-only model that is commonly used in text generation tasks. Different
form BERT, GPT-2 considers the information of the text from one direction only. These
models are generally used after having acquired general-purpose linguistic knowledge
by training on a large corpus in advance. By fine-tuning a pre-trained model for a spe-
cific task, a model specialized for that task can be learned.

BERT2BERT [8] is a generative model that transfers the pre-trained parameters of
BERT to the Encoder and Decoder of Transformer. It has been shown to be effective in
the generation tasks to use the pre-training weights obtained by the BERT model [2].
Based on the usefulness of the BERT model, we leverage the BERT model to generate
the text of rap verses.
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Table 1. Differences between existing studies and ours.

Containing rhymes Generating text for rap battles Using rap battle data
Rapformer [9]

√
- -

GhostWriter [10]
√

- -
DopeLearning [11]

√
- -

Manjavacas et al. [12]
√

- -
DeepRapper [13]

√
- -

Wu et al. [14]
√ √

-
Shimon [15]

√ √
-

Ours
√ √ √

2.2 Rap Generation

In research aimed at generating rap lyrics, some rhyme-aware methods have been pro-
posed that replace words in the generated lyrics with other words that rhyme [9], or
generate rhyming lyrics by learning from lyrics that contain rhymes [10–13]. Although
those previous methods are shown to be effective in rap generation, they are not suffi-
cient for our purpose of rap battles because of a limited word choice. In rap battles, since
the opponent’s verse would contain a wide range of topics, it is important to generate a
response verse using a wide range of words containing a specified rhyme.

Rapformer [9], for example, is a method that first uses the Transformer model [6] to
generate a lyric sentence and then replaces the last word of the generated sentence with
another rhyming word. Since this replacement cannot change the other words in the
generated sentence, the replaced rhyming word must be semantically consistent with
the other words, thus limiting word choice.

The same limitation exists in other rap generation methods that use deep learning
models to learn rhymes in lyrics [10–12]. Potash et al. [10] proposed a method called
Ghostwriter that uses LSTM models to generate new rap lyrics from existing rap lyrics
data. DopeLearning proposed by Malmi et al. [11] selects the most appropriate rap sen-
tence by comparing the similarity between the generated rap sentence and the previous
one. Manjavacas et al. [12] proposed a method for generating rap lyrics by using LSTM
as well. Those methods generate words in order starting from the first word to reach the
last word. The choice of the last word is limited since it should be semantically con-
sistent with the previous words. On the other hand, Xue et al. [13] proposed a method
called DeepRapper that uses a Transformer-Decoder to consider the beat when generat-
ing rap verses. DeepRapper generates a sentence in the reverse direction and the above
limitation is mitigated. However, since DeepRapper generates multiple lyric sentences
at once, the choice of rhyming words in the second and subsequent sentences is still
limited by the context of the previous sentence.

With a focus on rap battles, there have been a few studies on generating rap battle
verses. Wu et al. [14] developed a chatbot system for rap battles that uses a modified
version of RAAM (Recursive Auto-Associative Memory) called TRAAM (Transduc-
tion Recursive Auto-Associative Memory) for generating verses. Shimon proposed by
Savery et al. [15] generates rap sentences by using LSTM based on existing rap lyrics
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data, and then rearranges them to create a verse based on keywords in the input verse.
These studies used their own hip-hop lyric corpora, but did not use a rap battle corpus
since there was no existing corpus for rap battles.

Table 1 summarizes the studies introduced above. Our study differs from them in
that our method can generate a response verse using a wide range of rhyming words
because it generates a rap sentence in the reverse direction starting from a rhyming
word at the end of the sentence. Moreover, we develop our own corpus specialized for
rap battles and use it for training our sentence generation model.

3 Verse Generation Method for Rap Battles

An overview of the proposed verse generation method specialized for rap battles is
shown in Figure 2. Since rhyming is indispensable in rap battles, our method takes
into account the following process through which rappers typically create a rhyming
response verse to the opponent’s verse. First, based on the last word in the opponent’s
verse, rappers decide on a word to use as a rhyme. It is also important to choose a word
that can serve as an answer to the opponent’s verse. Then, they create a rap verse that
includes that word.

With reference to this process, our method first finds candidate words that have
rhyme vowels based on the opponent’s verse and selects a set of semantically related
words from them (section 3.2). It then generates a rap sentence by using each of the
selected words, resulting in a set of the rap sentences (section 3.3). Finally, following
the previous approach of arranging the sentences to generate rap lyrics [11], the method
constructs a response verse by appropriately arranging (deciding the order of) the gen-
erated rap sentences (section 3.4).

3.1 Rap Battle Corpus

Rap Battle Corpus Our rap battle corpus was created by transcribing videos of rap bat-
tles in Japanese by using the crowdsourcing service Lancers 3. The videos of rap battles
were selected from the following three popular YouTube channels with over 100,000
subscribers: UMB 4, Gaisen MCBATTLE 5, and Sengoku MCBATTLE 6. Workers hired
through Lancers were native Japanese speakers and were not required to be familiar
with rap battles. They accessed a web page that we created for the task and transcribed
all the verses in the rap battles while watching the specified videos on YouTube. In total,
691 rap battles were transcribed by 194 workers.

To expand the size of the corpus, we also transcribed rap battles that were broad-
casted on two TV shows: High School Rap Championship and Freestyle Dungeon. Al-
though these videos were publicly available on the web, viewing them required pay-
ment. Hence, instead of using crowdsourcing, we had one university student transcribe
596 rap battles.

3 https://www.lancers.jp/
4 https://www.youtube.com/user/umbofficial
5 https://www.youtube.com/channel/UCe_EvY8GrvYgx8PbwRBc75g
6 https://www.youtube.com/user/senritumc
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Fig. 2. Overview of the proposed verse generation method.

The final statistics for the corpus are as follows: 1,287 rap battles, 6,791 verses,
52,422 sentences in verses, an average of 7.71 sentences per verse, and an average of
15.40 tokens (words) per sentence. All the raps in the videos are performed in Japanese.

Rap Sentence Pair Data To train a model for generating rap sentences, we need pairs
of input and output rap sentences. Therefore, we created pairs of rap sentences by taking
two consecutive sentences in a verse. For example, if a verse consists of three sentences,
two pairs of rap sentences are created (a pair of the first and second sentences and a pair
of the second and third sentences). In total, we created 22,125 pairs of rap sentences
from the 6,791 verses in the corpus (hereafter we refer to the pair data “rap sentence
pair data”).

3.2 Word Selection for a Rhyme

As described in section 3.1, the proposed method first selects words to use as rhymes
based on the opponent’s verse. This process consists of the following three steps.

First, a word that rhymes is extracted from the opponent’s verse. Rhyming with the
final word in the opponent’s verse is highly valued in rap battles because it requires a
rapper’s high ability to respond quickly right after listening to it. Therefore, in this study,
the Japanese morphological analysis module MeCab7 is used to divide the opponent’s

7 https://taku910.github.io/mecab/
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verse into morphemes, and the last noun in the verse is extracted as the target word to
rhyme with.

Next, words that have the same vowel sounds as the target word are searched as
candidate words that rhyme. We use the words included in the AWD-J dictionary8 for
this search. All the words in the dictionary are converted to vowel sequences in advance,
and words with the same vowel sequence as the target word are searched. If the number
of vowels in the target word is less than four, a word that has the same vowel at the end
is searched. If the number of vowels is four or more, at least four vowels matching from
the end are searched to relax the search constraints.

Finally, words that are semantically related to the target word are selected from
the searched words. To compute semantic relationships, Japanese word embeddings
learned with fastText9 are used, and the top seven words (i.e., the most semantically
related seven words) in terms of the cosine similarity with the target word are selected.
In addition, to ensure that one of the generated rap sentences is a definite answer to the
opponent’s verse, the target word itself is also added, resulting in a total of eight words.

3.3 Rap Sentence Generation

After selecting eight words to use as rhymes, the next step is to generate a rap sentence
that includes each of these words. In general, when generating sentences using a De-
coder (forward generation model), words are output from the beginning to the end of the
sentence (Figure 3 (a)). However, it is difficult to generate a sentence that must end with
the word selected as a rhyme. We therefore propose a method for generating a sentence
by outputting words in reverse order from the end to the beginning of the sentence. For
this method, we first train a rap sentence generation model (reverse generation model)
using the reversed sentences (Figure 3 (b)). The method then uses the trained model to
generate a rap sentence using the selected word as the starting token (Figure 3 (c)). The
details are described below.

For rap sentence generation, we used a generation model BERT2BERT [8], which
transfers the pre-trained parameters of the BERT model to the Encoder and Decoder of
the Transformer. As the pre-trained BERT model for both the Encoder and Decoder, we
used the model publicly available from Tohoku University10, which were pre-trained on
Japanese Wikipedia text data.

To fine-tune BERT2BERT, we used the rap sentence pair data created in section 3.1.
First, as shown in Figure 3 (b), each sentence in the pair is divided into tokens using a
tokenizer11. Next, the first sentence in the pair is used as the input sentence for the En-
coder by arranging the tokens in forward order, and the second sentence is used as the
output sentence for the Decoder by arranging the tokens in reverse order. This enables

8 https://sociocom.naist.jp/awd-j/
9 https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.ja.
300.vec.gz

10 https://huggingface.co/cl-tohoku/bert-base-japanese-whole-
word-masking

11 https://huggingface.co/cl-tohoku/bert-base-japanese-whole-
word-masking
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Fig. 3. Differences between forward and reverse generation models.

the model to learn to generate sentences in reverse order. The following hyperparame-
ters were used to train the Encoder and Decoder: a batch size of 32, Adam optimizer,
Cross Entropy Loss function, a learning rate of 2e-7, a dropout rate of 0.1, max length
of 128, and early stopping with a patience of 10. To train the model, we divided the rap
sentence pair data into train, validation, and test data with an 8:1:1 ratio. The training
was completed in 224 epochs.

Finally, we used the trained model to generate a token sequence by inputting the
last sentence of the opponent’s verse to the Encoder and specifying one of the words
selected in section 3.2 as the initial token for the Decoder. Then, by reversing and con-
catenating the generated token sequence, a rap sentence is generated for each of the
eight selected words. The parameters used for generation were as follows: max length
of 30, top k of 10, top p of 0.95, and no repeat n-gram size of 2.

3.4 Verse Construction

In section 3.3, because eight rap sentences are independently generated, we need to ar-
range them in an appropriate order to construct a verse. To do this, we first train a BERT
model through the next sentence prediction task in which the model predicts whether
two given sentences are appropriate as consecutive sentences (Figure 4). The sentence
pairs in the rap sentence pair data was used as positive examples, while negative ex-
amples were created by replacing the second sentence of each sentence pair in the rap
sentence pair data with a randomly selected second sentence of another pair. We created
10,748 pairs of sentences (5,374 positive examples and 5,374 negative examples) and
divided them into train, validation, and test data at a ratio of 8:1:1. We again used the
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Fig. 4. The next sentence prediction task.

Japanese pre-trained BERT model released by Tohoku University12. The hyperparame-
ters during training were as follows: a batch size of 8, Adam optimizer, Cross Entropy
Loss function, a learning rate of 2e-7, a dropout rate of 0.1, max length of 128, and
early stopping with a patience of 10. The training was completed in 30 epochs, and the
accuracy on the test data was 0.60.

Using the trained BERT model, we construct the response verse. Our method first
selects the rap sentence containing the target word used at the end of the opponent’s
verse as the first sentence of the response verse. It then uses the trained BERT to select
the most appropriate sentence (i.e., the sentence with the highest estimated probability
of being suitable) among the remaining seven sentences as the second sentence of the
verse. It repeats this selection process: it selects the most appropriate remaining sen-
tence as the n + 1th sentence next to the nth sentence (2 ≤ n ≤ 7). It thus constructs
the response verse consisting of the eight sentences.

4 Evaluation

Quantitative and qualitative evaluations were conducted to present the effectiveness
of the proposed method. The quantitative evaluation was based on three aspects: the
naturalness of rap, the quality of rhyme, and the quality of answer. In the qualitative
evaluation, we compared the forward and reverse generation results.

4.1 Quantitative Evaluation

To verify the usefulness of generating sentences in reverse order from the end of the
sentence, a comparison was made with the method of generating sentences in forward
order from the beginning of the sentence. In the comparison method, all processes ex-
cept for the direction of sentence generation were the same as the proposed method. The
12 https://huggingface.co/cl-tohoku/bert-base-japanese-whole-
word-masking
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Table 2. The average scores of the three aspects for the proposed and comparison methods.

method Naturalness of rap Quality of rhyme Quality of answer
Forward generation 2.56 1.77 2.48
(comparison method)
Reverse generation 3.20 3.58 2.92
(proposed method)

Fig. 5. The score distribution of the three aspects for the proposed (“Reverse”) and comparison
(“Forward”) methods.

hyperparameters used for training the comparison method were also the same. First, we
randomly selected 100 of the 1,287 rap battles in the rap battle corpus, and used the last
sentence of each rap battle as the input sentence (i.e., the last sentence of the verse).
Then, for each input sentence, one verse was generated using the proposed method and
the comparison method, resulting in a total of 200 verses generated for the 100 input
sentences. Note that the last sentence of each rap battle was not input to the Encoder
during the training, so this experiment treated the sampled 100 sentences as unknown
data. Two evaluators with over five years of experience in watching rap battles evalu-
ated each of the 200 verses based on a 7-point scale (1: very poor to 7: very good) for
each of the three aspects: the naturalness of rap, the quality of rhyme, and the quality of
answer.

Table 2 shows the average score of the three aspects for the proposed (reverse gen-
eration) and comparison (forward generation) methods. As shown in the table, the pro-
posed method outperformed the comparison method in all the aspects. To analyze the
differences in the results between the methods in more detail, the score distribution of
the three aspects is shown in Figure 5. As the proposed method considerably outper-
formed the comparison method in the quality of rhyme in Table 2, Figure 5 also shows
that the proposed method generated many verses with scores of four or higher, and that
the comparison method rarely generated verses with scores of four or higher. Since all
processes except for the generation direction suitable for rhymes were the same in the
proposed and comparison methods, as expected, their score differences were smaller in
the naturalness of rap and the quality of answer than in the quality of rhyme in Table 2.
However, as shown in Figure 5, the comparison method generated a large number of
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Fig. 6. Examples of response verses generated by the proposed and comparison methods. Since
verses are generated in Japanese, the English translation is shown in parentheses.

verses with a score of two, while the proposed method generated fewer verses with a
score of two, indicating that the proposed method has the advantage that low-quality
verses are less likely to be generated. From these results, it was demonstrated that gen-
erating verse sentences in reverse order from the end of the sentence is indeed effective.

4.2 Qualitative Evaluation

The upper and lower rows of Figure 6 show examples of response verses generated
by the proposed and comparison methods, respectively. In the example in the upper
row, the vowels of the words that need to rhyme with the opponent’s verse are “iou”
and highlighted with red color. The proposed method reflects this rhyme by ensuring
that each sentence in the response verse ends with a word that has the vowels of “iou.”
Despite imposing the constraint of rhyming in each sentence, meaningful sentences
can be generated and are suitable as answers. In contrast, none of the sentences in the
comparison method’s verse end with a word that has the vowels of “iou.” These results
also clearly demonstrate the usefulness of learning and generating sentences in reverse
order.

5 Conclusion

In this paper, we proposed a verse generation method that takes into account rhymes
and answers in rap battles and verified its effectiveness. Although we used a Japanese
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rap battle corpus, the proposed method itself is language-independent, and we would
like to verify its usefulness in other languages such as English in the future. To construct
response verses more flexibly, future work will also include the extension of our method
to find a rhymed word that is different from the last noun in the verse and is strongly
related to the opponent’s verse, or to take consonant similarity [16] into consideration
in the case of Japanese rap [17]. Finally, as mentioned in section 1, since our future goal
is to support people who are unfamiliar with rap to practice it, we would like to develop
an interactive verse generation system equipped with the proposed method and verify
its usefulness in training support.
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Abstract. Hand tracking is a critical component of natural user interactions in
extended reality (XR) environments, including extended reality musical instru-
ments (XRMIs). However, self-occlusion remains a significant challenge for vision-
based hand tracking systems, leading to inaccurate results and degraded user ex-
periences. In this paper, we propose a multimodal hand tracking system that com-
bines vision-based hand tracking with surface electromyography (sEMG) data for
finger joint angle estimation. We validate the effectiveness of our system through
a series of hand pose tasks designed to cover a wide range of gestures, includ-
ing those prone to self-occlusion. By comparing the performance of our mul-
timodal system to a baseline vision-based tracking method, we demonstrate that
our multimodal approach significantly improves tracking accuracy for several fin-
ger joints prone to self-occlusion. These findings suggest that our system has the
potential to enhance XR experiences by providing more accurate and robust hand
tracking, even in the presence of self-occlusion.

Keywords: Extended reality, extended reality musical instruments, hand track-
ing, surface electromyography, deep learning

1 Introduction

Extended reality (XR) is an umbrella term encompassing virtual, augmented and mixed
reality (VR/AR/MR). In recent years, the increased popularity of XR technology has
seen the establishment of extended reality musical instruments (XRMIs) as a research
field [23]. Milgram et al. described the reality-virtuality continuum [21], along which
digital applications can be placed. It stretches from real-world environments to fully
virtual environments. Head-mounted XR devices bridge this continuum. They are ca-
pable of rendering three-dimensional imagery onto screens, removing the necessity for
separate monitors or mobile displays, blending the real and virtual worlds together. The
rapid development of XR technologies has opened up new possibilities for musical cre-
ation, performance, and interaction, with the emergence of various XR-based musical
instruments and applications. Many XRMIs follow an embodied interaction paradigm.
These instruments offer novel opportunities for artists to experiment with embodied in-
teraction techniques, spatial sound design, and immersive performances, thus expand-
ing the boundaries of traditional music making. XRMIs fall within the larger category
⋆ This work was supported by the UKRI Centre for Doctoral Training in AI & Music [grant

number EP/S022694/1].

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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of digital musical instruments (DMIs). [27] suggest that the control of DMIs can be
made intimate (personal and familiar) by using appropriate control metaphors, low la-
tency action-to-sound, and continuous gesture recognition. This study is part of a larger
project that aims to support control intimacy in XRMIs.

Based on the current state of XR technology and prior work in XRMIs [3, 9], we
highlight that gesture sensing errors on XR devices are a bottlenek for intimate musical
control. Head-mounted XR devices (HMDs) rely on a set of sensors to record data and
provide embodied control interfaces for users, e.g., head-tracking, hand tracking, and
body pose detection. The transduction of these real-world sensor data to digital repre-
sentations depends on computational methods. In this work we focus on the problem of
hand tracking, more specifically, accurate tracking of finger joints. Hand-tracking algo-
rithms often use visual information from camera sensors in conjunction with machine
learning techniques, for example, in the Oculus Quest 2 device [11]. The accuracy of
vision-based hand-tracking algorithms may be high [26], but current recognition rates
do not reach 100%. Self-occlusion - the occlusion of finger joints by other parts of the
hand - as well as challenging lighting situations lead to failure cases in vision-based
tracking systems. Such error cases may produce instances of jitter, tracking loss, or
glitches in the virtual representation of the hands, which can have detrimental effects
on the usability and user experience in XRMIs, as shown in a previous study [9].

This work aims to address such sensing-related issues through the use of surface
electromyography (sEMG) sensors. EMG sensors measure the electrical potential pro-
duced during muscle contractions in the body. Surface electromyograms can be ob-
tained through electrodes that are positioned on the surface of the skin, above muscle
tissue regions. We present an investigation into the potential of sEMG sensors and deep
learning models to enhance hand-tracking accuracy in XRMIs. Our approach combines
sEMG data and vision-based tracking methods to address sensing-related issues com-
monly encountered in XRMI performance. Thereby, we aim to improve the tracking
accuracy and responsiveness of XR musical instruments, especially in situations where
vision-based tracking falls short.

The scope of this paper is limited to the exploration of sEMG and deep learning
techniques for hand-tracking in XR musical instruments. While our findings may have
broader applications in other areas of XR interaction, the primary focus is on the im-
provement of XRMI design and user experience. Through our work, we aim to con-
tribute to the ongoing development of more accurate, intuitive, and expressive extended
reality musical instruments.

2 Background

The development of XRMIs has attracted growing interest as VR, AR, and MR tech-
nologies continue to advance. Early studies in this domain focused on the design and
evaluation of virtual interfaces for musical performance and interaction [19, 23, 8, 22].
Several works investigated user experience [6, 5], interaction techniques [2] and collab-
orative music making [20, 10]. More recent studies have explored the creation of novel
instruments and control schemes [5, 3, 4, 9]. While there is no gold standard for XRMI
design, many XRMIs rely on hand-tracking to facilitate embodied interaction with the
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instrument [22, 8, 4, 9]. Various vision-based tracking methods are employed, including
depth-sensing cameras [22, 8, 4], and machine learning-based approaches [11]. Despite
the progress in hand tracking research, limitations such as occlusion, lighting issues,
and computational complexity continue to pose challenges for hand-controlled XRMI
applications.

Surface electromyography (sEMG) has emerged as a promising alternative to vision-
based tracking methods for capturing user input in various applications, including XR.
Several studies have explored the use of sEMG data and deep learning architectures for
hand gesture recognition [18, 17, 1, 16]. These works have reported promising results,
highlighting the potential of employing sEMG and deep learning models for precise fin-
ger movement estimation. However, some of these works depend on complex tracking
setups [1] or leverage low-resolution tracking data for training [16].

A notable limitation of these studies is the lack of shared training data and code,
hindering the reproducibility and comparability of the results across different research
efforts. Several datasets on the topic of finger joint angle estimation through sEMG
data have been published. However, they either require specialised sEMG measuring
equipment [13, 15, 14], making the reproduction of results an expensive endeavour,
or introduce temporal biases into the dataset due to lack of synchronisation during the
recording procedure [12]. The absence of implementation details ([18, 17, 1]) makes it
difficult for other researchers to build upon these works, potentially slowing down the
progress in the field.

The potential benefits of integrating sEMG data and deep learning models with
vision-based tracking methods has not been thoroughly investigated in the context of
XRMIs. While machine learning has found its way into the NIME community [24],
the use of machine learning approaches to improve XRMI control remains an under-
explored area. This study aims to develop a multimodal hand tracking approach that
leverages sEMG data, deep learning models, and vision-based tracking techniques. We
share the training data and code1, fostering further research and innovation in the do-
main of sEMG-based neural interfaces.

3 Deep Learning Model for Finger Joint Angle Estimation

We have developed a software pipeline for data collection, feature extraction and mod-
elling of sEMG data. We focus on eight finger joints that are prone to self-occlusion: the
metacarpophalangeal and proximal interphalangeal joints of the index, middle, ring and
pinky fingers. Specifically, we want to model the rotations of the finger bones connected
to these joints relative to the hand. The thumb is excluded from our investigation. Mod-
elling thumb rotations with sEMG data is a hard problem, since the majority of muscles
related to thumb movements are located in the hand, rather than the forearm. With that
in mind, the goal of the model is to estimate the eight finger joint angles from a window
of sEMG data.

1 https://github.com/maxgraf96/sEMG-myo-unity
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3.1 Data Collection

We collect surface EMG signal measurements using the Thalmic Labs Myo armband2

and vision-based hand tracking data from the Oculus Quest 2 XR headset. Both devices
are employed simultaneously to capture the muscle activity and finger joint rotations,
respectively. This approach allows users to capture data without the need for external
tracking devices.

The Myo armband is a non-invasive wearable device that features eight sEMG sen-
sors. The armband is worn on the forearm, with the sensors evenly distributed around
the circumference of the arm, allowing it to capture the activity of the forearm muscles
during finger movements. We obtain sEMG data from the Myo armband using the Py-
oMyo Python framework [25], extracting rectified and smoothed signals at a sampling
frequency of 50Hz. The Oculus Quest 2 XR headset is equipped with four monochrome
cameras that provide a wide field of view, enabling it to capture hand positions and
movements. The built-in hand tracking algorithm [11] processes the camera data and
estimates the 3D rotations of the user’s hand joints in real time. In our system, we sam-
ple the hand joint rotations from the XR device at 50 Hz and synchronize them with the
sEMG data from the Myo armband.

One researcher recorded hand gestures and movements in a controlled environment,
with a focus on gestures relevant to XRMI interaction. This study should be seen as a
proof-of-concept for our methodology. Hence, for this study, we focused on data from
the right hand only. The gestures included various finger flexions and extensions, as
well as combinations of multiple finger movements. They were performed at different
speeds, forces, and orientations. We conducted three data collection sessions across
three days to account for the natural variability in sEMG readings, ensuring a more
robust dataset. The armband was fitted on the right forearm, covering the right flexor
carpi radialis, flexor digitorum superficialis and the right extensor carpi radialis longus,
as described in [7]. During the data collection process, the XR headset was strategically
positioned in diverse locations and orientations to minimise self-occlusion of the hand.
Data collection sessions lasted between ten and fifteen minutes, resulting in a substantial
amount of synchronized sEMG and hand tracking data.

3.2 Feature Extraction

Figure 1 shows the data flow in our pipeline. The selection of features was informed
by both the literature and a series of experiments.We use Python to extract both time
domain and frequency domain features from the sEMG data. The pipeline takes 2D win-
dows of sEMG samples, with N number of samples and C channels. We then compute
the following features per channel: in the time domain, mean absolute value (MAV),
root mean square (RMS), and variance (VAR); in the frequency domain, median fre-
quency bin (MDF), mean frequency bin (MNF), and peak frequency bin (PF). Addition-
ally, wavelet coefficients at the fourth level are extracted to provide further information
about the signal’s characteristics, as reported in [1]. Wavelet analysis provides a multi-
resolution representation of the sEMG signal, capturing both the time and frequency

2 https://xinreality.com/wiki/Myo
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Fig. 1: Data preprocessing, feature extraction, and model pipeline

characteristics of the data. This comprehensive feature representation aims to capture
essential information from the sEMG signals both locally and globally, enabling holistic
representation of the data.

3.3 Model Architecture

The model architecture is a combination of a Long Short-Term Memory (LSTM) net-
work and multiple separate sets of fully connected (FC) layers, aiming to capture both
general trends in the sEMG signal data provided by the features and high-frequency
characteristics of the signal. Formally, our model learns a mapping

F : RN×C → RM (1)

where N denotes the number of sEMG samples, C represents the number of sEMG
channels and M denotes the number of predicted joint angle values at every time step.
More accurately, we learn a mapping

F (s) = ϕfinal

(
ϕlstm(sN̂ )⊕ ϕfeat(ψtime-freq(sN ))⊕ ϕwav(ψwavelet(sN ))⊕ ϕfilt(sN̂ )

)
(2)

where

– F (s) represents the mapping function that takes N × C sEMG samples (s) and
outputs M finger joint angles.

– sN denotes all N × C sEMG samples.
– sN̂ denotes the last N̂ × C sEMG samples in the data point.
– ϕlstm represent the LSTM layers, and ϕfeat, ϕwav and ϕfilt represent the fully con-

nected layers processing time/frequency domain features, wavelet features and fil-
tered EMG data respectively.

– ϕfinal denotes the final set of fully connected layers.
– ψtime-freq and ψwavelet denote the feature extraction functions for time-frequency do-

main features and wavelet features, respectively.
– ⊕ represents the tensor concatenation operation.
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The LSTM network, a type of recurrent neural network, operates on the subset sN̂ ,
which contains the last N̂ samples of the EMG data, capturing the temporal dependen-
cies within the most recent portion of the sEMG signal. LSTMs can effectively learn
medium-to-long-range dependencies in time-series data and retain information across
multiple time steps. Additionally, sN̂ is fed into a separate fully connected layer, which
was empirically found to improve the model’s performance. The time and frequency
domain features are computed over all N samples and processed by a set of fully con-
nected layers. These layers are designed to extract higher-level representations from the
sEMG features, capturing general patterns and trends in the data. The wavelet features
are fed into a separate set of fully connected layers, allowing the model to learn dis-
tinct patterns associated with the wavelet coefficients. This additional information can
help the model to better discriminate between different types of hand movements and
gestures.

The outputs of the LSTM layers and the three sets of fully connected layers (time-
frequency domain features, wavelet features, and N̂ sEMG samples) are concatenated
and passed to a final set of fully connected layers. This combination of network compo-
nents aims to capture a comprehensive representation of the sEMG signal, taking into
account both general trends and high-frequency changes. The final output of the model
is an estimation of the eight finger joint angles described above.

3.4 Model Implementation and Training

We selected N = 150, which gives a sampling window size of three seconds. Related
works use window sizes of five seconds [18, 17]. During our experiments with the
model architecture, we found that a smaller window size of 150 samples did not reduce
the quality of the predicted finger joint angles, while yielding a performance gain in the
data processing pipeline. N̂ = 50 was selected as a trade-off between LSTM accuracy
and performance. Higher values for N̂ produced slightly better results, but incurred a
performance degradation, slowing down the model at inference time.

The collected data comprises approximately 80000 sEMG samples with correspond-
ing finger joint angle measurements. The sEMG samples were separated into training
and validation sets using a 90/10 ratio. Our deep learning model is built using the Py-
Torch framework. The model was trained on a single NVidia RTX 2080 Ti GPU for
approximately 500000 steps with a batch size of 256. The mean squared error function
was employed as a loss metric. We applied an exponentially decreasing learning rate,
starting at 0.003 and reducing to 0.0003 over the first 10000 steps. During training, we
tracked the mean average difference between the predicted joint angles and the ground
truth angles for both training and validation sets. Our criterion for stopping the training
procedure was the moment of obtaining a mean joint angle difference value of less than
1° across the validation set.

4 Multimodal XR Hand Tracking with sEMG and Vision-Based
Tracking

In this section, we present our approach to multimodal XR hand tracking by combining
sEMG and vision-based tracking techniques. In our system, the vision-based tracking
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data provides information about the overall hand position and orientation in 3D space,
while the sEMG-based model produces granular information about individual finger
joint rotations. The sEMG data are continuously sampled, preprocessed, and passed
to the trained deep learning model to estimate the eight finger joint angles. The hand
position and orientation data are combined with the estimated finger joint angles to
generate a complete hand pose representation.

The deep learning model is optimized for real-time performance, ensuring that the
sEMG data can be processed with minimal latency. Our system operates at 50Hz, which
incurs a latency of 20ms. For this work, data processing and model inference took place
on a consumer notebook. The notebook concurrently runs a python server, responsible
for sEMG data aggregation, preprocessing and model inference, and a 3D XR envi-
ronment on the Unity platform. At every time step, the estimated finger joint angles
are transferred from Python to Unity through the low-latency ZeroMQ framework3. A
video demonstration of our system is available online4. It shows a side-by-side compar-
ison of the vision-based tracking system and our multimodal approach.

4.1 Evaluation

To validate the effectiveness of our multimodal hand tracking system, we conducted
an experimental evaluation, which compared the multimodal tracking to the baseline
vision-based hand tracking system provided by the XR device. We simultaneously col-
lected tracking data from the vision-based tracking system and the multimodal tracking
system. A Leap Motion sensor was used to acquire ground truth labels for finger joint
angles. The Leap Motion is a high-precision vision-based hand tracking device that cap-
tures finger joint angles and hand position in 3D space. The ground truth labels were
then compared to the results from both the vision-based and the multimodal tracking
system.

The experimental setup included a series of hand pose tasks, designed to cover a
wide range of hand movements, including gestures prone to occlusion. The tasks were
selected with regard to their utility in playing a keyboard-inspired XRMI. The tasks
were performed while wearing the Oculus Quest 2 headset and the Myo armband. The
Leap Motion sensor was placed on a table to record ground truth data. We recorded tasks
under two conditions: 1) Full view of the hand - here, the XR headset was positioned at a
50cm distance, 45° above the hand to ensure optimal visual tracking conditions. 2) Self-
occlusion of the hand - in this condition, the distance was kept identical, but the angle of
the XR headset was lowered, such that the back of the hand occluded the fingers. Figure
2 illustrates the six hand pose tasks devised: (i) extending all fingers and making a fist;
individual flexion and extension of the (ii) index, (iii) middle, (iv) ring and (v) pinky
fingers; (vi) sequential flexion and extension of pinky, ring, middle and index fingers
(similar to the gesture of drumming on a table while waiting for something). Each task
involves the execution of the gesture at three different speeds: slow, over approximately
two seconds, moderate (one second), and fast (half a second). To account for variability

3 https://zeromq.org/
4 https://www.youtube.com/watch?v=ivl2g2t2oaI
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(i) (ii) (iii) (iv) (v) (vi)

Fig. 2: Finger movements in the six hand pose tasks

in the sEMG measurements, all tasks were executed three times, over two days, under
identical lighting conditions.

To measure the degree of finger occlusion, we integrated a ray-casting system with
the XR application. We cast rays from the XR headset’s 3D position to the eight finger
bones whose rotations we measured every time a sample was taken. Rays intersecting
other parts of the hand, e.g., the back of the hand, were used to mark the respective
finger bones as occluded. This allowed us to quantify the level of occlusion per finger
for every recording.

4.2 Analysis Methods & Results

To evaluate the performance of the vision-based and multimodal tracking systems across
every task, we obtained matrices of difference values between the estimated joint angles
and the ground truth angles for both systems at every time step. The matrices were ag-
gregated across the three sessions. We assessed the normality of the difference matrices
using the Shapiro-Wilk test for each of the six hand pose tasks. We then applied the
Wilcoxon signed-rank test to see whether there was a significant difference between the
results produced by the vision-based and multimodal tracking systems.

Across tasks, the results of the Shapiro-Wilk test showed p-values < .001, indi-
cating that the data in the difference value matrices did not fit a normal distribution.
Therefore, we proceeded with the non-parametric Wilcoxon signed-rank test for fur-
ther analysis. Figure 3 shows the results obtained from the mean joint angle differences
across all finger joints per task, for both occlusion conditions (full view and occluded).
Under the occluded condition, our model produces significantly lower deviations from
the ground truth data across all tasks, compared to the vision-based tracking system.
On average, it improves the finger joint angle tracking accuracy by five to 15 degrees
across all fingers.

Table 1 shows the results obtained from the Wilcoxon signed-rank tests, aggregated
across all eight tracked joints per task for both conditions. The p-values indicate sig-
nificant differences between the difference value matrices. Additionally, the table lists
the average finger occlusion results obtained through the raycasting occlusion measure
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Fig. 3: Average deviation in degrees between the finger joint angles generated by the
vision-based (V) and multimodal (M) tracking systems and the ground truth data for
each task. Error bars show standard deviation; three asterisks indicate a significant dif-
ference between the V and M values (p < .001)

described above. The occlusion results describe the mean portion per task, in which the
fingers were occluded by another part of the hand.

5 Discussion

The results of the evaluation showed that the multimodal hand tracking system outper-
formed the pure vision-based hand tracking system across all tasks under the occluded
condition. These findings support our hypothesis that the integration of sEMG-based
finger joint angle estimation can help overcome occlusion-related limitations in vision-
based hand tracking, resulting in more accurate and reliable XRMI interactions. Under
the full view condition, the vision-based hand tracking produced fewer errors in all
tasks. This was expected, as the vision-based hand tracking system operates optimally
under full view of the hand.

Despite the promising results, our study has several limitations. Due to the nature of
sEMG data, the tracking performance of the multimodal approach is unlikely to extend
to other users without fine-tuning the deep learning model. Surface EMG signals dif-
fer substantially between individuals and can be influenced by factors such as muscle
fatigue, electrode placement, and individual anatomical differences. It will be valuable
to investigate the system’s performance across different users and under varying con-
ditions. The identification of sEMG data representations that allow for generalisation
under consideration of these factors without requiring extensive amounts of data is still
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Table 1: P-values and average occlusion measurement results across tasks under both
conditions

Full view Occluded

Tasks P-value Occlusion (%) P-value Occlusion (%)

(i) 1.0 16.78 <.001 93.00
(ii) 1.0 2.65 <.001 70.58
(iii) 1.0 15.25 <.001 63.11
(iv) 1.0 16.78 <.001 53.02
(v) 1.0 27.94 <.001 78.82
(vi) 1.0 10.36 <.001 59.48

an ongoing research topic. However, our work allows XR users with access to sEMG
devices to train their own models using our pipeline and code.
The performance of our multimodal hand tracking system was evaluated using a single
type of XR headset and sEMG armband. Future research should explore more complex
occlusion scenarios, as well as test the system’s performance across different hardware
setups and sEMG devices, to better understand the generalisability of our findings.
With that in mind, we see numerous avenues for further research. The integration of
additional tracking modalities, such as depth sensing or inertial measurement units
(IMUs), could further enhance the robustness and accuracy of the multimodal hand
tracking system by enabling stronger representations of the underlying data. A future
study will explore the impact of our multimodal hand tracking system on usability,
user experience and task performance in XRMI interactions, and provide insights into
the practical implications of our findings. By conducting user studies with tasks that
require precise hand movements and are susceptible to occlusion, the benefits of our
system for real-world applications could be better understood.
Our study provides evidence that the combination of vision-based tracking and sEMG-
based finger joint angle estimation can effectively address occlusion issues in hand
tracking for XRMI interactions. The findings suggest that the multimodal hand track-
ing system has the potential to enhance user experiences and enable more immersive
and natural interactions in virtual environments.

6 Conclusion

In this paper, we introduced a multimodal hand tracking system designed to address
occlusion issues in XRMI interactions by combining vision-based tracking with sEMG-
based finger joint angle estimation. The goal of this study was to demonstrate the po-
tential of our proposed system to improve hand tracking accuracy and robustness, even
when the hand is partially occluded.

While our results show promise, the experimental setup was relatively simple, and
further research should explore more complex scenarios and investigate the system’s
performance across different hardware and user conditions. Future work could also in-
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tegrate additional tracking modalities and machine learning techniques to enhance the
robustness and accuracy of the system.

Our multimodal hand tracking system demonstrates the potential to improve XRMI
interactions by addressing occlusion issues in vision-based hand tracking. As XR tech-
nologies continue to evolve, the integration of complementary tracking modalities, such
as sEMG and vision-based tracking, will likely play a crucial role in enhancing user
experiences and enabling more immersive and natural interactions in virtual environ-
ments.
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[24] Théo Jourdan and Baptiste Caramiaux. “Machine Learning for Musical Expres-
sion: A Systematic Literature Review”. In: NIME. 2023.

[25] P. Walkington. PyoMyo. Version 0.0.5. Nov. 2021.
[26] F. Weichert et al. “Analysis of the Accuracy and Robustness of the Leap Motion

Controller”. In: Sensors 13.5 (5 May 2013), pp. 6380–6393.
[27] D. Wessel and M. Wright. “Problems and Prospects for Intimate Musical Control

of Computers”. In: Computer Music Journal 26.3 (Sept. 2002), pp. 11–22.

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

53



Emotional Impact of Source Localization in Music Using
Machine Learning and EEG: a proof-of-concept study

Timothy Schmele⋆1,3, Eleonora De Filippi⋆2, Arijit Nandi2,
Alexandre Pereda Baños2, and Adan Garriga3

1 Institute for Music Informatics and Musicology (IMWI), University of Music,
76131 Karlsruhe, Germany

2 Department of Big Data at Eurecat, Centre Tecnologic, 08005 Barcelona, Spain
3 Department of Multimedia at Eurecat, Center Tecnologic, 08005 Barcelona, Spain.
tim.schmele@eurecat.org; eleonora.defilippi@eurecat.org

Abstract. Little is currently known about how varied source locations affect a
listener’s emotional reaction to music. Here, using spectral features extracted
from electrophysiology (EEG) data, we tested through machine learning whether
four music source positions (front, back, left, and right) could be accurately dis-
tinguished according to the type of valence in a subject-wise manner. The find-
ings demonstrate that distinct EEG correlates can reliably classify the four source
locations and that the effect is stronger when music with a negative emotional va-
lence is played outside of the listener’s visual field. This proof-of-concept study
may pave the way for advanced spatial audio analysis approaches in music infor-
mation retrieval by considering the listener’s emotional impact depending on the
source direction of incidence.

Keywords: Spatial Music, Emotion Recognition, Affective Computing, EEG,
Machine Learning, SVM, Source Localization

1 Introduction

Music’s ability to modulate cognitive and emotional processes has been widely docu-
mented over the years [1–4], making it a relevant tool to investigate the brain corre-
lates of emotional processes [5]. However, little is known about the impact of different
sound-source locations on the emotional response to music, as only a few studies have
addressed this issue [6–8]. In particular, the study conducted by Asutay et. al. [7] pro-
vided evidence that the effects of spatial source location on attentional processes are
mediated by the emotional information conveyed by the sound [7]. The authors also
demonstrated that a sound source behind the participant led to a more robust affective
response in the listeners [7]. In another work, Tajadura-Jiménez et. al. concluded that

⋆ = these authors equally contributed to this work.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

54



sound sources outside the visual field produce emotional states of increased arousal [9],
though these effects were more pronounced for natural sounds. Similarly, the work of
Ekman and Kajastila showed that sounds are judged by the listener as scarier when they
come from the back as compared to the front [6], although context has been found to
be an important factor in eliciting the desired effect [8]. In a more detailed study using
everyday sound events, Drossos et. al [10] showed that lateral positions do increase the
listeners’ affective state significantly, although this is dependent on the content of the
audio sample used.

Moreover, there is a strong connection between space and music, as music can,
in turn, evoke sensations of space and movement as a sense of intrinsic space, i.e. a
metaphorical space, created by musical features in melody, harmony or rhythm, as op-
posed to the literal, physical space a sound source may occupy [11]. The most common
effect is that of associating the perceived pitch with a sense of spatial height [12], al-
though alternative spatial representations for the same also exist latently [13]. Further-
more, a correlation between the absolute pitch of a musical piece and emotional affect
has been shown [14]. In a study conducted by Eitan et. al. [15], in which participants
were asked to associate music with imagined, spatial motions of a human character,
it was shown that most musical parameters significantly affect the imaginary motion,
indicating a strong correlation between music and space perception.

Here we investigated whether four different music source spatial locations (i.e.,
front, back, left, and right) are reflected in a distinct pattern of electrophysiological
activity that can be captured by a machine-learning approach. Moreover, we explored
the interaction between distinct music source locations and the emotional salience of the
musical excerpts played. The dimensional model supports the idea that emotions can
be modeled as combinations of a few fundamental and basic dimensions. Valence and
arousal, sometimes known as the ”circumplex model,” are two fundamental qualities
that researchers unanimously concur are necessary to understand emotions [16]. The
valence level varies from unpleasant (negative) to pleasant (positive), while the arousal
level, specifically, ranges from not aroused (low arousal) to thrilled (high arousal).

We recorded electrophysiological (EEG) data while participants were listening to
musical excerpts characterized by either positive or negative valence, both with middle
values of arousal, and occurring from different spatial source locations. To take into
account individual differences, we performed subject-based classification between each
pair of spatial locations, according to the type of valence. We hypothesized that when
the music source was located outside the listener’s visual field (i.e., back, right, left) it
would lead to a different electrophysiological pattern and impact on the affective state
as compared to frontal source localization.

2 Materials and methods

2.1 Stimuli

The music excerpts used in this study were taken from the Database for Emotional Eval-
uation of Music (DEAM) [17]. It features a wide range of musical genres from popular
Western styles to spoken word. All excerpts come from royalty-free music sources and
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are thus very likely to be unknown to the average participant. In order to choose which
samples to use for this study, we categorized the musical excerpts into 3 groups of high,
mid, and low values along each emotional dimension (valence and arousal), based on
the static evaluation metric. To evaluate the effect of valence in this study, those samples
that fell into the mid-arousal category were first selected and then separated into two
categories of positive or negative valence. The error between the average dynamic and
static rating served as an ordering mechanism, along which the final samples could be
selected.

2.2 Experimental design

The sequence of audio samples was arranged into blocks of 3 randomly selected musical
excerpts without repetition. Random selection was done anew for each participant. First,
from each category, i.e. positive or negative valence, the samples were shuffled and
grouped into blocks of 3 musical excerpts. Each block was assigned a spatial position
(front, back, left, or right) at random, representing each position equally. Then, the
blocks from each category were combined in random order into a single sequence of
36 + 36 = 72 samples.

The participant was first shown an introduction, explaining the experiment and the
SAM questionnaire, followed by a short test if the participant has understood what the
SAM represents. Then, a baseline rest period of 120s is recorded. After that, the main
experiment started. In each block, 3 music samples from the same spatial position were
played. Before each sample, a rest period of 5s was first presented to mentally reset the
participant. At the end of each musical sample, the participant had to fill out the SAM
questionnaire rating their emotional response to that particular musical stimulus. At the
end of each block, another additional questionnaire was shown, where the participant
answered how exhausted and attentive they felt.

The experiment ended after all blocks and their respective musical samples had
been played to the participant. The EEG data were recorded using a 19-electrode Neu-
roelectrics® Instrument Controller (NIC2) at a sampling rate of 250 Hz. The subjects
were informed about the experimental protocol, its approximate duration, and the mean-
ing of the SAM scales. We instructed the participants not to move, particularly during
playback of the stimulus, to reduce muscular artifacts in the EEG data. The experiment
was conducted according to the Helsinki Declaration and all subjects signed the consent
form.

2.3 Participants

We recruited a total of 20 healthy participants (10 males and 10 females) with a mean
age of 28.66 years (SD = 5.53), no history of psychiatric or neurological disorders, and
normal hearing. Furthermore, subjects had no prior experience or formal music training.
Nearly all participants were right-handed, with only one participant being left-handed.
After preprocessing the EEG signal, 3 participants were removed from the analysis due
to excessive artifacts. Only 17 participants were included in the analysis, comprising 9
females and 8 males with a median age of 28 (20-38).
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2.4 Experimental Setup

The room in which the experiment took place was acoustically treated, with acoustic
diffusion panels on the walls and absorption panels on the ceiling, as well as acoustically
isolated from the outside. The reverberation time was relatively short, with an RT60 of
0.398s at 125Hz to 0.253s at 8kHz. The average RT60 between 500Hz and 1000Hz is
around 0.293s. The audio stimuli were played from four positions: front, back, left, and
right. A loudspeaker was placed in each position. The front and back loudspeakers were
positioned at 3.2m from the listener, while the side speakers were at 2.3m.

To correct for the differences in distance between the loudspeakers, each loud-
speaker was calibrated to 75dBSPL using pink noise at −20dBFS at the center listen-
ing position. The loudspeakers used were of the type Genelec 8040, fed by a Focusrite
Scarlet 18i20 soundcard. The audio playback was done with the sounddevice module
for Python, running on a Windows laptop computer.4

The interface was built for a web browser using HTML and CSS, with the functional
elements programmed in Javascript and Jquery. The interface was designed with touch
controls in mind, filtering accidental double taps and guiding the participant through the
experiment. Whenever a button to continue was shown, the participant was also able to
change their mind before sending off the result to be recorded. The Python script and
the web front-end communicated using a simple socket connection over localhost. All
activity on the touch screen was recorded over the socket connection.

2.5 EEG preprocessing

EEG data were analyzed in an offline manner using the EEGLAB toolbox on Matlab
R2019b (The Mathworks, Inc.). The preprocessing steps included downsampling of
the signal to 130 Hz and the application of a bandpass Butterworth filter ranging from
0.01 up to 40 Hz. To correct eye blinks and muscular artifacts, we used the Indepen-
dent Component Analysis (ICA) algorithm. For each subject, we manually removed all
components capturing artifacts. Afterward, we epoched the EEG data and created eight
distinct datasets for each subject according to the experimental condition (i.e, spatial
position and type of valence). Finally, we applied a spatial filter to reduce the volume
conduction effect, using the surface Laplacian transform inspired by the spherical spline
method described by [18–20].

2.6 Feature extraction

To preserve information about the temporal dynamics, we transformed the EEG data
into the time-frequency domain using Complex Morlet Wavelet convolution (CMW)
[21]. We chose CMW instead of alternative approaches like the Short-time Fourier
Transform or the Hilbert Transform, because CMW is a Gaussian-shaped wavelet in
the frequency domain.

Since we were interested in all frequency bands, we selected a range of frequencies
going from 1 Hz up to 40 Hz. Following the use of CMW convolution, we retrieved the

4 https://github.com/multimedia-eurecat/Neuromuse
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power from the coefficients and then used a decibel-baseline normalization, utilizing
all neutral trials as a baseline. We used a sliding-window strategy to reduce the time-
frequency data for every trial in order to increase the sample size. There were a total of
39 windows in every trial, each lasting 1 second and overlapping by half a second.

Then, we calculated the average change in power compared to the neutral baseline
for seven frequency bands (delta 1−4 Hz, theta 4−8 Hz, low alpha 8−10 Hz, high alpha
10−12 Hz, low beta 13−18 Hz, high beta 18−30 Hz, and gamma 31−40 Hz), which
constitute the spectral features. Within each window and for all the 19 channels and
the seven frequency bands, the features extracted were the mean power, the standard
deviation of the mean, and the frontal alpha asymmetry (FAA). The FAA coefficients
were calculated for the channel pairs Fp1-Fp2 and F3-F4 in both low-alpha (8−10 Hz)
and high-alpha (10−12 Hz) bands. The resulting feature array consisted of 351 samples
for each class with a total of 270 features.

2.7 Classification and feature selection

For data classification, we utilized MATLAB R2022a Statistics and the Machine Learn-
ing Toolbox. As a base classifier, the linear Support Vector Machine (SVM) supervised
learning approach was chosen, which uses a hyperplane as a decision boundary to op-
timize the margin of separation between two classes. Herewith, SVMs give a metric
that permits scaling the certainty with which a window sample is allocated to one of
the two classes: the sample’s distance from the separation hyperplane. To evaluate the
classifier’s performance robustly, we used 6-fold cross-validation to train and test the
classifier, allocating all windows in one trial to the same fold. Having said that, we
also ran the 6-fold cross-validation fifty times and averaged the results across different
classification runs.

It is well known that feature extraction and selection strategies assist to reduce com-
puting complexity and develop models with greater generalization capabilities, in addi-
tion to enhancing predictive power [22]. That is, we used the Bioinformatics toolbox of
MATLAB R2022a to do feature selection due to the large dimensionality of our dataset.
The goal was to improve the classifier’s learning performance and find the most com-
mon discriminative characteristics shared by all participants. We rated the characteris-
tics based on their importance between the classes, using the t-test as an independent
criterion for binary classification. For each feature, the built-in function in MATLAB
calculates the absolute value of the two-sample t-test with pooled variance estimate.
Finally, we identified the top 20 characteristics for each topic and combined them to
determine which features were shared by all participants.

Statistical comparisons We used the Wilcoxon rank-sum method to investigate if the
SVM performances were significantly above chance, thus we statistically compared
accuracy distributions of real-labeled data with surrogate data (i.e., randomly shuffled
labels). Furthermore, data from the self-assessment SAM questionnaire were analyzed
using a general linear model, the multivariate analysis of variance (MANOVA), on IBM
SPSS Statistics.
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Fig. 1. Within-subject classification results of each binary classification between music position
sources according to the type of valence. We performed 6-fold cross-validation 50 times, such
that the boxplots depict the results of 50 classification runs for each participant.

3 Results

We investigated through machine learning whether the four music position sources
could be accurately differentiated according to the type of valence in a subject-wise
manner using spectral features extracted from EEG data cut into 1-second windows.
The results of all cross-validation run for each participant are presented in Figure 1.
The corresponding accuracy averaged across subjects for each binary classification run
is summarized in Table 1. For both positive and negative valence, we showed that the
highest average accuracy was reached when classifying the frontal localization versus
each of the three sources located outside the visual field. In particular, this effect was
stronger when classifying pairs of source locations using events characterized by nega-
tive valence.

Table 1. Classification results averaged across participants for each pair of binary classification
runs presented according to the valence type. An asterisk indicates that the average accuracy is
significantly above the chance level (p<0.05).

Pair of music
source locations

Mean accuracy
across subjects

Pair of music
source locations

Mean accuracy
across subjects

Po
si

tiv
e

va
le

nc
e Frontal - Back 70%*

N
eg

at
iv

e
va

le
nc

e Frontal - Back 85%*
Frontal - Left 80%* Frontal - Left 82%*
Back - Left 69%* Back - Left 78%*
Right - Left 76%* Right - Left 74%*

Frontal - Right 77%* Frontal - Right 87%*
Back - Right 61%* Back - Right 67%*
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3.1 Highest-ranked features

To understand which channels and frequency bands were the most discriminative be-
tween the four location sources depending on the type of valence, we applied a feature
selection algorithm and merged together the top twenty features for each subject. As
represented in Figure 2, the results of the feature selection procedure showed that the
electrophysiological correlates of the difference between frontal location and the three
sources located outside the visual field (i.e., back, right, left) rely on different activi-
ties of channels mainly located in frontal and central areas, especially in the highest
frequencies. In particular, we found that when using musical excerpts with negative va-
lence, the difference between frontal location and each of the three sources out of the
field of view was based on activity in beta (low and high) and gamma bands in channels
Fp1, F3, F4, Fz, Cz, and T8, and in FAA measures for pairs of channels Fp1-Fp2 and
F3-F4. On the other side, when comparing the source locations using positive valence,
we showed that also brain activity in the alpha band, together with beta and gamma
was important for differentiating frontal position from each of the other three sources.
Moreover, in the case of positive valence, channels from posterior sites, especially Pz,
P7, and P8, as well as central, frontal sites and FAA, were relevant for the classification
of source locations, indicating a more widespread involvement of different brain areas.

Fig. 2. Topoplots indicating brain activity for each of the main frequency bands according to
the source locations (i.e., front, back, left, and right) and the type of valence (i.e., negative and
positive). Colors in brain plots indicate the power in that specific channel and frequency band,
with red showing the highest power and blue the lowest.

3.2 Self-assessment SAM questionnaire

Results of self-reported ratings showed that there was a significant difference in arousal
and valence ratings based on the type of event (source location and type of valence
of musical excerpts), F (14, 12428) = 28.133, p = 0.000, Wilk′slambda = 0.740,
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partial eta squared = 0.14. The source locations depending on the type of valence had
a significant effect both on reported levels of perceived arousal, F (7, 1215) = 18.477,
p = 0.000, partial eta squared = 0.096, and valence, F (7, 1215) = 47.886, p = 0.000,
partial eta squared = 0.216. Averaged reported levels of perceived arousal and valence
are presented in Table 2.

Post-hoc analysis revealed that there were significant differences between trials with
positive valence and negative valence within each source location (p = 0.000, Bonfer-
roni corrected). In particular, musical excerpts characterized by positive valence elicited
higher reported levels of arousal (p = 0.000) and valence (p = 0.000) for each of the
four source locations. Differences between sources were not significant (p > 0.05)
when comparing the same type of valence (i.e., either positive or negative), except the
levels of reported arousal between the back and right when music with positive valence
was played (p = 0.03, Bonferroni corrected).

Table 2. Average reported levels of arousal and valence by means of the SAM questionnaire on
a Likert scale from 1 to 5.

Type of
valence Source location Average SAM rating

for arousal
Average SAM rating

for valence

Positive
valence

Frontal 3,41 3,25
Back 3,57 3,21
Left 3,22 3,17

Right 3,45 3,36

Negative
valence

Frontal 2,63 2,03
Back 2,90 2,18
Left 2,88 2,28

Right 3,45 2,15

4 Discussion

In this work, we analyzed the impact of different source locations of music depend-
ing on the type of valence on the listener’s affective brain processing by employing
machine learning tools. The results demonstrate that frontal location can be accurately
distinguished from each of the three sources (back, right, and left) located outside the
listener’s visual field. In particular, our results suggested that the emotional connotation
of music (i.e., positive and negative valence) mediated the impact of the different source
locations on the brain’s electrophysiological signal, as reflected by music characterized
with negative valence yielding higher classification performances in differentiating be-
tween the spatial sources as compared to musical excerpts characterized by positive
valence.

Furthermore, by applying a feature selection procedure we showed that playing mu-
sic from different source locations led to different electrophysiological brain responses
in the highest frequencies (alpha, beta, and gamma) and in channels belonging to the
frontal, central, and also parietal areas in the case of positive valence. The importance of

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

61



beta and gamma bands that we found here is consistent with earlier research showing the
significance of these bands for differentiating between various emotional states [23,24].
Moreover, a previous study has found that the alpha band in parietal channels was as-
sociated with the processing of auditory stimuli, while the gamma band activity was
related to music awareness [25]. Interestingly, we found the FAA between pairs of
channels Fp1-Fp2 and F3-F4 to be an important measure for distinguishing between
different locations, both for positive and negative valence conditions. Alpha activity
in the frontal site has been largely used as an index of emotional processing, reflecting
motivation and dominance of perceived emotion. Indeed, in the literature, positive emo-
tional stimuli have been related to a relative increase in left hemisphere activity, whereas
negative emotional stimuli have been associated with a larger right hemisphere activ-
ity [26,27]. For example, a previous study has found that musical excerpts characterized
by positive valence induced lower frontal alpha power in the left hemisphere [28]. In
addition to valence and arousal, frontal asymmetry was also linked to other factors, such
as self-reported dominance [29].

Music has generally been used in research as a tool to elicit emotional responses
in participants and study emotional processes in the brain [30, 31]. Recent applica-
tions of Brain-Computer Interfaces have used music as a way to convey information
and/or feedback in a real-time manner to the subjects based on their own brain activ-
ity [32–34]. However, the difficulty of participants in engaging and sustaining genuine
emotional states in an experimental context, particularly when trying to elicit complex
emotions, has generally been a significant hurdle for neuroimaging and BCI studies
based on affective processes. In this regard, the results of this study may pave the way
for more effective use of music as a stimulus in experimental settings.

Moreover, the analysis of tones and their spatial orientation in relation to the listener
is relevant in the context of spatial music. Here, spatial music refers to musical com-
position practices that specifically target spatial aspects of sound as a compositional
parameter, such as the sound position or specific aspects of room acoustics [35, 36].
Indeed, emotion elicited through spatial music listening is not an aspect that is not of-
ten considered in this context. The discussion around space in music tends to be often
of philosophical [35], or conceptual nature [36, 37] and often centers around aspects
in electronics or hardware [37, 38], technology [39, 40] or taxonomy [41]. In a sur-
vey conducted in [42], composers are more often than not concerned with those spatial
aspects in music that can be parameterized on a technical level and lesser with the emo-
tional impact space can have on the listener. The results of this study indicate that an
analysis of spatial music would need to take into account the correlation between the
extracted emotional impact of the more traditional musical parameters, such as melody
and rhythm, with the impact made by spatial features.

However, this study does present some limitations. Most importantly, the relatively
small sample size may limit the generalization of our results. Also, despite having found
a different brain pattern of activity in the EEG signal related to affective processing of
music depending on the various source locations, this effect was not reflected in the
analysis of subjective ratings of both arousal and valence. This may have been due to
overthinking, rather than an immediate and intuitive reaction. When being asked how
one would evaluate a piece of music, one would have to execute the said task by rec-
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ollecting what was just heard. This evaluation will thus be skewed by the importance a
subject might place on different musical aspects. Therefore, if a subject has little to no
experience in associating spatial position with musical significance, then the recollec-
tion of the heard excerpt will most likely be focused on other aspects, filtering out the
spatial direction from which the excerpt was heard. This means that mentally, i.e. in the
inner ear, the music may have been heard aspatially. Future work may investigate the
potential effect that musical training could have on the results in this context.

5 Conclusion

The present study has shown that machine learning methods are able to discern a lis-
tener’s affective brain processing between different spatial positions of sound sources
as a function of positive or negative affect. Annotated musical excerpts were classified
into two groups of both median arousal and low or high valence values respectively.
These samples were presented to the listener from the front, the lateral left or right po-
sitions, or the back, in random order. Our results showed that frontal location, compared
to each of the other three sources located outside the visual field, is associated with dif-
ferent brain electrophysiological patterns related to emotional processing. In fact, we
found a significant involvement of alpha, beta, and gamma frequency bands in frontal
and central sites, together with FAA measures, in distinguishing between such source
locations. These findings were not reflected in the subjective rating analysis, hinting
that the subjects may have excluded the spatial aspect of the music when consciously
evaluating the heard excerpts. While more analysis is necessary, these first results prove
promising. Further analysis is necessary to understand how the source location is able
to influence the emotional impact of music, particularly focusing on arousal. Also, it
would be interesting assessing whether different types of music show divergence in the
emotional impact depending on source location. Lastly, future work will also have to
include the median plane to get a more comprehensive view of the effects of spatial
source locations on the listener’s affective state.
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Abstract. The objective of this study is to categorize patterns of skill loss fol-

lowing skill gain, in order to develop a predictive model for skill retention in

music games. The experiment was conducted using songs from the web-based

music game “Sparebeat.” Participants were instructed to train daily on a piece of

music slightly more challenging than their current skill level until they achieved

a specified level of proficiency. Following this, participants took a break from

training for at least one week, and their scores were recorded when they played

the music immediately after the non-training phase. By analyzing the changes

in scores during both the skill gain and loss phases, we identified three distinct

patterns of skill loss.

Keywords: Educational Technology, Human Computer Interaction

1 Introduction

In recent years, advances in HCI technology have enabled the proposal of numerous

learning support systems to assist learners in acquiring skills involving physical move-

ments, such as tennis [1], golf [2–4], calligraphy [5, 6], playing musical instruments [7],

and singing [8].

A common learning support framework involves adjusting the difficulty of skill gain

based on the learner’s level, providing a sense of accomplishment during training and

fostering motivation. For instance, bicycles equipped with training wheels enable inex-

perienced riders to train and eventually ride without assistance. The main challenges

lie in determining how to modify the target skill’s difficulty and provide learners with

environments that promote continued motivation.

While research has explored the cognitive aspects of skill gain, it is important to

consider “skill loss,” the decline in acquired skills that occurs once a person stops train-

ing. Factors like individual differences in skill loss suggest that cognitive aspects of

learners are involved in this process. By examining both skill gain and loss, we can

develop a more accurate cognitive model of skill gain.

This work is licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0).
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Fig. 1. Overview: our study conducts long-term experiment to explore skill gain and loss patterns

through training and non-training periods

Previous studies have investigated memorization and forgetting in tasks that do not

involve physical actions, such as memorizing words [9–13]. In sports science, on the

assumption that a sportsperson trains daily, research has focused on the relationship

between sleep and memory consolidation through motor skill learning [14–16].

Our study aims to clarify the relationship between skill gain and loss in music games

for beginners, by observing score changes and timing judgment classifications during

both the skill gain and loss phases (Fig. 1). We also seek to discover and classify patterns

of skill loss.

A unique feature of our study is its long-term experimental design, as the gain and

loss of skills involving physical movements require a certain length of time. For exam-

ple, learning to ride a bicycle typically takes several days to weeks. In sports like tennis

and golf, there is virtually no upper limit to the time required for skill gain. Acquired

skills are not forgotten until a certain length of time has passed3. In our experiment,

participants trained until they reached a specific music game score, with some requiring

up to 50 days of training. After the training phase, subjects entered a skill loss phase,

with some continuing the experiment for nearly 90 days. Observing gain and loss over

such a long period is expected to yield essential data and findings.

Music games are excellent targets for experiments involving skill gain and physical

movement. As games, they inherently motivate players to continue practicing, and play-

ers can engage in music games for extended periods without boredom. Music games re-

quire a certain level of skill and training to achieve a high score and offer a mechanism

to consistently and stably assess a player’s level of skill acquisition.

Towards identifying the relationship between skill gain and loss in music games, we

conduct an exploratory study to find an appropriate hypothesis as the first step.

3 Once a person is able to ride a bicycle, he or she will not completely forget the skill, although

the skill level may deteriorate.
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Slow Fast

Fig. 2. Screenshot of music game ’Sparebeat’ and criteria of judgement

Fig. 3. Attack notes and Long notes

2 Materials and Methods

2.1 Music game Sparebeat

We used Sparebeat (Fig. 2), a music game simulator, for our experiments. It runs on web

browsers and is playable on PCs, smartphones, and tablets. The playing screen consists

of four black lanes with diamond-shaped notes in different colors moving towards a

green line. Players must press the corresponding key as the notes cross the green line to

earn points. Sparebeat has three types of notes with varying difficulty levels and display

formats.

Music pieces for the experiment were selected based on each subject’s skill level

from a preliminary assessment. We chose pieces with a score of 650,000 to 700,000

points to ensure they were neither too easy nor too difficult, allowing us to measure

skill gain effectively.

Sparebeat has four types of timing judgments for key presses: Just, Rush, Cool, and

Miss. Each judgment depends on the accuracy of the player’s timing when pressing the

keys. As indicated by the criteria arrows at the bottom of Fig. 2, Just is correct, Rush is
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Table 1. Judgment and score criteria

Just Rush Cool Miss

Normal notes 100% 50% 50% 0%

Long notes 100% 50% 50% 0%

Attack notes 200% 100% 100% 0%

Table 2. Experimental period

Training phase Non-training phase

Subject 1 16 days 90 days

Subject 2 10 days 58 days

Subject 3 10 days 58 days

Subject 4 34 days 63 days

Subject 5 50 days 50 days

fast, Cool is slow, and Miss is anything that does not fall into any of these categories.

In addition to the “Normal notes” shown in Fig. 2, there are also “Long notes” and

“Attack notes” (Fig. 3). The scoring system of Attack notes is different from that of

Normal notes, and as shown in Table 1, the scoring is twice that of Normal notes.

The maximum score for any piece in Sparebeat is 1,000,000 points. The score per

note varies depending on the piece and is calculated by dividing the full score by the

total number of notes in the piece.

2.2 Participants

Five subjects participated, ranging from beginner to intermediate university and gradu-

ate students who had played music games as a hobby. None of the subjects had played

Sparebeat before. They played the game on personal devices throughout the experiment.

2.3 Instructions for subjects

Subjects were asked to play their assigned piece once, train for 10 to 20 minutes, and

then play it again. They trained daily, following a training set format. Once subjects

consistently scored over 900,000 points, they entered a non-training phase during which

they did not play the game. After this phase, they played their assigned piece once more,

and their scores were recorded. This non-training set was repeated as necessary.

The threshold for suspending practice was determined to be 900,000 points due to

experience and the results of when the Just, Rush, Cool, and Miss percentages exceed

900,000 points, which are discussed later in Section 3.1.

3 Results

3.1 Training phase

The duration of the training phase and the duration of the non-training phase for each

subject are shown in Table 2. The length of the training phase and non-training phase
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Fig. 5. Breakdown of Rush, Cool, and Miss ratio over 900,000 points among all subjects’ perfor-

mance

was different for each subject. The pre-training and post-training scores for each of the

five subjects from the first day to the sixth day are shown in Fig. 4.

The graph in Fig. 4 shows that the post-training score is higher than the score on the

first day of training on all training days. In addition, the pre-training score tends to be

lower than the post-training score on a given training day. It can be said that the player

generally improves with training. Although there were individual differences, the pre-

training score was lower than the previous day’s post-training score on the seventh day

and beyond as well, but the score gradually increases with each training session.

During the training phase, the scores exceeding 900,000 are listed in descending or-

der among the results that include all subjects before and after training, and the break-

down of Rush, Cool, and Miss in that data is shown in Fig. 5. Since the distribution

of Rush and Cool scores is the same, the distribution of the percentage of the sum of

Rush and Cool scores and the percentage of Miss scores is shown. From this figure, it
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Table 3. Linear approximation of scores in training phase

During training Volatility

Slope Intercept Decision coefficient Slope Intercept

Subject 1 11,925 740,615 0.74 −4.9× 10
−4 0.018

Subject 2 12,902 797,598 0.59 −7.6× 10
−3 0.062

Subject 3 18,681 751,760 0.82 −3.0× 10
−3 0.033

Subject 4 4,970 731,551 0.72 6.9× 10
−4 -0.007

Subject 5 2,003 772,762 0.48 −5.2× 10
−4 0.040

can be seen that the ratio of Rush and Cool must be approximately 15% or less to ex-

ceed 900,000 points.However, even when the ratio is larger than 15%, the score exceeds

900,000 points as long as the Miss ratio is approximately less than 1%.

During the training phase, we focus only on the post-training scores in order to

investigate the evolution of scores until the skill is mastered. Fig. 6 shows a scatter plot

of the post-training scores only. Table 3 shows the slope, coefficient of determination,

etc. when a linear approximation is applied.

Subjects 1 to 3, who had trained for 10 to 16 days, had a slope of more than 10,000,

indicating relatively rapid progress. Subjects 4 and 5 had a slope of less than 5,000. The

training phases were 34 days, 50 days, and more than one month, respectively, meaning

that progress was gradual, as it took time for these subjects to reach a certain skill level.

The rate of change indicates how much score had changed when the score on a given

day of the training phase was compared to that of the previous day. Then, the rate of

change for each of the days up to the time when a subject stopped practicing is made

into a regression line, and the slopes are shown in Table 3. From this, we can see that

the slope is negative for all subjects except subject 4, indicating that the fluctuation of

the score becomes smaller as training is repeated. It is possible that after a certain level

of progress, the growth of the score nearly levelled off, and the score stabilized.
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Table 4. Linear approximation of scores in non-training phase

Times Slope Intercept Decision coefficient

Subject 1 10 times -1,529 894,217 0.045

Subject 2 8 times -1,834 857,464 0.023

Subject 3 9 times -466 866,201 0.0057

Subject 4 9 times 675 878,937 0.02

Subject 5 3 times 9,346 828,400 0.72

3.2 Non-training phase

Fig. 7 shows the score transition for each of the trials in the non-training set. Table

4 shows the results of applying a linear approximation to each trial and score for the

non-training set.

In Fig. 7, it was expected that scores would gradually increase as training continued,

and then gradually decrease as training was paused, but this was not the case. It was

found that there were variations in scores, such as a decrease in the first training session

but an increase in the second training session. In addition, scores in the 700,000 range

were seen at the beginning of training, but during this phase, all subjects scored above

800,000 and did not drop below that level.

In the slope of the linear approximation equation, Subject 1 to Subject 3 tended to

drop slightly. Subject 5 is not included in the analysis at this time because the number

of trials is still small (3) and it is necessary to increase the number of trials in order to

compare the data. Subjects 2 and 3 had the same training phase, but subject 2’s score

decreased more, and the absolute value of the slope was larger than that of subject 1.

The scatter of scores is also larger for subject 2.
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3.3 Relationship between Rush and Cool and Score during the training phase

Fig. 8 show the score transition and the breakdown of judgment (percentage of Rush,

Cool, and Miss) for each subject during the training phase. First, we compare three of

the five subjects, Subject 1 to Subject 3, whose training phases were short and whose

slopes in Table 4 were negative.

Subject 1’s score did not increase until the seventh day, but increased after the eighth

day, approaching 900,000 points. During this phase, Rush and Cool were reduced and

the Miss rate, in particular, was reduced to 1.7%. Since then, the Miss rate remained low,

and was 0% in four instances. When timing is judged as Miss, the score distribution is

0%, resulting in an increase in the Just rate and a significant increase in the score.

Subject 2 continued to increase his score steadily from the second day, reaching a

score of 900,000 points on the sixth day. Both Rush and Cool were gradually decreas-

ing, but the Miss rate was unstable, causing the score to decrease over several days.

Subject 3 had a high Cool rate until the third day, but it decreased after the fourth

day, and exceeded 900,000 points on the eighth day. Compared to Subject 2, the Miss

rate was stable and remained below 1% after the seventh day.

Something that these three subjects have in common is that the rate of Cool is higher

than that of Rush on the first day. During the course of the increase in score, there were

days when the ratio of Cool to Rush was reversed. This may be due to the fact that the

players are not accustomed to playing music games on the first day, so their recognition

of the notes flowing from above is not up to par, and their timing may fall a little

behind that of Just. Then, it is thought that the sense of rhythm acquired from training

experience when the player has become somewhat accustomed to the game will be out

of sync with the sense of recognition of the notes, resulting in more Rushes.

Subjects 2 and 3 had the same training phase of 10 days, but the slope in Table 4

is more negative for Subject 2, and there is more variability in the scores. One possible

reason for this is the instability of the Miss rate. Subject 2, whose Miss rate was unstable

during the training phase, had an average Miss rate of 3.3%, and no Miss rate lower than

1%, even during the non-training phase. Subject 3 maintained a low Miss rate, averaging

0.9%. The percentages of Rush and Cool were lower in Subject 2 , but the difference in

Miss rate was larger than that, and the score was judged to be low.

Fig. 8-Sub.4 shows the scores and breakdown of judgments for subject 4. Subject

4’s score did not increase and remained stagnant until the 23rd day. However, after that,

Rush, Cool, and Miss gradually decreased, and the score reached 900,000 points on the

30th day. In Fig. 7, the score of subject 4 is the most stable, and the values of Rush,

Cool, and Miss for subject 4 are also stable with respect to the score just before the end

of the training phase.

Subject 5 had the longest training phase among all the subjects, but his score stopped

growing around 860,000 points. In Fig. 8-Sub.5, the number of Misses is gradually

decreasing, but Rush and Cool are quite unstable. The sum of Rush and Cool averages

25%, only once falling below 20%, and it does not decrease significantly, through to the

end of the training phase. In this case, the length of the training phase is not proportional

to the increase in score. Rather, the length of the training phase may have decreased the

motivation to train, leading to stagnation and instability in scores. The possibility of

such a causal relationship is a subject for further investigation.
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Fig. 8. Transitions of score and rate of judgments
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4 Analysis

4.1 Pattern classification for skill loss

Based on the changes in the scores of the five subjects and the breakdown of their judg-

ments, we classified the patterns of skill loss into the following three major categories:

a pattern in which the subject forgets gradually after maintaining the score for a while,

a pattern in which the score fluctuates wildly, and a pattern in which the subject does

not easily forget. For Subject 5, the interval between experiments was irregular, and the

frequency of experiments was low, so it was not possible to observe the daily fluctuation

of the score. Therefore, we did not classify it as any of the patterns in this study.

Pattern of maintaining for a while and then gradually losing the skill: Subject 1

maintained a high score of around 900,000 points with a slight steady increase until

the seventh experiment after entering the phase of training suspension. From the eighth

experiment onward, the score exhibited a gradual downward trend (Fig. 7). During this

phase, the score slightly decreased during the second experiment, slightly increased

during the ninth experiment, and significantly decreased during the tenth experiment,

but this is considered to be within the range where it can be called an exceptional

phenomenon. We will hereafter continue to examine the trends and correlations in the

breakdown of score judgments (ratio of Rush, Cool, and Miss).

Pattern of wildly fluctuating scores: The scores of Subjects 2 and 3 showed relatively

large and repeated ups and downs (Fig. 7). The reason for the larger range of fluctuation

in Subject 2’s score than in Subject 3’s score may be due to the instability of the Miss

rate during the training phase (Section 3.3). Note that both Subjects 2 and 3 trained for

a relatively short phase of time (10 days).

Pattern of not easily losing the skill: Fig. 7 shows that subject 4’s score was the most

stable and therefore that this subject exhibits a pattern of not easily losing the skill.

Subject 4’s score and percentage of Rush, Cool, and Miss grew steadily in the second

half of the training phase. Empirically, we feel that skills that accumulate steadily during

the training phase are less likely to be forgotten during phases of inactivity, and Subject

4 seems to fall into this pattern.

Subjects 3 and 4 have similar training phases, but different skill-loss patterns. First,

let us examine the similarities between these subjects. Subjects 3 and 4 are similar in

that Cool increases rapidly in the first half of the training phase, after which the ratio

of Rush and Cool repeatedly reverses. Another thing these subjects have in common

is that their scores and the values of Rush, Cool, and Miss are relatively stable just

before the end of the training phase. On the other hand, in terms of the pattern of skill

loss, Subject 3’s score fluctuates between 800,000 and 900,000, while Subject 4’s score

remains stable above 850,000, and even exhibits an upward trend after 50 days. If the

learning of a skill involves a cognitive process of retention, then the fact that Subject 3

had a short training phase of 10 days may mean that there was insufficient time for the

acquired skill to take root.
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4.2 Relation between subjects’ introspection and scores

Open-ended interviews were conducted with subjects about their play during the train-

ing phase inactivity, and subjects were asked to talk about the relationship between their

introspection and their scores, as well as their feelings about their play. The overall trend

was that subjects who felt they were losing their skill did not experience a decrease in

score, while those who did not feel that they were losing the skill did experience this.

As for individual comments, these included: “My fingers remember the movements,

and my score does not increase at all even if I stop practicing, but when I play after

a long time, I find that I cannot complete the parts that used to be easy”; “My score

has started to drop because I play only once a week”; “I do not really feel that I am

forgetting. Once they are able to do well on that piece, they may be able to maintain a

certain score on an easy piece with ease.”

5 Conclusion

In this study, we analyzed and classified skill-loss patterns as a preparatory step for

constructing a model for predicting the loss of acquired skills in music games. We

examined the extent to which subjects forgot, after stopping training, the acquired skill

of attaining a certain score for an assigned piece in a music game, then we investigated

the relationship between subjects’ skill-loss patterns and training patterns. As a result,

three types of skill-loss patterns were extracted.

Future work includes investigating whether these skill-loss patterns are applicable

to other people and whether they can be generalized. For this purpose, we will increase

the number of subjects and continue the experiment to confirm what kind of skill-loss

patterns exist.

Subjects 3 and 4 had similar numbers of Rush, Cool, and Miss during the training

phase, but their skill-loss patterns were classified differently. To clarify this difference,

it is necessary to investigate the relationship between the length of the training phase

and the skill-loss patterns. We will also investigate the relationship between Subject 5’s

training phase duration and score stagnation, as well as the relationship between length

of training phase and decrease in motivation. As a future prospect, we would like to

improve the content of experiments, for example by altering the time of the experiment,

and investigating whether a subject’s condition on that day affects the score, and where

and how the subject made mistakes during the play.
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Abstract. This paper presents a contest-style music evaluation event called Ben-
zaiten. There have been some attempts to evaluate different music generation
systems with a unified criterion and/or platform, but it was not an event that non-
experts could easily enjoy. At Benzaiten, we encouraged non-researcher people
to join it as entrants by providing starter kits and communication channels. As
well, we exercised ideas towards a high-quality entertainment event for laypeo-
ple to enjoy it. As a result, 15 people joined this event as entrants (eight of which
moved to the main round), and more than 100 people participated as the audience.

Keywords: Melody generation, evaluation, contest

1 Introduction

Whereas the research on automatic melody generation has a long history, the recent
development of machine learning (ML) technologies has been rapidly increasing the
number of attempts at automatic melody generation [1].

Evaluating melody generation systems/methods is still an important open problem
in this field. Unlike speech recognition and image classification, the correct output (e.g.,
a melody) for a certain input (e.g., a chord progression) cannot be uniquely or objec-
tively determined. We, therefore, have to conduct subjective quality tests on generated
melodies employing music experts, but its methodology has not been necessarily estab-
lished.

To provide a platform for evaluating different systems/methods on a unified cri-
terion, some researchers made attempts to organize contest-based evaluation. Sturm et
al. [2] organized the AI Music Generation Challenge 2000, in which they collected Irish
double-jig pieces from entrants and hired experts to evaluate them. They also organized
the 2021 edition focusing on Swedish traditional dance music [3]. Katayose et al. [4]
held Performance Rendering Contests (Rencon) to provide a subjective evaluation plat-
form for researchers developing expressive music performance rendering systems. Yeh
⋆ This work was supported by JSPS Kakenhi JP22H03711.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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Fig. 1. Basic scheme of Benzaiten. Two entrants are given a backing track and generate melodies
during the event. Then, the winner is determined according to popular votes by the audience.

et al. [5] attempted on collaborative comparisons of harmonization systems developed
by researchers from different institutes. However, these attempts have the following two
problems:

– Because entrants are implicitly assumed to have skills or experiences in develop-
ing music generation systems/methods, there is no scheme for encouraging non-
researcher people who have not tried such development.

– Because the primary purpose is to provide a unified platform for evaluation, they
are not necessarily fun for laypeople as entertainment shows.

In this paper, we propose a novel contest-based music generation evaluation event,
called Benzaiten. The most important policies in Benzaiten are openness and fun for
non-experts. To develop the melody generation field furthermore, it is important to let
a wide range of people have an interest in it. We, therefore, aim at an event that non-
experts can enjoy as entrants and/or the audience. Benzaiten has the following features:

– To make it easy for novices to join it as entrants, we provided starter kits for de-
veloping melody generation systems and communication channels on Slack for
sharing issues and ideas among potential entrants.

– To make it possible for laypeople to enjoy it as the audience, we exercised some
ideas to make its quality as an entertainment show higher, including a popular vote
and a one-on-one battle scheme.

2 Basic policy and event design

Benzaiten (Figure 1) is a contest-based melody generation evaluation event. Every en-
trant brings their melody generation system and generates a melody that fits a given
backing track. The generated melody is played back within the event, then the winner is
determined based on voting. As discussed in the Introduction, the basic policies in this
event are openness and fun for non-experts as follows:

– Openness to novices: It is easy for various people to join this event as entrants, even
if they are not ML and/or music experts.
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Fig. 2. Benzaiten’s community management

– Fun for laypeople: Participants can enjoy this event as the audience even if they do
not have music- or ML-related knowledge.

To achieve openness to novices, we make the following attempts:

– Starter kits: We developed two kinds of starter kits for this event, with which
everyone can quickly try automatic melody generation.

– Online tutorials: We held online tutorials, in which the tutors taught the basic
knowledge of MIDI and music as well as how to use the starter kits.

– Community management of potential entrants: We made a community of po-
tential entrants, including those who had yet to determined entry. We encouraged
communication among them by making a Slack channel and holding online meet-
ings.

To achieve fun for laypeople, we introduce the following ideas to the event:

– Popular vote: The audience can get involved in determining the winner.
– One-on-one battle scheme: We adopted a tournament style based on a one-on-one

battle scheme. This scheme makes the voting for each match simple, because all the
participants have to do is to judge which is better of the presented two melodies.

– Live melody generation: For each match, the backing track is provided right when
the match starts. Therefore, the entrants must generate melodies live during the
event (they cannot generate melodies in advance).

3 Actions before the event

To encourage a wide range of people to join the event as entrants, we should promote
this event widely and encourage as many people as possible to join the community of
potential entrants. Therefore, we did the following (Figure 2).
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Fig. 3. Starter Kit (TensorFlow Edition) (left) and its tutorial (right)

3.1 Release of Starter Kit (TensorFlow Edition)

To encourage people who are not familiar with automatic melody generation, we devel-
oped the Starter Kit TensorFlow Edition (Figure 3.1 Left)1, in which users can easily
try melody generation based on LSTM-VAE. This starter kit provides the codes for:

– Reading MusicXML files taken from Charlie Parker’s Omnibook MusicXML Data [6]
and extracting melodies from them,

– Converting melodies to sequences of one-hot vectors,
– Training an LSTM-VAE model with prepared melodies using TensorFlow, and
– Generating a melody with the trained LSTM-VAE model in the MIDI format.

All codes are provided under the MIT License. As well, the starter kit provides several
hints for extending those codes.

3.2 Tutorial on Starter Kit (TensorFlow Edition)

We conducted a tutorial aiming at allowing potential entrants to quickly understand
the Starter Kit (TensorFlow Edition) on Zoom (Figure 3.1 Right). We encouraged a
wide range of people to participate in this tutorial, including those yet to determined
to join Benzaiten as entrants. 124 people participated, and some of them expressed
their interest in the entry. This tutorial was well-received because we explained general
knowledge of MIDI, the harmony theory as well as the codes of the starter kit.

3.3 Encouraging discussions on Slack

Because several participants of the above-mentioned tutorial expressed interest in join-
ing Benzaiten as entrants, we invited them to the discussion channel for the community
of potential entrants on Slack. We intended to let them exchange various information
with each other and to foster a mood of friendly rivalry. They actually discussed some
topics including: how to find publicly available datasets, and how to execute the starter
kit’s codes on a local computing resource with MacOS on an M1 chip.

1 Available at the following URL (written in Japanese): https://docs.google.com/
document/d/1CizJ6b9i2yZ9OIDPrBWUROyJahlZrlqe-naxh4brACQ/
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3.4 Starter Kit (Magenta Edition) and its tutorial

We released the Starter Kit (Magenta Edition)2, which illustrates how to generate melodies
using ImprovRNN, included in Magenta [7]. Because this edition uses the pre-trained
ImprovRNN model, unlike the TensorFlow edition, users can try melody generation
more simply, even though improving the model is complex. Furthermore, we held a
tutorial for explaining this starter kit. 13 potential entrants participated in this tutorial.

3.5 Online meetings for progress sharing

We held online meetings twice to enable potential entrants to share each other’s progress.
16 people participated in the first meeting, and 13 participated in the second one.

4 Preliminary round

15 people (or teams) entered Benzaiten even though the number of acceptable entrants
was limited to eight. We, therefore, held an online preliminary round. On the desig-
nated web page, participants listened to all melodies submitted by 15 entrants and rated
them on a scale of 0 to 10. To avoid bias caused by the order etc., the web page lists
the melodies anonymously in a random order. We promoted this preliminary round on
Twitter, and ratings by 70 participants were collected. Finally, the eight entrants with
high ratings moved into the main round.

5 Implementation and results of Benzaiten (main round)

5.1 Outline of the event

Benzaiten adopts a single-elimination tournament style. Because we accepted eight en-
trants, the event consists of seven matches: four quarterfinals, two semifinals, and one
final. The overall schedule is as follows:

14:00–14:10 Opening
14:10–15:30 Four quarterfinals (20 mins for each match)
15:30–16:00 Lightning talks by all entrants on the techniques they use
16:00–16:40 Two semifinals
16:40–16:55 Sponsors’ lightning talks
16:55–17:15 The final
17:15–17:35 Long talk by T. Kitahara
17:35–18:00 Awards ceremony & Ending

Each match was conducted as follows (Figure 7):

1. The two entrants go on the stage.
2. The organizer plays back the backing track for that match.

2 Available at the following URL (written in Japanese): https://colab.research.
google.com/drive/1isnq_E2Mc-Fzeb8DKzYGL39l-B30AwZK
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Fig. 4. Scene during a match (left) and winner announcement (right)

3. The backing track data (a MIDI file, a chord transcription file) is put into the online
storage. The entrants are not permitted to download them before the match starts.

4. The match starts. The entrants must submit the generated melody’s MIDI file before
five minutes pass.

5. The melodies submitted by the two entrants are played back.
6. The popular vote starts. Google Forms is used as a voting platform.
7. The voting result (the winner) is announced.

5.2 Contest rule

To achieve a fair contest, we carefully designed the contest rule and presented the rule
book on the Web. A distinctive rule is to allow entrants to compare more than one
generated melody by listening and choose one within a five-minute time limit. We also
decided the length and the timbre (program change) of melodies; The entrants cannot
change them to focus on the quality of the melodies. Chord transcriptions are given as
a text file.

5.3 Backing tracks

To make this event successful, we consider it important to present high-quality backing
tracks that include a variety of chord progressions. To achieve this, a professional mu-
sician joined our team and composed seven high-quality backing tracks with different
chord progressions.

According to the contest rules, every backing track has nine measures with the key
of C major or A minor. The used chord progressions and keys are listed in Table 1.
Backing tracks for Matches 1, 4, and 6 contain chords with non-diatonic roots, which
make appropriate melody generation slightly difficult.

The chord transcription file (in the CSV format) as well as the MIDI file of the
backing track are given to the entrants at each match.

5.4 Entrants

The eight entrants are listed in Table 2. Two entrants (log5 and Dekoboko Friends)
improved the post-processing to avoid musically unnatural notes without improving
the starter kits’ ML model. On the other hands, two entrants (yatszhash and nayopu)
adopted completely different approaches, that is, melody generation by ABC-notated
text generation or notation image generation. The other entrants adopted well-known
ML models such as a Conditional VAE, a CNN-VAE, and a Transformer.
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Table 1. Chord progressions and keys of backing tracks

Match Round Chord progression Key
1 C |G/B |Bb |F/A |Fm/Ab|C/G |D/F# |G |C C maj
2 Quarter- C |C/E |F |G E |Am |C/G |D7/F#|Dm7G7|CM7 C maj
3 finals Am |F |G |C G |Am |F |G |E7 |Am A min
4 C |G |G7 |C |C |Bb |F |C |C C maj
5 Semi- Am |DmEm|Am7 |DmEm|Am7 |DmEm|FM7 G|Am |Am A min
6 finals Am |Am/F#|Dm |Bb |Am |Am/F#|Dm |Dm/B E7|Am A min
7 Final Dm7 F/G |CM7 FM7 |Dm/B E7 |A7 | A min

Dm7 F/G |CM7 FM7 |Dm/B E7 |Am |Am

Table 2. Eight entrants and their melody generation techniques

No. Name Used techniques Result
1 yatszhash Generated a ABC-notated text with a language model
2 log5 Original post-processing based on music theory (with the un-

modified ML model of the Starter Kit (TensorFlow))
Champion

3 T. N. Modified the Starter Kit (TensorFlow) to CNN-VAE
4 nayopu Generated notation images with DALL-E and converted it to

the MIDI format
Semifinalist

5 AJI Implemented MusicTransformer with their original dataset
6 M. Y. Generated melodies with ImprovRNN and then recon-

structed them with MusicVAE
Semifinalist

7 konumaru Modified the Starter Kit (TensorFlow) to Conditional VAEs.
8 Dekoboko Friends Implemented post-processing to add grace notes and glis-

sando (with the unmodified Starter Kit (Magenta))
Runner-up

5.5 Number of participants

133 people (including the organizers) participated in Benzaiten on Zoom and about 40
to 50 people (including the organizers and entrants) participated on site. At each match,
54.7 votes were collected on average (max: 61, min: 51).

6 Discussions

6.1 Did we succeed in encouraging non-experts to participate?

Out of the eight entrants, five were non-music-related data scientists; they dealt with
automatic MIDI generation for the first time. This fact shows that Benzaiten was able
to reach out to a wide range of non-experts.

6.2 Did community management work well?

Our community management allowed potential entrants to exchange various informa-
tion including: codes for porting the starter kit to a local environment, publicly available
MIDI datasets, and chord notation.

Sharing MIDI data generated by entrants at online meetings enabled us to check if
the MIDI data met our rules. It was effective to avoid errors occurring when we played
them back during the event. In fact, no entrants generated erroneous MIDI data.
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6.3 Technical trends in entrants
As we mentioned, entrants had various approaches ranging from improvements of the
starter kits’ post-processing (log5, Dekoboko Friends) to completely novel ones (nay-
opu, yatszhash). The voting results showed that relatively safe melodies tended to win.
In fact, melodies with some dissonant notes tended to be evaluated low.

Melodies generated by log5 (the winner) and Dekoboko Friends (the runner-up)
had different tendencies. The former was a sequence of close-packed short (e.g., 16th)
notes, sometimes like arpeggios. The latter consisted of multiple phrases including rests
between the phrases. Their system generated multiple melodies, and they selected one
that included both notes and rests in a balanced way by checking them via piano rolls.

6.4 Future challenge
One issue in our community management was that discussions among the entrants had
not gathered momentum until the date of Benzaiten was approaching. On the other
hand, at Kaggle [8], an online platform for data science competitions, entrants can
identify their current ranks through the leaderboard. It gives them motivation for con-
tinuous improvement. Also in Benzaiten, we need a mechanism like the leaderboard,
which makes entrants’ current ranks public. If Benzaiten has such a mechanism, en-
trants should have more motivation for continuously improving their melody generation
models, and hence they would participate in the discussion more actively.

7 Conclusion

In this paper, we presented an automatic melody generation contest called Benzaiten.
This event’s features are to encourage non-experts to join it as entrants with starter kits
and community management and to aim at a high-quality entertainment event to al-
low laypeople to enjoy it. Through these attempts, we let many non-expert people have
interest in automatic melody generation. In the future, we would like to extend this at-
tempt to let various people, ranging from hobbyists and musicians to ML researchers,
begin music generation development. We believe that it would bring remarkable find-
ings, contributing to further progress in our music generation field.
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Abstract. This paper presents two strategies to prevent the pitch embeddings
from being too close to the dataset characteristics so as to improve the pitch and
pitch class distributions of generation. The first strategy is to switch the pitch rep-
resentation from the MIDI number representation to an alternative representation
that encodes a pitch into pitch class and octave, which forces musically similar
pitches to share part of the embedding vectors. The second strategy freezes the
pitch embeddings during training according to the proposed metrics that evaluate
the quality of pitch embedding space, maintaining the robustness of the embed-
ding obtained in the first strategy. The experiments show that, when both strate-
gies are applied on the training in an auto-regressive melody generation task, the
generated samples exhibit slightly improved pitch distribution but noticeably im-
proved pitch class distribution, indicating the effectiveness of both strategies.

Keywords: Symbolic Music Generation, Word Embedding, Domain Knowledge

1 Introduction

The selection of an appropriate input music representation has been one of the key
challenges in designing neural sequence models for symbolic generation, as multiple
types of musical features must be serialized into sequences. Early MIDI event-like input
representation (e.g. [26, 22]), suffered from the issues of being long and redundant to be
handled by neural sequence models, and being implicit for models to reconstruct basic
musical features (e.g. duration and metrical structures) [12]. Since then, solutions have
been proposed to overcome these two problems, including applying constraints to the
input representation using musical domain knowledge.

The REMI representation [13] uses the domain knowledge to recommend explicitly
encoded durational and metrical features instead of MIDI-like note-on/note-off events,
for a transformer to better capture durational and structural features on a sequential rep-
resentation. The Compound Word representation (CPW) [11] improved the length limit
and generation quality by shortening the input sequence length, based on the domain
knowledge that tokens of the same type of musical features should be placed and treated

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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similarly in the input. The recent Music Fundamental Embedding (MFE) [10] avoids
a type of generation failure by treating pitch, duration and metric position features as
numeric features to ensure consistency of the implied relative musical features in the
embedding space. We notice that the general approach here is to apply domain knowl-
edge constraints on the model input such that the explicitness can benefit the model in
capturing specific features related to the domain knowledge.

Comparatively, pitch feature domain knowledge constraints are less researched in
symbolic music generation, with most models using the simple MIDI number encod-
ing for input. Also, the current generation systems still struggle with capturing slightly
complicated pitch and harmony features. For instance, the generated music usually lack
a clear key center, without clear harmonic tension and releases. However, in discrimi-
native tasks, such as chord estimation, music style clustering and automatic harmonic
analysis [17, 6, 31], the pitch class feature is used more often than MIDI pitch number,
indicating its effectiveness in capturing pitch-based features. Therefore, we consider the
concept of pitch class important in the generation task as well.

It is therefore hypothesized that using pitch class and octave for the pitch feature
would improve the learned pitch representation and the generation pitch and pitch class
distribution by preserve more pitch proximity in the embedding space. First, an auxil-
iary metric SLD is proposed for the evaluation of pitch embedding space. The hypoth-
esis is then evaluated through two experiments. Experiment 1 tests whether pitch class
and octave can improve the pitch distribution compared to MIDI number encoding. Ex-
periment 2 is based on the results of experiment 1, testing if freezing the pitch embed-
dings according to the SLD metric maintains high pitch performance during training.

In experiment 1, a Transformer-XL model is trained for melody generation under
the two different pitch encoding methods multiple times with different pitch-unrelated
hyper-parameters. Results show that melodies sampled from the group of models using
class-octave encoding have better pitch and pitch class distributions compared to the
MIDI-number encoding group. Also, the evaluation of SLD metric on the corresponding
metric space is consistent with the pitch and pitch class performance in generation.

Although the class-octave pitch encoding outperforms the other, it exhibit a behav-
ior of deterioration over epochs which is more obvious than the MIDI number encod-
ing. Correspondingly, the SLD metrics of most class-octave models are observed to
have reached an local minima when the the model at the best pitch performance. There-
fore, in experiment 2, the best model of Experiment 1 is trained multiple times but the
pitch embeddings are frozen at different epochs, respectively. The results reveal that the
models whose pitch embeddings are frozen near the local minima of the SLC metric
has better performance over longer training.

The outcomes of the two experiments show the effectiveness of the pitch class and
octave constraints on the pitch representation, which informed the development of two
practical pitch training strategies presented in this paper.

The rest of the paper would begin by a brief review of the previous methodologies
in Section 2, followed by proposed methods in Section 3. The experiment and results
are discussed in 4 and 5.
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2 Related Work

2.1 Pitch representations

The one-hot representation is a widely used pitch representation in the literature [1,
14]. It does not assume any pitch structure or proximity, as all the one-hot pitch vectors
are equidistant. However, Mozer [24] argued that equidistant one-hot pitch vectors are
problematic for music generation. Mozer proposed a novel pitch representation called
PHCCCF based on the spiral model by [25] and psychoacoustic experiments in 1979
[15, 16]. In PHCCCF, pitch vectors are closer in euclidean distance if they are closer as
perceived by ears. While Mozer’s results has been able to learn some structure of dia-
tonic scales [1], the psychoacoustic experiments were limited to isolated pitches without
musical context, making the pitch representation less generalizable to music generation,
where musical context is vital. In this work, we use the concept of pitch class and oc-
tave (both having been used in PHCCCF) but stick to the embedding representation
learned through back propagation rather than static representation. To the best of our
knowledge, PiRhDy [19] is the only recent music generation work that employed pitch
class and octave, but the authors did not provide a comparison with the MIDI number
encoding. Therefore, our work should be the first to compare these two different pitch
encodings.

Alternative pitch encodings with domain knowledge have also been used in the sym-
bolic music domain, but less frequently used in symbolic music generation. The tonnetz
representation, proposed by Euler [7] in 1739, arranges pitch classes along major third,
minor third, and perfect fifth dimensions. It has been successfully used for both fea-
ture extraction [3] and generative modelling in [20], but lacks smooth presentation of
voice leading (namely the semitone or major second movements). Pitch classes are also
effectively adopted in some discriminative tasks, e.g. chord classification[17] and style
clustering [6, 31], but pitch-class-only representations ignore octave information needed
for precise pitch description in generation tasks. This work, as a result, combines the
pitch class and the octave feature for comparison with the MIDI-number encoding.

2.2 Word Embedding Training Strategies

Word embedding suffers from the representation degeneration problem [8], i.e. the em-
bedding vector distribution is gradually distorted into a narrow cone shape, increasing
the similarity of the word vectors with decreasing performance. [30] explained that rare
token embeddings are pushed by their gradients away from the non-rare tokens, caus-
ing degeneration. Our observations, likewise, show that the pitch embedding space is
biased towards the imbalanced pitch and pitch class distributions in the dataset. To pre-
vent degeneration, [30] proposed a gradient gating strategy that freezes the rare tokens
at early training, inspiring our strategy two.

Regarding poor numeracy performance of word embedding in language models
[27], Gorishniy et al [9] demonstrated the advantages of using piecewise linear encod-
ing (PLE) and sinusoidal activation functions (PAF) for numerical feature embedding.
The FME [10], adopted an similar embedding scheme to embed pitch, duration and
position features, ensuring the consistency of relative musical features such as intervals
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and durations in the embedding space. Instead of enhancing the pitch feature numeracy,
this work studies the robustness brought by periodicity of pitch class and octave.

3 Methods

3.1 Pitch Encodings
In the commonly used music representations, (e.g. the MIDI event representation and
the REMI representation), a pitch is encoded as a single token, indexed by the MIDI
number, which we refer to as the MIDI number encoding. Being represented by one-hot
vectors before embedding, the pitch vectors contain no domain knowledge information
about frequency or pitch height as the dimensions are isotropic. This encoding is the
baseline encoding.

The class-octave encoding is an alternative pitch encoding, which is less used in
generation models [19] but more common in discriminative tasks as part of the input
features [17, 6, 31, 18, 2]. It encodes a pitch to its pitch class (0 to 11) and the pitch
octave number (0 to 9, if considering the highest valid MIDI pitch). If this encoding is
used in a sequential music representation, a pitch is represented by two separate tokens
in the sequence: the pitch class token (p mod 12) followed by an octave token

⌊ p

12

⌋
.

For instance, the pitch 60 (C4) is encoded into token p0 and o5, corresponding to two
different embedding vectors, respectively.

What is unique to about the class-octave encoding is its robustness to the slight
pitch shifts, which manifests the proximity in listening experience before and after the
shift. The pitch class-octave encoding is experimented to be compared with the baseline
encoding because it has a much smaller vocabulary size (12 + the number of octaves
to be encoded), which reduces the chances of over-parameterization. The pitch class-
octave encoding also explicitly provides the constraints on the translational invariance
for octaves (δ = 12), i.e. all pitches that are octaves apart from each other share the same
pitch class vector. Hence, it is expected to result in pitch embeddings that outperforms
that of the MIDI number encoding.

3.2 Freezing Pitch Embedding in Early Training
The decreasing trend of the pitch performance over epochs suggests the possibility of
deterioration of the pitch embeddings. As proposed in [30], freezing the rare token
embeddings at early stage can alleviate the performance decline by preventing the em-
bedding degeneration problem. In the music generation task of interest, most datasets
have imbalanced pitch and pitch class distributions. Likewise, if the pitch embeddings
are frozen at the optimal state, the resulting pitch performance is expected to be better.
Hence, freezing the pitch embeddings at different epochs of training is investigated.

3.3 Metrics
This study employs two kinds of evaluative metrics to examine whether the proposed
strategies effectively alleviate the pitch performance issue caused by imbalanced pitch
(and pitch class) distribution in the dataset. The first kind evaluates the pitch embedding
space itself and the other kind focuses on the generation quality, particularly about pitch.
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Embedding Space Evaluation Metrics In order to obtain consistent embedding repre-
sentations for intervals, (i.e. relative pitch features), the pitch vectors in the embedding
space must follow certain constraints about intervals. According to FME [10], all the in-
terval vectors {pi+δ − pj+δ|δ ∈ Z} that represent the same pitch distance |i− j| must
have the same magnitude. As is not satisfied in most existing generation systems, this
constraint is too strict. Therefore, we propose SLD, a metric that loosely measures the
violation of such constraints. The Standard deviation of L2 Distances of pitch vectors3

in the embedding space is defined as follows:

SLD(P) :=

δmax∑
δ=1

[
Std

i=1..n−δ
(|pi+δ − pi|)

]
. (1)

This metric penalizes the differences in magnitudes for all pitch vectors whose differ-
ence vector represents the interval of δ semitone. δmax is empirically set to 24 here for
two octaves, since intervals larger that are likely to have more different auditory expe-
riences depending on the actual pitch height [23]. A better pitch embedding space is
expected to have a lower SLD.

Generation Quality Evaluation Metrics (for Pitch) Admittedly, it is not practical
to conduct a subjective listening test when the many models are experimented, also
because the differences in the generated pitch distributions can be subtle to human au-
diences. Hence, objective metrics are adopted to evaluate the pitch performance in the
generated samples. That is, the entropy of pitch class distribution H(PC), and for pitch
H(P), as used in [28, 5]. These two metrics can accurately capture the lack of pitch di-
versity, or the repetition of very limited pitches when the H(P) is lower than that of the
dataset, while H(PC) is an octave-agnostic version of H(P). The H(P) and H(PC) distri-
butions of the test dataset are first approximated by Gaussian Kernel Density Estimation
(KDE), and then compared to the KDEs of generation distributions. The overlapping
area (OA) [29] between the fake and the true is used to score the generation quality,
with the higher OA being the better.

4 Experiment Setup

4.1 Dataset

A cleaned version of the Wikifonia dataset4 is used. Specifically, we only keep the
songs with constant 4/4 time signatures. The training set (90%) contains 3,861 songs,
and 429 songs for the test set. Note that quite a number of songs have modulations (key
changes), so we do not do any kind of transposition for dataset balance as it will not
completely balance the distribution. The imbalanced pitch class distribution is plotted
in Figure 1. As can be seen, The frequent pitches come from the C major scales, the rest
being rare in both subsets. The pitch class entropy H(PC) of the train set and dataset are

3 The pitch vectors must be z-score transformed before SLD calculation, so as to eliminate the
influence of the scaling along different dimensions

4 http://www.wikifonia.org
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Fig. 1: Pitch Class Distributions of the Training Set and the Test Set

3.370 and 3.376 bits, respectively. Hence, the H(PC) of generated melodies should also
be close to this dataset average value.

4.2 Data Representation

The input music representation resembles the REMI representation [13] because of
the usage of duration, bar and position tokens. However, the features chord, tempo and
velocity that are defined in REMI are ignored. In this work, the vocabulary set is formed
by pitch, octave (if used), duration, bar and position tokens5. We also vary the beat
resolution settings, allowing for the identification of consistent patterns in the model
performance and a more robust analysis of the results.

4.3 Model and Training Specifications

A 4-layer transformer-XL network (proposed by [4] as used in [13, 28]) is employed
to generates melodies in a next-token-prediction manner. The parameter size of the
network is also cut down to 4M from the original, 12-layer model of 150M parameters
in order to reduce the risks of over-fitting on such a small symbolic music dataset.

The experimented models in this work share most of the training hyper-parameters,
including the cross-entropy loss, 0.9 to 0.1 train-test split, the optimizer AdamW [21],
the learning rate 8e-4, batch size 32 and the number of epochs. Since the Transformer-
XL architecture does not have a limit on the sequence length, the training sequence
length is set to 1,024 tokens chunked into 8 segments of 128 tokens. The model is saved
at the end of each epoch. Top-k sampling (at k = 5) and softmax temperature τ = 1.0
is used for inference. For each model, 128 melodies are (unconditionally) sampled to
evaluate the generation quality. However, only 512 tokens are sampled for each melody
since longer sequences seem to be repetitive at the end.

5 Miscellaneous tokens include a REST for silence that comes before duration, and PAD that
pads the sequence
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5 Results and Discussions

5.1 Experiment 1 - Comparison of Pitch Encodings

In this experiment, models are trained in pairs for token-by-token melody generation,
teacher-forced. The two models in each pair share the common dataset, model archi-
tecture and only differ in the pitch encoding of the data representation: one uses the
MIDI number encoding and the other uses the class-octave encoding. 24 pairs are set in
order to compare the performance of two pitch encodings in different hyper-parameter
configurations (e.g. the beat resolution).

Generation Result Metrics 128 melodies are sampled from each model for evaluation.
The distributions of pitch entropy (H(P)) and pitch class entropy (H(PC)) are calculated
for all the samples for each models. The overlapping area between the generation dis-
tribution KDE and the test dataset KDE are obtained to represent the performance of a
model on a specific metric. Higher values are better.
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Fig. 2: Paired Box Plots of Model Performance Scores on Two Objective Metrics,
Grouped by Pitch Encoding Used.

In Figure 2, each dot represents the generation metric distribution performance mea-
sured by OA of a model, grouped by the pitch encoding that the model uses. Line-
connected dots are pairs of models that only differ in non-pitch hyper-parameters. The
class-octave group on average outperforms the number group because of higher average
performance. Paired Wilcoxcon tests on show that, such mean differences are signifi-
cant (p = 0.021 for pitch, and p = 4.4× 10−5 for pitch class).

Note that there is a considerable gap between the two models with the highest OA
H(PC) , where the class-octave has model learned about 81% of the true H(PC) distri-
bution while the number pitch model only learned around 60%. This suggests that the
best performance on pitch class is dominated by class-octave encoding. However, the
best performance of the class-octave group on pitch is slightly inferior to the number
encoding, which is not surprising since the number-encoding pitch vectors have more
parameters directly fitted to pitch distributions more accurately.

Embedding Space Metrics The best model and the worst model judged by OA H(PC)
of each group are picked out, with their embedding space visualized in Figure 3. PCA
is used to reduce the dimensionality from 32 two the 3 primary components with the
largest variances for visualization purpose. However, the two number pitch visualiza-
tions are obtained from Uniform Manifold Approximation and Projection (UMAP)
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SLD: 0.09
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Fig. 3: The pitch / pitch class vectors are plotted as points, colored by pitch classes.
Red segments represent semitone relationship. Clear proximity between semitone pitch
vectors is shown in embedding spaces with low SLD values, but less clear when SLD is
high. The low SLDs are consistent with the actual best generation performance on both
pitch and pitch class.

since the large number of pitch vectors are crowded in the PCA results and can be
better clustered in the UMAP results. Note that when calculating SLD for class-octave
embedding spaces, we first take the sum of octaves to all the pitch classes to restore the
128 pitches6.

Overall, the visual differences between the best cases and the worst cases in Figure 3
suggest that pitch embedding space quality greatly contributes to the model perfor-
mance on pitch performances. The two best cases demonstrate the success of modelling
pitch distributions in early finished instances (because of other hyper-parameters e.g.
beat resolution, that affects the model’s learning ability before over-fitting happens),
while the two worse cases show how the embedding space deteriorates over epochs.

6 Summation is just one way to approximate the vector representation of the pitch feature, under
the assumption that the embedding vectors are semantic and they follow the analogy property
of word embedding. However, this can lead to different expected ranges of SLDs from that
of the number pitch vectors, because the vector differences cancel out octave vectors if the
two pitches are from the same octave. After all, this approximation error does not change the
overall trend of SLD, which is of interest, since the error is only on the formula.
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By comparing Figure 3a with 3c, and 3b with 3d, the class-octave encoding shows
strong robustness and the embedding spaces suffer much less from the rare-token de-
generation problem. That is, in MIDI number encoding, the lowest and the highest
pitches are always rare tokens, regardless of the data augmentation methods such as
random transposition. As a result, the rare pitch tokens are pushed into a cluster during
the optimization (as demonstrated in [30]), resulting in worse pitch performance.

In contrast, for the class-octave encoding, the rare pitches are represented by only
a few octave tokens (e.g. o0 to o3, o8 to o9), and their pitch classes are no different
from that of the non-rare pitches because they share the pitch classes. The degeneration
problem can still be seen on the visualization (3d), i.e. {D♭,E♭, F ♯,A♭,B♭} these rare
pitch classes in this dataset (see Figure 1), are extruding out away from the non-rare
pitch classes, causing worse pitch performance.

To conclude, the class-octave encoding is an underrated pitch encoding in the sym-
bolic domain, outperforming the zero-domain-knowledge number encoding. It displays
stronger robustness and interpretablity. In addition, the results show that a low SLD is
a necessary condition of models being able to precisely capturing pitch and pitch class
distributions.

5.2 Experiment 2 - Freezing Pitch Embedding Space at Different Stages of
Training

This experiment validates the existence of the optimal state of the pitch embeddings by
freezing the pitch embedding vectors at different epochs of training and tracking the
their states (SLD and pitch performance).

The best set of non-pitch hyper-parameters7 used in experiment 1 was adopted.
Specifically, both the number encoding models and the class-octave model achieved
lowest test set loss around epoch 5, which ended way earlier than other models who
were trained for around 30 – 40 epochs, suggesting that further training the models is
prone to decreasing performance.

However, as previously discussed, the SLD of the number encoding model did not
decrease (or slightly decreased but rose very quickly at the beginning), which is a gen-
eral problem regardless of most hyper-parameter settings. Conversely, the SLD of the
best class-octave model decreased in the first 5 epochs and started to increase, reaching
the best OA H(PC) at epoch 5, too. Hence, this experiment is dedicated to class-octave
encoding where the SLD can decrease more noticeably at the beginning of training.

15 model instances were separately trained for 15 epochs from scratch (for bet-
ter reproducibility), except that every time the pitch vectors are frozen 1 epoch later
by zeroing out the gradients of pitch vectors. For each model, pitch embedding SLD
was evaluated at each epoch until frozen. Note that the embedding vectors would still
slightly change after frozen because of the existence of the projection layer between
embedding output and the transformer input, which was not frozen as it is shared by
all word vectors (including non-pitch vectors). In actual results, there was a very slight
increase in the SLD for models but they did not change the ranking of different SLDs.

7 Hyper-parameters: A beat resolution of 8 subdivisions per quarter note, a position grid similar
to REMI [13] but each bar now has 8 × 4 = 32 positions instead of 16 used by the authors.
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Metric Results Each of the trained models was evaluated at two states: Best, referring
to the epoch of lowest test NLL loss; Last, at the end of epoch 15. The embedding
metric SLD and pitch performance metric overlapping area OA H(PC) are listed in
Table 4a. Arrows near the metrics indicated whether the maximum or the minimum is
desired.

Freezing
Epoch

SLD
Best ↓

H(PC)
Last ↑

H(PC)
Best ↑

Best
Epoch

1 0.078 0.788 0.485 11
2 0.046 0.772 0.710 7
3 0.042 0.705 0.579 13
4 0.039 0.639 0.792 4
5 0.032 0.615 0.615 14
6 0.043 0.700 0.370 11
7 0.034 0.518 0.636 11
8 0.063 0.678 0.469 11
9 0.049 0.619 0.619 14

10 0.058 0.741 0.332 4
11 0.046 0.598 0.702 9
12 0.039 0.761 0.592 12
13 0.078 0.468 0.513 9
14 0.073 0.650 0.633 12
15 0.079 0.286 0.301 4

(a) The Embedding SLDs and Gener-
ation OA H(PC)s of 15 Models. SLDs
are measured at model reaching lowest
test error, not necessarily before or af-
ter the freezing moment.
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(b) The plot traces the pair of both OA H(PC)
and SLD over epochs of freezing. Higher po-
sitions stand for better pitch class performance
while lefter positions for better embedding qual-
ity.

Fig. 4: Models with Pitch Vectors Frozen at Different Epochs

The 15 models display an interesting 3-phase training dynamics every 5 epochs.
– In phase 1, when frozen before epoch 5, the pitch embedding SLD decreased. The

OA H(PC) of the resulting best models climbed up, reaching the maximal perfor-
mance 0.79 at epoch 4. Models 1 to 4 at epoch 15 have OA H(PC) higher than 0.6,
suggesting that the pitch performance is maintained in longer training.

– In phase 2, freezing happened between epoch 6 and 9, when the SLD was higher.
Both last and best OA H(PC) slightly decreased, especially for the best models the
OA H(PC) dropped below 0.4.

– In phrase 3, from epoch 10 onward, the pitch performance became much more
unstable. The SLD for around epoch 13 to 15 quickly increases, with decreasing OA
H(PC). Also notice that the “best epoch” numbers below the dashed line in Table 4a
are all smaller than the freezing epoch, indicating over-fitting if pitch embeddings
were frozen later than epoch 10. Conversely, if freezing happened before epoch 10,
all except model 4 could last for longer training.

The results first suggest that it is effective to freeze pitch embeddings at low SLD
level to retain pitch performance at higher levels for both the best and the last mod-
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els. In addition, this strategy offers the benefit of being able to train a properly frozen
embedding longer before the model is over-fitted.

6 Conclusion
This paper presents two strategies aiming at improving the pitch performance of a sym-
bolic music generation model. Both involve incorporating domain knowledge that re-
stricts the pitch representation in terms of feature encoding and feature representation,
which effectively alleviate the problem of pitch performance deterioration. Strategy 1
introduces the concept of octave and pitch class, which preserves more pitch proximity
than the MIDI number encoding while strategy 2 maintains the advantage of strategy
1 according to the proposed SLD, a loose version of translational invariance property.
This study and also calls attention to the generation performance issues related to lack
of prior knowledge when designing music generation models. In futural works, the
authors plan to generalize such strategies for more advanced pitch features, such as
intervals and harmony, or other non-pitch musical features with similar constraints.

References

1. Briot, J.P., Hadjeres, G., Pachet, F.D.: Deep Learning Techniques for Music Generation – A
Survey. arXiv:1709.01620 [cs] (Aug 2019)

2. Chawin, D., Rom, U.B.: Sliding-Window Pitch-Class Histograms as a Means of Modeling
Musical Form. Transactions of the International Society for Music Information Retrieval
4(1), 223–235 (Dec 2021). https://doi.org/10.5334/tismir.83

3. Chuan, C.H., Herremans, D.: Modeling Temporal Tonal Relations in Polyphonic
Music Through Deep Networks With a Novel Image-Based Representation. Pro-
ceedings of the AAAI Conference on Artificial Intelligence 32(1) (Apr 2018).
https://doi.org/10.1609/aaai.v32i1.11880

4. Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q.V., Salakhutdinov, R.: Transformer-
XL: Attentive Language Models Beyond a Fixed-Length Context (Jun 2019).
https://doi.org/10.48550/arXiv.1901.02860

5. Dong, H.W., Chen, K., McAuley, J., Berg-Kirkpatrick, T.: MusPy: A Toolkit for Symbolic
Music Generation (Aug 2020)

6. Ens, J., Pasquier, P.: Quantifying Musical Style: Ranking Symbolic Music based on Similar-
ity to a Style (Mar 2020)

7. Euler, L.: Tentamen novae theoriae musicae: ex certissimis harmoniae principiis dilucide
expositae. Saint Petersburg Academy (1739)

8. Gao, J., He, D., Tan, X., Qin, T., Wang, L., Liu, T.: Representation Degeneration Problem
in Training Natural Language Generation Models. In: International Conference on Learning
Representations (Feb 2022)

9. Gorishniy, Y., Rubachev, I., Babenko, A.: On Embeddings for Numerical Features in Tabular
Deep Learning (Mar 2022)

10. Guo, Z., Kang, J., Herremans, D.: A Domain-Knowledge-Inspired Music Embedding Space
and a Novel Attention Mechanism for Symbolic Music Modeling (Dec 2022)

11. Hsiao, W.Y., Liu, J.Y., Yeh, Y.C., Yang, Y.H.: Compound Word Transformer: Learning to
Compose Full-Song Music over Dynamic Directed Hypergraphs (Jan 2021)

12. Huang, C.Z.A., Vaswani, A., Uszkoreit, J., Shazeer, N., Simon, I., Hawthorne, C., Dai, A.M.,
Hoffman, M.D., Dinculescu, M., Eck, D.: Music Transformer. In: International Conference
on Learning Representations (2019)

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

96



13. Huang, Y.S., Yang, Y.H.: Pop Music Transformer: Beat-based Modeling and Generation of
Expressive Pop Piano Compositions. In: Proceedings of the 28th ACM International Confer-
ence on Multimedia, pp. 1180–1188. Association for Computing Machinery, NY, USA (Oct
2020)

14. Ji, S., Luo, J., Yang, X.: A Comprehensive Survey on Deep Music Generation: Multi-
level Representations, Algorithms, Evaluations, and Future Directions. arXiv:2011.06801
[cs, eess] (Nov 2020)

15. Krumhansl, C.L.: The Psychological Representation of Musical Pitch in a Tonal Con-
text. Cognitive Psychology 11(3), 346–374 (Jul 1979). https://doi.org/10.1016/0010-
0285(79)90016-1

16. Krumhansl, C.L., Kessler, E.J.: Tracing the Dynamic Changes in Perceived Tonal Organi-
zation in a Spatial Representation of Musical Keys. Psychological Review 89(4), 334–368
(1982)

17. Laden, B., Keefe, D.H.: The Representation of Pitch in a Neural Net Model of Chord Clas-
sification. Computer Music Journal 13(4), 12–26 (1989). https://doi.org/10.2307/3679550

18. Lazzari, N., Poltronieri, A., Presutti, V.: Pitchclass2vec: Symbolic Music Structure Segmen-
tation with Chord Embeddings. Workshop on Artificial Intelligence and Creativity p. 17 (Nov
2022)

19. Liang, H., Lei, W., Chan, P.Y., Yang, Z., Sun, M., Chua, T.S.: PiRhDy: Learning
Pitch-, Rhythm-, and Dynamics-aware Embeddings for Symbolic Music. In: Proceed-
ings of the 28th ACM International Conference on Multimedia. pp. 574–582 (Oct 2020).
https://doi.org/10.1145/3394171.3414032

20. Lieck, R., Moss, F.C., Rohrmeier, M.: The Tonal Diffusion Model. Transactions of
the International Society for Music Information Retrieval 3(1), 153–164 (Oct 2020).
https://doi.org/10.5334/tismir.46

21. Loshchilov, I., Hutter, F.: Decoupled Weight Decay Regularization (Jan 2019).
https://doi.org/10.48550/arXiv.1711.05101

22. Meade, N., Barreyre, N., Lowe, S.C., Oore, S.: Exploring Conditioning for Generative Music
Systems with Human-Interpretable Controls. arXiv:1907.04352 [cs, eess] (Aug 2019)

23. Moore, B.C.J.: An Introduction to the Psychology of Hearing. BRILL (2012)
24. Mozer, M.C.: Connectionist Music Composition Based On Melodic, Stylistic and psy-

chophysical Constraints. Computer Science Technical Reports (476) (May 1990)
25. Shepard, R.N.: Geometrical approximations to the structure of musical pitch. Psychological

Review 89, 305–333 (1982). https://doi.org/10.1037/0033-295X.89.4.305
26. Simon, I., Oore, S.: Performance rNN: Generating music with expressive timing and dynam-

ics. https://magenta.tensorflow.org/performance-rnn (2017)
27. Wallace, E., Wang, Y., Li, S., Singh, S., Gardner, M.: Do NLP Models Know Numbers?

Probing Numeracy in Embeddings (Sep 2019)
28. Wu, S.L., Yang, Y.H.: The Jazz Transformer on the Front Line: Exploring the Shortcomings

of AI-composed Music through Quantitative Measures (Aug 2020)
29. Yang, L.C., Chou, S.Y., Yang, Y.H.: MidiNet: A Convolutional Generative Adversarial Net-

work for Symbolic-domain Music Generation. arXiv:1703.10847 [cs] (Jul 2017)
30. Yu, S., Song, J., Kim, H., Lee, S.m., Ryu, W.J., Yoon, S.: Rare Tokens Degenerate All To-

kens: Improving Neural Text Generation via Adaptive Gradient Gating for Rare Token Em-
beddings (Jun 2022). https://doi.org/10.48550/arXiv.2109.03127

31. Yust, J., Lee, J., Pinsky, E.: A Clustering-Based Approach to Automatic Harmonic Anal-
ysis: An Exploratory Study of Harmony and Form in Mozart’s Piano Sonatas. Transac-
tions of the International Society for Music Information Retrieval 5(1), 113–128 (Oct 2022).
https://doi.org/10.5334/tismir.114

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

97



VaryNote: A Method to Automatically Vary the Number
of Notes in Symbolic Music

Juan M. Huerta1 and Bo Liu1 and Peter Stone1,2

1 Department of Computer Science, The University of Texas at Austin
2 Sony AI

jmhuer@utexas.edu, {bliu, pstone}@cs.utexas.edu

Abstract. Automatically varying the number of notes in symbolic music has
various applications in assisting music creators to embellish simple tunes or to
reduce complex music to its core idea. In this paper, we formulate the problem of
varying the number of notes while preserving the essence of the original music.
Our method, VaryNote, adopts an autoencoder architecture in combination with
a masking mechanism to control the number of notes. To train the weights of the
pitch autoencoder we present a novel surrogate divergence, combining the loss of
pitch reconstructions with chord predictions end-to-end. We evaluate our results
by plotting chord recognition accuracy with increasing and decreasing number
of notes, analysing absolute and relative musical features with a probabilistic
framework, and by conducting human surveys. The human survey results indicate
humans prefer VaryNote output (with 1.5, 1.9 × notes) over the original music,
suggesting that it can be a useful tool in music generation applications. 3 4

Keywords: Pitch Autoencoder, Harmonic Analysis, Arrangement Generation,
Automatic Ornamentation, Symbolic Music Generation, Chord Predictions

1 Introduction

Automating the process of varying the number of notes in a musical arrangement can
have many applications. In the case of increasing notes, we can apply this technology to
enhance compositions. This application has previously been explored, to some degree,
when discussing automatic melody harmonization, arrangement generation, or auto-
matic ornamentation [3, 4,14–16]. However most of those methods require supervision
in the form of labeled data such as Wang et al. POP909 MIDI dataset with segmented
melody, arrangement, and bridge notes [17]. The other direction of reducing the number
of notes is considered a useful research area relevant to voicing information, automatic
melody extraction, and feature extraction in general. However, similar limitations exist

3 Project page and listening examples: https://varynote.github.io
4 Code: https://github.com/varynote/varynote-code

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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for this case: all the methods require segmented data and do not allow for continuous
control over the number of notes. In the field of music theory, Schenkerian analysis, or
similar variants, can be used to uncover the underlying hierarchical structure of music
and use this information to both reduce and add notes to music. However to imple-
ment this process automatically, a corpus of analyzed examples is needed, in addition
to heuristics to determine how to add or remove notes based on the analysis [7, 13].

Fig. 1. VaryNote example usage: given a piece of MIDI music we varying the number of notes
according to a desired input-output ratio: r.

To approach the problem of varying the number of notes in symbolic music auto-
matically, we introduce VaryNote, a novel method that uses an autoencoder trained on
pitch reconstructions that preserve chord structure. This design is considering several
studies that have surveyed human listeners and discovered maintaining harmonic chord
structure, while removing other aspects can still allow human listeners to recognize the
original tune [6]. An example is the common practice of describing the chord progres-
sion I-V-vi-iii-IV-I-IV-V in terms of Pachelbel’s Canon in D. In addition, VaryNotes’
design effectively preserves rhythmic features, which we believe is beneficial as lis-
teners can recall a song based on its melody, even with different instrumentation or
tempo [2, 5, 18]. In summary, this paper makes the following contributions:

1. Formulate the task of varying the number of notes in music as an optimization
problem.

2. Introduce VaryNote, a novel deep learning method consisting of an autoencoder
trained with a combined loss of pitch reconstructions and chord predictions. We
demonstrate that VaryNote can significantly outperform a baseline based on heuris-
tics from music theory at the task of varying the number of notes on the BTL MIDI
dataset.

2 Problem Formulation and Background

In this section, we introduce a general problem formulation of varying the number of
notes. Then, in Section 3, we provide a description of our proposed strategy to solve
this problem.
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2.1 Problem Formulation

Symbolic music information is a type of sequential information. We represent music
using a piano roll representation, a frame-wise representation, where every time step is
a multi-hot encoding of the pitches that are played at time t. Assuming a time-length H ,
with P possible note pitches, we denote X = {0, 1}P×H as the input space. We define
a piano roll matrix X ∈ X , and quantify the number of notes as the sum of non-zero
elements5 in X:

Number of Notes : m := ||X||0. (1)

The goal is to learn a mapping fθ(X | r) → X̂ ∈ X parameterized by θ such that
X̂ increases or decreases the number of notes in a piano roll X , given an output-input
ratio, r ∈ R+ of notes that controls the relative sparsity of the output. Formally, we
view the problem of automatically varying the complexity of harmonies as the following
optimization problem:

min
θ

D
(
fθ(X | r), X

)
s.t.

||fθ(X | r)||0
||X||0

= r. (2)

Conceptually, D is a divergence that measures how similar the reconstructed fθ(X |
r) is to the original piece of music X . Informally, it can be characterized as the degree
to which an average human listener would consider the two passages to be ”the same
tune” and is related to cover song identification [9]. While both melodic contour and
harmonic contour can be used to quantify music similarity in music theory, they may
not provide a complete picture due to subjective differences in interpretation and other
factors. Ultimately, this divergence is based on human judgement and is not easily mea-
surable so we resort to using a surrogate loss defined in Section. 3.2 that estimates the
ability for a reconstructed piano roll to identify the original chords. We assume that
when this loss is small, people will consider the passages to be the same tune. This
assumption is considering the importance of harmonic structure in perceptual similar-
ity [5, 6, 18]. However, we are not making any claim that this surrogate loss is the best
possible quantitative estimation of the true divergence.

3 Method

The general problem presented in Eq. (2), is to conditionally generate music based on
r. A straightforward approach is to first apply representation learning on the music and
then reconstruct it conditioned on r, similar to autoencoder style models in machine
learning. In this section, we introduce a novel autoencoder, named VaryNote. Specif-
ically, VaryNote consists of two parts. The first is a pitch autoencoder (Section 3.1)
where the encoder compresses a piece of music into a latent representation and the de-
coder reconstructs music from the latent representation. The second is a threshold mask
(Section 3.1) that controls the sparsity in the output music. To train the weights of the
pitch autoencoder we define a novel divergence in Section 3.2. This divergence is a
combination of error on reconstruction and error on symbolic chord predictions.

5 This definition is not exactly aligned with the music theory concept of a note, since we are
ignoring note length, but it captures the amount of pitch information and is simple to calculate.
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3.1 Architecture

Pitch Autoecoder An autoencoder is a model that seeks to learn a compressed repre-
sentation of an input. It does so by passing the input through an information bottleneck
of lower dimensionality than the original input. We apply an autoencoder to a piano roll
Xt. We first breakdown the piano roll matrix by time-step, defining a sequence of pitch
vectors such as:

Xt ≜ xt−H:t = [xt−H , . . . , xt−1] . (3)

The goal is to learn to reconstruct a pitch vector xt at time t using the encoder with
d = 32: Eϕ : RX → Rd and decoder Dθ : Rd → RX , parameterized by ϕ and θ
respectively. In addition we test several non-linear activations λ:

– ReLU: rectified linear activation function.
– k-WTA: the k-largest neurons in the autoencoder’s hidden layer (or code) is kept

and the rest, as well as their derivatives, are set to zero [11]

λWTA(y | k)j =

{
yj , yj ∈ {k-th largest elements of y}
0, Otherwise.

(4)

– Lifetime sparsity: this is the same as k-WTA constraints Eq. (4) except we apply
percent sparsity %k of the hidden layer across the entire mini-batch. This encour-
ages a wider range of neurons to be active [12].

We encapsulate the autoencoder in a function A, and define the autoencoder recon-
struction as X̂t:

X̂t ≜ Aϕ,θ(Xt) = Dθ ◦ λ[Eϕ(Xt)]. (5)

Thresholding Piano Rolls After training the autoencoder, VaryNote reduces or in-
creases the number of notes in a piano roll using a threshold mask. This mask essen-
tially zeros out everything except the top-k values in the autoencoder output. Specifi-
cally, consider the autoencoder output of size S = P ×H with X̂t ∈ RS as defined in
Eq. (5). Denote the k-th smallest element of X̂t as x̂(k). We define a mask M :

M(X̂t) = 1(x̂i,j ≥ x̂(k)). (6)

For any desired output-input ratio r, and m number of notes in the original piano
roll Xt, we find a k-th order that achieves r:

k(r) = ⌊S − rm⌋. (7)

Now we can write Eq. (6) using a target r:

M(X̂t | r) = 1(x̂i,j ≥ x̂(k(r))). (8)

Applying the mask defined in Eq. (8) on X̂t assures we end up with rm number of
notes:

||M(X̂t | r)||0 = S − k ≈ rm. (9)
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VaryNote Architecture At this point we have described all the required components
of VaryNote. We have slightly different treatment for increasing or decreasing notes.
Increasing Number of Notes: to apply a relative increase in number of notes (output-
input ratio r ≥ 1), we add the pitch autoencoder output with the original music and
apply the mask in Eq. (8) that assures we meet the desired output-input ratio constraints.
Decreasing Number of Notes: to apply a relative decrease in number of notes (output-
input ratio r < 1), we multiply, element-wise, the pitch autoencoder output with the
original music and apply the mask in Eq. (8) that assures we meet the desired output-
input ratio constraints. In summary:

Fvc(X | r) =

{
M(Aϕ,θ(X) +X | r), if r ≥ 1

M([X +Aϕ,θ(X)] ∗X | r), if r < 1.
(10)

Fig. 2. During training VaryNote combines MSE loss and softmax cross entropy loss. Note the
mask requires an output-input ratio r. During training we can fix r; or train without masking, and
apply the mask during inference. During inference, r controls the number of notes.

Bi-LSTM Architecture for Chord Recognition To train the weights of the autoen-
coder Aϕ,θ, VaryNote temporarily attaches a Bi-LSTM [1] that uses the output of the
autoencoder to make chord predictions as a downstream task. This addition helps our
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pitch reconstructions maintain the original chord structure. The task is to find a mapping
from Xt = [xt−H , . . . , xt−1] ∈ {0, 1}P×H to a corresponding chord sequence per time
step Yt = [yt−H , . . . , yt−1] ∈ ZC where C is the number of symbolic chord classes.
The output sequence is passed through a softmax layer that generates the probability
for each pitch vector.

3.2 VaryNote Surrogate Loss: MSE and Chord Recognition

Ideally we want a differential metric, D, that measures music similarity across different
arrangement representations as described in Eq. (2). This divergence is not easily quan-
tifiable, so we resort to designing a combined loss that preserves chord structure during
pitch reconstructions. Specifically, we propose a combined loss of mean-square error
on the pitch autoencoder reconstruction and cross entropy on symbolic chord targets
between the Bi-LSTM output ot ∈ RC×H and target sequence. In our study we reduce
the number of pitches to P = 64 and predict N = 24 possible chords. The total loss
can be described as:

D = Ltotal = LMSE + cLCE

=
1

P

P∑
t=1

(xt − x̂t)
2 − c

N

N∑
i=1

log
exp

(
ot[yi]

)∑K
y=1 exp

(
ot[y]

) . (11)

Finally, VaryNote trains with the presented Ltotal

min
θ,ϕ

Ltotal

(
Fvc(X | r), X

)
s.t.

||Fvc(X | r)||0
||X||0

= r. (12)

The constraints are automatically met by the mask M . During training we can fix r.
Alternatively, VaryNote can train without a mask by using the autoencoder output with
no threshold, and then apply a mask during inference.

3.3 Music Theory Baseline

VaryNote enables varying the number of notes along a continuous spectrum from very
sparse to very dense orchestration. There are no existing rule-based methods that can
similarly control the number of notes in the same way. There are relevant examples of
music algorithms based on theory rules such as voice leading applied to automatic har-
monization. However, none of these methods provide a comparison as we increase or
decrease notes. So we designed a method that can automatically generate harmonic in-
tervals and automatically remove notes. To add notes, the algorithm requires two steps.
First we sample harmonic intervals from a probability distribution computed from ag-
gregating music theory rules used in prior work [10]. Table 3 in the Appendix summa-
rizes the weighted probabilities of harmonic intervals. To remove notes, we randomly
find a note with probability proportional to the density of notes at each time step.
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4 Experiment

We conduct experiments to compare the original music with the output of VaryNote
variants and the baseline method, using three different criteria. Section 4.3 examines
the impact on chord structure when notes are added or removed, Section 4.4 compares
various musical features using a probabilistic framework, and Section 4.5 evaluates the
perception of VaryNote’s output through a human survey. To verify that the surrogate
loss in Eq. (11) is superior to a standard MSE loss, we compare VaryNote variants
with a standard autoencoder. We also test k-WTA and Lifetime sparsity constraints on
the autoencoders with the expectation they will achieve better generalization on pitch
reconstructions. In more detail:

– Lifetime: VaryNote with Lifetime (k = 3) sparsity constraints, described in Sec-
tion 3.1.

– k-WTA: VaryNote with k-WTA (k = 3) sparsity constraints, described in Sec-
tion 3.1

– Ordinary: VaryNote with no sparsity constraints, using a standard ReLU activa-
tion, described in Section 3.1

– AE: VaryNote with no sparsity constraints, trained only with LMSE . That is c = 0
in Eq. (11).

– Rules: This is the Music Theory baseline: a simple algorithm that can generate
harmonic intervals sampled from weighted probabilities in Table 3 in the Appendix,
see Section 3.3 for more details.

4.1 Dataset

We use the BPS-FH dataset with 32 movements of Beethoven Piano Sonatas [1]. The
musical pieces in the repertoire are represented as binary piano rolls with the time reso-
lution of one 16th note. A sliding window of length 128 time-steps (equal to 32 quarter
notes) with a hop size of 16 is applied to the piano rolls to generate the instances for
recognition. For chord recognition, we use the maj-min chord vocabulary (including 24
major and minor chords plus an additional ‘others’ class which is excluded from eval-
uation). We only consider 64 pitches, excluding the lowest and highest octave of the
standard 88 key piano notes.

4.2 Model Training

We train VaryNote, Eq. (12), without a threshold mask M and apply the mask dur-
ing inference. All VaryNote models are trained with the same train-validation BPS-FH
dataset. We train each method for 20 epochs using Adam optimizer, and use c = 1

3 for
our loss Eq. (11) (i.e: MSE + 1

3 CE). In the interest of reproducibility, all experimental
parameters are stored in the code repository.6

6 See the README.md file in the code repository
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4.3 Recovering Chord Information

To verify that the added or reduced notes do not significantly affect the harmonic struc-
ture of music we test if we can recover ground truth chords from the original piano
roll (Fig. 3). To accomplish this, first we train each method. Then we transform the
validation data using note multiples: r ∈ [0.3, 0.5, 0.7, 1, 1.3, 1.5, 1.9]. Finally, using a
separate and isolated Bi-LSTM model trained on the original data, we predict symbolic
chords for each note multiple.

4.4 Music Similarity with Kullback-Leibler Divergence

To get a sense of the music similarity without using a human analyst, we apply Lerch
e.t. multi-criteria evaluation metrics based on probabilistic measures of musical fea-
tures [8]. We compare the original MIDI music datasets against every method with 1.5
× notes by applying kernel density estimation (Gaussian kernel) to find a Probability
Density Function (PDF) for each musical feature, and plot them in Fig. 4. Related to
harmony, we measure Pitch Count (PC): the number of different pitches within a sam-
ple, Pitch Range (PR): the difference of the highest and lowest used pitch in semitones,
and Average Pitch Interval (PI): the average value of the interval between two consecu-
tive pitches in semitones. Related to rhythm, we measure Average Inter-Onset-Interval
(IOI): the time between two consecutive notes.

4.5 Human Evaluations

In order to evaluate the practical use of this method, we conduct a small survey de-
signed to understand how human listeners, musically trained and untrained, judge re-
duced/added note transformations7. The goal is to understand if the transformations
sound realistic, pleasant, and match our expectation of complexity. 11/30 participants
self-report knowing how to play an instrument. We test results for VaryNote Lifetime
since it is the best performing method. The survey has three sections. The first is Mu-
sical Preference: the participants are asked to score VaryNote output from 1-5, 1 being
the lowest appeal, and 5 being the highest appeal. The second is Perceived Musical
Complexity: the participants are asked to score VaryNote output from 1-5, 1 being the
lowest complexity, and 5 being the highest complexity8. The final is Music Turing Tests
(MTT): the participants are given two examples, VaryNote output, and the original mu-
sic and are asked to identify the piece of music that was fully composed by a human–we
do this for piano, and multi-instrument output. The piece the participant selects as being
composed by a human receives a score of 1. We sum the total scores and divide by the
total number of participants to get a proportion of times humans select the VaryNote
output over the original music. To generate a multi-instrument output we simply isolate
the notes from the VaryNote output and synthesize the MIDI with a new instrument. Re-
sults are summarized in Table 1 and Table 2, the best mean for each question is shown
in bold.

7 The survey form is available in the code repository.
8 This question is intended to provide insight into how listeners perceive and differentiate be-

tween music with different note multiples. It is worth noting that the use of the term ”com-
plexity” was chosen to align with a previous version of the paper.
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Fig. 3. Symbolic chord prediction accuracy using a Bi-LSTM model trained on the original data
as we transform our validation data using VaryNote

Fig. 4. We extract certain features and use kernel density estimation (Gaussian kernel) to find
a probability density function for specific dataset generated by a model. ”Intra” refers to com-
parisons made within a single group of the orignal music. ”Inter,” on the other hand, refers to
comparisons made between two different groups or categories, in this case comparisons made
between the altered music and the original music.
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Table 1. Human survey results for preference and complexity. Participants are asked to rate the
VaryNote output based on preference on a scale of 1-5, 1 being the lowest appeal, and 5 being the
highest appeal. Participants also rate complexity from 1-5, 1 being the lowest complexity, and 5
being the highest complexity. There were 30 total participants; 11/30 participants self-reported
knowing how to play an instrument. The highest mean for each question is shown in bold.

Experiment Score Report

Original ×0.5 Notes ×0.7 Notes ×1.5 Notes ×1.9 Notes

Preference Mean 3.09 2.15 2.73 3.62 3.41

Std. Deviation 1.33 1.23 1.23 1.11 1.35

Complexity Mean 3.25 1.62 2.52 3.92 3.85

Std. Deviation 1.61 1.21 1.46 1.24 1.32

Table 2. This table includes results for Music Turing Tests (MTT). The participants are given
two examples, VaryNote output, and the original music, and are asked to identify the piece of
music that is fully composed by a human. The piece the participant selects as being composed
by a human receives a score of 1. We sum the total scores and divide by the total number of
participants to get a proportion of times humans select the VaryNote output over the original
music. The multi-instrument question uses string and woodwind MIDI instruments.

Experiment ×0.5 Notes ×1.5 Notes ×1.9 Notes

Music Turing Test (MTT) - Piano 0.22 0.36 0.17

MTT - Multi-Instrument N/A 0.57 N/A

5 Discussion

As we vary the note multiple r, the Ordinary and Lifetime methods achieve the highest
accuracy in chord recognition according to Fig. 3. We also measure similarity between
the original music and 1.5 × note outputs using KL-divergence. All methods have very
similar IOI values. Other harmonic features such as PC, PR, and PI, closely match the
original music for all VaryNote methods, and the Rules method is clearly inferior at
matching the distribution of the original music.

The human survey results in Table 1 indicate humans prefer VaryNote output, with
1.5, 1.9 × notes, over the original music. Table 2 indicates humans perceive increased
complexity with higher note multiples, except that 1.5× notes seems to be perceived
with higher complexity than 1.9× notes. On the MTT-Piano, participants identify the
original music 64% of the time. In comparison, participants only identify MTT-Multi-
instrument pieces 43% of the time.
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6 Conclusion

In summary, we have introduced the task of automatic note variation in music and pro-
posed a novel method, VaryNote, that outperforms a music theory baseline. The pro-
posed method offers significant advantages over traditional approaches by generating
a coherent range of outputs for any given note multiple. Notably, our method requires
only a corpus of chord labels for training, and it can be easily extended to other diver-
gence metrics beyond chord predictions. Moreover, our results indicate that VaryNote’s
output is preferred over the original music, suggesting that VaryNote can be a useful
tool in music generation applications.
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Appendix

A Weighted Probabilities of Harmonic Intervals

To add notes using the Rules approach, we sample harmonic intervals from a probability
distribution computed from aggregating music theory rules used in prior work. The
harmonic intervals are summarised in Table 3 below.

Table 3. Assigned probabilities p for intervals according to music theory rules from prior work
[10]. To add a new note, a random note from the original music is selected uniformly and harmo-
nized with a random interval drawn with probability p.

Assigned Prob. (p)
p = 0.19 p = 0.10 p = 0.003

Perfect fourth Minor third Minor second
Perfect fifth Major third Major second

Minor sixth Minor seventh
Major sixth Major seventh

Perfect octave Augmented interval
Perfect unison Diminished interval
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Abstract. GuitarPro format tablatures are a type of digital music notation that
encapsulates information about guitar playing techniques and fingerings. We in-
troduce ShredGP, a GuitarPro tablature generative Transformer-based model con-
ditioned to imitate the style of four distinct iconic electric guitarists. In order to
assess the idiosyncrasies of each guitar player, we adopt a computational musi-
cology methodology by analysing features computed from the tokens yielded by
the DadaGP encoding scheme. Statistical analyses of the features evidence sig-
nificant differences between the four guitarists. We trained two variants of the
ShredGP model, one using a multi-instrument corpus, the other using solo guitar
data. We present a BERT-based model for guitar player classification and use it
to evaluate the generated examples. Overall, results from the classifier show that
ShredGP is able to generate content congruent with the style of the targeted guitar
player. Finally, we reflect on prospective applications for ShredGP for human-AI
music interaction.

Keywords: Tablature Generation, Computational Musicology, Transformers

1 Introduction

Historically, symbolic music generation research has initially relied on datasets us-
ing formats such as MIDI, MusicXML, and ABC [8]. The publication of the DadaGP
dataset [23] has fostered research on guitar-focused symbolic music generation, adopt-
ing a symbolic format supporting multiple instruments including tablature information
for string instruments. The dataset is built-upon the GuitarPro (GP) format, support-
ing fingering and expressive information specific to fretted string instruments, features
not supported by MIDI. Related works include GTR-CTRL [24], a Transformer-based

⋆ This work is supported by the EPSRC UKRI Centre for Doctoral Training in Artificial Intelli-
gence and Music (Grant no. EP/S022694/1).

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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generative model for guitar tablatures that can be conditioned on musical genre and
instrumentation. In this work, we follow some of the future work suggestions from the
GTR-CTRL paper, namely the development of a model conditioned on artist style. As
a use case, we selected four guitar players of distinct styles to assess the ability of the
model to capture and reproduce their stylistic idiosyncrasies: David Gilmour (DG), Jimi
Hendrix (JH), Steve Vai (SV) and Yngwie Malmsteen (YM). Token-based heuristics to
analyse the style of the guitarists are presented in Section 4, following a computational
musicology approach. We present ShredGP, a model that leverages the approach used
in GTR-CTRL to condition tablature generation based on guitarist style. The main con-
tributions of this paper are: (1) a method for the generation of multi-instrument guitar
tablatures conditioned on artist style; (2) ShredGP, a model for the generation of guitar
tablatures in the style of specific guitarists; (3) heuristics to analyze guitar playing styles
in the symbolic domain using the token format from DadaGP, that can find applications
in computational musicology; (4) SoloGPBERT, a classification model for the task of
identifying performances from different guitarists, fine-tuned on the specific four guitar
players as a use case.

2 Background

2.1 Deep Learning for Symbolic Music Generation

The task of music generation with deep learning has been steadily demonstrating promis-
ing results and achieving state-of-the-art [19][11][15][22]. Architectural choices for
generative music models range from Variational Autoencoders (VAEs) [21][25], to
Generative Adversarial Networks (GANs) [9][10], and natural language processing
(NLP) inspired models, such as Recurrent Neural Networks (RNNs) [18] and, most no-
tably, Transformers [13]. This work explores the use of the Transformer, a sequence-to-
sequence model capable of learning the dependencies and patterns among elements of a
given sequence by incorporating the notion of self-attention, which has achieved state-
of-the-art results in many NLP tasks. Huang et al.’s Music Transformer [13] was the
pioneering work to employ self-attention mechanisms for generating longer sequences
of symbolic piano music. Other noteworthy contributions in this area include Musenet
[20], that used the GPT-2 Transformer model to produce symbolic multi-instrument
music across various musical genres; the Pop Music Transformer [14], which used the
Transformer-XL architecture and demonstrated better rhythmic structure in generating
pop piano symbolic music, and the Compound Word Transformer [12], which explores
innovative and more efficient approaches to tokenizing symbolic music during training.

2.2 Automatic Guitar Tablature Music Generation

Despite the widespread availability of guitar tablatures [16][3], there has been limited
research on generating guitar tablature music prior to the release of the DadaGP dataset
[23]. McVicar [17] proposed an automatic guitar solo generator in tablature format,
which utilized probabilistic models and relied on input chord and key sequences. In
terms of guitar tab music generation using deep learning techniques, Chen et al. [4] de-
veloped a fingerstyle guitar generator, trained on a dataset of 333 examples that did not
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use the GuitarPro format. With the release of the DadaGP dataset [23], works regard-
ing automatic guitar tablature generation include GTR-CTRL, a Transformer-XL based
model that can control instrumentation and musical genre [24], and LooperGP, a model
that can create loops and which was designed having in mind live coding performance
applications [2].

3 Datasets

3.1 DadaGP Dataset

The DadaGP dataset [23] contains a collection of 26,181 songs, available in two dif-
ferent representations: the token format, a form of a textual representation of the songs,
and the GuitarPro format, named after the GuitarPro software used for tablature edit-
ing and playback. The conversion between these two file formats is facilitated by a tool
that uses PyGuitarPro [1], a Python library that can parse GuitarPro files. The songs in
the DadaGP’s token format begin with specific tokens such as artist, downtune,
tempo, and start. Notes played on pitched instruments are represented by tokens in
the format instrument:note:string:fret. Although this syntax is primarily
suitable for string instruments, the combination of string and fret is eventually mapped
to a MIDI note, thus supporting other pitched instruments. Percussive instruments, such
as the drumkit, are represented using tokens in the form drums:note:type. To
quantify note durations, the dataset employs the wait:ticks token, which uses a
resolution of 960 ticks per quarter note. In terms of notating guitar playing techniques,
DadaGP uses the note effect (nfx) and beat effect (bfx) tokens. These include expres-
sive guitar techniques such as palm mute (a technique in which the player dampens the
strings with their right hand palm), bends and vibratos, tappings, slides, hammer-ons
and pull-offs (both represented under the nfx:hammer token).

3.2 SoloGP Dataset

In order to create a subset of DadaGP that consisted only of solo guitar parts, we de-
veloped a method to extract solo sections from the dataset. By leveraging PyGuitarPro,
we searched for Solo markers on the files, textual indications of where a guitar solo
section is located, then extracted the corresponding guitar part at that section. With this
procedure we assembled SoloGP, containing 3,308 guitar solos from more than 1,000
guitarists (12,7% of the tracks in DadaGP), with a total duration of over than 43h.

4 Computational Musicology for Guitarist Style Analysis

In order to experiment with guitarist style-conditioned guitar tablature generation, we
gathered a corpus of 50 songs from four distinct iconic electric guitar players: David
Gilmour (DG), Jimi Hendrix (JH), Steve Vai (SV) and Yngwie Malmsteen (YM). These
guitar players are known to have different styles. To validate this, we use a computa-
tional musicology approach [6] by comparing features computed on a corpus of exam-
ples from each guitarist. We use a Type I error α of .05 in statistical analyses. General
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descriptive statistics about the corpus of each guitar player can be seen in Table 1. We
can observe, for example, that YM not only plays a higher number of notes than the
other three guitar players, but it does it on average at faster tempos. By opposition,
DG usually resorts on slower tempos and fewer notes. Additionally, JH and SV seem
to make use of specific guitar techniques (e.g. bends and tapping, respectively) more
often, evidenced by a larger number of nfx and bfx tokens.

Table 1: Overall statistics of the conditioning subset, per guitar player.

Guitarist Avg. Tempo Num. Notes Num. FXs

David Gilmour 94 bpm 13,534 5,921
Jimi Hendrix 111 bpm 28,843 14,625
Steve Vai 123 bpm 31,715 14,457
Yngwie Malmsteen 142 bpm 33,206 7,093

Figure 1 presents a distribution of the note durations used by each guitarist in the
corpus. The results suggest that, whereas DG and JH seem to predominantly use 16th
and 8th notes (240 and 480 ticks, respectively), YM plays 16th note triples more fre-
quently (160 ticks). Furthermore, a Kruskal-Wallis rank sum test yielded significant
statistical differences between the four note duration distributions (H(3) = 12.848,
p < .005).

Fig. 1: Note duration distribution (in ticks, 960 ticks per quarter note), per guitar player.

Figure 2 shows the distributions of guitar playing expressive techniques for each
guitar player. An overall analysis indicates that DG relies mostly on bends by compar-
ison with the other remaining five techniques. YM seems to prefer hammer-ons and
pull-offs (i.e. left hand legatos). It is interesting to note that, for the analyzed corpus,
SV is the only guitarist using tapping (i.e. a guitar technique in which the player hits a
fretted note with a finger from the right hand). A Kruskal-Wallis rank sum test showed
significant statistical differences between the four guitar playing techniques’ distribu-
tions (H(3) = 24.312, p < .001).
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Fig. 2: Guitar playing techniques distribution, per guitar player.

In order to have a better melodic/harmonic understanding of each players’ perfor-
mances, we computed the pitch class entropy (PCE) and scale consistency (SC) met-
rics, as defined by [8]. Applied to tonal music, PCE can indicate indirectly how tonal a
piece is. Applied to a corpus of tonal music, it reflects the consistency in the keys used.
The SC is defined as the largest pitch-in-scale rate over all major and minor scales.

Fig. 3: Box plots for pitch class entropy (left) and scale consistency (right) per guitar
player.

Both plots in Figure 3 suggest that SV and YM are more diverse in terms of the keys
and pitches used. For PCE, a a Kruskal-Wallis rank sum test showed significant statisti-
cal differences between the four guitar players (H(3) = 73.602, p < .001). Likewise, a
Kruskal-Wallis rank sum test yielded significant statistical differences between the four
guitarists’ SC distributions (H(3) = 915.960, p < .001).

Some additional information about the results from PCE and SC can be observed in
Figure 4. For example, by analyzing the plot for JH, we notice that the five pitch class
peaks could correspond to a Eb minor pentatonic scale (i.e. Eb, Gb, Ab, Bb, Db). This
is particularly relevant because JH mostly plays in a half-step down guitar tuning (i.e.
from the lowest to the highest string: Eb-Ab-Db-Gb-Bb-Eb) and is famous for his use
of the minor pentatonic scale. Regarding YM, the other guitarist from the corpus that
plays with a half-step down tuning, we can observe that the highest peak also falls on
Eb. Finally, DG’s distribution has visibly lower entropy than the others, in accordance
with the plots in Figure 3.
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Fig. 4: Distributions of pitch classes used, per guitar player.

5 Experiments

Previous work in [23] demonstrated that the use of control tokens succeeded in condi-
tioning a guitar tablature generation model on either instrumentation or musical genre.
Following a similar approach, we used the artist tokens at the beginning of ev-
ery song to condition the generation on the style of the four guitarists. Although we
investigate here a use case for guitarist style imitation, our approach can be used to
condition generation for a whole band (e.g. Pink Floyd). Thus, at the start of every
respective song we used a control token in the form of artist:pink_floyd for
DG, a control token in the form of artist:pink_floyd for DG, a control to-
ken in the form of artist:jimi_hendrix for JH, a control token in the form of
artist:steve_vai for SV and a artist:yngwie_malmsteen control token
for YM. By training the model with these control tokens, we aim to stir the generation
output at the time of inference. In order to obtain varied generated songs, we followed
two distinct strategies, one using multi-instrument compositions (ShredGP-M), trained
on the DadaGP dataset and fine-tuned on the multi-instrument version of the condition-
ing subset, and another using only solo-instrument parts (ShredGP-S), trained on the
SoloGP dataset and fine-tuned on a solo-instrument version of the conditioning subset
(i.e. we manually filtered the guitar parts of every song in this corpus).

5.1 Model Description

Regarding architectural choices, we followed a similar procedure as in our previous
work [23], namely a Transformer-XL model [7] as backbone architecture. Concerning
ShredGP-M, the model’s configuration comprised 12 self-attention layers with 8 multi-
attention heads, trained for 200 epochs on the whole DadaGP dataset, and fine-tuned for
20 epochs on the multi-instrument conditioning set, with a learning rate of 1e− 4 and a
batch size of 8 samples. Regarding the ShredGP-S model, due to the lesser complexity
of the task (i.e. generative procedure for a single instrument vs. many instruments), we
reduced the models’ complexity to 2 self-attention layers and 4 multi-attention heads.
ShredGP-S was trained on the SoloGP dataset for 300 epochs, and finally fine-tuned
on the conditioning subset for 200 epochs. Both models were training using NVIDIA
QUADRO RTX 600 GPUs. Model parameters were heuristically tuned based on prior
experiments.
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5.2 Inference Procedures

The results from GTR-CTRL [24] showed a significant effect of the prompting strat-
egy in conditioning guitar tablature generative models on instrumentation and musical
genre. As another source of variability for generated outputs, we also use two distinct
prompts for both the ShredGP-M and ShredGP-S models: a full-prompt, consisting of
the first two measures from compositions of the target guitarist, and an empty-prompt,
comprising only one initial note. In the case of the full-prompt for ShredGP (ShredGP-
M-FP), we used a multi-instrument version of said two measures, and used a single-
instrument version for the ShredGP-S case (ShredGP-S-FP). A similar reasoning was
followed for the empty-prompt on both ShredGP-M (ShredGP-M-EP) and ShredGP-S
(ShredGP-S-EP). We generated 400 examples per model/prompt configuration, com-
prising a total of 100 songs per guitar player. For ShredGP-S we defined a limit of 256
generated tokens per song, and for ShredGP-M a limit of 2,048 tokens, as ShredGP-M
was set to generate multi-instrument compositions, thus needing more tokens to accom-
modate for that factor.

5.3 Listening Examples

For the experiment settings described in section 5.2, we cherry-picked examples of
generated songs for each guitar player. These examples, together with all the generated
compositions, without any post-processing, are made available for listening4.

6 Objective Analysis

Assessing the quality of generative music models is a difficult task, as it usually in-
volves conducting subjective listening tests that are challenging to design and require
significant expertise and resources. For the particular case of this study, a listening test
would need participants that are familiar with the differences in playing style of the
four guitarists. Thus, we resorted on an objective computational analysis based on the
metrics described in the next subsection. Finally, we compared these results against the
ones obtained for the groundtruth data and presented on Section 4.

6.1 Metrics

Note Duration Distributions: we calculated note duration distributions on the gen-
erated corpus. We computed the Kullback-Leibler divergence (KLD) between the note
duration distributions of the generated examples and of the groundtruth data to assess
the similarities between these sets. Here, a smaller value indicates less divergences,
hence more similarity. Guitar Playing Techniques Distributions: we computed these
distributions for every guitarist/prompt configuration and calculated the KLD between
the groundtruth and generated examples. SoloGPBERT Classifier: inspired by the

4 Currently available at: https://drive.google.com/drive/folders/
1vmaKGYFgp-02fGuEvz9BXtWDZuvHk0Hc?usp=share_link
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work in GTR-CTRL [24], we here propose SoloGPBERT, a variant of the model intro-
duced in [5], MIDIBERT, as a Bidirectional Encoder Representations from Transform-
ers (BERT)-based masked language able to be configured for downstream classification
tasks concerning piano MIDI songs. For SoloGPBERT, we first pre-trained it on the
SoloGP dataset for 50 epochs, finally fine-tuning it for two epochs on the conditioning
subset for the task of classifying songs of each of the four guitar players, with a split of
55/20/25 between training, validation and test sets. After the fine-tuning, we obtained
an accuracy of 89.09% on the test data, thus deeming this model suitable to distinguish
the style of each guitarist with a high confidence.

6.2 Results

Results for the Kullback-Leibler divergence (KLD) figures for both the note duration
and guitar playing techniques’ distributions can be seen in Table 2.

Table 2: KLD scores between the groundtruth distributions for the note duration (left)
and guitar playing techniques (right) and the distributions for the generations for each
of the four guitar players. Best results in bold.

Note Durations
DG JH SV YM

D
G

M-FP 0.2808 0.2051 0.0797 0.3045
M-EP 0.0975 0.2610 0.1435 0.3963
S-FP 0.0497 0.2575 0.1503 0.4455
S-EP 0.0546 0.0990 0.2775 0.7579

JH

M-FP 0.0877 0.2160 0.3442 0.9227
M-EP 0.2721 0.5388 0.2050 0.3859
S-FP 0.2133 0.2805 0.4967 1.1245
S-EP 0.2300 0.2120 0.4862 1.094

SV

M-FP 0.1542 0.1998 0.1114 0.3814
M-EP 0.0920 0.1465 0.0884 0.3844
S-FP 0.2263 0.1790 0.3727 0.6814
S-EP 0.2343 0.0582 0.1428 0.5225

Y
M

M-FP 1.4008 1.3423 0.7131 0.7169
M-EP 0.9753 0.7833 0.3224 0.2919
S-FP 1.3478 0.6474 0.4610 0.4452
S-EP 1.6598 0.8734 0.7884 0.4136

Guitar Playing Techniques
DG JH SV YM

D
G

M-FP 0.3077 0.0552 0.2305 0.2076
M-EP 0.2108 0.0875 0.2511 0.2008
S-FP 0.1497 0.2952 0.6834 0.6269
S-EP 0.1239 0.2832 0.5308 0.4330

JH

M-FP 0.3052 0.3159 0.7550 0.8674
M-EP 0.05351 0.2849 0.6000 0.6267
S-FP 0.1683 0.0990 0.3063 0.3687
S-EP 0.1618 0.0933 0.3707 0.3268

SV

M-FP 0.3053 0.1121 0.2891 0.4883
M-EP 0.7508 0.2293 0.2924 0.3234
S-FP 0.2601 0.3232 0.4413 0.7312
S-EP 0.2415 0.2656 0.3217 0.2628

Y
M

M-FP 0.9105 0.3299 0.1876 0.0449
M-EP 1.3512 0.5029 0.2511 0.1439
S-FP 0.3894 0.3820 0.5410 0.3192
S-EP 1.9688 0.8898 0.4014 0.2360

Concerning note duration’s distributions (left side table), the generative outputs
conditioned on DG and YM seem to obtained the best classifications (i.e. 3 best clas-
sifications out of 4 possible model/prompt configurations). Generating compositions
with a note duration distribution similar to the groundtruth from JH obtains the worst
scores (i.e. only 1 best classifications out of 4 possible). Regarding the guitar playing
techniques’ distributions (right side table), YM obtained the best results, while SV-
conditioned generations failed to match the groundtruth distribution. Considering the
figures of both tables together, an overall analysis suggests that the style from SV is the
hardest to model (2/8 best results), whilst YM obtains the highest number of best scores
(7/8 best results), followed by DG (5/8) and JH (4/8).
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Table 3: Guitar player classification softmax scores from SoloGPBERT, for the genera-
tions from every guitarist/prompt configuration. Best results in bold.

Guitar Player Classification Score
DG JH SV YM

D
G

M-FP 0.5691 0.2103 0.1175 0.1031
M-EP 0.5086 0.2033 0.1474 0.1407
S-FP 0.6037 0.2238 0.0945 0.0780
S-EP 0.5952 0.2034 0.1080 0.1006

JH
M-FP 0.1577 0.5785 0.1358 0.1280
M-EP 0.2850 0.4054 0.1338 0.1757
S-FP 0.1229 0.6285 0.1105 0.1380
S-EP 0.1090 0.6207 0.0835 0.1868

SV

M-FP 0.1839 0.3146 0.3318 0.1697
M-EP 0.1859 0.2146 0.3498 0.2497
S-FP 0.1692 0.3499 0.3042 0.1768
S-EP 0.0619 0.2831 0.3273 0.2827

Y
M

M-FP 0.0848 0.2364 0.0979 0.5810
M-EP 0.1085 0.2512 0.1161 0.5242
S-FP 0.0619 0.2156 0.0755 0.6470
S-EP 0.0461 0.1501 0.0557 0.7480

The results obtained from the SoloGPBERT classifier can be observed in Table 3.
Overall, the generations from all guitarist/prompt configurations were classified cor-
rectly, with the exception of ShredGP-S-FP when conditioned on SV, thus showcasing
ShredGP’s ability to recreate compositions on the style of each guitarist. It is interest-
ing to note that this matches the conclusions from the results in the previous metrics,
where SV also proved to be harder to model. Similarly, the results for YM obtain the
best classifications on all the prompt configurations.

7 Subjective Analysis

In order to complement the quantitative evaluation, we conducted a subjective analysis
of some of the cherry-picked examples. In this section, underlinked song ids in figures’
captions are hyperlinked to facilitate listening. We would like to highlight that what we
define as style in this paper is viewed from the perspective of a symbolic representation
of these guitarists’ playing techniques, thus not taking into account timbral features that
express identifiable, unique characteristics of each guitar player. In Figure 5 we display
a few measures from a song from ShredGP-M-FP conditioned on JH. We can observe
a stylistic phrasing that emphasizes the minor pentatonic scale, composed of patterns
with bends that are characteristic of JH.
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Fig. 5: Measures 4 to 8 in ShredGP-M-FP id-003 from JH, in 4/4.

Similarly, the style of YM is also visible in Figure 6, an example from ShredGP-M-
EP. The fast 16th note triplet patterns can be observed in measures 11 and 12, supporting
the findings on Figure 1 that show that YM mostly resorts on this type of note durations.

Fig. 6: Measures 10 to 14 in ShredGP-M-EP id-002 from YM, in 4/4.

8 Discussion

Overall, ShredGP succeeds on imitating the style of the four guitarists, its results sup-
ported by both an objective and subjective analysis. Regarding the evaluation proce-
dures presented in Section 6, we would like to clarify that the development of both
ShredGP-M and ShredGP-S in parallel was not carried out with the intent of compar-
ing the two approaches, but only to provide some variety in terms of the procedures.
Ultimately, we intended to investigate if we could create a model conditioned on gui-
tarist playing styles. Furthermore, using an AI model (SoloGPBERT) to evaluate the
results of another AI model (ShredGP) presents limitations, but due to difficulties in
recruiting expert participants, we deem that it can provide a preliminary assessment, as
it showed promising results in previous work [24]. Moreover, reflecting on some of the
findings from the computational musicology analysis outlined in Section 4, we believe
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that the token format in DadaGP opens up new possibilities for the assessment of gui-
tarist playing styles. We anticipate that applying these heuristics to a wider corpus of
guitar players could potentially lead to the creation of continuous space of guitar play-
ing style, classifying different guitarists and positioning them in said space accordingly.
However, it’s worth noticing that these methods do not account for a disentanglement
of the guitarist style from the style of the group/band they are playing in, as many times
the composition will put creative constraints on the guitar players’ part. For our par-
ticular case, while JH, SV and YM are theoretically the lead composers in their own
groups, the same cannot be said about DG and Pink Floyd.

9 Conclusion and Future Work

In this paper we presented ShredGP, a Transformer-based model for guitar tablature
generation, conditioned on the style of four distinct iconic electric guitarists. Further-
more, in order to justify the choice of these guitar players as a conditioning subset, we
proposed and implemented a computational musicology-driven approach that leverages
DadaGP’s token format to analyze guitar players’ style on different aspects. Generative
outcomes from ShredGP were overall able to match the style of each guitarist, obtaining
better results when modelling the guitar playing of YM and worst results for SV. These
conclusions are supported by both the SoloGPBERT classifier analysis and the compar-
ison of note duration and guitar playing techniques distributions agaisnt the groundtruth
data. In future work we plan to expand the musicological analysis on a wider selection
of artists. Regarding the evaluation of our generative results, we expect to better support
these findings with listening tests targetting expert guitar players. Finally, we aim to use
the methods in this paper for human-AI co-creative collaborations with guitar players.
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Abstract. Recent work in the field of symbolic music generation has shown
value in using a tokenization based on the GuitarPro format, a symbolic repre-
sentation supporting guitar expressive attributes, as an input and output repre-
sentation. We extend this work by fine-tuning a pre-trained Transformer model
on ProgGP, a custom dataset of 173 progressive metal songs, for the purposes
of creating compositions from that genre through a human-AI partnership. Our
model is able to generate multiple guitar, bass guitar, drums, piano and orchestral
parts. We examine the validity of the generated music using a mixed methods
approach by combining quantitative analyses following a computational musi-
cology paradigm and qualitative analyses following a practice-based research
paradigm. Finally, we demonstrate the value of the model by using it as a tool
to create a progressive metal song, fully produced and mixed by a human metal
producer based on AI-generated music.

Keywords: Controllable Music Generation, Transformers, Interactive Music AI,
Guitar Tablatures, Human-AI Interaction, Practice-Based Research

1 Introduction

With advancements in computing power, new approaches to music generation have
emerged. In recent years, deep learning has become a popular approach for automatic
music generation, with research focusing on both the audio domain and the symbolic
domain. This work extends previous work by Sarmento et al. [18] using a symbolic
music generation model trained on DadaGP, a symbolic music dataset consisting 26k
songs of various genres [17]. We follow here a practice-based research approach where
a human expert music producer and music AI researchers collaborate to produce mu-
sic based on machine-generated ouputs. We fine tuned the DadaGP-based model with
a custom dataset of 173 progressive metal songs, which we refer to in this paper as

⋆ This work is supported by the EPSRC UKRI Centre for Doctoral Training in Artificial Intelli-
gence and Music (Grant no. EP/S022694/1). First and second author have equal contributions.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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ProgGP, with the intent of using the model to generate songs, which can be recorded
and turned into a fully produced progressive metal song. The model used in this work
generates music in the GuitarPro format, rather than formats such as MIDI, MusicXML
and ABC seen in other symbolic music generation works [7]. For guitar parts, Gui-
tarPro not only encodes the pitch of each note, but also the location on a guitar fret-
board where the note is meant to be played, as well as various expressive techniques
(e.g. vibrato and string bending). We suggest that for certain musical genres, this format
is very advantageous for a practice-based approach, as it provides much more informa-
tion to an artist on how to perform the music that is generated, while still leaving room
for creative interpretation. This paper presents the work that went into creating a brand
new progressive metal song using neurally generated riffs and ideas that are relevant to
the progressive metal genre. As per its main contributions, we highlight: (1) ProgGP,
a manually curated progressive metal GuitarPro dataset made available to the commu-
nity for research purposes; (2) a fine-tuned guitar tablature generative model for the
creation of progressive metal tablatures; (3) heuristics for assessing whether generated
music holds traits of the desired genre; (4) a practice-based research approach relying
on a human-AI partnership where neurally-generated music is selected, edited, and in-
tegrated into a composition by a human producer. We also critically examine how to use
neurally-generated music to foster creativity, inspire new ideas and improve the writ-
ing workflow of artists. We hope that this work will stir more research into human-AI
interaction in the musical domain.

2 Background

2.1 Symbolic Music Generation Using Deep Learning

Recent advances in deep learning have led to promising results in the field of music gen-
eration [16], with techniques such as Variational Autoencoders (VAEs) [21], Generative
Adversarial Networks (GANs) [8], Recurrent Neural Networks (RNNs) [13] [20], and
Transformers [10] being increasingly used. The Transformer model [22] has enabled
steep improvements in natural language processing (NLP) tasks and has been adapted
for generating symbolic piano music in Huang et al.’s Music Transformer [10]. Other
notable works, such as Musenet [14] and Pop Music Transformer [11], have further
built on this approach to generate multi-instrument music and improve the generated
music’s rhythmic structure. However, the task of guitar tablature music generation has
received limited research attention until the recent release of the DadaGP [17] dataset,
comprising songs in both GuitarPro format, a tablature edition software, and a dedi-
cated textual token format. An initial example of guitar tablature generation work is
Chen et al.’s fingerstyle guitar generator [5], despite not being based on the GuitarPro
format. More recent works that explore the DadaGP dataset include GTR-CTRL [18],
proposing a method for guitar tablature generation with control over instrumentation
and musical genre, as well as LooperGP [1], enabling to generate loopable music ex-
cerpts with applications for live coding performance.
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2.2 Practice-Based Research and Computer Music

Many works deal with the notion of ‘practice’ in research. Practice-based research is
generally concerned with the knowledge gained through practice and the outcomes of
that practice, while practice-led research leads to new understandings about practice
itself [4]. Benford et al. describe this kind of research as consisting of three intercon-
nected activities which inform each other in different ways: practice, theory and studies
[3]. However, they note challenges in conducting this research with balancing poten-
tially different researcher and artist goals, as well as ethical concerns that can arise
through artistic use of new technologies. Artistic uses of new technologies involving AI
can be difficult due to the difficulty of prototyping new AI systems and the number of
ways that AI can respond to users in different contexts [23]. Amershi et al. [2] provide
guidelines on dealing with such unpredictable AI systems, mostly focusing on keeping
the user informed on the system’s capabilities and understanding its outputs. AI systems
have seen use in musical practice-based research [12] [19] with the Folk-RNN model
by Sturm et al. being noted to have a number of impacts on musical creation such as
a way to inspire ideas, break habits, and a sense of creating something that could not
have been created otherwise.

3 Practice-Based Research Methodology

3.1 Human-AI Partnership

In this work, the first author, a music AI researcher and progressive metal producer,
adopted the practice-based research approach described below:

1. Use a deep learning model to generate music in the style of the producer’s preferred
genre, progressive metal;

2. Evaluate the outputs of the model using a mixed method evaluation approach, com-
bining objective metrics with subjective evaluation;

3. Craft a song using generated outputs based on outcomes from the evaluation;
4. Learn and record the song;
5. Analyse and reflect on the overall music production process.

The work aims to better understand the successes and issues of the deep learning
model in order to help the research community use and improve the model. We also
publicly release the dataset used to fine-tune the deep learning model to support similar
kinds of research. Finally, we develop a music production process which can be used
to efficiently integrate neurally-generated content within a human composition. The
artistic content that was recorded can be listened to online and could lead to public
performances.

For the neural music generation, we use a model pre-trained on the DadaGP [17]
dataset, a dataset consisting of over 26k songs of various genres. The model is trained
to produce songs in a tokenized symbolic format, which can be converted to the more
commonly used GuitarPro format. This model is further fine-tuned on ProgGP, a curated
dataset of progressive metal songs. This fine-tuned model can then be used to generate
new songs in the style of progressive metal. For clarification, we do not assess timbre
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quality aspects of progressive metal since we are working in the symbolic domain,
despite timbre playing an important role in the genre (e.g. heavily distorted guitars,
loud and punchy snare and kick drums, etc). However, we do take into account timbre
identity through a distinction between distorted and clean guitars in our model.

3.2 Fine-Tuning Dataset

ProgGP, the fine-tuning dataset used in our experiments, consists of 173 songs largely
from the progressive metal genre3. The songs were obtained using Songsterr4, a website
that hosts GuitarPro files and allows playback using an web-based GuitarPro player. The
tablatures (tabs) obtained from this website were not official tabs created by the artists
of the songs, but rather created and maintained by the online community. Due to this,
there is no guarantee that the tabs used in the dataset are perfectly accurate to the songs
they are based on. However, each was verified to at least mostly capture the spirit of the
original performance during the construction of the dataset. We limited the dataset to
only songs in which the bass guitar and drums have also been transcribed, since the pre-
trained model was trained on fully transcribed songs. This however limited the scope of
the dataset, as many songs were only available with guitar transcriptions, rather than the
full band. Additionally, the model only supports a few common guitar tunings, and only
6 and 7 string guitars. Many bands in this genre use more unique guitar tunings and/or 8
string guitars, so some artists that might be important in the genre of progressive metal
may have limited songs or be absent entirely from the dataset. All this led to some
artists dominating the dataset more than others. A word cloud representation of the
artists used in the ProgGP dataset can be seen in Figure 1. We made ProgGP5 available
upon request, together with a list of songs per artist.

Fig. 1: Word cloud representation of ProgGP’s songs per artist distribution.

3 Some songs included in the dataset are from adjacent genres (e.g. technical death metal).
4 https://www.songsterr.com/
5 https://github.com/otnemrasordep/ProgGP
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3.3 Model Fine-Tuning

The pre-trained model is based on the Transformer-XL [6] architecture, a modified
version of the original Transformer [22] that is more capable of learning longer-term
dependency. The pre-trained model used in our experiments was trained for 200 epochs
on the DadaGP [17] dataset. We trained the model on the fine-tuning dataset for an
additional 65 epochs, at which the loss dropped low enough to trigger early stopping.
Checkpoints were saved at every five epochs or training, resulting in 13 models at vari-
ous stages of fine tuning.

3.4 Neural Generation

A new song can be generated by feeding the model a prompt (set of instructions) in
the form of a tokenized GuitarPro file. This will be the starting point of the generation,
and the model will attempt to continue the song after the prompt. The tempo (in BPM)
used for the generated song is taken from the prompt and the number of tokens to be
generated is used as a parameter during inference. In DadaGP token format, a token can
be a single note, rest, or expressive technique. Prompts used in the generation experi-
ments ranged from a single note, a few measures from songs in the training set, and a
few measures of songs not in the training set. The number of generated songs and the
model from which to generate the songs can also be specified. Empirical analysis of
the generated songs have allowed us to identify common structural patterns in gener-
ated songs, which we refer to as ‘sections’, typically consisting of a riff that is repeated
one or more times with slight variations. The songs will typically start by repeating the
notes from the prompt, with minor changes. It will then generate two or three sections
afterward, each somewhat changing the feel of the song. While progressive metal songs
can contain a large number of different riffs, they tend to build on one another and use
references to musical motifs found throughout the song and throughout other songs by
the same artist. Between The Buried And Me, a band with a large presence in ProgGP,
is particularly well known for this [9]. This is a difficult thing to capture within a model
however, as while the different sections seem to fit together naturally, they do not neces-
sarily reference one another. Together with this submission, we release all the generated
compositions on the undertaken experiments, cherry-picking some examples 6.

4 Analysing AI-Generated Music

We used a mixed method approach to better understand the outputs of the fine-tuned
models, their strengths and weaknesses, and to help the producer select a model for
further music production use. This was done by analysing the generated music from
each model objectively through the use of common symbolic music metrics, as well
as listening through many generated examples and analysing them subjectively in the
context of the author’s own knowledge of progressive metal.

6 Available at: https://drive.google.com/drive/folders/
1xaejTcUrPncE4hoyONhSzgS0a5TRo6G_?usp=share_link
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4.1 Objective Metrics

Given the difficulties in assessing the quality of neurally-generated music without us-
ing a listening test, specially in the symbolic domain, we resorted on commonly used
metrics from the literature, implemented in the MusPy package [7]. For this evaluation,
173 songs were generated from each of the thirteen fine-tuned models, the same number
of songs present within ProgGP, in order to maintain consistency when comparing the
songs generated to the songs present in ProgGP. The prompt used in this analysis was
a single low E note on guitar and bass guitar, and a kick and cymbal hit on drums. This
was chosen in order to minimize the influence of the prompt as much as possible, as per
the findings in [18].

Fig. 2: Pitch class entropy calculated for the songs in ProgGP (pink) and the generated
songs from the fine-tuned models for different epochs (blue and green). Model with
lowest KL-divergence highlighted (in green).

In previous work, Sarmento et al. [18] used pitch class entropy (PCE), a measure
of the entropy of pitch classes used within a song, to evaluate their model. The PCE of
the fine tuned models can be seen in Figure 2 (to ease visualization, we omit plots from
models after epoch 30). The models fine-tuned for 15 and 20 epochs seem to have a
distribution closer to ProgGP. The models fine-tuned for 5 and 10 epochs and beyond 20
epochs generally have a lower mean than the 15 and 20 epoch models. We hypothesize
that this could be due to overfitting, causing the model to get stuck on certain sections
or notes and repeating them, something seen in the generated songs by the more fine-
tuned models. This would lower the pitch class entropy of a model’s outputs rather
than push it closer to that of the training data which is higher. The rest of the metrics
can be seen in Figure 3. They include drum pattern consistency (DPC), number of
pitch classes (NPC), number of pitches (NP), pitch entropy (PE), pitch range (PR),
scale consistency (SC), polyphony (Pol) and polyphony rate (PolR). These metrics,
while not necessarily giving a definitive idea of the performance of a model, help us
understand how the output of certain models matches the training data. They also give
an idea of certain characteristics of the music that each model tends to generate. An
in-depth definition of each can be found in MusPy’s package documentation7.

7 https://salu133445.github.io/muspy/metrics.html
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Fig. 3: Metrics calculated for the songs in ProgGP (pink) and the generated songs for
each fine-tuned model (blue and green). Model with lowest KLD highlighted (green).

The Kullback-Leibler divergence (KLD), a measure of relative entropy between
the true probability distribution and a sample probability distribution, was calculated
for each of the fine-tuned models (ProgGP is used as groundtruth to compared against
generated songs). The KLD results can be seen in Table 1.

Table 1: KLD scores for each fine-tuned model against ProgGP. Bold and green coloring
indicates the lowest KLD per column.

Epoch PCE DPC NPC NP PE PR Pol PolR SC

5 0.473 0.513 0.608 0.799 0.638 0.762 0.497 0.495 0.263
10 0.665 0.696 1.599 1.052 0.800 0.845 0.570 0.573 0.433
15 0.262 0.442 0.491 0.746 0.442 0.591 0.365 0.353 0.216
20 0.425 0.478 0.999 0.914 0.616 1.062 0.301 0.247 0.286
25 0.673 0.596 1.641 0.998 0.670 0.912 0.484 0.559 0.491
30 0.707 0.640 1.200 1.043 0.851 1.054 0.400 0.509 0.312
35 0.625 0.625 1.144 0.939 0.743 0.974 0.376 0.493 0.376
40 0.480 0.611 1.050 0.970 0.717 1.121 0.513 0.544 0.274
45 0.702 0.746 1.554 1.059 0.910 1.089 0.420 0.486 0.336
55 0.648 0.679 1.510 1.040 0.813 1.092 0.517 0.504 0.317
55 0.595 0.690 1.358 1.039 0.818 1.092 0.471 0.485 0.346
60 0.681 0.677 1.513 1.018 0.816 1.157 0.579 0.575 0.375
65 0.757 0.730 2.069 1.126 0.842 1.041 0.394 0.484 0.379

The model fine-tuned for 15 epochs scores the lowest for most metrics. The only
exceptions are polyphony and polyphony rate, in which the model fine-tuned for 20
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epochs scores the lowest. This is expected given that the model trained for 15 epochs
seems to be more similar to ProgGP for most of the metrics than the other models.

4.2 Subjective Analysis

Subjectively evaluating generated progressive metal songs first requires a definition of
progressive metal. This definition is hard to specify, as music genres are not always
straightforward. Nevertheless, there are a number of tropes that progressive metal songs
tend to have. Robinson [15] describes several of these such as polyrhythms, syncopated
chugging on low notes and uncommon time signatures. These can be seen in many gen-
erated songs, particularly uncommon time signatures and syncopated rhythms. Simi-
larly to the conclusions from GTR-CTRL [18], we empirically found that the prompt
has a reasonably large amount of influence over the generated song, but this varies be-
tween songs. The model tends to only generate notes for instruments contained in the
prompt (e.g if there exists two guitars, one bass guitar and drums within the prompt, the
model will only generate new notes for those instruments). It does however occasion-
ally generate an extra guitar or keyboard track (id-00)8, but these scenarios were found
to be rare. Generated guitar parts for multiple guitar tracks tend to be mostly identical,
mirroring the recording technique of two guitars playing identical parts in order to cre-
ate width in a song mix. Interestingly however, the model will sometimes generate a
harmony for a particular guitar line where one guitar plays some kind of melodic line
and the other playing the same line with the pitch shifted (id-01). It also occasionally
generates guitar solos and rhythmic accompaniment (id-002), with one guitar playing
low-pitched chords while the other plays fast single high-pitched notes. The model gen-
erates very impressive drum parts in addition to the guitar and bass guitar (id-03). The
timing of the kick drum consistently lines up with the notes of the bass guitar (id-04).
Additionally, several common drum beats heard in many metal songs can be generated
(e.g. blast beats ((id-05)). Many songs also feature drum fills at the end of a section
before transitioning into a new section. It is possible that the model excels at generat-
ing drum parts due to the limited number of possible notes compared to pitch-based
instruments such as guitar and bass guitar. This being said, the generated drum parts
would likely need further editing if used in an actual song in order to convey more of
the nuance heard in progressive metal drumming.

5 Song Production

A short progressive metal song was recorded, produced and mixed using one of the
fine-tuned models to generate the initial musical ideas and song structure. This was
done by the first author, himself a progressive metal producer and music AI researcher.
The intention with this production was to utilize the generated songs as a way to bolster
creativity and inspire ideas for music in a way in which the artist’s creativity can still be
applied to integrate the generated content into a song of their own. Section 5.1 describes
a high level overview of the song creation process using the AI system in collaboration

8 Song ids are hyperlinked to facilitate listening.
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with a music producer, while Section 5.2 presents a detailed analysis of the generated
song and what was changed in order to suit the production.

5.1 Process

The process of creating the song can be broken into the following steps:

1. A prompt is selected and songs are generated using one a fine-tuned model. One is
chosen to be the starting point of the song based on how it inspires the producer.

2. The generated song is loaded into a guitar tab reader software (e.g. GuitarPro).
3. Drums and bass are exported to MIDI format and loaded into a digital audio work-

station (DAW), along with appropriate virtual instruments.
4. The guitar parts are learned by the guitarist producer from the generated guitar tab

and subsequently recording in the DAW. During the recording of the guitar, changes
can be made to suit the producer’s idea of the direction of the song.

5. The drum and bass guitar MIDI are edited to suit any changes made to the guitar,
or to better serve the song. This may be done in conjunction with the previous step
and may require some back and forth in order to fully develop the song.

These steps can be repeated as many times as desired to build out a complete song.
They may even be skipped if the producer is inspired by the ideas to create their own
parts based on what was already generated. In the next section we focus on a particular
example generated using the first two measures of “Stabwound” by Necrophagist as
the prompt. The song was generated using the model fine-tuned on ProgGP for 15
epochs. The structure of the generated song was not changed, as we felt that it had
many interesting qualities. The guitar, drums and bass were changed slightly to better
fit the vision that the generated song inspired. Additional sounds such as synths, organs
and impact samples were also added to flesh out the song and increase interest in the
production. The final mix and the original generated song in both PDF and GuitarPro
format are available online9.

5.2 Song and Production Analysis

The first section of the song is made up of an idea which takes up 4 measures. This idea
is repeated with the second repetition skipping the first measure of the motif and adding
on a new lick in the final measure which helps transition the section into the next one.
Each repetition has a similar structure: three measures of 4/4 and a final measure with
an odd time signature. The first repetition adds a 5/4 time signature to the end, while
the second section uses a 6/4 time signature. Time signature changes are common in
progressive metal [15], and it is interesting to see the model generate this time signa-
ture change in both repetitions of the initial idea without simply repeating the idea. The
changes in the second repetition of the idea feel like something a real songwriter might
intentionally write, as if the model is building on the initial idea to create more excite-
ment before the next section. The second section shows off a major flaw of the model:

9 Available at: https://drive.google.com/drive/folders/
1y2xX3WIQeOz6Z8FoN2VP3kzWvOqYk8QI?usp=sharing
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it does not always generate tabs or ideas that can be reasonably played by a human.
Since a specific pitch can be played at multiple different areas of the guitar fretboard,
tabs specify exactly which fret and string a note should be played on. However, the
model will sometimes generate fretboard locations that are very unnatural to play by a
guitarist. The tabs had to be slightly modified in order to record this section, however
keeping the same notes. The main idea in this section is a repeated line of seven 8th
notes followed by a chromatic note run and a lick that changes the modality from major
to minor halfway through. It is difficult to know if this is something the model learned
through training or if this note selection was more random. The section ends with four
simple chords to transition into the next one. These were changed to be more dissonant
chords in the recorded version. The final section is another repeated riff of seven notes
used in a slightly more musical way than the previous section. Each repetition uses the
same relative intervals between notes to outline two different chords, F# minor and G#
minor. It then ends the section with two measures of 4/4, helping the song end in a
slightly more familiar and natural way. A lick from the previous section is used in this
ending in the tab, which helps tying the two sections together and increases cohesion.

Fig. 4: Original generated drum MIDI (top) vs. the final edited drum MIDI (bottom).

While the structures and guitar riffs remained largely unchanged, the drums did not
support the rest of the song as well as they could have. While many generated songs
have impressive sounding drums, the drum parts generated in this particular song did
not quite hold up to professional standards. The first section mostly had a snare fill
which did not enhance the interesting aspects of the guitar and bass parts. This was
changed to use a more steady snare hit and cymbals on the downbeats of the measure.
A stack cymbal was used in the first repetition, but was changed to a china cymbal in
the second repetition to add excitement to the changes between the two repetitions. A
drum fill was also added in during the last few beats of the section to help highlight
the transition between the two sections. The drums for the second section were mostly
the same as the generated drums. The generated snare drum placement in this section
accents the 7/4 time signature. However, the ride cymbals in the second repetition were
changed to china cymbals which hit on the downbeats of the measure, and the kick
drum was changed to be constant eight notes. This was done to push the energy up
as the section finishes. The drums in the final section were kept mostly unchanged,
with a small change to the drum fill at the end. A comparison from a section of the
song of the originally generated MIDI and the edited MIDI can be seen in Figure 4.
The process showed that while the model can excel at generating inspiring progressive
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metal ideas, a decent amount of work is still needed to make the ideas playable and
professional sounding. Drums in particular, while containing good initial ideas, need a
lot of editing to make them sound natural and support the ideas in the guitar and bass
guitar parts. It is not as simple as directly importing the drum and bass MIDI from the
generated song, a human producer is still required to make the ideas into something that
is satisfying to listen to and convey emotion properly. That being said, the entire writing
and production process only took three to four hours over two sessions, with most of the
time being spent practicing the guitar parts in order to play them to a sufficient level for
recording. The producer felt that the AI system helps inspiring new ideas and producing
a good sounding demo extremely quickly, with an amazing level of detail in both the
kinds of notes generated and song structure. It is easy to imagine combining multiple
generated ideas together in this way to produce a full length song.

6 Conclusion and Future Work

We have presented a deep learning model capable of generating songs in the style of
progressive metal. We released ProgGP, a symbolic music dataset consisting of 173 pro-
gressive metal songs, which was constructed and used to fine-tune a pretrained trans-
former model. The models fine-tuned for only a relatively small number of epochs, such
as 15 and 20 epochs, produce interesting results and are shown to exemplify traits of
the fine-tuning data in nine different symbolic music metrics. This analysis was used
to inform the selection of a generated song, which was then turned into a full progres-
sive metal production. Finally, we presented an analysis of the generated song and how
it was used to augment the producer’s own creativity. This work could be further im-
proved through extending the dataset with additional high quality tabs in the genre,
as well as a DAW integration to streamline the process of generating tabs and editing
them into a song in a DAW. Additionally, the effects of prompting the model could be
further explored, particularly with prompts of different genres both within and outside
of metal. We hope to continue this collaboration between human musicians and the AI
system in a possible professionally recorded album and live performance of AI-assisted
progressive metal songs.
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Abstract. Capturing intricate and subtle variations in human expressiveness in
music performance using computational approaches is challenging. In this paper,
we propose a novel approach for reconstructing human expressiveness in piano
performance with a multi-layer bi-directional Transformer encoder. To address
the needs for large amounts of accurately captured and score-aligned performance
data in training neural networks, we use transcribed scores obtained from an exist-
ing transcription model to train our model. We integrate pianist identities to con-
trol the sampling process and explore the ability of our system to model variations
in expressiveness for different pianists. The system is evaluated through statistical
analysis of generated expressive performances and a listening test. Overall, the re-
sults suggest that our method achieves state-of-the-art in generating human-like
piano performances from transcribed scores, while fully and consistently recon-
structing human expressiveness poses further challenges. Our codes are released
at https://github.com/BetsyTang/RHEPP-Transformer.

Keywords: music generation, expressive music performance, transformer model

1 Introduction

An expressive music performance goes beyond playing the notes in the score correctly.
Following annotations in music sheets, performers interpret the music with different de-
grees of expressive control including articulation and dynamics to express emotions and
provide an individual rendition of the music, resulting in different performance styles
[6]. A common way of rendering expressive performances with computational mod-
els is to meaningfully tune the velocity and timing of notes in the score to reconstruct
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human expressiveness [2]. Generally modelling human expressiveness requires cap-
turing the differences between scores and human performances in expressive features
including tempo, timing, dynamics, and so on. Learning the subtle nuances in expres-
sion among individual pianists demands the model to learn much smaller perceivable
differences within those expressive features.

In recent years, deep learning (DL) models have shown promising results in mu-
sic generation and representation learning. In particular, the Transformer architecture
has gained popularity due to its ability to capture long-range dependencies and con-
textual information in sequential data. This capability positions the Transformer as a
potential solution for modeling performance actions such as adjusting tempo and loud-
ness, and capturing a performer’s structural interpretation of music. However, while
many studies have successfully applied Transformer architecture to algorithmic music
composition [4, 9, 10, 11] and representation learning for symbolic music [5, 24], few
works pay attention to modeling human performance expressiveness independently. In
the field of expressive performance rendering (EPR), recent studies have achieved con-
vincing results for the purpose of reconstructing general human expressiveness and con-
trolling style using DL architectures including Recurrent Neural Network [12], Graph
Neural Network [13] and conditional Variational Autoencoder [21]. These models re-
quire large-scale accurate alignments of well-annotated music scores and performances.
However, due to the limited quality and size of the currently available datasets, includ-
ing the Vienna 4x22 Piano Corpus [8] and ASAP [7], these systems still have difficulty
dealing with playing techniques such as pedalling and trills, recovering expressiveness
overarching longer passages of music, as well as modeling the performance style of
individual players.

In this paper, we propose a novel approach for reconstructing human expressiveness
with a multi-layer bi-directional Transformer encoder. Training a Transformer model
for this task demands large amounts of accurately recorded and score-aligned perfor-
mance data, which is not currently readily available. A recently released performance-
to-score transcription system [15] and the transcribed expressive piano performance
dataset ATEPP [25] allow us to use transcribed scores and performances to train our
model. Using transcribed scores in the EPR task can be beneficial when the canoni-
cal score is not representative enough. For example, jazz performances rely heavily on
improvisation, making it difficult to align canonical scores with performances. Even
in classical music, ornaments such as trills may not be explicitly notated in canonical
scores, which poses problems for the alignment process. Moreover, the reconstruction
of human expressiveness from transcribed scores can support research in musical style
transfer, particularly when people aim to change a performance by one pianist into the
style of another. Considering this, we investigate the ability of our system to model
the expressiveness for individual pianists and evaluate it through statistical analysis of
the generated performances and a listening test comparing our model to state-of-the-art
expressive performance rendering systems.

The rest of this paper is organized as follows: Section 2 describes the methodology
detailing the dataset, the process of feature extraction and the model architecture. Sec-
tion 3 introduces the experiment setting-ups for training our model. Section 4 presents
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the results of quantitative analysis and the listening test as well as discussions upon the
results, and finally, Section 5 concludes the paper.

2 Methodology

2.1 Problem Definition

Expressive performance rendering (EPR) is commonly defined as the task of gener-
ating human-like performances with music sheets as input. Most existing work [12,
13, 21] proposes systems using recorded performances and canonical scores to solve
the problem. All of these systems require alignment between the canonical scores and
performances, which is limited in accuracy given the available datasets and alignment
algorithms. With the purpose of reconstructing human expressiveness given a composi-
tion, we reformulate the task by relaxing the requirement for using conventional music
sheets as input, in order to take advantage of the recent performance-to-score transcrip-
tion algorithms [15] and large transcribed performance datasets [25]. We will provide
more details about the transcription algorithm and the dataset used in this work in Sec-
tions 2.2 and 2.3. As shown in Fig. 1, the EPR task, in our definition, is to take the
transcribed scores as input and reconstruct human expressiveness by generating expres-
sive performances that are similar to the transcribed human performances.

Fig. 1. Comparison of the conventional expressive performance rendering (EPR) pipeline with
our proposed method

2.2 Dataset

The recently released ATEPP dataset [25] provides high-quality transcribed piano per-
formances by world-renowned pianists. According to a listening test conducted by
Zhang et al., the transcribed performance MIDIs reliably retain the expressiveness of
performers. The dataset includes multiple performances of the same composition by
different pianists, allowing comparison in expressiveness among different performers.
However, since the ATEPP dataset has a highly skewed distribution of performers,
rather than using the whole dataset, we use a subset [19] that balances the number
of performances by six pianists: Alfred Brendel, Claudio Arrau, Daniel Barenboim,
Friedrich Gulda, Sviatoslav Richter, and Wilhelm Kempff. Compositions in this sub-
set are mainly composed by Beethoven with only two pieces by Mozart. Each of the
compositions corresponds to at least one performance by each pianist. Table 1 presents
statistics of the subset in comparison with datasets used by other EPR systems.
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Table 1. Comparison of datasets used in different EPR systems. ⋆NN stands for the number of
notes. † denotes that the information not provided.

Systems Performances Pianists Compositions Composer(s) Total NN⋆

VirtuosoNet [12] 1052 /† 226 16 3301K
Sketching-Internal [21] 356 / 34 1 /
Sketching-External [21] 116 / 23 10 /

Ours 457 6 36 2 1341K

2.3 Data Processing

Score Transcription Similarly to other EPR systems [12, 13, 21], our method re-
quires note-to-note alignment between the input score MIDI and the output perfor-
mance MIDI. Despite the convincing alignment results of the state-of-the-art algorithm
proposed by Nakamura et al. [18], the algorithm shows difficulty in dealing with re-
peated sections as well as trills in classical piano music, which causes unexpected loss
of information during the alignment process. Instead of using the original or manually
edited scores of the compositions, we obtained the transcribed scores of the perfor-
mances through a performance-to-score transcription algorithm proposed by Liu et al.
[15]. The transcribed score midi data can be aligned with the performances at the note
level without losing any structural generality in the music [23].

The transcription algorithm performs rhythm quantisation through a convolutional-
recurrent neural network and a beat tracking algorithm to remove expressive variations
in timing, velocity, and pedalling. While expressiveness regarding velocity and ped-
alling is certainly erased through the process, how much expressiveness is remained
in timing is implicit and will be discussed further in Section 4. A further constraint of
this algorithm is its inability to retrieve performance directives like dynamics, phrase
markings, and beam directions set by the composer. As a result, we were limited to
leveraging only the note-related features the algorithm offered.

Data Augmentation The transcribed scores are first scaled to the same length as the
corresponding performances. We then augment the data by changing the tempo for both
performances and the scores. For each pair of performance and score midis, the onset
time, offset time and duration of each note are multiplied by a ratio ri ∈ [0.75, 1.25].
In total, we have each pair augmented by multiplying 10 different ratios that are evenly
spaced along the interval grid.

Table 2. Vocabulary size of the tokenized note-level features

Features Pitch Velocity Duration Position Bar
Size 89 66 4609 1537 518

Feature Encoding Features related to performance expressiveness are extracted and
tokenized to reduce the the dimensionality of the input space. Following the tokeni-
sation method, OctupleMIDI, proposed by Zeng et al. [24], we encode the note-level
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features including pitch, velocity, duration, bar, and position. Table 2 shows the vocab-
ulary size of our tokens for each feature. When using OctupleMIDI, the onset time of
a note Ni is represented jointly by its bar number Bi and position number Pi, where
i = 1, 2, . . . , n and n denotes the length of the note sequences. Given that we use a
piano music dataset, we consider only pitches with numbers ranging from 21 to 109.
The duration of notes is set to be linearly proportional to the token value Di. All of
the midi files have a resolution of 384 ticks per beat, and we default each bar to have 4
beats, resulting in 384 × 4 = 1536 different positions per bar. We calculate values of
other two note-level performance features which are commonly used for capturing the
expressiveness of piano performances [12, 20, 21] based on the tokens:

– Inter-Onset Interval (IOI): the time interval between the onset time (OT) of the note
Ni and that of the next note Ni+1:

IOIi =

{
OTi+1 −OTi, i = 1, 2, . . . , n− 1

0, i = n
(1)

where OTi = Bi × 1536 + Pi, i = 1, 2, . . . , n

– Duration Deviation (DD): the difference between duration token values of a note in
performance midi and score midi

DDi = Dpi −Dsi, i = 1, 2, . . . , n (2)

where Dp is the duration obtained from the performance midi and Ds is that from
the score midi.

2.4 Generation with Transformer Encoder

Input and Output Features Input and output features are carefully designed to pre-
serve the score content while allowing changes in the performance control of each note.
The input features include pitch, velocity, duration, bar, position, and inter-onset inter-
val from the score midis. As for the output, we infer values of three features including
velocity, DD, and IOI in the performance midis. Following Eq. 1 and Eq. 2, we can cal-
culate the predicted token values of duration, position, and bar for each note based on
DD and IOI. Combined with the predicted token values for velocity, we can construct a
performance MIDI file through detokenization.

Model Architecture Inspired by the MidiBert model proposed by Chou et al. [5], we
design a multi-layer bi-directional Transformer encoder with 4 layers of multi-head
self-attention where each has 4 heads and a hidden space dimension of 128. The pi-
anist’s identity is represented using a one-hot encoding embedding, which is then con-
catenated to the last hidden state before the final prediction, as shown in Fig 2. As
velocity and timing in music are continuous variables, the interval between two token
values is informative in representing the distinction of playing a note. Most transform-
ers trained for music generation [9, 4, 11, 10] take different token values as independent
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Fig. 2. Model architecture of the Transformer encoder

classes which makes this information implicit to the model. Our system instead uses the
tokens without creating embeddings, and predicts the token values for different features
through regression. In addition, we add activation functions after the inference layer to
clamp the predicted values, ensuring that they fall into the ranges of different features.

Loss Design The losses Lv , Ldd, and Lioi for velocity, DD, and IOI features are cal-
culated respectively, following the loss function defined in Eq. 3 which represents the
percentage of how much the predicted values y deviated from the target values ŷ. Masks
are created to exclude loss calculation for padded tokens.

Lfeature =
n∑

i=0

l(yi)mi, (3)

where mi represents the loss mask for the i-th note and

l(yi) =


|yi − ŷi|

|ŷi|
, if ŷi ̸= 0

α|y − ŷi|, if ŷi = 0

The parameter α regularizes the loss calculation when the target value is zero and is
experimentally set to 0.001. The total loss is calculated by

Ltotal = wvLv + wddLdd + wioiLioi (4)

where weights are empirically initialized and assigned to each feature loss respectively.
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2.5 Evaluation

The system is objectively evaluated through validation losses and statistical distribu-
tions of expressive parameters in generations, presented in Section 4.1. Additionally,
we evaluate the perceived expressiveness of generated performances through a subjec-
tive listening test. As the aim of EPR task is to generate performances with human-like
expressiveness [2], we assume that the more similar a model’s output is to a human
performance, the more effectively expressive it is. We recruit participants who have
experience in playing musical instruments and who are engaged with classical music,
and ask them to rate the presented samples by evaluating how expressive, natural, and
human-like they are. The detailed experiment design and conditions and the results of
the listening test are presented in Section 4.2.

3 Experimental Setup

We implement our model based on the PyTorch. We have a 8:1:1 data split in the number
of piece and performance, and we cut or pad the token sequences into sequences of 1000
notes before inputting into our transformer. The model is trained with a batch size of
16 sequences for at most 400 epochs, using the Adam optimizer with an initial learning
rate of 1e-4 and a weight decay rate of 1e-7. We update the learning rate using the
cosine annealing warm restart scheduler [17] since it has been shown to result in faster
convergence during training, compared with other learning rate scheduling strategies.
If the validation loss does not improve for 30 consecutive epochs, we stop the training
process early. The training converges in 2 days on two RTX A5000 GPUs.

Different vocabulary sizes of expressive features shown in Table 2 result in dif-
ferent degrees of complexity when modeling. Consequently, we observed unbalanced
decrease in losses and overfitting across learning for different features with constant
weights assigned to each feature loss. To balance training and reduce overfitting, we
optimize the training process using the GradNorm algorithm proposed by Zhao et al.
[3] to dynamically update weights based on gradients calculated at the end of each
training epoch.

4 Results

4.1 Quantitative Evaluation

Quantitative methods for evaluating expressive performance rendering systems are lim-
ited. One approach [2] is to calculate the loss for each performance feature. Unlike
existing approaches [13, 12, 21] where the features are not tokenised, our system com-
putes the losses using the token values. Based on the feature encoding process and the
loss design discussed in Section 2, we estimate the average prediction errors in MIDI
quantised velocity value and seconds, shown in Table 3.

Although the results are not directly comparable to existing works because of the
differences in feature extraction and loss design, they indicate that the transformer
model could learn the patterns of expressive variations and reproduce them in the tran-
scribed scores. However, the average errors at the note level in generations are still

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

140



Table 3. Loss and average prediction error in MIDI velocity value and seconds for note-level
expressive features on the test dataset

Features Loss Average Error
Velocity 0.1267 ±16.2048

Duration Deviation 0.6280 ±0.0473s
Inter-Onset Interval 0.2389 ±0.0183s

noticeable to human ears [16], and can affect the perceived expressiveness of the gen-
erated music in comparison to human performances.

Since the level of expressiveness regarding timing left in the transcribed scores is
implicit as discussed in Section 2, we evaluate the ability of our system to reconstruct
the expressiveness for individual pianists through the velocity distributions obtained
from kernel density estimation [20, 26].

Fig. 3. Velocity distributions for the human performances (P) and the our generations (G-TS) on
all pieces in the test set, grouped by different pianists.

As shown in Fig. 3, velocity distributions for each pianists are distinguishable, indi-
cating different performing styles. However, performance recording environments may
have impact on the transcribed velocity values [14] and contribute to differences of the
distributions. The distributions of the generations based on transcribed scores (G-TS)
and those of the human performances (P) have a high degree of overlap, providing evi-
dence of learning individual expressiveness through the training.

4.2 Subjective Evaluation

A listening test was performed to evaluate the perceived expressiveness of our model’s
output. We recruited 19 people who had some level of music training through email.
All participants have learned a musical instrument, while over half of our participants
had been engaged with classical music for over 5 years. The participants completed the
study anonymously.

The stimuli consisted of four 20s classical piano excerpts detailed in Table 4. For
each excerpt, the human performance (P) was provided as a reference to be compared
with four MIDI renderings: the generation based on the transcribed score (G-TS), the

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

141



generation by the state-of-the-art VirtuosoNet [12] using the canonical score (V), a di-
rect rendering of the transcribed score (TS), and finally the canonical score (S) without
expression. The human performances were transcribed piano performance MIDIs from
the ATEPP dataset [25] and were included as one of the stimuli as well. All the MIDIs
were synthesised into audio recordings through GarageBand to ensure consistency in
the listening experience. For each piano excerpt, six recordings, the reference plus 5
stimuli, were presented in the test 3.

Participants were asked to listen to five stimuli, and rate the degree of expressive-
ness for them on a 100-point scale by comparing each of them with the reference human
performance. During the test, we explicitly ask participants to rate based on the expres-
sive differences among the stimulus with more focus on the performance features such
as the dynamics and tempo changes rather than the compositional content. We encour-
aged them to use the full scale, rating the best sample higher than 80 and the worst
lower than 20. We adopt the MUSHRA framework [22] to conduct the test using the
Go Listen platform [1].

Table 4. Compositions used for the listening test

Annotation Composer Composition
Piece A Beethoven Piano Sonata No. 19 in G Minor, Op. 49 No. 1: II. Rondo (Allegro)
Piece B Beethoven Piano Sonata No. 7 in D Major, Op. 10 No. 3: III. Menuetto (Allegro)
Piece C Haydn Piano Sonata in C Major, Hob. XVI:48: II. Rondo (Presto)
Piece D Bach French Suite No. 5 in G, BWV 816: 7. Gigue

In total, 380 ratings from the 19 listeners were collected. We filtered out raters
who could not identify the difference in expressiveness between the anchor (S) and the
reference (P). Fig 4 shows the mean opinion scores (MOS) and the results of Wilcoxon
signed rank test for the differences between: (a) TS versus S, (b) G-TS versus V, (c) P
versus G-TS, (d) P versus V, (e) G-TS versus TS.

Fig. 4. Results of listening test. The mean opinion scores (converted to a 5-point scale) and 95%
confidence intervals are presented for each test piece and the overall results. Wilcoxon signed-
rank test are performed to test the significance of the differences. * (0.01 < p < 0.05), **
(0.001 < p < 0.01), *** (0.0001 < p < 0.001), **** (p < 0.0001)

.
3 Listening samples are provided at https://drive.google.com/drive/folders/
1nfaZ23vr8xZHlyhTAAppK2hl-aHQPigP?usp=sharing
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According to the results, human performances (P) are significantly different from
generations of our model (G-TS) and VirtuosoNet (V) in most situations. The outputs of
our model (G-TS) are overall preferred over the performances produced by VirtuosoNet
(V) significantly (0.01 < p < 0.05), receiving trivially lower (not significant) ratings
for piece A and B but higher (significant for C and not significant for D) ratings for the
compositions that never appear in the training dataset. Comparing with canonical scores
(S), transcribed scores (TS) get significantly higher ratings from listeners. Ratings of
the generations by our system (G-TS) are significantly higher than those of the direct
audio rendering of transcribed scores (TS) for most pieces except D.

These results suggest that our system achieves the state-of-the-art and even outper-
forms the VirtuosoNet [12] in some cases, although neither of the systems can con-
sistently generate the same level of expressiveness as human performances. On the
other hand, while the transcribed scores (TS) could have more expressiveness than the
canonical scores (S), the generations from the transcribed scores (G-TS) are percep-
tually more expressive than the transcribed scores (TS) in most cases, indicating the
success of reconstructing human expressiveness. The success has also been proven by
the overall difference (0.01 < p < 0.05) in MOS between our generations (G-TS) and
generations from the VirtuosoNet (V).

4.3 Case Study: Comparison in Dynamics and Duration

Building on the promising results of our system in the listening test of Piece C, we
conducted a more detailed analysis to compare the expressive variations in dynamics
and duration among human performances, system-generated performances, and scores.
Specifically, in Fig. 5, we present the fluctuations in velocity and duration across the
note sequences. Compared with the VirtuosoNet generation (V), the generation of our

Fig. 5. Standardized and smoothed velocity and duration changes across note sequences from
Piano Sonata in C Major, Hob. XVI:48: II. Rondo (Presto) for enhanced trend comparison. G-S
represents the generation of our system based on the canonical scores.

system (G-TS) could capture both short-term and long-term velocity variations better.
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Even when inputting the unseen canonical score, the generation of our system (G-S)
outperforms the other model in terms of reconstructing velocity variations. Meanwhile,
the strong similarity between duration changes in the human performance (P) and tran-
scribed score (TS) suggest that the transcription algorithm [15] alters the timing infor-
mation of the notes cautiously with only limited modification of the duration. Therefore,
the reconstruction of the expressive variations in timing through our system could be
restricted. The limitation is also demonstrated by the duration changes of our system’s
generation based on the canonical score (G-S).

5 Conclusion
This paper presents a novel method for reconstructing human expressiveness in clas-
sical piano performances. Our expressive performance rendering system consists of
a Transformer encoder trained on transcribed scores and performances. The quantita-
tive evaluation and listening test show that the proposed method succeed in generating
human-like expressive variations, especially for dynamics. Moreover, our method could
be used for modeling the differences in expressiveness among individual pianists.

In future work, we will train our system with a mixture of the canonical scores and
transcribed scores to create a more robust system. We will further improve the capacity
of our system on modeling individual performance styles possibly through contrastive
learning. In addition, we will consider a separate system to model pedalling techniques
in performances or try to integrate the pedalling information into the current feature
encoding.
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Abstract. Despite the importance of feedback in musical performance educa-
tion, there is a lack of quantitative and cross-instrumental examination on what
feedback is effective for students. This study collected recordings of performances
by students on three instruments (oboe, piano, and guitar) and gathered written
feedback from multiple teachers for each performance. Quantitative analysis re-
vealed that the usefulness of feedback varied significantly among teachers, inde-
pendent of musical instruments, compared to pieces or students. We then con-
ducted multilevel modeling based on hierarchy among teachers for each instru-
ment, and found that the number of sentences giving objective information signif-
icantly contributed to the usefulness of feedback. Our findings have high gener-
alizability and can be applicable to face-to-face lessons. The collected recordings
and written feedback have been published, and can provide valuable resources
for music educators seeking to improve their teaching practices.

Keywords: Database, Music Education, Verbal Information

1 Introduction

Traditionally, people are taught to play musical instruments face-to-face. However, re-
mote lessons can enable the provision of instruction in remote areas, flexible schedul-
ing, reduced travel, security and cost, and can enhance teachers’ and students’ creative
learning and critical thinking by reducing time and distance between teacher-student or
teachers [2, 45]. To increase the value of remote lessons, a set of remote lesson modules
⋆ This study was partially supported by JST-Mirai Program Grant Number JPMJMI19G8, JSPS

KAKENHI Grant Number JP19K19347, and Kayamori Foundation of Informational Science
Advancement. We would like to thank all the performers and teachers who participated in the
data collection of this study. We would also thank to those who helped us with data annotation
and evaluation.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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(e.g., the Swing project4) and an online platform for music distance learning education
and practice (e.g., Intermusic project5) has developed.

During the COVID-19 pandemic, the demand for remote lessons increased signif-
icantly [1, 19]. In fact, online lessons and asynchronous lessons in which critiques are
given to recordings were provided at some music colleges, and students and teachers
deeply recognized the benefits and shortcomings of remote lessons [27]. In the post-
pandemic era, remote lessons will lead to a new group of students joining the music
education environment, which will bring diversity to music education and facilitate its
development. We believe that music performance instruction will take place in a variety
of learning formats, including online, real-world, and hybrid formats.

In traditional face-to-face lessons, the teachers use non-verbal information, such as
singing melodies and making gestures, and verbal information, such as their knowledge
of the piece [9, 13, 24]. However, in remote lessons, it is difficult to convey detailed
body movements and high-quality sound due to the low resolution of video and audio.
Therefore, the quality of verbal feedback must be improved to continue to increase the
value of remote lessons. However, what kind of content should be included in verbal
feedback for students across musical instruments has not been clarified.

Therefore, this study asks, what kind of verbal information related to musical per-
formance is useful for music students? In order to present generalized findings, this
study collects and integratively analyzes musical performance data and verbal feedback
data with respect to performances on multiple musical instruments.

We have been conducting this study since 2020 and have already published data
for the oboe [26]. In this study, we collected additional data for two more musical
instruments and analyzed them in an integrated manner.

The contributions of this paper are as follows.
– Musical performance data and corresponding verbal instruction data have been col-

lected and published for three musical instruments.
– The usefulness of verbal feedback on performance was found to depend on the

teacher, not the piece or the student, and this finding was independent of the musical
instruments.

– The contents of verbal feedback that significantly affected the usefulness of the
feedback independent of the musical instruments were clarified.

2 Related Work

2.1 Music Database for Research

Several datasets have been published as music knowledge resources [32]. They adopt
various perspectives, including performance recordings [14, 16], metadata (genre, com-
poser, lyrics, fingering, music analysis, etc. [17, 18, 31, 35, 38]), musical scores [12, 22,
23, 42], other multimodal information [25, 43], emotions [6, 7, 46], and students’ inter-
pretations [20, 21, 30, 33]. To the best of our knowledge, none have focused on teach-
ing behavior for musical performance. There are also several datasets for music listen-

4 https://aec-music.eu/project/swing-2018-2021-erasmus-strategic-partnership/
5 https://aec-music.eu/project/intermusic-2017-2020-erasmus-strategic-partnership/
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ing events [34, 40], but these are datasets gathered from online music services such as
Last.fm 6 and they are not intended for pieces for student to learn performance.

Compared to these databases, this study is novel as it collected a dataset that allows
for the evaluation of the relationship between the content of the verbal information in
the instructions and the musical performances.

2.2 Effects of Teaching Behavior on Musical Performance Education

The effects of teaching behavior on musical performance education have been widely
studied within the field of music education. Prior studies compared teacher levels [15],
analyzed time allocation [5], compared [44] and categorized [36, 37] verbal and non-
verbal information, and examined teacher-student interaction [11]. These studies all
depended upon the transcription of speech in interactive instruction. There are also
studies on supporting the learning of musical performance by presenting nonverbal in-
formation [39, 41]. Unlike these studies, our study focused on verbal feedback, which
is more applicable to asynchronous education.

One study compared verbal and non-verbal instruction [8], and another study eval-
uated and summarized the usefulness of instruction [10]. Both were based on five or
fewer performances. In contrast, we have conducted a large-scale experiment to clarify
the relationship between verbal information and its usefulness.

3 Materials

In our previous studies [28, 29], we collected the performance recordings of the oboe
and corresponding textual feedback and published them as CROCUS (CRitique dOC-
UmentS of musical performance) dataset.7 In this study, we collected similar data for
the piano as a keyboard instrument and the guitar as a string instrument and published
them.8 Then, each sentence of textual feedback was annotated to indicate what was
described, and the perceived utility of each piece of textual feedback was evaluated. 9

All procedures have been approved by the ethical review board of University of
Tsukuba, Senzoku Gakuen College of Music, and Kunitachi College of Music.

3.1 Recording

An overview of materials is presented in Table 1 and 2. We selected the pieces shown
in Table 3 considering the balance of difficulty, style, form, and era.
piano: We used the recording data collected and published in the previous study [20]
oboe: We used the recording data collected and published in the previous study [28,
29]. Each student played all 10 pieces in a less reverberant and less noisy environment
at home, about one meter away from the recording device (Roland R-07).

6 https://www.last.fm/
7 https://masaki-cb.github.io/crocus/
8 piano: https://zenodo.org/record/7753365, guitar: https://zenodo.org/record/7778923
9 For oboe, the procedure of questionnaire survey regarding the usefulness and annotation of the

textual feedback was the reprint of [29].
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Table 1. Overview of Materials

Recording
Instrument Nstudent Level of student Npiece recording
piano 4 professional players 10 home
oboe 9 music college student 10 home
guitar 12 Students who have participated in na-

tional or international competitions
7 home

Table 2. Overview of Materials

Textual feedback
Instrument Nteacher Level of teachers Ntextualfeedback

piano 24 professional teachers 144
oboe 12 music college teacher 239
guitar 13 professional players or teachers 252

guitar: Each student played all seven pieces in a less reverberant and less noisy envi-
ronment at home, about one meter away from the recording device (Roland R-07).

3.2 Textual Feedback for Each Performance Recording

As online lessons have become the norm in music colleges due to COVID-19, a similar
lesson plan was adopted in our method.

Each teacher wrote one textual feedback for each performance recording, as if you
were giving a daily lesson, and each teacher in total wrote 6 (for piano), 20 (for oboe),
and 20 or 19 (for guitar) pieces of textual feedback. A total number of textual feedback
for each instrument is shown in Table 2. The performances were selected in a coun-
terbalanced manner with the following constraints: each teacher reviewed two perfor-
mances for each piece, and each student was reviewed by all the teachers throughout the
performances. Audio files of performance recordings were sent to each teacher, along
with the following introduction: “Please provide textual feedback for each recording
assuming the daily lessons.” They listened to each recording and either wrote or typed
their feedback. For oboe, one piece of textual feedback was lost during the collection
process.

3.3 Questionnaire Survey of the Usefulness of the Textual Feedback

We conducted an online questionnaire survey via a crowdsourcing platform10 to eval-
uate the usefulness of the textual feedback. We recruited 400 (100 for piano/ 200 for
oboe/ 100 for guitar) people who had musical experience outside of school and asked
them to provide their demographic informations and answer the question “Do you think
that this feedback is useful for future performances?” using a 11-point Likert scale (10:
useful – 0: useless). Each participant responded to 46 (for piano), 50 (for oboe), and
10 https://www.lancers.jp
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Instrument ID Composer Piece
piano n01 F. Chopin “Tristesse”, Op. 10-3

n02 F. Chopin “24 Préludes”, Op. 28-7
n03 J. S. Bach Invention No. 1 in C major, BWV 772
n04 J. S. Bach Invention No. 15 in M minor, BWV 786
n05 L. v. Beethoven Sonata No. 8 in A flat major, Op. 13
n06 L. v. Beethoven Sonata No. 8 in C minor, Op. 13
n07 R. Schumann “Traumerai”, Kinderszenen No.7, Op. 15
n08 W.A. Mozart Sonata No.32 in A major, KV. 331
n09 C. Debussy La Fille aux Cheveux de Lin
n10 C. Debussy Rêverie

oboe n01 L. v. Beethoven Symphony No. 3 in E flat major ‘Eroica’, Op. 55
n02 G. A. Rossini ‘La Scala di seta’ Overture
n03 F. Schubert Symphony No. 8 in B minor D.759 ‘Unfinished’
n04 J. Brahms Violin Concerto in D major, Op. 77
n05 P. I. Tchaikovsky Symphony No. 4 in F minor, Op. 36
n06 P. I. Tchaikovsky “Swan Lake”, Ballet Suite, Op.20a
n07 N. Rimsky-Korsakov “Scheherazade”, Symphonic Suite, Op. 35
n08 R. Strauss “Don Juan”, Symphonic Poem, Op. 20
n09 M. Ravel Le Tombeau de Couperin I.Prelude
n10 S. Prokofiev “Peter and the Wolf”, Symphonic Tale, Op. 67

guitar n01 F. Sor Etude No. 1, Op. 31-1
n02 F. Sor Etude No. 5, Op. 35-22
n03 M. Carcassi Etude, Op. 60-3
n04 Anonymous Romance: Jeux interdits
n05 F. Tárrega Lágrima
n06 L. Walker Kleine Romanze
n07 J. S. Sagreras Maria Luisa

100 (for guitar) randomly selected pieces of textual feedback. Different participants
were recruited for each musical instrument.

Hereinafter, in this paper, the average value for each textual feedback will be re-
ferred to as its usefulness.

3.4 Annotation of Types of Sentences in Textual Feedback

The purpose of this study was to identify which instructional contents that are signif-
icantly more useful for performance students as the more they are mentioned in the
textual feedback. An annotation was assigned to each sentence of textual feedback to
categorize them by content. Then, we obtained the number of sentences of each content
type in each piece of textual feedback. Periods, exclamation marks, or question marks
were considered as sentence breaks.

Table 3. List of Pieces
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Table 4. Types of Instruction Contents

Types Definition Example of sentence

Giving Subjective
Information (GSI)

Teacher providing general
and/or specific conceptual
information based on teacher’s
subjectivity.

The tone is soft and comfortable
to listen to.

Giving Objective
Information (GOI)

Teacher providing general
and/or specific conceptual in-
formation based on objectively
referable events or concepts.

Too much arpeggio on the
chords in bar 32 would sound
unnatural.

Asking Question (AQ) Enquiring. Is there a problem with the tun-
ing of the instrument?

Giving Feedback (GF) Teacher evaluation of a stu-
dent’s applied and/or concep-
tual knowledge.

The detailed phrasing of the
melody is well expressed.

Giving Practice (GP) Providing suggestions of ways
to practice a particular pas-
sage or discussing a practicing
schedule.

The first step in practicing is to
play only the melody.

Giving Advice (GA) Giving a specific opinion or rec-
ommendation without demon-
stration or modelling to guide
the student’s action towards the
achievement of certain specific
musical aims.

I think it would be better to
be more aware of the larger
phrases and not stop the music
so much within these phrases.

The content types were adapted from the works of Simone [37], Carlin [4], and
Zhukov [47] as shown in Table 4.11 Each sentence was annotated as one of these six
types of content. If a sentence was judged to consist of descriptions that could be clas-
sified as more than one type of content, the sentence was separated using commas. Two
annotators annotated all the textual feedback. If their annotations for a sentence dif-
fered, they discussed the sentence and settled on a final annotation. The Cohen’s Kappa
coefficient, which was a statistic to measure inter-rater reliability, was 0.96 for the oboe
dataset.

4 Contents that Contribute to the Usefulness of Textual Feedbacks

In this section, we used the usefulness of each textual feedback (Section 3.3) and the
number of sentences that meant each content in each textual feedback (Section 3.4) to
identify content that significantly improves the usefulness of textual feedback.

11 Types of “Demonstrating”, “Modelling”, and “Listening/Observing” were omitted because
these actions might be not observed in textual feedback.
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4.1 Usefulness

First, this subsection showed demographic data on usefulness of each textual feedback.
The average usefulness is following12; piano: 6.75 (± 2.01), oboe: 7.27 (± 2.02)13, and
guitar: 7.15 (± 1.90).

The textual feedback with the highest usefulness and the lowest usefulness for the
piano are presented below.

The highest rated textual feedback for piano (p06-s02-c21, usefulness: 8.12
± 1.68)
You have read the score carefully. The tempo was a little slow compared to the
Allegro, so do your best to play faster as you continue to practice.
Check the Es in the third beat of the left hand in the 10th bar because you
played it incorrectly.
You played the two-hand staccato in the 17th bar too long, so cut it a little
shorter (same in the 78th bar).
You played the left-hand note in the 19th bar by extending it to the first beat of
the 20th bar, rather than the whole beat, so you should cut it off properly on
beat 1 (same for the left-hand in the 23rd bar).
I don’t feel the sforzando in the 33rd and 34th bars at all. Play it with more
force (don’t hit the keyboard).
Don’t extend the left-hand note in bar 40 a whole beat.
The beginning of the fourth beat of the right hand in the 43rd bar was slow.
I understand that you want to rit. from the descending flow of the right-hand
note in the 42nd bar, but you should play it without slowing down the tempo as
the score shows.
The half note in the 46th bar was long. Since it is staccato, let’s play it as long
as a quarter note.
I am concerned about the right hand note that comes in without a pause after
the fermata in the 61st bar. As you can see when you actually sing it, you always
need to breathe to start a new song after such a long note. Be sure to breathe
at the eighth rest.

The lowest rated textual feedback for piano (p08-s02-c20, usefulness: 3.75
± 2.27)
The melody sounded good and the harmony was well-balanced.
It was a very nice performance.

4.2 Hierarchy of Usefulness

This subsection explores whether the usefulness of text feedback depended on the
teacher, the student, or the piece, independent of the musical instruments.

12 Since the crowdworkers who participated in the questionnaire survey of usefulness were dif-
ferent for each musical instrument, an absolute value comparison of usefulness among musical
instruments is not very meaningful.

13 For oboe, this result was reprint of [29].
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Fig. 1. The average usefulness for each teacher, student, and piece (sorted by usefulness score)

Figure 114 shows the average usefulness for each teacher, student, and piece. This
result implies that the usefulness of the text feedback differed more by the teacher than
by the piece or student.

For teachers, players, and pieces, the intraclass correlation coefficient (ICC) and the
design effect (DE)15 were calculated for each musical instrument.
piano: For teachers, ICC was 0.43 and DE was 3.14. For students, ICC was 0.006 and
DE was 1.21. For pieces, ICC was 0.0, and DE was 1.0.
oboe: For teachers, ICC was 0.45 and DE was 9.43. For students or pieces, ICCs were
0.0, and DEs were 1.016.
guitar: For teachers, ICC was 0.55 and DE was 11.2. For students or pieces, ICCs were
0.0, and DEs were 1.0.

In summary, independent of musical instruments, the usefulness showed hierarchy
among teachers.

4.3 Factors Contributing to the Usefulness of Textual Feedback

For each of the three musical instruments, the content that significantly improves the
usefulness of textual feedback was analyzed.

14 For oboe, the figure was reprint of [29].
15 DE is a criterion that takes into account both the average number of data in the group and ICC.
DE = 1+(k∗−1)ICC, where k∗ is the average number of data in the group. An ICC greater
than 0.05 or a DE greater than two suggested that the data were hierarchical.

16 For oboe, this result was reprint of [29].
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Method Multilevel modeling was conducted to quantitatively analyze the effect of
number of sentences annotated as each type of content for each of the three musical
instruments. Multilevel modeling enables analysis assuming that the behavior of indi-
vidual data changes depending on the hierarchy of data. In other words, in this study,
not only the change in usefulness among textual feedback but also the influence of
the teachers could be analyzed. R 4.1.0 and brms 2.15.0 were used for this multilevel
modeling.

In the i-th feedback of the j-th participants, the usefulness of the k-th content Uij

is designated as follows:

Uij = α+
6∑

k=1

βknik + η
(zijkg)
k +

6∑
k=1

γ
(zijkg)
k nik + eij

Let α be intercept, k be each type of contents, βk(k = 1, . . . , 6) be the coefficient
of nik, nik be the number of descriptions for the k-th category. Here, zijkg indicates
each teacher who wrote the i-th feedback for each musical instrument. g indicates each
teacher; g ∈ {1, . . . , 24} for piano, g ∈ {1, . . . , 12} for oboe, and g ∈ {1, . . . , 13}
for guitar. η(zijkg)

k is the random effect of the teacher on the intercept for the k-th con-
tent category of the i-th feedback. γ(zijkg)

k is the random effect of the teacher on the
coefficient for nik.

The model parameters were fitted with four Markov chain Monte Carlo chains with
2,000 iterations and 1,000 burn-in samples with a thinning parameter of one. Specifi-
cally, we used βk ∼ N(0, 100), α ∼ StudentT (3, 0, 2.5), and σe ∼ StudentT (3, 0, 2.5)
as the prior distributions of the fixed effects, StudentT (3, 0, 2.5) as the prior distribu-
tion of SD of random effects, and LKJCholesky(1) as the prior distribution of the
correlation matrix between η

(g)
k and γ

(g)
k for k ∈ {1, . . . , 6}.

Results Correlation coefficients between the six variables were checked for each musi-
cal instrument and all were less than 0.8, so all variables were used in the analysis. For
each instrument, the estimates and 95% credible intervals of each content are shown in
Table 5. R-hats for all features were under 1.05.

Table 5. Overview of the Results

piano oboe guitar
βGSI -0.11[-0.24,-0.01] 0.07[-0.09, 0.23] -0.02[-0.09, 0.05]
βGOI 0.07 [0.00, 0.14] 0.13 [0.06, 0.21] 0.12 [0.07, 0.19]
βAQ 0.05[-0.23, 0.32] 0.41[-1.11, 1.86] -0.05[-0.34, 0.28]
βGF 0.03[-0.09, 0.15] 0.14 [0.04, 0.25] 0.07[-0.01, 0.15]
βGP -0.08[-0.82, 0.14] 0.27 [0.10, 0.45] 0.13 [0.04, 0.22]
βGA 0.16 [0.09, 0.24] 0.15 [0.08, 0.22] 0.08[-0.00, 0.17]

These results showed that the number of sentences that conveyed GOI were sig-
nificantly positive for all of the three instruments. Therefore, the number of sentences
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conveying GOI significantly contributes to the usefulness of the textual feedback in-
dependent of musical instruments. Moreover, the number of sentences conveying GP
or GA significantly contributes to the usefulness of the textual feedback for the two
musical instruments.

5 Discussion

In this study, textual feedback on musical recordings of oboe, piano, and guitar pieces
were collected and analyzed. We quantitatively found that the usefulness of the textual
feedback differed most significantly by teachers independent of musical instruments.
Moreover, the number of sentences conveying GOI was found to significantly con-
tribute usefulness of the textual feedback independent of musical instruments. In this
study, different levels of students and teachers were involved in the collected recordings
and textual feedback for each musical instrument (Table 1). Therefore, the instrument-
independent results suggested that the results may be independent of the level of the
player and the instructor.

Our result that the number of sentences conveying GOI significantly contributes to
the usefulness of the textual feedback has high generalizability because the results can
apply to face-to-face lessons.

In this study, the experiments were conducted only in Japanese. In the future, it
will be necessary to conduct comparisons across multiple languages and discuss the
differences between languages and cultures [3]. Another limitation was that this study
used textual data as verbal information. We cannot deny the possibility that the verbal
information in face-to-face speech shows different characteristics from the verbal infor-
mation in textual data. An exploration of whether feedback should be psychologically
supportive or what words should be used should be undertaken in the future.

6 Conclusion

We published the dataset for investigating the use of verbal feedback for three musi-
cal instruments. This dataset clarified that the content of text feedback were different
between the teachers, and the feedback conveying giving objective information was crit-
ical for students independent of the musical instrument. In the future, we would like to
utilize these findings in the development of educational programs.
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A Melody Input Support Interface by Presenting
Subsequent Candidates based on a Connection Cost
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Abstract. In this paper, we present a melody input support interface that of-
fers multiple pre-existing melody fragments as potential continuations for the
melody being composed. The proposed interface utilizes the connection cost be-
tween melody fragments, based on the BiLSTM approach proposed by the au-
thor [1]. It provide subsequent candidate melodies or notes when the user en-
counters difficulties or needs fresh ideas during the melody composition process.
Specifically, we consider a melody composition scenario in which the user inputs
melodies onto a piano roll. We propose an interface that searches and presents
subsequent candidate melodies or notes from a database comprised of existing
melodies, based on the user’s inputted melody. We conducted a user study on
melody composition utilizing the proposed interface and assessed the effective-
ness of the interface, as well as the quality of the generated melodies. The results
confirmed the effectiveness of the proposed interface.

Keywords: Composition support; Connection Cost; LSTM

1 Introduction

Melody is a crucial element that characterizes a musical piece, and its creation is prior-
itized in music production. Melodies can exhibit a wide variety of characteristics, rang-
ing from simple motifs repeated multiple times to intricate compositions that do not
feature identical melodies from beginning to end. A common aspect among numerous
musical pieces is the requirement for a melody to possess adequate length to consti-
tute an entire song, compelling a composer to craft such a melody from the ground up.
However, there is a constraint on the length of a melody that can be conceived at once,
often resulting in the creation of only a small portion of the entire song at a time. A
prevalent approach in melody composition, albeit with numerous exceptions, involves
generating short, phrase-sized melodies and connecting them sequentially.

Generating short melodies through humming is relatively easy and is considered
achievable even for individuals without expertise in music composition. Conversely,

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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crafting a melody for an entire song from start to finish is not something that every-
one can do easily. Based on this observation, we consider that the difficulty in creating
a melody primarily lies in effectively connecting short melody phrases. Consequently,
we propose an interface designed to facilitate melody creation by presenting multiple
candidate melodies that can follow the melody being created, utilizing the melody con-
nection cost, a metric quantifying the naturalness of the connection between melody
fragments.

By connecting short melody fragments conceived by an individual, it is possible
to create longer melodies, potentially transforming a simple act of humming a tune
into a more professional music production. Furthermore, if one can measure which
melodies naturally connect together when creating mashup music comprising multiple
tracks, irrespective of whether they are original or pre-existing, it could pave the way
for supporting music production As an exploration of the potential for music produc-
tion support, this paper examines an interface designed to support melody input using
connection costs.

In recent years, deep generative models such as Music Transformer [2] and Mu-
sicVAE [3] have been proposed for melody generation, yielding high-quality results.
Many of these approaches are categorized as “automatic composition” models, imply-
ing a significant machine contribution when users employ them for creative purposes. In
this study, we investigate the potential of supporting melody composition while main-
taining a balance between human creativity and machine involvement.

The melody connection cost employed in this interface is based on a previously pro-
posed model by the author, which utilizes BiLSTM [1]. This model can also be adapted
for automatic melody generation through minor modifications to the network configu-
ration. However, in this study, we refrain from generating melodies and solely use the
model to calculate the naturalness of connections between melodies. The objective is to
develop a system capable of suggesting melodies that can be connected to the melody
currently being produced, drawing upon a vast collection of existing melodies.

Our interface does not generate melodies; rather, it provides existing melodies when
necessary. Consequently, our objective is to develop a support interface that functions
similarly to predictive text input. Its use is not obligatory, but it can be employed when
beneficial candidate options are presented. In the proposed interface, the subsequent
candidate melodies are not machine-generated but are manually created melodies. Fur-
thermore, the machine’s role is minimized, as the final selection of subsequent melody
candidates is left to the user’s discretion.

2 Related Work

Bretan et al. proposed a melody generation technique employing existing melodies
based on the connection cost of melodies, referred to as the unit selection method [4].
In this approach, new melodies are automatically generated by reusing pre-existing
melodies. However, Bretan et al. did not focus on developing user-oriented support for
music creation or associated interfaces. Furthermore, their method takes into account
not only the connection cost between melodies but also their semantic relationships in
order to narrow down the search space.
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Cope also proposed an approach for generating new music by connecting existing
melodies [5]. This method involves dividing a musical piece into small fragments, label-
ing each fragment according to its characteristics, and subsequently creating new music
through the reuse and recombination of these fragments. The approach by Cope differs
from the method presented in this paper as it relies on rule-based melody reconstruction
rather than machine learning-based modeling.

The concept of employing existing melodies in music generation has been previ-
ously proposed. Pachet introduced a system called “The Continuator” that generates
new melodies by dividing existing melodies into small fragments, modeling transitions
between fragments using a tree-structured Markov chain, and searching for appropriate
subsequent melodies from the training data [6]. Kitahara et al. proposed JamSketch,
which generates improvised melodies in real-time using a genetic algorithm and ex-
isting melodies, based on the user’s rough outline of the melody input [7]. Although
JamSketch does not utilize existing melodies in their original form, it is one example of
utilizing existing melodies for melody generation.

The approach of generating new content by reusing existing content has been ex-
plored in various domains beyond music. For instance, it has been applied to image
synthesis [8] and music video generation [9]. In this study, we focus on melody creation
and propose an interface that utilizes the connection cost between melody fragments [1]
to present existing melodies as candidates for subsequent melodies.

3 An Interface for Melody Input Support based on Connection
Cost

Our interface is designed as a melody input support tool that utilizes the connection cost
between melody fragments based on the BiLSTM proposed by the author [1]. A piano
roll is commonly employed when composing a melody using a computer. Consequently,
the input support interface in this study aims to facilitate melody creation utilizing a
piano roll.

3.1 Basic Configuration of the Proposed Interface

The proposed interface is implemented as an additional feature on top of the conven-
tional piano roll. Users can input notes by dragging the piano roll using a pen-style input
tool. As fundamental functionalities, the interface incorporates quantization features for
aligning the onset timing and length of notes, a function to move, modify, and delete
input notes, and capabilities to play, pause, and stop the entered melody. The interface
is designed for inputting melodies by note, employing a grid in the time direction using
a 4/4 time signature, with four beats per bar and a 16th note as the smallest unit.

This interface offers all the fundamental features typically present in a standard
piano roll, facilitating users to accomplish all the essential tasks for melody input. By
incorporating a function that presents information based on connection cost, melody
input can be supported.

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

160



Fig. 1. Melody candidate suggestion based on connection costs

3.2 Melody Candidate Suggestion based on Connection Costs

We propose a function that suggests subsequent melody candidates based on the con-
nection cost between melody fragments. The proposed function searches a pre-existing
melody database for the three fragments with the lowest connection cost that are most
likely to continue the inputted melody, and presents them to the user as recommen-
dations for melody continuation. Upon inputting one or more bars of melody using
the piano roll and pressing the ”next bar” button, the interface calculates the connection
costs between the last bar of the user’s inputted melody and pre-existing melodies in the
database that are one bar in length. The interface then suggests three possible melody
candidates for the user to continue their melody, based on this calculation. Fig.1 shows
an example of the subsequent melody candidate presentation. The left side of the Fig.1
shows the melody that the user manually inputted, while the right side of the Fig.1
shows the result screen after pressing the “next bar” button. The bright background in
the piano roll indicates the bar where the subsequent melody candidates are presented.
Users can listen to the three suggested subsequent melody candidates and select one to
connect with their input melody. If users find a suggested melody that they like, they
can incorporate it into their composition.

The name of the MIDI file from which the suggested melody candidates were ex-
tracted is displayed on the piano roll. If a candidate is selected, the corresponding song
title will continue to be displayed on the melody of the corresponding bar. After select-
ing a melody from the presented candidates, the user can edit it further as with a typical
piano roll interface. If the user doesn’t like a certain part of the candidate melody, they
can modify it to fit their own image while keeping the original style. At this time, the
user is not required to adopt the presented melody into their own composition, so it
can be used only as a reference when the user gets stuck in their composition process.
This feature is positioned to assist users only when necessary, as it is not a mandatory
function.

Although automatic composition methods that generate subsequent melodies have
been previously proposed, a notable aspect of our interface is that the suggested
melodies are based on existing melodies, which are manually created rather than gen-
erated automatically. With this function, the user can add preferred melody data to the
database and search for melodies that are more likely to be connected to the current
melody from a large number of existing melody dataset. They can then adopt these
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Fig. 2. Visualization of subsequent note candidates

melodies as part of their own composition. The title of the original melody is displayed
at the top of the corresponding melody, making it possible to create the user’s own
melody while inheriting and citing existing melodies.

When the “next bar” button is pressed, inference is performed in the background
to calculate the connection cost between the input melody and the melodies in the
database. Therefore, the more melodies there are to search, the longer the wait time
until candidate melodies are presented. Currently, when searching for candidates for
10,000 bars, it takes approximately 20 seconds on a machine with 32.0GB memory,
Intel Core i9-1088H 2.40GHz, and NVIDIA GeForce RTX 2060. When using this fea-
ture, shorter wait times are desirable as they allow for more attempts to be made, and
faster feedback can be obtained. The waiting time can be shortened by improving the
implementation, and reducing it further is our future challenge.

3.3 Visualization of Subsequent Note Candidates

When calculating the melody connection cost, the validity of note-level connections is
also considered, and by visualizing it during melody input, a user can examine what
would be appropriate as the next input note. Pressing the “next note” button reveals
the candidates for subsequent notes, including the type and likelihood of notes that are
likely to follow the last note the user inputted. Fig.2 shows how the subsequent note
candidates are visualized.

As shown in Fig.2, the interface visualizes which pitch and duration the user would
be preferable to input as the next note after the last note they inputted. This visualization
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is based on the frequency of note transitions in the melodies of the dataset used to
train the original melody connection cost calculation model. Therefore, it simply shows
more common note transitions in a darker green color. Since many existing melodies
have frequent transitions to the same pitch, this function often suggests notes of the
same pitch as the most probable candidates. It should be noted that this is simply an
information visualization, and users are not obligated to input the next note based on
this information. This information can serve as a reference when transitioning to less
common notes, and is intended as a suggestion to the user while they actively input the
melody.

The proposed interface provides two functions to assist with melody input: suggest-
ing subsequent melody candidates by bar and by note. The suggestion of candidates
is entirely optional, and both functions are designed to be utilized only when the user
needs them.

4 User Study

A user study is conducted to evaluate the effectiveness of the proposed melody input
support interface.

4.1 Conditions of the User Study

We conducted a user study with four participants who used the proposed melody input
support interface. Each participant completed six melody input trials, three with and
three without using the function for suggesting candidate melodies. After each trial,
participants responded to a questionnaire to evaluate the system’s effectiveness. Be-
fore starting the user study, the author demonstrated how to operate the interface to
the participants, and they were given the opportunity to try it out after learning the ba-
sic operation method. We also provided a document that explained the details of each
button, which participants could refer to if they were unsure of how to operate the in-
terface during the trials. The participants’ musical experience for this user study was as
follows:

– User A: Less than 1 year of music experience, no experience in DTM (desktop
music: music production software), and some experience in composing songs at a
level of humming.

– User B: No music experience, no DTM experience, no composition experience.
– User C: Over 10 years of musical experience, experience with DTM, and some

experience in composing songs at a level of humming.
– User D: No music experience, no DTM experience, no composition experience.

Participants were asked to input short melodies consisting of 2 to 4 bars with the
proposed interface, and the interface was evaluated through multiple trials. During the
trials where the melody candidate suggestion function was utilized, participants were
instructed to use the function within a 4 bars, while the subsequent note candidate sug-
gestion function was optional and used only when necessary. For each participant’s
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six trials, the subsequent melody candidate suggestion function was used on even-
numbered trials, alternating between trials with and without its use. Trials excluding
the melody candidate suggestion were utilized as our baseline. In the baseline trial,
participants inputted a melody of 2 to 4 bars into the piano roll interface without any
guidance.

The database used for the melody candidate suggestion function consisted of 10,000
bars of melody randomly extracted from test data that were not used for training the
connection cost calculation model. When the suggestion function is used under these
conditions, it takes about 20 seconds to process.

In addition to assessing the interface, upon completion of all trials by the par-
ticipants, we further evaluated the melodies themselves. Each participant’s set of 6
melodies was reviewed by three other participants, who were not the original creators,
for evaluation.

4.2 Evaluation Items

Participants were asked to evaluate each melody creation trial based on the following
four evaluation criteria.

1. Able to create a desired melody
2. Able to create a unexpected melody
3. Able to create a satisfactory melody
4. Able to create melodies easily

The melody was created six times in total, with three times using the melody candidate
suggestion function and three times without using it. After completing each melody, the
participants were asked to rate the four evaluation criteria mentioned above on a 4-point
scale, with options “1: Does not apply”, “2: Somewhat does not apply”, “3: Somewhat
apply”, and “4: Apply”.

After the 6 trials and responses to the evaluation items were completed, an overall
evaluation was conducted. For each subsequent melody and subsequent note candidate
suggestion function, participants were asked to rate their effectiveness on a 4-point
scale: “1: Not effective”, “2: Somewhat not effective”, “3: Somewhat effective”, “4:
Effective”. Furthermore, regarding the subsequent note candidate function, each partic-
ipant was asked to evaluate the degree of use of the optional subsequent note candidate
function, which was evaluated in four levels: “1: Almost never used”, “2: Rarely used”,
“3: Used several times”, “4: Used frequently”. Finally, participants were asked to give
their general opinions and feedback in an open-ended format.

All user trials were recorded with screen captures, and the duration of each trial
was measured. Furthermore, the influence of the feature on the time needed to create a
melody was assessed.

The evaluation of all melodies created by the participants in the user study was
conducted by asking them to rate each melody on a 4-point scale, ranging from “1:
not a good melody”, “2: not a very good melody”, “3: somewhat a good melody”, to
“4: a good melody”. Additionally, the evaluation was conducted by the remaining three
participants of the user study who listened to each melody without knowledge of how
it was created.
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Table 1. Evaluation results of melody creation trials

Evaluation items
(1) (2) (3) (4)

without candidate suggestion 2.17 2.25 2.08 2.42
with candidate suggestion 3.25 3.58 3.17 3.75

Table 2. Evaluation results of each function’s effectiveness

average evaluation score
Effectiveness of melody candidate suggestion 3.75

Effectiveness of note candidate suggestion 2.67
Frequency of using note candidate suggestion 1.5

All evaluation items were rated on a 4-point scale, where higher ratings denote bet-
ter performance. The intermediate value is 2.5, with ratings above this value indicating
a positive outcome.

4.3 Evaluation Results

The results of the user study are presented in Table 1, 2, and 3. Table 1 shows the eval-
uation results for each melody creation trial. It presents the average evaluation scores
separately calculated for the presence and absence of the candidate suggestion function.
Table 2 presents the evaluation results regarding the effectiveness of the candidate sug-
gestion function after all trials were completed. It shows the average evaluation values
for each item. Table 3 shows the evaluation results of the six melodies created by each
participant, as evaluated by the remaining three participants. It shows the average eval-
uation values for all six melodies produced by each participant, including the average
score with/without the candidate suggestion function. The evaluation scores range from
1 to 4, with higher values indicating better performance.

Based on the results presented in Table 1, all evaluation items received higher scores
when using the subsequent melody candidate suggestion function compared to when it
was not used. Notably, the use of the candidate melody suggestion function resulted in
higher scores even for the evaluation item “able to create a desired melody.” These re-
sults imply that the presented candidate melodies are more aligned with the melody that
users imagine. Specifically, for participants who were creating a melody with piano roll
for the first time, it appeared challenging to compose musically pleasing melodies. In
such a situation, the melodies suggested by the candidate suggestion function are actual
melodies that possess musical sense. Therefore, it is inferred that the support provided
by the function fulfilled the users’ requirements and facilitated them in achieving their
melody creation goals.

As shown in Table 2, the average evaluation score for the subsequent melody candi-
date suggestion function’s effectiveness was 3.75, with all four participants indicating
that it was effective. In contrast, the note candidate suggestion function’s average evalu-
ation score for effectiveness was 2.67 and was not evaluated as particularly effective. In
terms of usage frequency, three out of the four participants reported that they “almost
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Table 3. Evaluation results of composed melodies

Evaluation score
User without candidate suggestion with candidate suggestion

A 3.33 2.33 2.00 3.67 3.33 2.67
B 1.67 2.33 2.33 2.33 2.33 3.33
C 3.00 3.33 3.00 3.00 3.67 3.33
D 1.67 1.67 3.33 3.00 2.67 3.00

average 2.50 3.03

never used” the feature, indicating that it did not contribute significantly to melody
creation support.

Based on the evaluation results of the melodies produced by the four participants,
as presented in Table 3, the melodies created using the melody candidate suggestion
function received higher overall ratings than those created without using the function.
The quality of the created melodies varied among users. For instance, user C, who had
the most musical experience, received evaluation scores of 3 or higher for all of their
created melodies. Examining the evaluation values for each melodies based on whether
they used the function or not, it can be seen that every user was able to create higher-
quality melodies by using the function. These results indicate that the interface support
has improved the quality of the melodies produced.

The following are some of the comments obtained through the open-ended section
at the end of the trial1.

– I would like the system to propose other melodies when I don’t like the suggested
melody.

– The note suggestion function kept suggesting the same notes.
– I was glad that the created song didn’t become monotonous because the system

suggested melodies that I wouldn’t have thought of myself.
– After repeating the process, I gained a sense of what makes a melody work and felt

that as I became better at creating melodies, the suggested melodies also improved.

The feedback obtained suggests that the interface provided a certain level of useful as-
sistance; however, there is still room for improvement in the subsequent note suggestion
function. We intend to incorporate the feedback received to enhance the interface in the
future.

Finally, we evaluated the impact of using the melody suggestion functions on the
time required for creating melodies. Table 4 shows the time required for all six melody
creation trials for each user. In the condition with the melody suggestion function, the
waiting time for suggestions (approximately 20 seconds per use) was also included
in the total time. Users with less experience tended to use the candidate suggestion
function multiple times, resulting in longer overall required times due to the waiting
times that occurred each time. Moreover, the time required for comparing and listening
to the three proposed melody candidates also added up to the required time. Therefore,
it can be concluded that the current interface does not contribute to the efficiency of

1 The comments originally provided in Japanese have been translated into English by the author.
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Table 4. Evaluation of the duration required for each trial

Time required for trial
User without candidate suggestion [s] with candidate suggestion[s]

A 681 184 233 450 663 551
B 138 134 244 208 261 231
C 166 124 193 181 222 216
D 218 191 181 297 238 368

average 223.9 322.2

melody creation in terms of time. We aim to address this issue by improving the system
speed and providing more suitable candidate melodies based on user needs in the future.

Through this user study, it became apparent that users improved their melody cre-
ation skills as they repeated the trials. Additionally, some users gained an understanding
of what kind of melodies to input to receive better candidate suggestions. These findings
suggest that, like traditional music production tools, repeated use of this tool can lead
to greater proficiency, making it more convenient to use. The observation that humans
adapt their behavior to the tool suggests the potential for collaboration between artifi-
cial intelligence technology and human music creation, making it an intriguing research
topic for future studies.

5 Discussion

In this chapter, we discuss the potential and concerns of the interface introduced in
Section3.2, which enables the reuse of existing melodies.

As mentioned in Chapter1, this interface was developed with the idea that if the act
of inputting short melody phrases such as humming can be connected to the creation
of longer melodies for an entire song, anyone can easily engage in music production.
The interface is designed to support such endeavors, and the results of the user study in
Chapter4 demonstrate the effectiveness in melody creation.

When reusing existing melodies, it can encourage the reuse of other people’s cre-
ative works, which can be both positive and negative. Creative activities are often in-
spired by the works of others, and in music, for example, it is a legitimate practice to
compose based on chord progressions of songs created by others. While it is difficult to
deal with melodies and not permitted to use them as is, paying homage to past music
by incorporating someone else’s melodies into one’s own work is a common practice.
Short units such as a single bar have countless examples of songs that share melodies
with other works. Sampling has emerged as a well-established musical genre and tech-
nique that involves incorporating segments of pre-existing music or sounds into one’s
own compositions. Our interface can be viewed as an interface that enables the direct
sampling of melodies.

When using the function in our interface to suggest subsequent melody candidates
based on existing melodies, the original song file name is displayed on the piano roll,
providing an opportunity to credit the reused music information in the final composi-
tion. This allows for the creation of works that include citations, akin to the culture of
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fan fiction. However, the interface not only enables reusing melodies as they are but
also re-editing them to fit one’s own melody, posing a challenging issue from a copy-
right perspective on how to treat a reused melody that no longer retains its original
form.

Using the proposed interface, one can extract melodies from short phrases previ-
ously created by oneself, in a manner akin to predictive text input, even without utilizing
others’ works as the database. By accumulating many short phrases on their own, users
can conveniently extract their own melodies. As this process involves reusing materials
created by oneself, there are no rights-related issues. We anticipate that the proposed
interface will continue to serve as a useful tool when employed in this manner.

The proposed interface opens up new possibilities for collaborative music cre-
ation among multiple creators. Drawing inspiration from the way short sentences are
retweeted and attached to other tweets on Twitter, we envision the possibility of ex-
panding the system further by incorporating a mechanism that facilitates the reuse of
short melody phrases shared by multiple users on social networking services (SNS).
Such an approach would enable the construction of a single composition through the
amalgamation of diverse phrases contributed by numerous users. This could lead to
a future where someone’s casual humming could be incorporated into a professional
musician’s new song.

Sound libraries such as Splice2 offer numerous publicly available short audio mate-
rials that are utilized by creators worldwide as components of their works. Just as there
are cases where lyrics are completed by collecting words submitted by fans and having
professional artists write the final version, a collaborative production approach can also
be applied to musical elements such as melodies. The proposed interface is one example
of how such a production style can be implemented.

6 Conclusion

In this paper, we proposed an interface that supports melody input by presenting candi-
date melodies based on the connection cost between melody fragments. We conducted
a user study to evaluate the effectiveness of the proposed interface for assisting melody
input and confirmed its effectiveness by evaluating melodies created by users using the
interface.

The proposed interface enables users to combine short melody fragments to con-
struct longer melodies, seamlessly incorporating melodies created by themselves or
other users as necessary. It includes a function similar to culture of fan-created content,
allowing users to credit the sources of melodies used. This is particularly important
since there is no clear legal definition of the maximum length of a melody that can
be reused without infringing on copyright law. However, additional deliberation is re-
quired to judge whether edited melodies are also permissible for use. This interface
can be used without infringing on any rights issues if users utilize melodies that they
have previously created. In such cases, there are no copyright infringement issues as it
involves reusing one’s own material.

2 https://sounds.splice.com/
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A potential future direction for this research is to improve the response speed of
the interface. To present candidate melodies for the subsequent phrase, the interface
needs to perform inference to calculate connection costs between the input melody
and all melodies in the dataset. Consequently, the current waiting time to compute the
connection cost between the input melody and the 10,000-bar search candidates is ap-
proximately 20 seconds. Bretan’s unit-based melody generation [4] narrows down the
search space by utilizing the semantic relationship between melodies. Preprocessing,
such as this, is crucial for enhancing processing speed. In the future, we aim to enhance
the functionality of this interface to make it more practical and develop it into a tool
that can be used with actual DAW software in formats such as VST plugins.
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its alignment method for electric bass database
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Abstract. In plucked string instruments such as electric bass, the attack phase is
dominated by non-periodic components resulting from picking noise, while the
sustain phase is dominated by periodic components resulting from string vibra-
tions. This phenomenon is analogous to unvoiced consonants and voiced vowels
in speech, suggesting the possibility of applying speech phoneme representations
to plucked string instrument playing techniques. In this study, we design play-
ing technique labels for an electric bass database by treating the attack phase as
consonants and the sustain-to-decay phase as vowels. Furthermore, we employ a
phoneme alignment algorithm to obtain the alignment between the playing tech-
nique labels and the acoustic signals of the electric bass. To conduct experiments,
we construct a electric bass database and apply methods based on hidden Markov
models and dynamic time warping. As a result, methods based on dynamic time
warping, particularly those incorporating timbre transformations, provided the
most accurate alignment.

Keywords: Electric bass, playing technique, phoneme aligment, hidden Markov model,
dynamic time warping

1 Introduction

The advancement of musical information retrieval research is supported not only by
machine learning and signal processing techniques, but also by open sound databases.
Many of these databases include not only sound data but also annotation data. Sound
databases with useful annotations accelerate research and enhance reproducibility. For
instance, the presence of musical score information like MIDI can assist in automatic
transcription and sound synthesis [1, 2], while attributes such as genre can aid in music
information retrieval [3]. Furthermore, playing technique information plays a crucial
role in accurately representing their timbre and articulations.

When considering applications for controllable instrument sound synthesis [4] and
playing technique recognition [5], it is essential to include detailed information on
⋆ This work was supported by JSPS KAKENHI Grant Number JP22J22158 and JP21H04900.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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fng sus thm sus/b/ /e/ /ɪ/ /s/

Attack & sustain label

Musical score information

Sentence

B a s s

Phoneme label

Attack-sustain labelingPhoneme labeling

Fig. 1. Proposed attack-sustain label contrasted with phoneme label. For example, two notes
played by finger picking and thumping are converted to the labels “fng-sus” and “thm-sus”, re-
spectively.

changes in playing techniques in addition to musical score information. However, there
is no standard format for expressing playing techniques in MIDI. Some software syn-
thesizers implement out-of-range notes as key switches for changing playing tech-
niques [6,7], but the types and assignments of these techniques vary among developers.
Many databases provide only note information but playing technique information. This
is due to the time-consuming annotation process. In addition, since performance tech-
niques may change independently for each note of a multipitch instrument, it is difficult
to track them on a single time axis.

This problem might be solvable, at least for electric bass signals, by applying in-
sights from speech processing. Firstly, it is reasonable to assume a monophonic melody
in normal performances. Although electric basses with multiple strings can play chords,
their role within an ensemble is to provide a monophonic bass and rhythm part. More-
over, in the attack phase of electric bass, non-periodic components dominate due to
picking noise, while periodic components dominate during the sustain phase due to
string vibrations. Electric bass playing techniques can be broadly divided into those
that change the attack phase, such as fingerpicking and slapping, and those that change
the sustain phase, like harmonics and muting [8]. This is similar to the relationship be-
tween consonants and vowels in speech. Furthermore, string vibrations result in integer
harmonic components, which are then shaped through pickups. This suggests that the
source-filter model [9], which approximates vocal fold vibrations as a periodic impulse
train and filters the vocal tract characteristics, is also a valid approximation for elec-
tric bass. Promising acoustic features and analysis algorithms based on the source-filter
model are expected to be applicable.

In this study, we propose the Attack-sustain label for annotating electric bass play-
ing techniques (Fig. 1). The Attack-sustain label treats playing techniques that depend
on changes in the attack phase as consonants and those that depend on the sustain phase
as vowels. This label is provided as a temporally aligned sequence of playing technique
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symbols, separate from MIDI, similar to phoneme labels in singing voice. This provides
detailed annotation data on the temporal transitions of playing techniques, which can be
useful for instrument sound synthesis and playing technique recognition. Additionally,
by focusing on the acoustic similarity between electric bass and speech, it is possible to
automate segmentation using high-precision phoneme alignment methods.

In our experiments, we aligned our Attack-sustain labels with acoustic signals. We
constructed a new electric bass database and applied conventional alignment methods
which are based on viterbi algorithm of hidden Markov model [10] and dynamic-
time-warping (DTW) [4], DTW with timbre conversion based on a voice conversion
(VC) [11]. Our results demonstrate that our Attack-sustain labels provide temporally
accurate annotations of playing techniques.

2 Attack-sustain label

2.1 Label design

A naive annotation method of a technique to a note is an assignment of a single tech-
nique to a single note (hereinafter referred to as ”note-wise”). For example, for a note
played by plectrum picking, ”plectrum” is assigned to that note. However, annotating
a performance that combines multiple techniques, such as a muted string played with
plectrum picking, requires multiple symbol sequences, complicating the annotation pro-
cess.

We focus on the acoustic properties of the electric bass signal. Electric bass signals
are generated by plucking the strings with a finger or pick. The strings collide with the
pick/finger/fret depending on the playing technique, generating aperiodic noise. Then,
depending on the playing technique (mute/harmonics/etc.), periodic string vibrations
are generated and slowly decay. Focusing on this generative process suggests that the
acoustic differences in playing techniques can be broadly classified into those that ap-
pear in the attack phase and those that appear in the sustain phase [8].

Table 1 lists techniques corresponding to attack and sustain (hereinafter, they are
called “attack technique” and “sustain technique”, respectively). Techniques that affect
string vibration, such as mute and harmonic techniques, are distinguished. We assign
“pause” to a silent segment such as a rest.

Table 1. The list of playing techniques corresponding attack and sustain labels.

Attack Sustain
Finger, pick,
thump, thumb up, pluck,
hammer on, pull off

Sustain, mute, harmonics,
slide up, slide down

2.2 Automatic alignment method

Viterbi alignment of HMM Because controllable systems typically uses explicit tem-
poral segmented data [4,12]. However, the manual annotation requires well-experienced
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annotators in detecting segment boundaries. A common automatic method in speech
processing is a Viterbi alignment based on hidden Markov models (HMMs) [10]. HMMs
are trained using pairs of label sequences and acoustic features, and the Viterbi path is a
temporal alignment of the technique label sequences [13]. The HMM perform robustly
for performances that contain some disturbance such as noise and small fluctuation.
However, because the HMM is based on switching stationary signal sources, it is diffi-
cult to model slowly decaying string vibration. The effects of its improvements such as
hidden semi-Markov models [14] and trajectory HMMs [15] are also limited, because
not only the playing technique, but also the pitch and duration of the notes vary de-
pending on the musical context. In addition, the accuracy of data-driven approaches is
highly dependent on the amount of data.

DTW Another method is synthesizing electric bass signals from the musical scores
using existing synthesizers (e.g., sample concatenative synthesizer), and obtaining the
alignment with the recorded signal by DTW [16]. Since the synthesizer generates a
faithful performance to the musical score, the label’s temporal offset can be obtained
from the alignment of the synthetic and recorded sound.

DTW with timbre conversion Since the timbres differ between synthetic and recorded
sound, this affects the alignment accuracy of the DTW. To reduce this problem, we uti-
lize timbre conversion during the DTW using a VC technique. It has shown efficacy in
singing voice alignment [11] and is also promising for electric bass with acoustic sim-
ilarity to speech. First, the alignment of synthesized and recorded speech is obtained
as described above. Next, using the aligned sound, a VC model (e.g., affine transfor-
mation [17] or Gaussian mixture model (GMM) [18]) is trained to transform the syn-
thetic sound’s timbre into the recorded one’s timbre. Finally, the DTW takes between
the converted and the recorded sound. This method is expected to be more accurate in
alignment because the distribution of acoustic features is closer to the recorded sound.
In addition, it is known that the DTW and timbre conversion can be sufficiently accurate
in a single iteration [17].

3 Experimental evaluation

3.1 Dataset

A new electric bass sound database was constructed to evaluate the accuracy with re-
spect to actual acoustic signals. The sounds used were 180 phrases of four bars of
monophonic bass line (approximately 112 minutes), containing all techniques in the
list (Table 1), and each with a various tempo between from 60 to 120 beat per minute
(BPM). The label series before alignment was given manually. The note-wise label gave
the attack label and sustain label pair as a single symbol. Finger picking, for example,
is annotated as “fng-sus” for a single note. The electric bass used was a Fender custom
shop 1962 Jazz Bass [19], the audio interface was an RME ADI-2 Pro FS R [20], and
the performance was recorded by an experienced player.
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Fig. 2. Overview of automatic alignment algorithms. Each figure shows (a) Viterbi alignment of
HMM, (b) DTW and (c) DTW with timbre conversion.

3.2 Conditions

We apply the alignment algorithms to the proposed attack-sustain label and evaluate its
accuracy. The most straightforward evaluation in comparing alignment methods is to
calculate the error to ground truth. However, it is difficult to manually obtain ground
truth for all the data. Therefore, we performed manual labeling on randomly selected
pieces and calculated the mean absolute error (MAE) [21] on the rest of pieces for each
attack and sustain technique.

In addition, for all data, we segmented acoustic features following the resulting
alignment, and we calculated a separation metric (SM) R [11] defined as

R =
∑
D

∑
a ωa (µa − µ)

2∑
a ωaσa

2
. (1)

The subscript a indicates a technique label. µa and µ is the mean in the segment of
technique label a and the global mean, respectively. σa is the standard deviation in the
segment of technique label a. ωa is the amount ratio of a: the number of frames in a
segment divided by the total number of frames. These values are calculated from each
dimension of D-dimensional acoustic features segmented following the resulting align-
ment. µ is the global mean calculated from the whole of database. When the resulting
alignment can segment acoustic features for each label accurately, intra-technique stan-
dard deviation (i.e., σa) becomes smaller, and R becomes larger.

We first evaluated whether the Note-wise label or our attack-sustain label gives
a more accurate alignment. The SM and MAE for the HMM-based alignment result
were calculated for the two labels. To ensure fair conditions, Attack-sustain labels were
compared to the start and end times of the Note-wise label, while Attack-sustain labels
were compared to the start time of the Attack label and the end time of the Sustain label.
The performance of the DTW-based method was omitted because it depends only on
the acoustic signal.
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We secondly compared alignment methods described in Section 2.2 as follows.

– HMM: Viterbi alignment of the HMMs [10]
– DTW: DTW between synthetic and recorded sound [16].
– DTW+AF: DTW with Affin-transform-based timbre conversion [17].
– DTW+GMM: DTW with GMM-based timbre conversion [18].

10% of the dataset was manually annotated, and 20% was evaluated by SM and
the remaining 70% was used to train the HMM. These subsets were randomly selected.
The sound was recoreded at 48 kHz sampling/16-bit PCM and were downsampled to
16 kHz for acoustic feature extraction. Mel cepstrum was downsampled to 16 kHz with
a window length of 1024 and a hop size of 5 ms. 24-dimensional mel-cepstral coeffi-
cients were used as acoustic features. The number of Gaussian mixtures was set to 4
for “HMM” and 16 for “DTW+GMM”. For the DTW-based method, we used Standard
Bass V2 [22] as a sample concatenative synthesizer. Each sample was manually labeled
and aligned in advance. The cost of DTW was calculated as the mean squared error
between the acoustic features.

3.3 Result and discussion

Table 2 lists the result of the label comparison. The alignment accuracy with our attack-
sustain label became higher. This is because the note-wise HMM assumes a stationary
signal for the steep acoustic change from attack to sustain. On the other hand, our
attack-sustain label improved the accuracy by distinguishing between harmonic and
non-harmonic states. However, there are still estimation errors in DTW-based methods.
Focusing on the MAE, there were about 10 ms of errors in the time boundary of the
technique. It is possible that noise from the release of the pressed strings interfered with
the DTW path and was incorrectly estimated as the attack phase.

Table 3 lists the results. First, there are no large differences of SM and MAE in
attack technique. This is considered that aperiodic components were dominant in the
attack segment, and the acoustic features varied steeply. On the other hand, “HMM”
scored the worst in sustain technique, and “ DTW”, “DTW+AF”, and “DTW+GMM”
scored better in that order. This indicated that the DTW-based method worked robustly
because the synthesizer replaced the modeling of non-stationary decay of the string
vibration. In addition, the affine-transformation-based conversion is equivalent to the
single-component GMM. “DTW+GMM” therefore enhanced the performance because
of the higher accuracy of the timbre conversion.

In this experiment, both DTW and HMM were performed on a single player’s per-
formance. Different players perform different types of electric bass and in different
styles, resulting in different acoustic characteristics. Thus, the accuracy may vary de-
pending on a performer. This difference correspond to speaker differences in speech.
Parallel voice conversion also uses the DTW between different speakers and performs
high quality conversion. Since the electric bass signal exhibits similar acoustic charac-
teristics to speech, it is expected to produce similar results in the signals of different
performers.
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Table 2. Comparison of alignment accuracy between note-wise label (Note) and our attack-
sustain labels (AS). Separation metric (SM) and mean absolute error (MAE) from the ground
truth of alignment methods. Higher SM value and lower MAE indicate more accurate.

Method
SM MAE [ms]

AS (ours) Note AS (ours) Note
HMM 35.73 20.01 24.15 32.00

Table 3. Accuracy comparison of automatic alignment methods. Separation metric (SM) and
mean absolute error (MAE) from the ground truth of alignment methods. Higher SM value and
lower MAE indicate more accurate.

Method
SM MAE [ms]

Attack Sustain Attack Sustain
HMM 11.98 40.03 35.14 20.06
DTW 13.07 60.03 21.23 11.69
DTW+AF 12.31 67.79 19.45 11.28
DTW+GMM 13.98 68.15 19.24 12.42

4 Conclusion

This paper proposed the attack-sustain label inspired by phoneme representation. By
labeling the playing technique changes separately into attack and sustain techniques,
as in the case of vowels and consonants, the method in speech processing can also be
applied to electric bass signals.

We investigated automatic labeling method to align the label sequence to the acous-
tic signal. The experimental evaluation demonstrated that 1) our attack-sustain label
is effective for accurate alignment 2) the method based on DTW with timbre conver-
sion achieved better accuracy. In our future work, we will increase the data and train
DNN-based synthesis models using our the label and acoustic signal pairs. Moreover,
constructed sound database will be available in the public domain.
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Abstract. In this paper, we address a system that generates a bass line from a
chord backing played on the electric guitar in an audio-to-audio manner. Yield-
ing bass lines for guitar chord backings would be helpful for amateur musicians
composing band music. Conventional music arrangement systems targeted MIDI-
like symbolic music representations, but accurately obtaining symbolic represen-
tations from guitars takes work. To solve this problem, we attempt an audio-
to-audio approach; Once the user gives an audio recording of the guitar’s chord
backing, the system extracts some audio features (spectrogram, mel-spectrogram,
or chromagram) and then generates an audio signal of bass lines using a convo-
lutional neural network. The experimental results showed that the model with
chromagrams generates bass lines the most robustly.

Keywords: music, CNN, guitar, band arrangements, audio-to-audio

1 Introduction

The electric guitar is one of the central instruments in light music, especially in band
music. Therefore many amateur guitarists enjoy playing in a band. When they try to play
their original songs in a band, a particular member (such as the guitarist) often composes
a melody and a chord progression. They often collaboratively decide the phrases of in-
strumental parts (e.g., bass, drums). However, it is a challenging task because it requires
musical knowledge, like typical phrases of each instrument. If the phrases of each in-
strument part can be automatically decided on a computer and the band members can
listen to them, creating original songs may be more efficient.

Most of the existing studies on automatic music arrangements have been for the
piano, such as piano arrangement from band or orchestra pieces[1, 2] and score reduc-
tion of piano pieces for beginners[3]. Although some studies targeting guitar, most of
them are systems for arranging solo guitar scores, such as generating solo guitar scores

⋆ This work was supported by JSPS Kakenhi Nos. JP22H03711 and JP21H03572.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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from orchestral scores[4]and from audio signals[5]. No research has been done on band
arrangements that add drums, bass, or other sounds from the guitar sound.

Our goal is to develop a system that automatically makes band arrangements for a
given song. This system is intended to be used by people who can play a simple backing
for their original song on the guitar but cannot create phrases of other instruments, such
as the bass and drums. As the first step, this paper addresses a system that generates a
bass line for a given chord backing played on the guitar.

Most existing systems of music arrangement use MIDI-like symbol music represen-
tations, but it is not easy to accurately obtain a symbolic representation from recordings
of guitar performances (Although there are commercial products of MIDI guitars, their
audio-to-MIDI conversion is not necessarily accurate). We, therefore, adopt an audio-
to-audio approach in which both inputs (guitar backings) and outputs (bass lines) are
audio signals.

2 Proposed Method

Given an audio signal of a chord performance played on the electric guitar, our method
generates an audio signal of a bass performance that fits the given guitar performance.
For simplicity, the tempo and length are fixed (120 BPM and four measures in the
current implementation). First, the given guitar signal is converted to a feature repre-
sentation (i.e., spectrogram, mel-spectrogram, or chromagram). Then, it is segmented
by 0.5 seconds, and each segment is input to a convolutional neural network (CNN),
which generates a bass spectrogram. Finally, the bass spectrogram is converted to an
audio signal. To train the CNN model, we use a pairwise dataset consisting of guitar
feature representations and bass spectrograms.

2.1 Calculation of the spectrogram of the input sound source

The spectrogram is computed from a given guitar audio signal(and the bass source when
learning) using the short-time Fourier transform (STFT) after downsampled to 22050
Hz. The Hann window is used. The window size is set to 2048, and the hop size is set
to 1/1000 of the sampling frequency.

2.2 Feature extraction

We attempt three different feature representations:

– Spectrogram: The amplitude spectrogram obtained in Section 2.1 is used without
conversions.

– Mel-spectrogram: This is calculated from the spectrogram using Librosa.
– Chromagram: This is also calculated from the spectrogram using Librosa. The hop

size for the chromagram is set to 512.

Below, the models with a spectrogram, a mel-spectrogram, and a chromagram are called
the STFT model, Mel model, and Chroma model, respectively.
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2.3 Generation of bass spectrogram

The feature representation (spectrogram, mel-spectrogram, or chromagram) of the given
guitar signal is converted into a spectrogram of a bass performance using a CNN model,
because CNNs are widely used for analyzing spectrograms[6–11]. Our CNN model
(Figure 1) consists of convolution layers and deconvolution layers as follows:

Convolution layers For the STFT model, the convolution layers consist of:

– 1st layer: The frequency axis of the guitar’s feature representation is compressed to
one dimension. The input spectrogram of dimension 1025 × 500 (frequency axis:
1025, time axis: 500) is compressed to a 1× 500 matrix with a 1025× 1 filter.

– 2nd layer: The 1× 500 matrix is compressed to a 1× 250 with a 1× 2 filter.
– 3rd layer: The 1× 250 matrix is compressed to a 1× 50 with a 1× 5 filter.
– 4th and later layers: A 1 × 2 filter and a 1 × 5 filter are alternately applied until a
1× 5 matrix is obtained.

The number of filter channels in each layer is 1024. The stride is 1.No padding is used.
A ReLU function is used for the activation.

For the Mel model, the filter size for the 1st layer is 128×1 because the input matrix
size is 128× 500. Apart from this, the same configurations are used.

For the Chroma model, the following convolution layers are used:

– 1st layer: The 12× 22 chromagram is compressed to a 1× 22 (filter size: 12× 1).
– 2nd layer: The 1× 22 matrix is compressed to a 1× 11 matrix (filter size: 1× 2).
– 3rd layer: The 1× 11 matrix is compressed to a 1× 2 matrix (filter size: 1× 5).

Deconvolution layers The set of deconvolution layers generates a bass spectrogram
independently of the feature representation used for guitar signals. It consists of:

– Multiple decomposition layers with filter sizes of 1× 5 and 1× 2 are alternatively
applied. These layers converts a 1×5 matrix (a 1×2 matrix for the Chroma model)
to a 1× 500 matrix.

– After that, a deconvolution layer expanding the frequency axis is applied. This layer
has a filter size of 1025×1, which converts a 1×500 matrix to a 1025×500 matrix.
This matrix represents a bass spectrogram.

2.4 Generation of the bass’s audio signals

The audio signal of the bass part is obtained by using inverse Fourier transform and
phase restoration on the spectrogram generated from the CNN. The Griffin-Lim algo-
rithm is used for phase restoration. The number of iterations is 32, the window size is
2048, and the hop size is 1/1000 of the sampling frequency. To reduce impulsive noises,
we use harmonic percussive source separation (HPSS) because impulsive noises are
similar to percussive sounds.
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(a) For the STFT and Mel models

(b) For the Chroma model

Fig. 1. Architecture of the CNN model. The numbers above the rectangles represent the shape of
the data, and the numbers above the arrows represent the shape of the filter. Right-pointing arrows
indicate the convolution layer and left-pointing arrows indicate the inverse convolution layer.

3 Experiment

We conducted an experiment to confirm whether an appropriate bass sound can be gen-
erated in several conditions.

3.1 Dataset

We made MIDI sequences that consisted of the guitar chord performances and bass
lines using Cakewalk by BandLab. For simplicity, we only used four-bar chord pro-
gressions that consisted of one chord per measure. The guitar and bass performances
are a sequence of eighth notes (for the bass, root eighth notes). Those MIDI sequences
were converted to waveforms using software synthesizers (sforzando for the guitar and
SI-Bass Guitar for the bass, included in Cakewalk by BandLab). The tempo for all se-
quences was set to 120 BPM. Based on these criteria, 20 pairs of guitar and bass signals
were created. These pairs include those of the same chord progression but with different
voicings. An example is shown in Fig.2. Out of them, 10 were allocated for training and
10 for testing.

3.2 Experimental conditions

The following three conditions were set.
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Fig. 2. Examples of guitar and bass scores created
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Fig. 3. Condition 1: F0 of generated bass lines with the Chroma model and the ground truth (Left:
CDmEmD, the lowest accuracy; Right: EmAmFG, the highest accuracy)

Condition 1 The chord progressions or voicings are different between the training and
test data, but all conditions in generating audio signals are the same.

Condition 2 In addition to Condition 1, the acoustic features are different between
the training and test data. Specifically, a low-pass filter (setting: −3dB per octave
increase) was applied to the test data.

Condition 3 The training data were those described above, while the test data was a
recording of a performance by the first author on a real guitar. It was recorded using
M-Audio’s M-Track.

The generated bass signals were evaluated by calculating the ratio of correct frames.
When the difference of the fundamental frequency (F0) at each frame from the signal
given as the ground truth is lower than 50 cents, that frame is regarded as a correct
frame. This ratio is called accuracy here. We also calculated octave-ignored accuracy,
in which the difference of 1200 cents was considered correct.

3.3 Experimental results

The experimental results, listed in Table 1, can be summarized below1.

Experimental condition 1 The model with the highest average accuracy, both with
and without octave ignorance, was the Chroma model, and the model with the lowest
average accuracy was the Mel model. When the octave is not ignored, the Mel model

1 Audio samples are available at: https://sites.google.com/kthrlab.jp/
cmmr2023-kouzai
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Table 1. Accuracy and Octave-ignored accuracy for each test data

Condition Filename Accuracy Octave-ignored accuracy
STFT Mel Chroma STFT Mel Chroma

Condition1 A♯CDmEm voicing 0.37 0.32 0.66 0.55 0.65 0.83
EABmC♯m voicing 0.39 0.20 0.64 0.48 0.29 0.67
CDEmAm voicing 0.39 0.49 0.53 0.53 0.57 0.81
GABmD voicing 0.55 0.54 0.62 0.62 0.56 0.77

GCDEm 0.58 0.56 0.62 0.76 0.57 0.83
CDmEmDm 0.42 0.21 0.17 0.66 0.26 0.77

DmEmAmEm 0.57 0.40 0.32 0.65 0.40 0.84
EmAmFG 0.59 0.39 0.81 0.69 0.42 0.87
AmFGC 0.70 0.54 0.79 0.81 0.58 0.88

FAmGDm 0.58 0.35 0.63 0.69 0.38 0.90
Average 0.51 0.40 0.58 0.65 0.47 0.82

Condition2 A♯CDmEm voicing 0.29 0.26 0.58 0.53 0.58 0.78
EABmC♯m voicing 0.22 0.26 0.62 0.27 0.41 0.75
CDEmAm voicing 0.17 0.30 0.51 0.29 0.43 0.82
GABmD voicing 0.28 0.49 0.67 0.34 0.51 0.74

GCDEm 0.24 0.31 0.52 0.32 0.34 0.78
CDmEmDm 0.15 0.11 0.23 0.20 0.10 0.85

DmEmAmEm 0.23 0.17 0.22 0.27 0.18 0.85
EmAmFG 0.35 0.26 0.68 0.43 0.28 0.88
AmFGC 0.17 0.35 0.76 0.21 0.39 0.79

FAmGDm 0.41 0.42 0.58 0.43 0.46 0.83
Average 0.25 0.29 0.54 0.33 0.37 0.81

Condition3 CDEmAm Audio 0.20 0.09 0.35 0.21 0.11 0.69

The name of the test data represents the chord progression. The same chord progression used for
training, but with different voicing, was given ” voicing”.

had the lowest accuracy among the three models in 6 out of the 10 data. When the
octave is ignored, the Mel model had the lowest accuracy among the three models in 8
out of the 10 data.

Looking at Figure 3, which shows generated bass lines’ F0 with the highest and
lowest accuracy in the Chroma model, we can see that F0 is moving up and down.
This is because the estimated F0s often contain double-pitch errors. In fact, the octave-
ignored accuracy for these data is 0.77 and 0.6, respectively. For data containing three or
more minor chords, the STFT model showed higher accuracy than the Chroma model,
but again, the octave-ignored accuracy was high with the Chroma model.

Experimental condition 2 As in Condition 1, the model with the highest average
accuracy with and without octave ignorance was the Chroma model. Especially for
the Chroma model, the average accuracy was almost the same as for Condition 1. On
the other hand, the model with the lowest average accuracy with and without octaves
ignorance was the STFT model.
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Fig. 4. Condition 2: F0 of generated bass lines with the Chroma model and the ground truth (Left:
DmEmAmDm, the lowest accuracy; Right: AmFGC, the highest accuracy)

0 50 100 150 200 250 300 350
20

30

40

50

60

70

80

90

100

Estimated Fo
The ground truth
Predicted

0 50 100 150 200 250 300 350
20

30

40

50

60

70

80

90

100

Estimated Fo
The ground truth
Predicted

Fig. 5. Estimation of the fundamental frequency of CDEmAm audio in the lowest accuracy Mel
model and the highest accuracy Chroma model

Compared to Condition 1, the average accuracy for the STFT model dropped by
more than 0.2, while the average accuracy for the Chroma model did not drop as much.
This would be because the chromagram is a robust feature to timbral changes caused
by the low-pass filter. Compared to Condition 1, the accuracy for data with many minor
chords was lower for all models, especially for the STFT model; the accuracy dropped
to less than half of the accuracy in Condition 1.

Figure 4 showed that the F0 fluctuates less up and down than in Condition 1. In-
stead, for DmEmAmEm, the double pitch was stably estimated. This is why the octave-
ignored accuracy is high (0.85) while the accuracy is low (0.22).

Experimental condition 3 Although the accuracy was lower than in conditions 1 and
2, the model with the highest accuracy was the Chroma model, while the model with
the lowest accuracy was the Mel model. The Mel model generated no harmonic tone in
the first two measures. Because there were no harmonic tones, the F0 estimator showed
erroneous values, as shown in Figure 5. This is why this model showed the lowest
accuracy. With the Chroma model, bass-like harmonic tones were generated but were
slightly distorted. This distortion caused double-pitch errors in F0 estimation; in fact,
the accuracy and octave-ignored accuracy had a large difference.
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4 Conclusion

In this paper, we proposed a method for generating bass signals from given guitar sig-
nals using a convolutional neural network. The experimental results show that the accu-
racy of the model using the chromagram is the best in all conditions, while the accuracy
of the model using the mel-spectrogram and STFT is considerably low for guitar signals
with a low-pass filter.

However, these models have been tested only with simple bass lines that consist
of only root notes. To enable to generate more complex bass lines, the models need to
learn various bass lines, ranging from rhythmic to melodious ones, played in real songs.
To achieve this, we must consider longer contexts in the models. Therefore, we would
like to extend our models, for example by increasing context layers.
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Abstract. This paper presents a music generation model trained with Bach’s
chorales and classical music theory rules. Although previous work has shown
promising results in generating the four-part harmony, one of the limitations is the
frequent appearance of parallel 5th or 8th, which are prohibited in music theory
and rarely used in Bach’s chorale. To address this issue, we propose an additional
loss that minimizes the probability of prohibited patterns, comparing the results
with those from inference using a post-hoc probability manipulation to prevent
parallel 5th and 8th. The experimental result shows that applying the proposed
loss term can help to reduce parallel motion without losing other quality.

Keywords: Music generation, Bach chorale, Domain knowledge injection

1 Introduction

Music generation is a fascinating research topic that has received much attention for
centuries. From W.A. Mozart’s Musikalisches Würfelspiel (musical dice game), there
have been several works conducted in a rule-based approach, such as David Cope’s
Experiments in Musical Intelligence [1]. Since the success of deep learning, however,
data-driven approaches using neural networks have been dominating the music genera-
tion. Especially, several Bach chorale generation models have shown promising results
[2, 3]. However, previous works [4, 5] pointed out that these models tend to generate
note patterns that were avoided by Bach, such as parallel 5th and 8th, which are shown
in Figure 1. Fang et al. showed that these parallel 5th and 8th patterns are the most
distinctive characteristics to distinguish the model’s generation from Bach’s original
chorales [5].

It is not surprising that the data-driven model could generate prohibited patterns,
because most music generation models, including language-modeling-based, use like-
lihood maximization for the training objective; models only learn the pattern that exists
in the training dataset. Therefore, this training strategy is not effective in teaching the
model what patterns to avoid.

In this context, we raise three research questions. First, how can we inject music
domain knowledge or rules into the data-driven generation model? Second, how can we

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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Fig. 1. Example of parallel 5th in four voice chorale. The highlighted notes are intentionally
manipulated to demonstrate parallel 5th, which are rare in Bach’s original chorale.

teach the generation model to recognize the absence of something rather than its pres-
ence? Third, can we improve the generation model performance using music theory?

To address this issue, we propose a novel musically-informed loss term for training
a music generation model. We compared the experimental results with the JS Fake
Chorale dataset [6]. Generated music samples are available on the online webpage. 3

2 Related Works

2.1 Deep Music Generation with Domain Knowledge

While early deep learning-based music generation studies were conducted by bringing
models from computer vision [7] or natural language processing (NLP) [8, 9] domains,
there are an increasing number of music generation models inspired by intuition from
music domain. We have summarized these cases into two main groups. One group fo-
cuses on the structure and repetition of music defined as a unit of pattern such as theme
[10], loop [11], bar relations [12], skeleton [13], or hierarchical structure [14], and ex-
tracted the unit with a rule-based approach and utilized it for modeling, or focused
on modeling the structure of music using hierarchical encoding methods [15–17]. The
other group utilizes intuition from music domain knowledge to suggest novel music
generation system paradigms: non-unidirectional music generation system suggested
by Coconet [3], and BERT-based music generation system [18, 19], combinatorial mu-
sic generation system [20], harmonic expectation-based music harmonization system
[21].

3 https://bit.ly/3LMajEK
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To the best of our knowledge, so far there have been no (or few) studies that have
used music theory directly in the training procedure of deep learning-based music gen-
eration. We conjecture that it is not necessary to follow the rules strictly unless it is
classical music, and the stricter the rules we impose on the model, the less diverse the
music produced. Rather, studies indirectly utilize some music knowledge by steering
models to learn specific features of music.

[22] proposed a contrastive loss that steers a music transformer to have arbitrary
logical music features. Studies on the disentanglement of latent representation [23, 24]
proposed models to learn specific music features in certain latent dimensions, which
can be useful to steer the model in a controllable way. Studies that focus on the chord-
conditioned music generation [25, 26] could be an example that uses music theory
in a music generation as well. However, as we noted in the introduction section, the
likelihood-based models ended up rarely generating notes prohibited in music theory.
In this context, our approach has novelty in that it uses music knowledge directly in
the model training scheme so that the model could learn to avoid prohibited patterns
according to music theory.

2.2 Bach Chorale Generation

As a representative corpus of Western classical polyphonic music, Bach’s chorale has
been widely adopted for music generation research. Among many, we introduce previ-
ous deep learning-based approaches to Bach chorale. BachBot [27] is one of the earliest
examples of success in modeling Bach chorale with the deep neural network, or long
short-term memory (LSTM) more specifically. BachBot uses 16th-grid sampling, along
with additional tokens for time grid delimiter. Fermata, which plays a critical role in
notating the phrase boundary in Bach’s chorale, was also considered as an additional
token in BachBot.

DeepBach [2] proposed to apply pseudo-Gibbs sampling instead of generating the
music in sequential order. While DeepBach used LSTM as a main neural network block,
CocoNet [3] applied a convolutional neural network using similar ideas of applying
Gibbs sampling. The model was employed as a backbone to serve Google’s first AI-
powered doodle, Bach doodle, which generates Bach-like harmonization for a user’s
input melody.

Another recently proposed model, TonicNet[28], is closer to BachBot in the sense
that it uses the 16th-grid sampling with ancestral sampling. Here, the author proposed
a feature-rich encoding scheme, such as a number of sustain counts for each voice and
adding a chord token at the head of each time frame. The author later proposed the JS
fake Chorale [6], a dataset of machine-generated chorales, even though an explanation
of the model used for the generation was not provided along.

The frequent appearance of parallel 5th and 8th is considered as a problem with
deep learning-based Bach chorales generation. However, no previous research has made
a direct attempt to reduce the parallel motions of the generated chorale. This paper
suggests a novel loss function that directly prohibits parallel motion.
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3 Methods

3.1 Problem Formulation

In ordinary language modeling, the problem can be defined as modeling the probability
distribution of the next token for given previous tokens, such as P (xt+1|x0, . . . xt).
However, in the symbolic music generation, one can provide more information about
the current time step before predicting the token, such as a beat position or which voice
the current token has to belong to. We can group this information as a condition c and
formulate the music language modeling as Equation 1

P (xt|x0, . . . , xt−1, c0, . . . , ct) (1)

where xt and ct represents a predicting token and a condition token of timestep t, re-
spectively. During the inference, c can be calculated by a rule-based approach for every
timestep. Since the condition of the current time step is given explicitly, the model does
not have to implicitly predict the information, such as to which beat the current time
step belongs. While providing the condition also can be done synchronously with the
predicting token xt, separating the ct from xt−1 has several advantages. Even though ct
is easily predictable for a given ct−1 in many cases, there are some exceptional cases,
such as measure boundary with different time signatures. If we notate the offset of the
current time step from measure starting in the sixteenth notes, the next offset for 11 is
0 for time signature 3/4 and 12 for time signature 4/4. By providing ct instead of ct−1,
we can eliminate this type of ambiguity.

While any causal model, such as a transformer decoder, can be used for this task, we
used a stack of uni-directional GRU as our model. We also tried a stack of transformer
decoder module, but the result was not better than GRU.

3.2 Data Representation

Following the previous works on Bach chorales generation [2, 27, 28], we use 16th-
grid sampling so that a single bar of 4/4 time signature is represented with sixteen-time
frames. A single voice is represented as a sequence of F -dimensional tokens v ∈ ZT×F ,
where T represents the number of total time frames and F represents the number of
features. Thus, an entire four-voice chorale can be represented as c ∈ Z(T×4)×F and
this flattened voices as (S, A, T, B)-repeated order was fed to the GRU model.

To extract metadata such as the number of sharp in the key signature and time sig-
nature, we used the music21 [29] library. Analyzing the major minor tonality was done
using the Krumhansl-Schmuckler key-finding algorithm [30] in music21. For pitch rep-
resentation, we adapted a sustain token for representing the same repetitive pitch with-
out onset, following [2]. The selected features we used are described in Table 1. Besides
the features in Table 1, we also considered the tonality(major or minor), num beat in 3/4
or 4/4 time, voice index of current time step, the recent previous MIDI pitch value of
current voice, the number of time step current voice sustained, beat distance from last
fermata, and remaining number of fermata. However, our preliminary ablation study
showed that using Pitch, Fermata, Beat position, Beat strength, and Num sharp in key
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Feature Description Type
Pitch MIDI pitch value of current time step I & O

Fermata 1 when the fermata starts at current time step, 0 otherwise I & O
Beat position Beat position in sixteenth note grid (0 - 15 for 4/4) I
Beat strength Beat strength in sixteenth note grid I

Num sharp in key The number of [-flats/+sharps] in key signature. I

(PFBBN) was most effective in modeling Bach-like music for our generation model.
Therefore, we used PFBBN as a default encoding scheme of experiments in this paper.

It’s important to highlight that the dimensions of our input and output features
differ in our study. For our input, we utilized all the features previously described.
However, for our output feature, xt, which the model is tasked with predicting, we
only incorporated pitch and fermata. The features that aren’t predicted, ct are initially
fed into the model shifted to the left by one step so that xt−1 and ct are concate-
nated together. This allows the model to anticipate the subsequent token xt based on
(x0, x1, . . . , xt−1, c0, c1, . . . , ct). During the inference process, ct+1 was obtained us-
ing a rule-based approach. For the initial condition token c0, we derived it from the
pre-established distribution for each feature across the entire dataset.

3.3 Pitch Onset Loss

As we used note sustain as an independent token, we found that this sustain token
appears 2.5 times more often than note onset, or change of pitch in the dataset. This can
lead the model to predict sustain too frequently, as this single token occupies 70 % of
entire pitch values. Therefore, we additionally imposed pitch onset loss, a pitch loss of
a time step where onset exists, to enforce the model to focus more on the note onset
and not hold the same pitch too much time during inference. The onset boolean can be
represented as o ∈ {0, 1}T for a single voice v ∈ ZT×F , where ot = 1 if the voice
has a note onset at time frame t and otherwise ot = 0. The pitch onset loss Lpo can be
represented as an equation below.

Lpo =
1

T

∑
t

ot · (− log ŷt) (2)

3.4 Loss Function Design According to Music Theory

Parallel Prohibition Loss We designed a loss function that penalizes parallel 5th and
parallel 8th, which imitates one of the most marked rules for composing counterpoint.
Even though we can also penalize concealed 5th and 8th along with the parallel, we only
focus on the parallel error in this work. To force the model to avoid these prohibited
patterns, our system calculates prohibition matrix Pr for a given preceding voice v ∈
ZT×F and the following voice w ∈ ZT×F using a rule-based algorithm. The result can
be denoted as Prv,w ∈ {0, 1}T×P , where T and P represent the number of time frames
and total note pitch in the vocabulary, respectively.

Table 1. List of considered features for note encoding.
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The prohibited pitches f(p, q, t) at time t for a sequence of MIDI pitch for voice, q ∈
NT , for a sequence of MIDI pitch for the preceding voice, p ∈ NT , can be represented
as below:

f(p, q, t) =


qt−1 + (pt − pt−1) if |pt−1 − qt−1| ≡ 7 or 0(mod12)

and pt−1 ̸= pt and qt ̸= pt − pt−1 + qt−1

0 else
(3)

We intentionally did not prohibit the parallel progression that actually occurred in
training set for two primary reasons. Firstly, there are instances where Bach himself did
not adhere to the prohibition rule. Secondly, the log-likelihood loss and the prohibit loss
directly conflict with each other. While the log-likelihood loss seeks to maximize the
probability of a particular note, the prohibition loss aims to minimize the probability of
that very same note. Therefore, we did not apply the prohibition rule in these cases.

Using f(p, q, t), the piano-roll-like prohibition matrix Prv,w ∈ {0, 1}T×P for the
voice w and its preceding voice v, can be represented as Equation 4.

Prv,w[n, t] =

{
1 if f(v, w, t) = n

0 else
(4)

The integrated Pri, the prohibition matrix for i-th voice for every preceding voice,
can be represented as Equation 5, where ui represents a sequence of features for i-th
voice. For example, if the voice order is soprano, alto, tenor, and bass, u0 is soprano,
and u3 is bass.

Pri =
i−1∑
j

Pruj ,ui
(5)

After the language model predicts the shifted events, we calculated the prohibition
loss Lphb, the cross entropy loss between the predicted pitch token probabilities ŷ ∈
(0, 1)T×P and the prohibit matrix Pr, which can be represented as an equation below:

Lphb = − 1

T

∑
t

Pr[t] · (log(1− ŷαt )) (6)

where α is a hyperparameter, which helps to preserve loss and gradient for small ŷ.
In our experiment, we used α = 0.5. Minimizing Lphb forces ŷ to be close to zero in
the case of prohibited pitches. We have also tested to maximize − log(ŷ), but this often
results in unstable training since the gradient explodes around log(0).

Our final loss function is formulated as follows:

Ltotal = LLM + λphb · Lphb + λpo · Lpo (7)

where LLM is Cross Entropy loss between predicted pitch and fermata tokens and tar-
get, Lphb and Lpo are prohibited and pitch onset loss, and λphb and λpo are weights for
prohibit and pitch onset loss. We applied weight annealing for λphb, so that λphb = 0
for the first 10% of iteration, and apply sigmoid annealing, so that the prohibition loss
is gradually applied after the training becomes stable.
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Rule-based Parallel Masking To compare the effectiveness of applying parallel pro-
hibition loss, we also tested a rule-based parallel masking that avoids parallel progress
during inference. Using a similar approach in Equation 3, we calculated the possible
prohibited pitch for every step of the autoregressive inference. While we only prohib-
ited parallel progression with exactly the same interval in the prohibited pitch during
the training, we prohibited every possible pitch across the entire octave that makes the
same 5th or 8th interval as a pitch class during the inference so that we could achieve
zero parallel errors in the evaluation metric.

4 Experiments

In this section, we describe the experiment to investigate the effect of our suggested
prohibit loss and pitch onset loss terms.

4.1 Dataset

For the train and validation dataset, we used 366 Chorales of Johann Sebastian Bach,
which are provided in the format of Humdrum kern [31]. The data provides note infor-
mation of each of the four voices, including the fermata symbol.

4.2 Experiment Setting

We split the dataset as 9:1 for the train and validation dataset. For the model, we used
a 4-layer GRU model with a hidden size of 512 and a dropout rate of 0.2. For the
hyperparameter, we used batch size 8, Adam optimizer with learning rate 1e-3, and Step
LR scheduler with step size 2k and gamma 0.8. Since the model normally converges
within 30k steps, we used 30k steps to train the model. For the embedding size of
used features, the default feature embedding size is 512 and all features have a feature
dimension ratio of 0.1 of the default feature embedding size, which corresponds to
51. As the pitch feature is the most important feature, we used dimension ratio 0.75
for the pitch, which makes 384 dimensions. The embeddings from each feature are all
concatenated, forming a total of 588 dimensions.

4.3 Evaluation Metric

Since we change loss weight with different values, total validation loss values are not
directly comparable to evaluate the model performance. Therefore, for evaluation, we
used the metric suggested by [5], which calculates Wasserstein distance of distribution
of generated note, rhythm, parallel errors, harmonic quality, intervals of each voice (S,
A, T, B), repeated sequence, and overall grade values compared to the Bach’s original
chorale dataset. To compare with the previous works, we evaluate our suggested model
with JS Fake Chorale Dataset [6].

The original implementation of the metric [5] distinguishes enharmonic like C\ and
DZ, which are encoded in the same MIDI pitch. MIDI files generated from our proposed
method or from JS Fake Chorale get severe distortion when converted by music21 in
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the evaluation code. For example, MIDI pitch from 64 to 63 can be encoded either E4
to D\3 (minor second) or E4 to EZ4 (augmented first). If this interval is interpreted
as E4 to EZ4 by music21, this makes a large error in Wasserstein distance because
Bach’s original chorale corpus uses a lot of minor seconds but not augmented first.
Therefore, we modified the code to use interval and note pitch classes in MIDI pitch,
not distinguishing enharmonic notes. Note that we calculated the distribution of each
feature in the Bach chorale corpus based on the dataset from [31], which is slightly
different from the one used in [5].

Table 2. Experiment results for suggested losses. PE: parallel error, HQ: harmonic quality, B
Intervals: bass intervals, RS: repeated sequence. Lower values mean better chorales. Here, the
first row means using only PFBBN feature. Bold values are minimum values among our model
conditions.

Conditions Metrics
Lphb Masking Lpo Note Rhythm PE HQ B Intervals RS Grade
× × × 0.30 (0.16) 0.22 (0.16) 0.94 (2.39) 0.62 (0.38) 0.42 (0.21) 1.38 (0.93) 4.77 (2.76)
√ × × 0.30 (0.17) 0.22 (0.15) 0.74 (1.77) 0.63 (0.41) 0.41 (0.23) 1.38 (0.91) 4.58 (2.28)
× √ × 0.31 (0.20) 0.23 (0.12) 0.0 (0.0) 0.65 (0.38) 0.54 (0.33) 1.52 (2.11) 4.19 (2.47)
√ √ × 0.36 (0.23) 0.21 (0.10) 0.0 (0.0) 0.69 (0.39) 0.68 (0.42) 1.40 (0.77) 4.25 (1.31)
× × 0.2 0.29 (0.16) 0.21 (0.09) 1.00 (2.60) 0.61 (0.36) 0.41 (0.19) 1.30 (0.81) 4.72 (2.94)
× × 0.5 0.31 (0.18) 0.21 (0.14) 0.67 (1.56) 0.61 (0.36) 0.40 (0.19) 1.33 (0.86) 4.42 (1.94)
× × 1.0 0.30 (0.17) 0.20 (0.11) 0.76 (2.24) 0.59 (0.37) 0.40 (0.19) 1.26 (0.61) 4.40 (2.43)
× × 2.0 0.31 (0.17) 0.21 (0.10) 0.69 (1.86) 0.61 (0.37) 0.40 (0.20) 1.33 (0.72) 4.46 (2.27)
√ × 1.0 0.31 (0.18) 0.20 (0.09) 0.52 (1.3) 0.63 (0.42) 0.40 (0.20) 1.28 (0.63) 4.27 (1.61)

Bach [31] 0.27 (0.15) 0.25 (0.16) 0.30 (0.88) 0.57 (0.32) 0.40 (0.21) 1.43 (0.92) 4.14 (1.60)
JS Fake [6] 0.29 (0.14) 0.17 (0.07) 3.91 (4.01) 1.03 (0.77) 0.37 (0.16) 1.12 (0.40) 7.73 (4.43)

4.4 Effect of Losses

To investigate whether the suggested loss terms are effective, we conducted an ablation
study of prohibition loss and pitch onset loss. As we mentioned earlier, we selected
PFBBN as the baseline to apply the loss. Since the voice intervals except bass (S, A, T)
are not significantly different among the conditions, we omit the column in the result
table 2.

For prohibition loss, we experimented with λphb = 1k, which yields the lowest par-
allel error in our preliminary experiment. Rule-based parallel masking was also com-
pared with the condition using λphb. Similarly, we tested the effect of the pitch onset
loss with λpo = 0, 0.2, 0.5, 1.0, 2.0. The results are shown in Table 2. The result shows
that parallel prohibition loss helped to reduce parallel errors but could not completely
avoid them. This is also partially due to the fact that the training data itself does not per-
fectly exclude parallel motion. For the pitch onset loss experiment, we found that using
λpo = 1.0 results in the best performance for most of the metrics. The combination of
prohibition loss and the pitch onset loss showed the best performance, which is nearly
similar to the metric of Bach’s original corpus.
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Table 2 reveals that our rule-based masking method can effectively eliminate par-
allel errors during inference. However, this approach also resulted in a degradation of
the metric for harmonic quality or bass intervals, as the model must sample lower-
probability pitches to avoid producing parallel fifths. The most significant impact is
observed in the Wasserstein distance of the bass interval, as the bass voice is influenced
by three preceding voices, resulting in a more densely constrained inference process.
Therefore, rule-based hard masking has to be carefully considered.

5 Conclusion

In this paper, we suggested a music theory-based novel loss term and applied it to
the Bach chorale generation. Using the previously suggested quantitative evaluation
metric, we showed that the model can generate chorales in quality that follow a similar
distribution of musical characteristics as Bach’s corpus. We found that the suggested
loss terms could improve the sample quality of generated chorale in terms of parallel
errors, which was one of the main critical limitations of previous chorale generation
models.

For further study, we will continue investigating the effect of voice order and pitch
augmentation to improve the generated sample quality. Also, we can apply other well-
known prohibitions such as concealed fifth and voice crossing into our prohibit loss
term. Although our current work only studied hard prohibition (strict prohibition), soft
prohibition is another topic of imposing the rule to the model.
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Abstract. In any piano performance, expressiveness is paramount for effectively
conveying the intent of the performer, and one of the most significant aspects
of expressiveness is the loudness at the individual key or note level. However,
accurately detecting note-level loudness poses a considerable technical challenge
due to the polyphonic nature of piano performances, wherein multiple notes are
played simultaneously, as well as the similarity of harmonic elements.
MIDI velocity is crucial for indicating loudness in piano notes. This study con-
ducted experiments for estimating a note-level MIDI velocity expanding the DiffRoll
model: the Diffusion Model for piano performance transcription. By adopting
double conditioning—audio and score information—and implementing noise re-
moval as a post-processing, our findings highlight the model’s potential in esti-
mating note level MIDI velocity.

Keywords: MIDI Velocity Estimation, Diffusion Model, Conditioned Deep Neu-
ral Network, FiLM Conditioning

1 Introduction

The assessment of piano performance can be attributed to three key factors, namely
loudness, rhythm, and accurate key strokes [1]. Owing to the polyphonic nature of piano
performances, multiple auditory streams coexist, such as melody line and accompani-
ment. This intricate aspect allows for enhanced distinguishability in the interpretations
of expert pianists [2]. The expressiveness of a musical piece is significantly influenced
by the series of loudness values associated with each note in the score, which contribute
to the dynamic alterations throughout the composition [3].

Within the realm of music education, research has demonstrated the effectiveness
of utilizing visual feedback in enhancing students’ abilities [4, 5]. In this regard, the
comprehension and management of loudness become especially significant [1] when

⋆ This research was carried out under the project Musical AI - PID2019- 111403GB-
I00/AEI/10.13039/501100011033, funded by the Spanish Ministerio de Ciencia e Innovación
and the Agencia Estatal de Investigación.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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it is visualised. The employment of techniques for estimating and visualizing loudness
fulfills the crucial system requirement, enabling the provision of valuable feedback to
learners.

[8,9,12] researched mapping from perceptual loudness value in dB scale to dynamic
symbols for piano performance such as forte, mezzoforte, piano, pianissimo, crescendo,
etc. Note that using MIDI velocity, we predict loudness at a lower granularity, i.e. finer
scale than the dynamic markings which are explicitly written in most of music scores
and indicate how loud the piece should be played. Furthermore, each note in a piano per-
formance may have a different loudness depending on the texture of the music [11,14].
Therefore, the note-level loudness itself has special meaning in piano performance,
considering its polyphonic characteristics.

To prevent ambiguity, we use the term ”loudness” to denote the combined MIDI
velocities within a specific time frame as measured by an electronic piano device. On
the other hand, ”intensity” refers to the maximum value of the frequency sum for a note
frame, as defined in [15]. It is essential to recognize that MIDI velocity does not have a
direct correlation with loudness as experienced by the human auditory system. Studies
have been conducted to explore the relationship between MIDI velocity and loudness
measured in decibels (dB) [30]. While the research demonstrates a consistent increase
in perceived loudness (in dB) with increasing MIDI velocity, it also reveals that this
relationship is non-linear [13].

Since this research aims to detect MIDI velocity on each note performed, auto-
matic piano performance transcription is a closely related area for this purpose. Piano
performance transcription is also an actively researched topic [10, 23, 24]. However,
these studies primarily focus on detecting individual notes, rather than note loudness
or dynamic symbols in a score. Additionally, the transcription process is not yet fully
accurate and reproducible of performance.

Several studies have explored the note-level loudness estimation task [6, 15–18].
These researchers employed NMF and DNN methods to isolate piano performance au-
dio into 88 distinct keys and estimated MIDI velocity or intensity for each note. We con-
sider this area of research as an application of Automatic Music Transcription (AMT)
and to be applied to expressiveness performance modeling. The piano note-level MIDI
velocity estimation task involves solving a two-fold problem. One aspect is a regression
problem, requiring the estimation of numbers within the 0-127 range for MIDI veloc-
ity. The other issue is audio classification, which involves sorting audio into each piano
key, typically consisting of 88 keys. To address these challenges, we propose the DiffVel
as an expansion of DiffRoll [7], a diffusion model for AMT, and Feature-wise Linear
Modulation (FiLM) conditioning layers [20] to incorporate score information into the
DNN. We conducted experiments to estimate the MIDI velocity using this approach.

2 Related Work

2.1 Automatic Music Transcription

The piano performance transcription is one of the closest problems for classification
from audio input. [29] proposed a CNN-GRU combined acoustic model which branches
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into four outputs: velocity regression, onset, offset, and note frame estimation. The note
frame estimation is the final goal of this model and the other three estimations are
gathered as input to another acoustic model to estimate the notes at the frame level.
Therefore, the estimated MIDI velocity regression is not evaluated in the paper since it
is out of the scope.

Recently, diffusion models have been explored as an alternative approach. Dif-
fWave, a state-of-the-art generative model for audio synthesis, leverages the diffusion
probabilistic framework and exhibits remarkable capabilities in generating high-quality
audio samples from various sources. The core idea behind DiffWave involves employ-
ing a series of de-noising score matching steps, iteratively refining the generated audio
samples to achieve accurate and precise output. Building upon DiffWave, DiffRoll has
been researched [7]. DiffRoll expands DiffWave into a two-dimensional representa-
tion of sound and output, taking Mel Spectrogram as a condition and forming the two-
dimensional Gaussian noise input into MIDI roll. The generative model’s characteris-
tics offer considerable potential to simultaneously address classification and regression
problems by tuning conditions. Exploring conditions with not only one but also multi-
ple conditions would contribute to estimating MIDI velocity more accurately. However,
the model disregards velocity estimation in the model evaluation.

For conditioning, existing research utilizes score information to inform musical in-
strument separation in polyphonic music [19, 21, 28]. These works employ score or
video information to enhance source separation results by creating an additional neural
network to extract features from the supplementary data, which are then fed into the
original DNN.

2.2 Feature-wise Linear Modulation (FiLM)

In this paper, we utilized the FiLM conditioning [20] to insert score information in order
to estimate note-level MIDI velocity for piano performance. FiLM conditioning is used
in the image processing area and has gained improved results on object detection [20].
In previous research, natural language is used as an external condition to indicate the
existence of target objects to be detected. This idea has been applied to audio source
separation tasks by conditioning audio with video and score information [28].

The FiLM comprises a set of neural network layers that generate an affine transfor-
mation for a given input layer in a neural network. It consists of a base DNN which is
trained in a supervised fashion and a condition generator which takes conditions such
as score as input and generates β and γ to make an element-wise affine transformation
in the latent space of the base DNN. In the math formula, it is described as follows;

FiLM(x) = γ(z) · x+ β(z) (1)

where vector z is a conditional vector.
The Figure 1 shows the architecture of FiLM conditioning. This condition embed-

ding model generates parameters, β and γ, to make an affine transformation on the
latent vector x from the base DNN.
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Fig. 1. The diagram illustrates the operation flow for inserting a FiLM condition into a latent
vector

2.3 Note Level MIDI Velocity Estimation with Score Information

Only three papers have considered note-level MIDI velocity in music performance, em-
ploying NMF [15,18] and DNN methods [6]. NMF methods have been used for source
separation problems and effectively applied to music source separation as well [22]. [15]
examined an NMF method with score information to estimate note-level intensity be-
fore creating a linear regression model to obtain note-level MIDI velocity estimation.
This research provided a detailed analysis of NMF method errors and their causes.
The DNN method attempted to address the estimation problem by applying the AMT
method and score conditioning. The DNN architecture involves stacking convolution
blocks and GRU block and inserting a FiLM conditioning generated by a fully con-
nected linear layer. Although it did not surpass the results of the NMF method, it was
the first attempt to estimate MIDI velocity using a DNN method and to generalize the
model for unseen classical music inputs, as opposed to the NMF method which op-
timizes parameters for each test data. [16] aimed to estimate the note level intensity,
rather than MIDI velocity, from the spectrogram by filtering it according to the fre-
quency of each note.

In our study, we compare our results with the NMF method proposed in [15] and
the DNN method [6] as our benchmark.

3 Method

There are two models experimented in this study: the diffusion models with and with-
out score information by FiLM conditioning. The entire architecture is based on the
DiffRoll model and the conditions, Mel Spectrogram and score, are inserted as an ex-
pansion. We used the MIDI velocity data on note frame level as supervised data for
training for both models. Score information is represented in a note frame roll in the
MIDI roll.
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For the training data, we used the Maestro dataset [26]. The data segmentation is
20 seconds, and the number of data frames is 31 in one second. Therefore, each output
from the models is a (620, 88) matrix containing onset, offset, and velocity information.

3.1 Model Architecture

The simplified overall model architecture is illustrated in Figure 2. In the diffusion
model, each residual layer takes the conditions. The Mel Spectrogram transformed from
input audio is added as another condition to each residual layer before the FiLM condi-
tional vector insertion.

For the purpose of inserting the score information, we also added a FiLM condition-
ing layer as it is introduced in Section 2. We have tested the element-wise operations
for multiplication and addition. However, the scalar multiplication and addition gave
us better results. The FiLM generator is designed as a fully connected layer to gener-
ate conditioning parameters, and it is inserted after Mel Spectrum conditioning in each
residual layer, i.e. the generated conditional vectors are sliced for each residual layer
for the affine transformation.

For the parameter setup for DiffVel, the original setup is employed from DiffRoll:
15 residual layers, sampling rate 16000Hz, the hop size 512, the drop rate 0 to be fully
supervised learning fashion, and the convolutional kernel size 9 for the residual lay-
ers. The loss function is L2 (mean square error) loss for the entire data segment, not
note-level MIDI velocity error. We have tried Binary Cross Entropy (BCE) for better
classification and L1 loss for MIDI velocity estimation. However, they did not work
well in this diffusion model setup. Due to the limitation of computational resources, the
epoch is stopped at 2000 for each training.

In the task of MIDI velocity estimation, which aims to get a number as value from
the output, dealing with the input Gaussian noise is crucial. When the Gaussian noise is
generated, it has a mean value of 0 and variance of 1. The diffusion step to denoise the
Gaussian noise is set to 200 steps. However this noise is not perfectly removed after the
diffusion steps and we need to perform denoising to each output by the post-processing.

During the post-processing, Gaussian noise removal is performed, which remained
after the diffusion steps. This remainder causes a problem that it is considered as veloc-
ity during the evaluation process and causes 100% of the recall score and its note level
estimation error is calculated high since the error is calculated where the note is not
actually detected by the model. In this research, velocity estimation evaluation is made
only on correctly detected notes. This evaluation constraint is applied to the other two
models to be compared, the DNN [6] and NMF [15] models.

In order to remove the remaining noise, three methods are considered; one is to in-
crease the diffusion steps since each step of diffusion step reduces the Gaussian noise.
The second way is using a post-processing method employed by SegDiff, which av-
erages the output from multiple inferences [25], at the expense of computational re-
sources. However, these methods were not chosen due to the limitation of computational
resources. In the process of removing the remaining Gaussian noise in the output, we
calculated the distribution where the note does not exist in the ground truth score and
defined a threshold to set output value 0. More precisely, a right Z-score is set based
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Fig. 2. The simplified overall process (right) and the detailed condition insertion into each residual
layer (left)
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on the distribution in order to find a threshold to set the output value to 0. Z-score is a
number derived by following equation;

Z =
x− µ

σ
(2)

where x is observed value, µ and σ are mean and standard deviation of all output values
for each score.

The reason why the right Z-scores is chosen, rather than taking the highest value in
the area where the note does not exist in the ground truth, is that there are wrongly de-
tected extra notes which have proper values to represent a MIDI velocity. These values
are considered above the Z-score in the distribution of the remaining noise and do not
affect the correctly detected values during the post-processing by not setting them to 0.

After removing the remaining Gaussian noise, we normalized the output to be in the
range [0, 1] looking at entire output value of each excerpt, not just for each output, and
then scaled back to [0, 127].

3.2 Evaluation

For testing purposes, we used the Saarland Music Data (SMD) dataset [27], which is
also used for testing in previous researches [6, 15]. The dataset consists of students’
piano performances, both audio data and MIDI data, which are perfectly aligned. The
amount of data includes 50 classical piano excerpts, performed on Yamaha Disklavier.
The original sampling frequency is 44.1kHz and down-sampled to 16kHz. We chose 49
excerpts from this dataset which are used in the score-informed NMF method by [15].

The model evaluation is made by taking an L1 distance of MIDI velocities for each
note between ground truth and inference by the models, similarly to the previous re-
search [15].

Error =

∑
i|V (i)ground truth − V (i)inference|

N

(3)

where i is each note and N is the number of correctly detected notes in the score.
The inferred MIDI velocity is the maximum value within the interval of each de-

tected and classified velocity frame against the ground truth velocity frame for each
note. This is because the detected velocity tends to fade after having the maximum
value in the estimated MIDI velocity in a note frame as if depicting attack and fades of
loudness of each note.

To evaluate the classification accuracy, recall score is chosen as the evaluation met-
ric. This is because the estimation is masked by the given score, and recall is considered
as the most appropriate evaluation metric for this classification problem when score is
informed, as it takes into account both true positive and false negative. It measures the
proportion of the total actual positive cases that are correctly identified by the classifier.

In this study, only correctly detected notes are evaluated, since we separate the MIDI
velocity estimation accuracy and note detection accuracy as different research problem
statements; the AMT and the MIDI velocity estimation as mentioned in the Section 2.
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4 Results and Analysis

As we can see from the Table 1, FiLM conditioning to incorporate score information
helped the estimation accuracy among the two models we have tested. The results show
that FiLM conditioning improved MIDI velocity estimation but did not help with note
detection for any setup. The result represents all note-wise errors inferred on the SMD
dataset.

In terms of Gaussian noise removal, the right Z-score = 3 improved the overall
accuracy significantly by sorting output values to correctly detected notes and the re-
maining noise after the diffusion steps. When post-processing is not performed and the
noise remains, the evaluation method considers MIDI velocity detected and recall score
is always 100%.

Single Conditioning Double Conditioning with Score

Z-score Mean SD Recall Mean SD Recall

Raw Output 32.8 20.5 100% 28.6 19.2 100%

1 24.7 16.7 60% 21.0 14.5 56%

2 24.0 16.1 58% 20.2 13.6 54%

3 23.7 15.8 56% 19.7 13.1 53%
Table 1. The mean and standard deviation (SD) of the MIDI velocity estimation error for the
models are based on Z-score for noise removal

The Figure 4 shows an example of the remaining Gaussian noise removal. The pale
red color shown in the raw output is the remaining Gaussian noise from the input to the
model, and setting Z-score determines the threshold to set the value to zero, attempting
not to touch the detected notes. It can be intuitively seen that the remaining noise is
removed without changing the value of the detected note velocities based on Z-score
values.

Proposed Model Conv-FiLM with Score [6] NMF with Score [15]

Mean SD Mean SD Mean SD

19.7 13.1 15.1 12.3 4.1 5
Table 2. The comparison of results for the proposed model and previous research

We also compared the results to the previous models that have the same setup:
a score-informed MIDI velocity estimation task. The Table 2 displays the mean and
standard deviation (SD) values for proposed and previously researched models. The
proposed model exhibited a mean value of 19.7 and an SD of 13.1, indicating the poor-
est performance among the three methods. In contrast, the Conv-FiLM DNN with Score
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Fig. 3. The visualization and comparison of Gaussian noise removal for raw output and after
removal are based on Z-score = 1, 2 and 3.

approach achieved a mean of 15.1 and an SD of 12.3, while the NMF with score method
demonstrated the best performance with the lowest mean and SD values, at 4.1 and 5,
respectively. Although the proposed model currently underperforms compared to the
other models, it is important to note that the difference between their mean values is not
substantial and we do not know significance in the sense of perceptual loudness yet.

Figure 4 displays the deviation of the error in each range of MIDI velocity, pitch,
and sustain pedal activation respectively for both models. The box-charts for pitch and
sustain pedal are similar figure for both models. These charts demonstrate that the more
training data notes you have, the more accurate your MIDI velocity estimation will be,
looking at the note ratio in the training dataset. This implies that data augmentation,
such as pitch shifting, is necessary for low and high pitch notes in the training data.
When looking at the error based on the MIDI velocity group, it is interesting to observe
that FiLM conditioning improved the model’s estimation for lower velocity notes, but
resulted in worse estimation for higher velocity notes compared to the model without
score information. It was also observed that both models tend to estimate MIDI velocity
lower than the ground truth. Further analysis is required to interpret this phenomenon.

5 Discussion and Future Work

In this study, experiments on a diffusion model with double conditions for note level
MIDI velocity estimation for piano performance have been conducted. We discovered
that FiLM conditioning for score information insertion improved the estimation error
and standard deviation on the overall test data.

We need to investigate the how the MIDI velocity error gives us the human percep-
tual sense to give the true evaluation of the model. As is mentioned in the introduction,
there is still no research has been conducted for creating mapping from MIDI velocity
to perceptual loudness. This will be one of our future works to keep this research move
forward.
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Fig. 4. The error analysis is based on ground truth MIDI velocity, pitch and sustain pedal activa-
tion. The box charts in the upper row display results for the single-conditioned model. Similarly,
the box charts in the lower row show the results of the model with score information.

One of the downside of the models is they take significant amount of time and com-
putational cost for an inference and model convergence in training phase. In this study,
for example, it took about 2.5 minutes for 20 seconds of MIDI velocity roll output. This
problem would be a blocker for a use case which requires real time processing.

The model achieved a similar result to the DNN used in a previous study [6], which
indicates that the direction of this research is promising, and further exploration is war-
ranted. Due to computational limitations, the training was stopped at 2000 epochs.
However, the losses on validation set are still showing the trend of decrease on each
model. This indicates that further training could improve accuracy within a short period
of time with high confidence. Moreover, the recent rapid development and evolution on
generative models including the diffusion model will improve its transcription accuracy,
and at the same time, it would lead more attention to the FiLM conditioning to realize
multi-modality for certain use-case scenarios such as education purposes which needs
score and audio information.

Since it has been observed that FiLM conditioning improves the estimation results,
further investigation into the condition generator is necessary for better estimation and
note detection, rather than a simple fully connected linear layer. Moreover, the pro-
posed diffusion model is adaptable to multiple conditioning techniques, making feature
engineering a particularly suitable strategy for optimization within the DiffVel setup.
By refining the features used in the model, it may be possible to extract more mean-
ingful patterns and relationships from the data, ultimately leading to improved results.
Additionally, incorporating more data and extending the training process could poten-
tially enhance the proposed model’s performance. Therefore, future research can focus
on these aspects to optimize the proposed model and potentially achieve better perfor-
mance than the existing approaches.
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In real-world use cases, such as music education, score alignment must be taken
into account for conditioning. A Dynamic Time Warping will be used to address this
issue in a future work.

The code and the dataset used for this research would be provided upon request.
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Abstract. This paper focuses on the nominal durations of musical events (notes
and rests) in a symbolic musical score, and on how to conveniently handle these
in computer applications. We propose the usage of a temporal unit that is directly
related to the graphical symbols in musical scores, and pair this with a set of
operations that cover typical computations in music applications. We formalise
this time unit and the more commonly used approach in a single mathematical
framework, as semirings, algebraic structures that enable an abstract description
of algorithms / processing pipelines. We then discuss some practical use cases
and highlight when our system can improve such pipelines by making them more
efficient in terms of data type used and the number of computations.

Keywords: symbolic music; musical score; duration encoding.

1 Introduction

In a musical score, the duration of musical events (i.e., notes and rests) is defined by a
finite set of symbols, and their temporal position by summing the duration of the previ-
ous musical events. Computer applications that deal with musical scores typically work
with Relative Symbolic Duration (RSD) units, i.e., they choose a reference note duration
and model all temporal information as ratios of that reference. For example, for the first
four notes of the upper voice in Figure 1, one can choose a quarter note ˇ “ as a reference
and represent the durations in the first two beats as the sequence [0.5, 0.25, 0.25, 1].
This kind of encoding shows its limits for certain durations, typically those produced
by irregular groupings (also called tuplets). The 5th note in the top voice in the figure
would have a duration of 2/3, which is a periodic number not representable as a float-
ing point value in computer applications, thus requiring a truncation. This introduces an

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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error that propagates to all subsequent musical events and creates a number of problems
for applications that require exact matching of temporal positions.

Two main approaches have been proposed to solve this problem. The first is the
fraction approach, implemented, for example, by the Python library Music21 [CA10].
It involves the representation of durations with specific Python objects made to mimic
a fraction. This eliminates the rounding problems, but the fraction object is inefficient
to handle with respect to native Python types and is not supported by libraries for heavy
computations such as Numba, Pytorch, or TensorFlow. The second method, the common
divisor approach, consists of setting the aforementioned reference duration to a value
that is a common divisor of all durations appearing in a given piece or set of pieces. All
temporal information can then be expressed with natural numbers, enabling very effi-
cient computations. This solution is adopted by the Python library Partitura [Can+22],
in some musical score storage formats such as MIDI, MEI, MusicXML, and in other
computer music frameworks (e.g., [Fos+19]). However, this solution is still problematic
for real-time scenarios when we do not know all duration in advance or when the piece
can be modified. When a new duration is added that is not a multiple of the reference,
the reference must be recomputed and all values updated.

Fig. 1. A musical score example with two problematic configurations: a tuplet and an incomplete
bottom voice.

Example 1. Let us consider a toy application on the score of Figure 1. We are interested
in importing it from an MEI file, splitting the third note (the C) in the top voice into two,
and producing a pianoroll representation. The notes in the top voice have durations, in
RSD units (with a quarter note as reference), of [ 12 ,

1
4 ,

1
4 , 1,

2
3 ,

2
3 ,

2
3 ]. In the common

division approach, we first need to compute as reference value δ a common divisor of
all absolute note durations, the largest (i.e., the greatest common divisor GCD) if we
want to optimize memory usage. In this case, this is 1

12 of a quarter note. We then ex-
press each duration as a multiple of the reference, i.e., [6, 3, 3, 12, 8, 8, 8]. If we want to
split the third note, we need to recalculate the value of δ as 1/24, update the durations
to [12, 6, 6, 24, 16, 16, 16], and finally split the third note in two notes with duration 3.
We can produce the pianorolls of the two voices independently and then perform an
element-wise sum to obtain the score pianoroll. However, the second voice is logically
incomplete in the score, missing an explicit half-note rest.6 Thus, we first need to com-
pute the maximum between the total duration of the two voices and insert the missing
rests in the second voice. We compute the onset of each note by summing the durations
of all previous notes in the same voice. ♢

6 Ideally, both voices will have the same duration, but in real scores, this is often not the case;
see [Fos+20; FRT21] for a discussion about score quality.
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Music Symbol ¯ ˘ “ ˇ “
3

ˇ “ ˇ “(
3

ˇ “( ˇ “)
Relative Symbolic Duration (1 = ˇ “ ) 4 2 1 0.6̄ 0.5 0.3̄ 0.25
Absolute Symbolic Duration 1 2 4 6 8 12 16

Table 1. Examples of music symbols and corresponding durations in RSD and ASD units. Notes
with “3” on top are notes that are part of a triplet.

This paper discusses an alternative approach to handling durations: the use of Ab-
solute Symbolic Duration (ASD) units. The core idea is to consider the integers implied
by the names of the graphical symbols. For example, a quarter note ˇ “ as 4, an eight note
ˇ “( as 8, a 16th note ˇ “) as 16, and so on. Durations produced from irregular groupings
are also expressed as integers (see Table 1). ASD units are already used by the Hum-
drum **kern file format, and (in a mixed representation with the divs approach) by
MEI and MusicXML. However, they are only used to encode single note/rest durations.
The typical pipeline procedure is to translate this duration format into relative symbolic
durations, as a preprocessing step before any other operation.

On the contrary, we explore the usage of ASD, as “standalone” units to manipulate
musical score durations. To make this practicable, we define two operations that cover
typical use cases and we prove that, like RSD, ASD units form a semiring, an algebraic
structure that enables a more abstract general description of processing pipelines. The
actual computations can later be performed in ASD or RSD (or a mixture of the two),
depending on the situation. This is enabled by an isomorphism that we provide to trans-
late between the two units. Finally, we discuss some practical cases where one unit is to
be preferred over the other to make the pipeline more efficient in terms of the number
of operations and data types that are considered. We implement some algorithms that
use ASD units in the Python library Partitura [Can+22].

2 Definitions

In this section, we first introduce the semiring; then we formally define ASD and RSD
units and a morphism between them. Our goal with the introduction of this formalism
is to give a general, abstract way of describing algorithms on music durations which
is valid for both ASD and RSD units. Such algorithms can practically be performed in
one unit or the other (or a mix of the two) depending on the specific application (see
Section 3).

2.1 Semiring

Formally, a semiring S = ⟨S,⊕,⊗⟩ is an algebraic structure that consists of a domain
S = dom(S), and two associative binary operators ⊕ and ⊗. Some properties must be
verified: ⊕ is commutative, and ⊗ distributes over ⊕, i.e., ∀x, y, z ∈ S, x⊗ (y ⊕ z) =
(x⊗ y)⊕ (x⊗ z).

Note that there is no complete agreement in the literature over the exact definition
of a semiring. Other research (e.g., [Pin98]) defines the two operations of a semiring
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with a neutral element (0 and 1 respectively), such that 0 is absorbing for ⊗: ∀x ∈ S,
0 ⊗ x = x ⊗ 0 = 0. Then the semiring without neutral elements is called hemiring.
However, similarly to [DSA10; SMS21], we just use the term semiring, without includ-
ing neutral elements (and in particular the absorbing propriety of 0). The motivation is
that verifying the absorbing propriety requires changes that would take our framework
further away from its use for practically useful operations on music duration (more on
this in Section 2.3). Components of any semiring S may be superscripted by S when
needed. By abuse of notation, we write x ∈ S to denote x ∈ S.

A semiring S is commutative if ⊗ is commutative. It is idempotent if for all x ∈ S ,
x ⊕ x = x. It is monotonic w.r.t. a partial ordering ≤ iff for all x, y, z, x ≤ y implies
x⊕ z ≤ y⊕ z, x⊗ z ≤ y⊗ z and z⊗x ≤ z⊗ y. Every idempotent semiring S induces
a partial ordering ≤S called the natural ordering of S and defined by: for all x and y,
x ≤S y iff x⊕ y = x. It holds then that S is monotonic w.r.t. ≤S . S is called total if it
is idempotent and ≤S is total, i.e., when for all x and y, either x⊕ y = x or x⊕ y = y.

Given the particular algebraic properties above, semirings can be used as a weight
domain for optimization problems such as the search for shortest paths in weighted
graphs or hypergraphs [Moh02; Hua08]. Indeed, the theory of semirings and in partic-
ular the min-plus and max-plus Tropical Algebras [GP97] is commonly applied in de-
cision theory and operational research, performance evaluation and control of dynamic
systems, and also formal language theory, for quantitative extensions of formal compu-
tation models [DK09] (weighted automata and grammars). They have also been recently
used for the formalization of musical elements, e.g., harmonic/melodic intervals by Al-
bini [AB19], and to describe algorithms for musical tasks, e.g., music transcription by
n-best parsing [Fos+19], and melodic distance computation [GJ22].

This work focuses on formalisations of musical duration that form idempotent and
commutative semirings. Intuitively, in the applications presented in this paper, ⊕ selects
the longest duration and ⊗ aggregates two durations in a single one.

2.2 Absolute Symbolic Durations

Let us define the semiring of Absolute Music Duration units A = ⟨Q+ ∪ {∞},⊕,⊗⟩
by detailing its domain and the two operations.

The domain
The domain dom(A) = Q+∪{∞} of A contains (but is not limited to) non-null integers
implied by the graphical symbol of notes and rests, e.g., quarter notes, eight notes, 16th
notes, 32th notes, etc. Intuitively, larger values correspond to shorter notes. The limiting
case is the null musical duration (used, for example, for grace notes), which is denoted
by ∞. dom(A) also includes other values that can result from the use of duration
modifiers in the musical score, such as dots and tuplets, and will be described later in this
section. We define ≺A to be the strict order of absolute musical durations on the domain
of A. Elements of A are defined such that ∀a, b ∈ dom(A), a ≺A b ⇐⇒ a > b.

Operations
We are interested in two operations: a selection operation to find the longest duration,
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and a concatenation to combine two or more musical durations. We define ⊕A such that
a⊕A b = min(a, b), as the selection operation. Practically, this operation can be used to
select the longest voice within a measure, when their durations do not correspond, like
in Example 1.

The concatenation operation ⊗A is defined as a ⊗A b = ab
a+b . This operation ex-

presses mathematically the well-known musical rules about aggregating durations. For
example, the concatenation of two eighth notes yields a quarter note, which in our
framework can be written as 8 ⊗A 8 = 4. A more advanced usage for ties and dots
is also exemplified in Section 2.4. Readers who are not familiar with the semiring for-
malisms may find confusing that this concatenation operation, which looks very much
like a sum, is denoted with the symbol ⊗, but this is what is commonly used and we
keep it for consistency.

To prove that A is a semiring we need to prove that we have closure for both oper-
ations and that the multiplication distributes over additions. We go slightly further than
proving closure and prove that both operations are commutative monoids (i.e. that they
are commutative, associative, and there is an identity element) since this could be useful
for further extension of our framework. Remember that for simplicity we write x ∈ A
to denote x ∈ dom(A).

Lemma 1. ⟨dom(A),⊕A⟩ is a commutative monoid.

Proof. Let a, b, c ∈ A. By definition a⊕A b = min(a, b).
Then from the commutativity and associativity properties of the min operation, ⊕

is also commutative and associative. The closure is trivial for min. The identity element
is ∞, i.e., ∀a ∈ A, a⊕∞ = a.

Lemma 2. ⟨dom(A),⊗A⟩ is a commutative monoid.

Proof. Let a, b, c ∈ A. By definition a⊗A b = ab
a+b . By the commutativity of addition

and multiplication, it follows that ⊗A is also commutative and associative. Closure is
also verified for the same reason. Let us investigate if the relationship also holds for the
case of the null durations, i.e. ∞. We define a⊗A ∞ as the limit limb→∞

(
a⊗A b

)
.

a⊗A∞ = lim
b→∞

(
a⊗A b

)
= lim

b→∞

(
ab

a+ b

)
= a lim

b→∞

(
b

a+ b

)
= a lim

b→∞

(
1

a
b + 1

)
=

= a

(
limb→∞ 1

limb→∞
a
b + 1

)
= a

(
1

limb→∞
a
b + 1

)
= a

(
1

0 + 1

)
= a

Since ⊗A is commutative, this also holds for the case ∞⊗A a. We also proved that ∞
is the neutral element of ⊗A.

♢

We will now prove some Lemmas that will be useful for the proof of Theorem 1.

Lemma 3. Let a, b, c ∈ A, then b < c ⇐⇒ a⊗A b < a⊗A c.
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Proof.

b < c
a>0⇐⇒ ab < ac

bc>0⇐⇒ ab+ bc < ac+ bc ⇐⇒ b(a+ c) < c(a+ b)
a>0⇐⇒

ab(a+ c) < ac(a+ b)
a+c>0, a+b>0⇐⇒ ab

a+ b
<

ac

a+ c
≡ a⊗A b < a⊗A c

♢

Lemma 4. ⊗A is left and right distributive over ⊕A.

Proof. Let a, b, c ∈ A: By induction on the order relation between b, c:

– b = c:
Trivial.

– b < c:

a⊗ (b⊕ c) =
a min(b, c)
a+ min(b, c)

by IH
=

ab

a+ b
= a⊗ b (1)

(a⊗ b)⊕ (a⊗ c) = min((a⊗ b), (a⊗ c))
by Lemma 3 and IH

=== a⊗ b (2)

Then our proof is completed by using reflexivity on 1 and 2.

– b > c:
Similar to b < c.

The right side distributivity follows by the commutativity properties of the operations.
♢

Theorem 1. (dom(A),⊕A,⊗A) is a semiring.

Proof. We have all the elements to conclude the proof:

– (dom(A),⊕A) is associative and satisfies the closure property (by Lemma 1);
– (dom(A),⊗A) is associative and satisfies the closure property (by Lemma 2);
– Multiplication distributes over addition (by Lemma 4)

♢

When dealing with multiple equal durations in music, it is practical to extend the ⊕
operation to define a scalar multiplication. For a duration a ∈ A and a scalar n ∈ Q, it
is denoted by the function repeatA(a, n) = a/n.

2.3 Relative Symbolic Durations

We define the semiring of Relative Symbolic Duration units Rδ = (Q+ ∪ {0},⊕,⊗)
relative to the reference duration δ.
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The domain The domain dom(Rδ) = Q+ ∪ {0} of R contains durations measured
relative to a reference duration value. Intuitively, smaller values correspond to shorter
notes. The limiting case is the duration 0, which can be used, for example, for grace
notes. We define ≺R to be the strict order of absolute musical durations on the domain
of A. Elements of R are defined such that ∀a, b ∈ dom(R), a ≺R b ⇐⇒ a < b.

Operations Similarly to A, ⊕R ≡ max is used to select the larger duration and
⊗R ≡ + is used to add two durations together. The repeat operation can be defined
as repeatR(a, n) = a ∗ n.

We skip the proof of R being a semiring for brevity. It can also be noted that the
operations and domain we defined are equivalent to those of a tropical semiring [Pin98],
so the proof for tropical semirings is also valid for our case. Differently from a tropical
semiring, however, we don’t have the absorption property of the ⊗ neutral elements 0,
i.e., ∀x ∈ R, 0 ⊗ x = x ⊗ 0 = 0. In order to verify this, we would need to swap the
min with the max (and vice-versa) for the ⊗ in our two semirings, but this would make
for a non-musically useful operation, violating the ultimate objective of this research.

2.4 A General Duration Framework

Table 2 summarises our formalization of ASD and RSD units. In the following, we
introduce a morphing function to convert between these two units. Finally, we include
in our framework the duration modifiers that are used in musical scores, i.e., ties, dots,
and tuplets.

Morphing between time units
Given a reference duration value δ, we define the reciprocal function f(x) = δ/x that
maps every element x ∈ dom(A) to its correspondent in Rδ , and vice-versa. It is trivial
to see that this function is isomorphic and order-preserving (it preserves the ordering
in the respective source/target domains, even though the order in A is reversed with
respect to R); it follows that f is a Homomorphism, i.e. ∀a, b ∈ dom(R), f(a⊗R b) =
f(a) ⊗A f(b). The choice of δ has interesting practical implications. For example, by
setting it to a beat duration (which depends on the time signature), we obtain units typi-
cally used in music research to reduce the dependency on the time signature. By setting
it to a quarter note duration we obtain the so-called quarter length durations, commonly
used for general applications since they do not depend on other score parameters.

S ⊕ ⊗
ASD A Q+ ∪ {∞} min(a, b) ab

a+b

RSD R Q+ ∪ {0} max(a, b) a+ b

Table 2. Table comparing the semirings of Absolute and Relative Symbolic Durations.

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

215



Duration modifiers
In a musical score, there are some graphical symbols, i.e., ties, dots, and tuplet group-
ings, that modify the duration of the notes/rests they are assigned to. In this section, we
will define ties, dots, and tuplets as functions applied to elements of either A or R. We
use the symbol X to refer to either of the structures A or R.

First, let us consider the ties between notes. The total duration of two tied notes
a, b ∈ X can be easily captured by the ⊗ operation.

Definition 1. The total duration of two tied notes a, b ∈ X is given by function tie :
X × X → X

tie(a, b) = a⊗X b (3)

Another musical concept that can prolong the duration of a musical note is the dot. A
dotted note a can be seen as a function dot applied to the note a. This can be generalized
for an arbitrary number of dots:

Definition 2. The function dot : X × N → X applied to a note a ∈ X is inductively
defined as follows:

dot(a, 0) = a (4)

dot(a, n+ 1) = repeat(a,
1

2n+1
)⊗X dot(a, n) (5)

Another function that can be used to construct musical duration is the tuplet func-
tion. The duration of a note in a tuplet of total duration a ∈ X can be seen as a function
with two parameters, the base note duration a and the type of tuple γ (in this case 3 for
triplet).

Definition 3. Let a ∈ X , γ ∈ N>2. The tuplet function,t : X ×N∗ → X , is defined as:

t(a, γ) = repeat(a,
2

γ
) (6)

Example 2. We use the formalisms introduced in this section on the problem of Exam-
ple 1, where the goal was to import the score from an MEI file, split the third note (the
C) in the top voice into two, and produce a pianoroll representation. This process can
abstractly be described solved as: (1) read all durations [d1, d2, . . . , dn] from the input
MEI file; (2) compute the values of the notes under the triplet with Definition 3; (3) split
the third note into two notes with duration dnew = repeat(d3, 1/2); (4) find each note
onset and offset position by [d1⊗d2⊗· · ·⊗dn]; (5) for the last note offset of each voice,
compute the maximum with the ⊕ operator; (6) output the pianoroll representations for
the two voices, using the start times and durations thus calculated.

3 From Abstract Description to Algorithm Implementation

In the previous section, we introduced an abstract formalism to describe algorithms
on music sequences. We now discuss cases where it is more efficient to perform such
algorithms in ASD units or in RSD units.
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3.1 Advantages and Disadvantages

The use of ASD units can bring advantages in terms of data types because it can give a
prevalence of integers over floating point (and periodic) values. For this to be the case,
we need to deal with durations that span a maximum of a whole note. In a 4/4 piece,
this will correspond to durations of one measure. This does not mean that algorithms
implemented in ASD units cannot handle multiple measures, but rather that they should
follow a “divide et impera” principle where every measure is handled independently.
This is already quite common in file-parsing systems since scores are encoded measure
by measure in file formats such as MusicXML and MEI.

In terms of the number of computations, ASD units are ideal for applications that
concern the graphical symbols used in the score, for example, changing the pitch of a
note, changing a duration, or segmenting a musical score. Such applications can skip
the costly computation of common divisor, and conversion to RSD units altogether.
Instead, when the measure is not specified (which could be the case, for example, in
handling a MIDI file), or when we want to do operations that don’t follow the measure
segmentation (e.g., segmenting a score between measures), the usage of RSD units is
preferred.

Example 3. Let us consider the problem of Example 1. By considering ASD units,
we can parse the input score file simply by copying the values for the note graphical
durations. The splitting of the third note of duration 16 in two parts yields two notes of
duration 16 ∗ 2 = 32.

A big limit in the efficiency of ASD units is posed by time signatures where the
beat is a dotted note, for example, 6/8. A dotted note will make the duration assume
noninteger, or even periodic, values. A possible solution to this problem is given in the
next section.

3.2 The lazy evaluation case

It is common for systems that deal with musical scores to have a generic import func-
tion, where the score file is converted to some internal representation. If in In this step,
the user did not yet specify the set of operations they intend to perform, the choice
of whether to use ASD or RSD cannot be performed made. In order to let the system
choose between ASD and RSD to exploit the advantages described in the previous sec-
tion, we suggest using a lazy evaluation parsing strategy. First, we propose to reduce
the domain by considering only the ASD values {2n | ∀n ∈ [0..7]} (i.e. only single
graphical note/rest symbols). Duration modifiers such as dots or tuplets are imported
as functions dot or tuple without being computed. Only when the user specifies a task,
will these functions be resolved to actual values, and the task is performed either in
ASD or RSD units, depending on what would allow for the most efficient computation.
From a functional programming perspective, this can be viewed as a Monad transfor-
mation [Wad92] of the parsed elements.
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3.3 Implementation

We provide a proof of concept of the practical utility of the methods introduced in
this paper, by implementing some functions in the Python library Partitura [Can+22].
The core of this library, i.e., the Timeline object, uses RSD units, in particular on the
common divisor technique described in the introduction. However, some functions in
the file parsing module are modular enough to make it possible to run them in ADS
without the need of making major changes to the rest of the library. These are: (1) the
functions to compute the common divisor for integer encoding of RSD durations, (2)
the function to find the longest voice in a measure, and (3) the computation of the actual
duration for a note inside a tuplet. We also implement an alternative (still partial) parser
of **Kern files that leverages a lazy evaluation approach.

4 Conclusions and Discussion

In this paper, we proposed an alternative approach to handling the symbolic music du-
rations from musical scores, that is based on absolute symbolic duration (ASD) units.
We formalized ASD, and the (typically used) relative symbolic duration (RSD) units,
in a single mathematical framework, and paired them with two operations. The result is
two semirings: algebraic structures that enable an abstract description of algorithms on
symbolic durations. We then moved to a more practical discussion and described some
use cases where one unit is more efficient than the other, in terms of data types (inte-
gers vs floating point) and number of calculations. Finally, we advocated a functional
parsing of symbolic music formats that can select the most efficient way of performing
the various operations in an algorithm and enable considerable speed-up for common
use cases.

It is clear that the proposals in this paper are mostly of theoretical interest, and be-
long to the research branch that formalizes musical elements with mathematical struc-
tures [AB19; Maz12; Pop+16]. However, our interest in this topic started from our
practical experience with parsing and processing musical score files to use their infor-
mation as input for music information retrieval (MIR) systems. While the improvement
in efficiency that our methods may enable is negligible for a single score, large deep-
learning models have to load thousands of scores, thus making each small optimization
much more useful. For example, we will probably soon see some general tokenization
techniques for musical scores (similar to the multiple ones that have been proposed
for MIDI files [Fra+21]); in this context, a tokenization that focuses on the graphical
symbols using only ASD, could enable major speedups in computing time.
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[Pop+16] Alexandre Popoff et al. “From K-nets to PK-nets: a categorical approach”.
In: Perspectives of New Music 54.2 (2016), pp. 5–63.

[AB19] Giovanni Albini and Marco Paolo Bernardi. “Tropical Generalized Inter-
val Systems”. In: Mathematics and Computation in Music. Ed. by Mar-
iana Montiel, Francisco Gomez-Martin, and Octavio A. Agustin-Aquino.
Springer International Publishing, 2019, pp. 73–83.

[Fos+19] Francesco Foscarin et al. “A parse-based framework for coupled rhythm
quantization and score structuring”. In: Proceedings of the International
Conference on Mathematics and Computation in Music (MCM). Springer.
2019, pp. 248–260.

[Fos+20] Francesco Foscarin et al. “ASAP: a dataset of aligned scores and perfor-
mances for piano transcription”. In: Proocedings of the International So-
ciety for Music Information Retrieval Conference (ISMIR). 2020, pp. 534–
541.

[FRT21] Francesco Foscarin, Philippe Rigaux, and Virginie Thion. “Data quality as-
sessment in digital score libraries: The GioQoso Project”. In: International
Journal on Digital Libraries 22 (2021), pp. 159–173.

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

219



[Fra+21] Nathan Fradet et al. “MidiTok: A Python package for MIDI file tokeniza-
tion”. In: Late-Breaking Demo Session of the International Society for Mu-
sic Information Retrieval Conference. 2021.

[SMS21] MK Sen, SK Maity, and KP Shum. “Some Aspects of Semirings”. In:
Southeast Asian Bulletin of Mathematics 45.6 (2021).

[Can+22] Carlos Eduardo Cancino-Chacón et al. “Partitura: A Python Package for
Symbolic Music Processing”. In: Proceedings of the Music Encoding Con-
ference (MEC2022). Halifax, Canada, 2022.

[GJ22] Mathieu Giraud and Florent Jacquemard. “Weighted Automata Computa-
tion of Edit Distances with Consolidations and Fragmentations”. In: Infor-
mation and Computation 282 (2022).

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

220



Soundscape4DEI as a Model for Multilayered
Sonifications

João Neves1 , Pedro Martins1 , F. Amı́lcar Cardoso1 ,
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Abstract. Computation emergence has impacted the development of
creative musical systems, as it allows for unprecedented exploration and
innovation in the realm of music composition and sound design. As data
is becoming more and more complex [1], new information sharing tools
and methods arise. In this paper, we present soundscape4dei, a system
that sonifies data from the daily routine of the Centre for Informatics
and Systems of the University of Coimbra (cisuc). The developed system
explores and proposes a multilayered approach that succeeds in raising
awareness and informally disseminating the (usually invisible) activities
at cisuc. We go over the design of the system, we analyse its outputs
and we discuss our sonification model.

Keywords: Sonification · Sound Design · Sound installation

1 Introduction

Humans are equipped with a complex listening system. It is capable of distin-
guishing sound sources, identifying melodies, recognising patterns even under
adverse conditions and, most importantly, ”interpret sounds using multiple lay-
ers of understanding” [2], making it a powerful and flexible instrument to explore
for portraying data. Our ability to flexibly change the auditory focus and learn
and improve discrimination of auditory stimuli [2] creates many possibilities
when approaching sound as an information-sharing vehicle.

The study of auditory displays as a scientific field started in 1992, with the
foundation of the International Community of Auditory Display (icad) [2]. In
the past few decades, technological growth and accessibility contributed to the

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0).
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appearance and standardisation of new communication methods and tools. Soni-
fication, “the use of nonspeech audio to convey information” [3], is a powerful
auditory data representation based on mapping data attributes to sound pa-
rameters for user-friendly comprehension. Its merits include harnessing innate
auditory pattern recognition, fostering rapid data interpretation, and aiding vi-
sually impaired individuals. Moreover, real-time feedback empowers scientific
research, healthcare monitoring, and industry [2][4]. It is currently used in a
wide variety of contexts (e.g., bio-medicine, seismology, interfaces for visually
disabled people) and its research is associated with a wide list of disciplines,
such as physics, perceptual research and computer science [2].

Be it education, research, students’ activities or industry cooperation, most of
the activity at cisuc (Centre for Informatics and Systems), University of Coim-
bra, is mediated through computers and mostly closed networks. This project
arose from an attempt to locally raise awareness of those activities and informally
disseminate them. By exploring the intersection of music and technology, we de-
veloped a sonification system that uses real-time data analysis and a multilayered
approach to create musical compositions. The challenge of this sonification is to
be able to illustrate four different types of events, each with specific and partic-
ular mappings. At the same time, the system must operate continuously, so we
aimed for the creation of a non-invasive sound space.

The name soundscape4dei refers to dei, the Department of Informatics En-
gineering, where cisuc is hosted. The created soundscapes depict events like
purchases, scholarship allocations, paper submissions and researchers’ missions.
In this paper, we start by overviewing sonification projects that inspired this
work, followed by a description of the system and its physical installation. We
discuss the multilayered approach and how it can incorporate different tech-
niques while still being successful. We end by discussing how the resulting sonic
experiences may be evaluated and then we address future work.

2 Related Work

Sonification has been investigated and proven successful when explored in a
vast number of contexts. In this section, we briefly describe projects addressing
various fields, thus illustrating its multidisciplinary applicability. Furthermore,
we envision some of their musical nuances to be either related or likely applied
to routine sonifications, the domain of the presented system.

Two Trains [5] is a music composition that emulates a ride on the New York
Subway through three boroughs: Bronx, Brooklyn and Manhattan. The number
of instruments and dynamics of the song corresponds to the median household
income in each location, revealing the economic inequality across the city while
exhibiting its energy and the chaos of the subway system.

Sonic Kayaks [6] are musical instruments used to investigate nature. They use
a system previously explored by Matthews on Sonic Bikes [7] and allow kayak
paddlers to hear real-time water temperature and underwater sounds as they
map the marine world data to a generative live composition while navigating.

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

222



Seiça et al. [8] developed a system that analyses social media (twitter)
data, estimates the posts emotions and translates them into auditory language.
This project explores the subjectivity of human emotions and its relationship
with music as a transmedia instrument.

A sonification experience to portray the sounds of Portuguese consumption
habits [9] presents a listening experiment that explores the influence of aesthetics
in the perception of auditory displays. The system sonifies consumption habits
from a portuguese retail company over the course of ten days.

Brian House [10] interprets a continuous year of his location-tracking data
to create a recording that sonifies every moment of his daily routine. The 11
minute song, Quotidian Record, suggests that habitual patterns have inherent
musical qualities that might form an ”emergent portrait of an individual” [11].

Living Symphonies [12] is a sound installation based on the fauna and flora
of four ecosystems in the United Kingdom. The designed model reflects the
behaviour, movement and daily patterns of wildlife, translating a network of
interactions that formed the ecosystem.

This sonification project is based on a developed multilayered model. This
model consists of the use of direct parameterization as well as generative tech-
niques, used to enrich the sound experience.

3 The approach

Conceptually, we focus on developing a system whose outputs focus on data
transparency while taking advantage of sound expressiveness to create immer-
sive sonic experiences. We also had to pay attention to the audio intensity and
other components that could disturb students and researchers that often use the
installation room to study and work. Figure 1 describes the architecture of the
sonification process. In the following sections, we will provide a comprehensive
overview of the data and the implemented system, while also explaining the
decision-making process throughout the project.

Fig. 1. The architecture of soundscape4dei : the Spreadsheet contains the data to be
sonified, the Event Typology is described in the Encoding section, the MIDI events and
Bank of Sounds are displayed in Table 1, and the digital workstation and quadriphonic
output are detailed in the Instalation section.
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3.1 Data

In this project, we propose to sonify data describing the activity of our research
centre cisuc, which comprises about 150 researchers (faculty members, graduate
and post-graduate students) and is organised into six research groups: Adaptive
Computation, Cognitive and Media Systems, Evolutionary and Complex Sys-
tems, Information Systems, Laboratory Communications and Telematics, Sys-
tems and Software Engineering. We found cisuc activities enough diversified
to be sonically explored and conceptually rich from a social and technological
standpoint since the data is dense, well-structured and periodically refreshed.
For the purpose of illustrating our approach, we use a small fragment of the
stream of data, manually edited to assure a diversity of situations. We follow
a standard visualisation pipeline to handle the data preprocessing — selection,
categorisation and validation, before applying any transformations. The manual
edition allowed the filtering of spelling inconsistencies.

All the activities at cisuc are chronologically registered and detailed ac-
cording to their nature. We identified four meaningful categories of events to
consider within the sonification: purchases, missions, scholarship allocations and
paper submissions. The system must be able to create meaningful sonic scenarios
allowing for easier recognition of these categories.

3.2 Software Architecture

The implemented pipeline is composed of five main stages (Figure 2). The data
is firstly preprocessed by a processing sketch which checks for spelling typos
and standardises every entry (setting the input to lowercase and removing its
accents), before transforming and encoding them. This process is based on algo-
rithms described in the next section. The output of this sketch is then sent as osc
messages to a max/msp patch, which is responsible for playing organic sounds
from wave files after handling equalisation, as well as for converting osc mes-
sages to midi. This messages are sent afterwards through multiple channels to
a logic pro project. logic pro uses Spitfire labs vsti to create the various
hybrid soundscapes, composed of both symbolic (human) sounds and organic
(nature) sounds [13,14].

Fig. 2. soundscape4dei pipeline.
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3.3 Encoding

Sound has a multitude of changeable dimensions that allow for many options
when mapping data to audio [4][15]. This system relies on algorithms that man-
age and create different sound layers. They are composed of organic sounds
from standard environmental recordings and by symbolic sounds (i.e. trigged by
MIDI events) from a selected and specific vsti bank Spitfire (labs) to ensure the
system creates the experiences we envision (Table 1). The criteria for choosing
sounds is based on artistic intuition.

Table 1. Nature and symbolic sounds and respective description.

Soundscape4dei sonifies every Score line (see Figure 1) individually, portray-
ing it for one minute. To allow a easier communication of multiple streams of
event data simultaneously, we explore a multilayered approach, resorting not
only to standard parameter mapping [2] but also to methods presented in this
section and further discussed in section 5. The sonification is composed of spe-
cific encodings that differentiate and represent the different categories of events
and universal encodings (general components) which aims to provide a unifying
character.

Table 2 depics the structure and sound allocation of our sonification. We
name the three layers that compose the different soundscapes as Melody (L1),
Harmony (L2) and Texture and Signals (L3). Each layer concerns several sym-
bolic and/or organic sounds, which are selected to each category encoding.
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Table 2. Layer division and sound allocation for each category. Source numbers accord-
ing to Table 1. G source stands for group instruments which are individually present
in all categories but are not exclusive.

3.3.1 General components For each entry on the process spreadsheet (1),
there is a melody that sonifies its description field. The melody rhythm is gener-
ated from a Morse code translation of the input. The scale notes and tonality of
the melody, which is always major, are chosen randomly to create more variety
and avoid stagnation.

The research group associated with each entry is represented by notes from
predefined vst percussion instruments: Glockenspiel for Adaptative Computa-
tion, triangle for Cognitive and Media Systems, jingle bells for Evolutionary and
Complex Systems, kettledrum for Information System, chimes for Laboratory
Communications and Telematics and cymbal for System and Software Engi-
neering. We chose to use instruments from this family because they have defined
and precise sounds that stand out sonically.

3.3.2 Missions Missions comprise oral and poster presentations at confer-
ences, project meetings and other activities that require travelling. In this type
of event the soundscape is composed of elements that vary depending on the
destination of the mission. The system uses an API to verify the destination
meteorology in real-time, which defines the major mode (for the Morse melody).
The brighter the current weather, the brighter the major scale mode [16]. The
population number influences the volume of a talkative crowd and the pollution
level plays a drone sound, creating a pedal that lasts the entire sequence (the
higher the level, the greater the presence).

3.3.3 Purchases We approached purchases from a more subjective stand-
point. This soundscape means to represent how significant the transaction is,
since some purchases are cheaper (for example, an arduino compared to a lap-
top), therefore tendentially less impactful than others. To develop this metaphor,
we use water sounds. When combined, they create the illusion of submersion —
the more unusual and significant the purchase, the stronger the low-pass filter
applied and, consequently, the more depth is simulated. To intensify this encod-
ing, the mode (of the Morse melody) changes depending on the same factors,
creating a relationship between its brightness and the proximity to the surface
[16]. The vst unifies the various sound components by playing augmented triads
that share notes with the tonal center.
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3.3.4 Scholarship allocations Scholarship allocations always have a cer-
tain duration and remuneration associated. The system maps this information
into three independent levels and translates the money flow into water flow,
overlapping sounds from various water currents. This is intensified by a modal
progression that uses more chords if the level is higher. Since the parameter that
is being represented (remuneration) translates into the tonality, we randomly
select chords from a predefined array. The harmonic movement created provides
a tonal center, no matter which chords are chosen. This is a crucial characteristic
of the sonification model we are presenting. If the tonal center is established, the
harmony is free to fluctuate within the options of the array.

3.3.5 Paper submissions The last type of event involves the mapping of
the submission into a scale of importance according to the CORE Ranking, for
conferences, and Scimago Journal Ranking, for journals. The metaphor links
the paper’s visibility to the sound of birds chirping as they get louder the more
relevant the submission is.

3.4 Installation

soundscape4dei is installed in a room acoustically studied beforehand. The room
is public and accessed by researchers and students. The sound system is com-
posed of four speakers (Genelec 8010a) and a subwoofer (Genelec 7040a Active
Subwoofer) as well as an interface (PreSonus Studio 1810c) which is connected
to the desktop that runs the software (Figure 3).

Fig. 3. Installation mapping: subwoofer as a purple cube, speakers as red cubes.

The graphic identity is inspired both by the physical dimensions of the room
and the distribution of the hardware. Each cisuc group is represented by a
circle and consequently a colour. In order for the listener to share a deeper
understanding of the project, we developed a website that contains live encoding
details and an option for a temporary mute. This usability feature allows the
installation room to remain a silent place for formal meetings.
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The website and the processing sketch communicate via WebSockets within
the safe university network. The logo is used both on the website and on a small
physical artefact that interacts with the system (Figure 4). We use an arduino
uno to blink the led that corresponds to the cisuc group responsible for the
event being reproduced. This object works as a visual clue that stimulates the
audience to investigate about what they are listening.

Fig. 4. Physical artefact (left) and soundscape4dei website (right).

4 Results and Analysis

In this section we analyse the sonification of the Score line (Figure 1) represented
on the website of Figure 4. We start by analysing the output’s spectogram while
referencing its midi layer L2. We analyse the harmonic movement and what sort
of experience it helps to deliver. We conclude by comparing two recordings of
the same Score line (Figure 1) by depicting the variations and identifying what
differs and stands out in our sonification model.

To get a clear render of the recording we set the spectogram’s scale to linear,
the algorithm window size to 8192, we chose the Hann algorithm window type
and displayed frequencies between 0 and 6000 Hz. Figure 5 reveals four main
incidents:

1. The occasional appearance of frequencies in 3k-6k range, caused by the vsti
that represents the assigned cisuc group (glockenspiel);

2. Some initial turbulence due to the Morse melody;
3. A large cluster of low frequencies (up to 1000 Hz). This characteristic is due

to the harmony emphasis, more specifically, due to the choice of chord notes;
4. The chords also split the spectrum into temporal sections. These partitions

are created by the chord progression (or pulse) like for example between the
red and the blue markers. However, we can argue that these divisions do not
negatively impact the resonance levels, since it remains similar throughout
the recording.
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Fig. 5. Spectrogram of a scholarship allocation sonification recording (top) and respec-
tive L2 midi (bottom).

All the described elements reveal that, regardless of whether there are places
with more activity than others (such as between the sections comprised in the
blue and green marker), L2 blends with the other layers of the soundscape L1
and L3, creating a relaxing, non-intrusive soundscape.

Figure 6 represents the variations of the same Score line and displays how
the encoding methods affect the composition. The harmonic pulse is still present
but progression is different, since the bottom spectrum is more stable after the
30 seconds mark while the top spectrum is not.

Fig. 6. Spectrogram from two recordings or iterations of the same Score line sonifica-
tion.
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5 Discussion

After presenting the system and analysing the results, we discuss our model.
Baxter [17] argues that sonification may be a means to create generative music,
but may not the opposite be also true?

Figure 6 revealed that the same Score line had two different outputs. One
of the main reasons for that to happen is because the progression that is being
developed is generated in real time. By having a list of possible chords, the
system randomly selects which one is to be played. This does not compromise
the sonification accuracy because the chord list guarantees that the outcome is
always, in this case, a Dorian progression (Figure 7).

Fig. 7. Array of chords that can be selected and played in the recording portrayed in
Figures 5 and 6.

We believe that combining standard parameter mapping with encoding algo-
rithms that are partially stochastic creates and, arguably, enhances sonification
systems. Our model and contribution works on top of multilayered compositions
and is based both on the exploration of those stochastic processes and on testing
how they may help to prevent stagnation, may create movement and surprise
and may instigate and immerse the listener while they faithfully portray the
intended data 3.

6 Future Work

There are several options and approaches for future work related to the devel-
opment of this model regarding soundscape4dei. From the current state we can
divide it into three major streams: system evaluation, system enhancement and
system design.

6.0.1 System evaluation So far, the system’s evaluation has been solely
qualitative and hasn’t incorporated user input. Our aim is to conduct a com-
prehensive assessment of users’ experience and explore whether sonification en-
hances awareness and insights. This will involve implementing mechanisms for

3 https://vimeo.com/824378644

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

230



gathering feedback from individuals present in the room, such as installing a
tablet or providing a web page accessible via mobile devices or laptops. Addi-
tionally, we plan to collect audio descriptors from the ambient sound in the room
and examine potential correlations with user feedback.

6.0.2 System enhancement Soundscape4dei is currently able to sonify data
from a specific dataset. We envision the development of a dynamic api that would
feed the implemented system from a larger group of events which take place
across the department, such as classes attendance, crowded rooms, masters’ and
doctors’ thesis defences, social network publications, among others.

To avoid repetition and stagnation, the system could also incorporate more
diverse sounds. For that matter, we plan to enrich the sound bank by record-
ing original content, not only as a standalone work but also by inviting the
community to contribute.

When approaching the project beyond its software components certain en-
hancements may arise. We plan to build an object that allows the community
to locally share their perspective on the soundscapes. By gathering those inputs
we can evaluate the system, and consequently the model. Physically, the instal-
lation can also be expanded into larger and more populated areas across the
campus. Broadening soundscape4dei helps to disseminate the sonified activities
and evaluate it from a larger community sample.

6.0.3 System redesign The implemented system portrays each entry for one
minute. Having the activities chronologically separated and melodically identi-
fied helps to distinguish them but it also imposes a rigid premise. This trade off
hints a new approach where all activities may coexist in the same sonic mist. In
this scenario, the system allows for the creation of denser soundscapes. Sounds
may be added or removed at any moment since there are no time restraints,
which can be used to highlight certain events creating and manipulating the hi-
erarchy. We envision this approach to create an opportunity to further develop
our model, since the premise suggests a sort of compositional freedom while
raising the challenge to accurately portray data.

7 Conclusion

We presented soundscape4dei, a system that creates sound compositions through
the analysis of data and we discussed the model we propose. Throughout the
development of this project, we have focussed on balancing exploration and func-
tionality — the outputs portray data in unconventional manners by exploring
sound and musical density without neglecting events recognition through sound.
There are multiple options to be explored towards new versions of this system,
while extending the reach of our model when applied to multilayered sonifica-
tions. Nevertheless, the installation fulfills its purpose, as is able to produce
immersive soundscapes and locally share the activities from cisuc.
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Abstract. The paper discusses the classification of four music styles, Serialism,
Impressionism, Neoclassicism, and Nationalism, of early-twentieth-century mu-
sic using interpretable rule learning techniques. Three interpretable rule learn-
ing techniques are considered: decision tree, minimum description length (MDL)
rule list, and rule set (the skope-rule algorithm). The features of the classifiers are
fundamental musical elements based on pitch and interval distributions. Objec-
tive evaluation based on the F1 score and subjective evaluation using user study
is conducted to understand the result of our classifiers from the musicians’ point
of view. The results show that a rule set is preferred as the algorithm attained the
highest scores for objective and subjective evaluations. The rule set can also gen-
erate rules which support music theory and provide new insights regarding the
musical characteristics of early twentieth-century music.

Keywords: Early twentieth-century music, interpretable AI, rule learning, eval-
uation, music information retrieval

1 Introduction

The studies regarding the classification task of classical music have undergone major
development in the last few years. Multiple machine learning classifiers, from trans-
parent models such as decision trees [12] to black-box models such as support vector
machines [12, 11, 24] and more sophisticated neural networks [18, 23, 15, 16, 27], have
been utilized and have effectively classified classical music across periods. In addi-
tion to focusing on good performance, another research endeavor has focused on in-
terpretability, that is, the extent to which the process by which a model arrives at its
decision is transparent and understandable by humans [12, 28].

Despite abundant research on classical music classification, few studies include
composers from the early twentieth century. Instead of labeling the early twentieth-
century compositions based on their respective styles, most researchers label the com-
posers around this period as “modern” [23, 25]. This “modern” label may not be enough

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

233



to become an accurate representation. The early twentieth-century period in classical
music consists of various musical genres – each highly distinctive from the others. Mu-
sicologists often categorize these styles as -isms [4, 7].

Indeed, early twentieth-century music has a few common concepts. For instance,
the composers avoid constructed melodies from the previous periods and do not follow
the standard tonal harmony [4, 5]. However, the approaches that each style made dif-
fer significantly from one another. Serialism, for instance, focuses on utilizing pitch set
series or tone rows [4, 1]. Impressionism does not neglect tonality but maximizes the
utilization of timbres, layers, underdeveloped motifs, unresolved harmony, and exotic
music scales [4, 5]. Nonetheless, Neoclassicism combines the characteristics of music
in the previous periods with modern melody and dissonance treatments.[17, 8]. Con-
ducting the classification tasks over these music styles would be insightful due to the
unique characteristics of early twentieth-century music and the scarcity of study for this
period.

Instead of focusing on performance alone, this study aims more into the inter-
pretability of the result [21]. We want to see whether there is any new insight regarding
the characteristics of early twentieth-century music, which may not be found using con-
ventional music analysis. Our research objectives are motivated by the previous studies
that have shown the potential to find new insights into classical music, such as the
difference in pitch distribution between Mozart and Haydn’s string quartet works [11]
or the differences in interval utilization between Beethoven and the composers before
him, such as Haydn and Bach [12]. On the contrary, the interpretable deep learning
approaches for music classification and analysis [13, 26] mostly focus on post hoc in-
terpretation [21] over the learned representations and still require decision trees, rules,
and linear models to explain it under specific situations [10].Therefore, we take the ap-
proach of rule-based, transparent, and simulatable (i.e., humans can reason about the
entire decision-making process of the model [21]) models instead of black-box ones.
Moreover, in this paper, we extensively study various categories of rule-based models,
including rule tree, rule list, and rule set [20]. Besides the well-known decision tree, it
should be noted that the rule list and rule set models we employed have yet to be con-
sidered in music classification problems [22, 9]. For evaluating the result, we perform
not only objective evaluation but also subjective evaluation to understand the human’s
perceptions regarding the rules generated by the models.

To our knowledge, this paper is the first attempt to machine learning classification
of early twentieth-century music. This paper has three major aims. First, we propose
a new dataset regarding early-twentieth-century music in symbolic format. Second, we
investigate various rule-based machine learning models for music style classification on
this new dataset. Lastly, the interpretability of the classification results and the selected
rules and features are analyzed and discussed with both objective and subjective aspects.

2 Data

Since the repertoires of early twentieth-century music are wide and complicated, we
imposed several restrictions in choosing the works for the dataset. The subject of this
research is limited to early twentieth-century composers’ piano works, as we tend to
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Table 1: The proposed dataset for classification of the early 20th-century music styles.
The number of samples of each composer and each style in the dataset are shown.
Styles Composers # of samples Styles Composers # of samples

Serialism

Arnold Schoenberg 22

48
Neoclassicism

Maurice Ravel 11
104Alban Berg 2 Paul Hindemith 86

Anton Webern 5 Béla Bartók 7
Hanns Eisler 19

Nationalism
Béla Bartók 247

304
Impressionism

Claude Debussy 87
110

Leoš Janáček 43
Maurice Ravel 23 Manuel de Falla 14

use homogeneous data to avoid any potential problems related to instrumentation. This
approach has also been used in previous studies, where the researchers limited their
choice of instruments to only string quartet [11, 14, 24], the melody of the violin [6], pi-
ano solo [23, 25], and orchestra [25]. We included the first 20 measures (approximately
one page) of every composition to prevent the imbalance of the dataset. Besides, we
chose the styles and composers based on the number of piano pieces for each composer
and the availability of the scores. Composers who only have a few piano works were
not selected. In addition, we only choose the works in the public domain. Hence, the
dataset consists of four styles and ten composers, see Table 1.

Except for Béla Bartók and Maurice Ravel, each composer’s compositions are clas-
sified in one style. Ravel’s works are divided into Impressionism and Neoclassicism, as
Ravel had distinctive styles during his early and late period [4]. In addition, Bartók’s
works with Nationalism style are chosen manually based on existing literature due to
his unique approaches between the traditional and modernistic style [4]. Besides Na-
tionalism, a few of Bartók’s piano works are also separated into Neoclassicism due to
the use of classical forms. Other Bartók’s piano works, which do not fall into these two
styles (such as Night music), are not included. Lastly, the pre-serialism works from Se-
rialism composers, such as Schoenberg’s late romantic works, are not incorporated into
the dataset.

The dataset of the early twentieth-century music in this study utilizes note events
derived from musicXML, as it can save more information compared to MIDI. We col-
lected the data from the Petrucci music library (imslp.org) and manually converted them
to the MusicXML format. Note events, including pitch value, onset time, and duration,
are then extracted. The dataset will be publicly announced after this paper is accepted.

3 Method

3.1 Data representation

We consider pitch-related features and intervals as the data representation, as our pilot
study demonstrated that they are more relevant than other music features for classifying
our early twentieth-century dataset. [2]. Given a music piece {xi}Ni=1 with N notes, the
pitch value (in MIDI number) of the ith note being pi, the pitch range (rp), pitch mean
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Fig. 1: The example of horizontal and vertical interval feature calculation. Excerpt taken
from Bartók’s 9 Little Pieces for Piano no.5.

(µp), and pitch standard deviation (σp) over all time steps are

rp := max
i

(pi)−min
i
(pi) ; µp :=

1

N

N∑
i=0

pi ; σp :=

√∑
(pi − µp)2

N
. (1)

Then, vertical interval features are calculated to understand the harmony of the
repertoire. For simplicity, the positions of notes are grouped based on the beats. By
normalizing all the data to 4/4 meter, a beat refers to all notes within a quarter note
duration. For example, given a music excerpt with Y beats, the position of a note xi

is y, 1 ≤ y ≤ Y , if its onset is in the interval [y, y + 1), i.e., between the yth and the
(y+1)th beat of the music piece. For any two notes xi and xj at the same beat y, assum-
ing pi ≥ pj , the vertical interval between xi and xj at y is 12 if pi − pj = 12n, n ∈ N,
and is pi−pj (mod 12) for other cases. That means a vertical interval is a value ranging
from 0 (unison) to 12 (perfect octave). The distribution of the vertical intervals over all
time steps is then represented as a 13-dimensional vector, obtained by aggregating the
counts of each interval class over all the time steps. The final vertical interval feature
(denoted as v̄) is a min-max scale normalization over this distribution.

In addition, we employ another feature based on the horizontal interval for under-
standing the relationship between neighboring notes. For the horizontal features, we
consider two groups of notes by m beats apart from each other. where Following the
skip-gram technique in the field of natural language processing, m is the number of
skips, and m = 0 represents no skip. Similar to vertical interval, the horizontal interval
of xi and xi+m+1 (assuming pi > pi+m+1), is 12 if pi−pi+m+1 = 12n, n ∈ N, and is
pi−pi+m+1 (mod 12) for other cases. Similar to the normalized distribution of vertical
intervals, the normalized distribution of m-skip horizontal intervals (denoted as h̄(m))
is also a 13-dimensional vector by aggregating the counts of each interval and min-max
normalization.

The straightforward way of calculating the vertical and horizontal interval features
is demonstrated by an example in Figure 1. There are three beats (indicated by the
yellow boxes) in this example. The vertical interval calculations are shown in the blue
lines. At the first beat, for the intervals from the note C♯3, we calculate every possible
interval in the same time stamp. Here, calculations are made from C♯3 to E3 (i.e., a
minor third, also denoted as “V-m3”) and from A♯2 to C♯3 (i.e., minor third or V-m3).
The rest of the notes are treated similarly without repetitions; for example, at this beat,
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we also have an interval between A♯2 and E3 (diminished fifth or V-d5). Summing up
the vertical intervals over all the timestamps in Figure 1, we have in total one V-m2, two
V-m3, two V-d5 and one V-P5, so the distribution is [0, 1, 0, 2, 0, 0, 2, 1, 0, 0, 0, 0, 0] and
the min-max-normalized distribution is v̄ = [0, 0.5, 0, 1, 0, 0, 1, 0.5, 0, 0, 0, 0, 0]. Mean-
while, the red lines show the calculation of horizontal intervals without any skip. Our
example here calculates the horizontal intervals between the second and the third beats,
which result in three intervals: D♯3 to C♯3 (major second, or denoted as H-M2), C♯3
to E3 (H-m3), and A♯2 to C♯3 (H-P5). Lastly, the green line indicates the horizontal
interval calculation with skips. In this example, we only demonstrate the interval cal-
culation with one skip, i.e., between the first and third beats. The calculation results in
three intervals: C♯3 to C♯3 (H-P1), C♯3 to E3 (H-m2), and A♯2 to C♯3 (H-m3). The
method of summing up different timestamps is similar to the case of vertical intervals.

In the remainder of this paper, the number of skips is not specified if it is zero. To
summarize, we consider the pitch features (pitch range, pitch mean, and pitch standard
deviation, totaling three dimensions), vertical interval features (13 dimensions), and
horizontal interval features with skips from 0 to 2 (13 × 3 = 39 dimensions). This
results in a total feature dimension of 55.

3.2 Classifiers

We consider three categories of rule-based algorithms: rule trees (i.e., decision trees),
rule lists, and rule sets. These three are interpretable in that they are all constructed with
conditional statements (i.e., if-then-else rules) of the input features and the correspond-
ing outcomes [10]. In decision tree, the if-then-else rules form a tree structure in which
the internal nodes represent conditions of features, and each leaf node represents a class
label. In rule lists and rule sets, each condition of an if-then clause can incorporate mul-
tiple input variables. Specifically, in rule lists, rules are the conditions ordered in nested
if-else statements, while in rule sets, rules are unordered and independent from each
other in that the else statements do not connect the rules [10]. As for visual representa-
tion, rule trees are often illustrated in tree graphs, while rule lists and rule sets tend to
have textual or tabular representation. Hence, rule trees, rule lists and rule sets are not
equivalent and are different in multiple aspects.

The rule tree classifier we adopt is the decision tree with the optimized CART Algo-
rithm [3], available from the scikit-learn library.4 For the rule list classifier, we utilize
the minimum description length (MDL) rule list, a probabilistic multi-class classifier
algorithm. MDL rule list is designed using the minimum description length principle,
which chooses the best model based on the ability to compress the data [22].5 The
MDL Rule list requires only a few hyperparameters to work and can acquire competi-
tive accuracy [22]. Lastly, for the rule set classifier, we utilize skope-rules.6 Similar to
Rulefit [20], the rules from Skope-rules are chosen by extracting the path of the tree
from multiple decision trees. However, the difference lies in establishing the final rules.

4 https://scikit-learn.org/stable/modules/tree.html
5 https://github.com/HMProenca/MDLRuleLists
6 Source code available at https://github.com/scikit-learn-contrib/skope-rules
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Table 2: Classification results using the three rule-based classifiers on the four styles of
early 20th-century music. Precision (P), recall (R) and F1-score (F1) values are shown.

rule tree rule list rule set
P R F1 P R F1 P R F1

Serialism 0.80 0.59 0.68 0.68 0.68 0.68 0.99 0.73 0.84
Neoclassicism 0.60 0.60 0.60 0.52 0.42 0.47 0.84 0.56 0.67
Impressionism 0.56 0.57 0.57 0.55 0.27 0.37 0.68 0.63 0.66
Nationalism 0.62 0.67 0.64 0.57 0.97 0.71 0.83 0.58 0.68
Average 0.65 0.61 0.62 0.58 0.59 0.56 0.84 0.63 0.71

Table 3: The extracted rule set of four classes
Rules 1 Rules 2 Rules 3 Rules 4 Class

Pitch Range > 45.5 H-M7 (2 skip) > 0.17 V-m7 ≤ 0.39 V-P8 ≤ 0.8 Impressionism
Pitch Range ≤ 52.5 V-P1 > 0.15 V-P8 > 0.23 H-m2 > 0.05 Nationalism
H-P8 ≤ 0.004 H-M7 (1 skip) > 0.05 H-M6 (2 skip) > 0.15 VI 4 > 0.49 Serialism
H-A4 ≤ 0.5 H-P8 > 0.01 V-m7 > 0.4 V-M7 > 0.3 Neoclassicism

Skope-rules filter the rules using out-of-bag (OOB) precision and recall thresholds and
the semantic deduplication method for maintaining the diversity of the rules [20].

The hyperparameters utilized in this study are described as follows. For decision
tree, we use a maximum depth of four, gini impurity as the criterion, and minimum
sample split as two. The rest are followed by the default settings of Scikit-learn’s Deci-
sion Tree. Meanwhile, the parameters used for the MDL rule list classifier is elaborated
as follows: static data discretization, the maximum size of each rule description being 4,
the number of cut point of each variable being 1, minimum support being 0.1, and alpha
gain being 0. Lastly, for Skope-rules, we utilize similar hyperparameters with Decision
Tree, except that we limit the estimated number of the generated tree to 72.

4 Experiments

4.1 Experimental settings

Before training the classifiers, data augmentation has to be done since the size of the
dataset is considered small. In this case, a normalization process is performed as sug-
gested by [11], converting every sample’s key into C major and a minor. However, these
adjustments are strictly for tonal music, and this conversion step is skipped for atonal
works. Then, we perform pitch shifting from -5 to 6 semitones for each work. To bal-
ance the dataset, we randomly select 35 percent of Nationalism samples due to their
larger number. The dataset is then divided into training and testing sets with the 80:20
ratio. Lastly, considering the number of samples, 5-fold cross-validation (CV) is per-
formed for each experiment to obtain stable classification results. The test-set precision,
recall, and F1-score values averaged over the 5-fold CV are reported and compared.
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Fig. 2: Partially extracted tree of Nationalism and Impressionism class. ”Other class”
denotes the weak or irrelevant class which is neither Nationalism nor Impressionism.

Fig. 3: The extracted rule list of Nationalism and Impressionism Class. The hidden lists
contain other n rules which have low impacts to the classification decisions.

4.2 Objective evaluation

Table 2 shows the classification result of decision tree, MDL rule list, and Skope-rules.
Skope-rules achieves an average F1-score at 0.71, outperforming both decision tree
(F1-score = 0.62) and MDL rule list (F1-score = 0.56) by a wide margin. Meanwhile,
we have slightly different results for the F1-score of each class. Skope-rules still domi-
nate in Serialism, Neoclassicism, and Impressionism classes, followed by decision tree.
However, for Nationalism, the MDL rule list achieves a better result than the other two,
with F1-score = 0.71. Lastly, the results of both Neoclassicism and Impressionism of
the MDL rule list are underwhelming, with the F1-score less than 0.5.

4.3 Subjective evaluation

A user study in the form of a questionnaire is utilized to understand the interpretabil-
ity of the models for musicologists, musicians, composers, and other music-related
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Fig. 4: Results of the subjective tests. Left: visualization test. Right: content test.

researchers. The questionnaire of our subjective evaluation contains two parts, visu-
alization test and content test. The first part evaluates the subjective response to the
visualization quality of the rules. Rule tree is visualized with a decision tree graph (e.g.,
Figure 2) while rule list is represented by text, consisting of the if, else-if, and else rules
(e.g., Figure 3). Lastly, rule set is represented by a table (e.g., Figure 3). The questions
then aim to understand the most favorable representation of the visualization results
based on the opinions of respondents. Since the 5-fold CV generates five different lists,
trees, and sets, we decided to take the best graphs or rules based on the best F1-score of
the folds for the questionnaire questions.

The second part of the subjective test evaluates the content of the generated rules of
each class. In the second part of the subjective test, we present C4

2 = 6 question sets
of rule tree, rule list, and rule set based on the binary classification; the six sets contain
each of the two styles selected from the four musical styles for pairwise comparison.
Each set consists of four questions. They are (Q1) From the three options, which one
gives the best result according to current music theory? (Q2) From the three options,
which one gives the worst result according to current music theory? (Q3) From the three
options, which one gives the most unusual rules? (Q4) From the three options, which
one gives the least unusual rules?

20 participants joined the subjective test. 18 of them have a degree in music. Among
the participants, 13 have more than 11 years of experience in music. On a scale of
1-5, 7 participants are very familiar with early twentieth-century music (scale 4-5),
while 10 participants are familiar with early twentieth-century music (scale 3). Only 3
participants are quite unfamiliar with early twentieth-century music (scale 2).

The left-hand side of Figure 4 shows the result of the subjective test. For the visual-
ization test, rule tree is the model representation that is easiest to read, followed by rule
set. Meanwhile, rule list is the hardest to read. Similarly, among the three models, the
rule tree is also the most comprehensible, followed by rule set and rule list.

The right-hand side of Figure 4 shows the result of the content. In line with the
result of the visualization test, the answers to Q1 and Q2 of the content test show that
most participants favor rule set and rule tree over rule list. However, unique results are
seen based on the answer of Q3. Even though rule set has the highest ratio in Q1, it
turns out rule set also occupies second place in Q3. It means that although rule set has
rules strongly similar to current music theory, some are also considered unusual.
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5 Discussion

5.1 The Subjective and Objective Evaluation Analysis

The objective and subjective evaluations conducted in this study show several similar
trends. The visualization and content test show identical results regarding the most ac-
curate classifier among the three representations. Skope-rules appears to be the best
classifier with the F1-score = 0.71, and the classifier shows the best result for the cur-
rent music theory based on the content test (see Q1 and Q2 in Figure 4). Meanwhile,
the rule tree comes second with F1-score = 0.62, with the second-best accuracy towards
the current music theory. On the other hand, the rule list becomes the worst classifier
among these trees with the lowest F1-score, lowest Q1, and highest Q2 value of content
test. The Q3 answers show that rule list generates the most unusual rules compared to
others. There may be two possible explanations regarding this matter. First, the unusual
rules may be the signs of the new possible finding regarding the theory of musicology.
Second, the rules from rule list may not be accurate because it occupies the lowest F1-
score in objective evaluation. However, at the current state of the study, we are unable
to identify whether these found rules from the rule list are truly insightful, and further
investigations are required. Lastly, based on the Q4 of the content test, no clear trend
was found.

Meanwhile, regarding the interpretability of the rules, we still observe contrasting
outcomes in between visualization tests Based on the result of the visualization test
(Figure 4), rule tree offers better comprehensibility and readability compared to rule
list and rule set. Rule set comes second despite having the highest precision, recall, and
F1-score on the objective evaluation. The result in our case shows that a higher F1-score
does not always imply better interpretability. This is possibly due to data representation:
the tree data structure in rule tree has the advantage of showing the relationship between
the classes. For instance, in Figure 2, the readers can easily notice the distinctions of
Nationalism and Impressionism classes directly from the ramification on the first depth
onward. Meanwhile, for the rule list and rule set, the readers need to compare each rule
one by one. In addition, the rules generated from the rule tree always show at least one
related feature of both classes (see Figure 2) since, in the tree model, two child nodes
always have at least one shared parent node. On the contrary, in both rule list and rule
set, there are possibilities that all features of both classes are distinctive. Readers may
be confused in comparing the rules if all the rules between classes are unrelated.

The rule list shows the most inferior performance from both the subjective and
objective perspectives: The average F1-score is only 0.56 (although it performs the best
in Nationalism), and it is the hardest to read, comprehend, and the worst according to
music theory. This might be due to data representation: there is a possibility that even
though the rule list may produce reasonable rules, the subjective evaluation participants
tend to choose other models due to the unfamiliarity of the respondents with the IF-
ELSE concept in Figure 3, which are computer science rather than musical knowledge.

Based on the subjective and objective evaluation results, rule set shows the best
accuracy in the F1-score and the content test while the outcome of the visualization test
still indicates the potential of the rule tree as a good representation that favors music
practitioners and musicologists. Besides, the results of the rule list are least favorable.
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Table 4: The features of the four random-chosen excerpts. The green color shows that
the feature fits the rule set and the red color shows that the feature unfits the rule set.

Example (Composer) C. Debussy B. Bartók A. Schoenberg P. Hindemith
Class Impressionism Nationalism Serialism Neoclassicism

Im
pr

es
si

on Pitch range > 45.5 73 43 63 72
H-M7 (2 skip) > 0.17 0 0.12 0.13 0
V-m7 ≤ 0.39 0.22 0.06 1 0.5
V-P8 ≤ 0.8 1 0.16 0 0.74

N
at

io
na

l Pitch range ≤ 52.5 73 43 63 72
V-P1 > 0.15 0.007 0 0 0
V-P8 > 0.23 1 0.16 0 0.74
H-m2 > 0.05 0.17 0.62 0.99 0.39

Se
ri

al
is

m H-P8 ≤ 0.004 0.74 0 0 0.13
H-M7 (1 skip) > 0.05 0 0.02 0.3 0
H-M6 (2 skip) > 0.15 0.46 0.09 0.29 0.12
V-M3 > 0.49 0.65 0.35 0.53 0.84

N
eo

cl
as

si
c H-A4 ≤ 0.5 0.21 0.38 0.97 0.11

H-P8 > 0.01 0.74 0 0 0.13
V-m7 > 0.4 0.22 0.06 1 0.5
V-M7 > 0.3 0.03 0.19 0.54 0.39

5.2 Case Study

In this part, we perform a case study to see how the learned rules work on real-world
music examples. We randomly select four excerpts from our dataset to represent each
respective style. The music pieces are the excerpts chosen from Claude Debussy’s Noc-
turne, Béla Bartók’s Nine Little Pieces for Piano, Arnold Schoenberg’s Suite for Piano
and Paul Hindemith’s Ludus Tonalis.

The rule set on Table 3 is utilized in the case study since rule set is the most rec-
ommended algorithm according to our previous discussion. The details of the chosen
excerpts and the values of those features which appear in the rules on Table 3 can be
seen in Table 4. Although the statements of feature in the rule set are combined with the
logical AND, we discuss the feature separately for convenience. For example, the pitch
range of Debussy’s Nocturne fits the rule “Pitch range > 45.5” for Impressionism since
its value is 73. In addition, the pitch range of Bartók’s piece also fits this rule since it is
non-Impressionism, and its value, 43, is smaller than 45.5. As a result, the value with
the green color in Table 4 indicates that it fits the rule description of the music style,
while the value with the red color shows that it does not fit the rules.

The results in Table 4 indicate promising outcomes. For Debussy’s Nocturne (Im-
pressionism) and Bartók’s Moderato (Nationalism), two out of the four rules predict
the style label correctly Meanwhile, for Schoenberg’s Präludium (Serialism) and Paul
Hindemith’s Preludio (Neoclassicism), all the rules are correct. It should be noted that
current music theory does support certain generated rules on Table 3. For instance, the
pitch range of Impressionism is supposed to be larger than 45.5 semitones, and De-
bussy’s Nocturne fulfills the requirements. The requirement of such a wide pitch range
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may be correlated with the main characteristics of Impressionism piano works; among
them are “open chord, wide spacing, and extreme register” [19, p. 169].

Meanwhile, some other results demonstrate unusual rules based on the perspective
of musicology. For instance, the rule from the rule set shows the importance of V-M3
(major third) in Serialism composition. However, Serialism works do not stress the
utilization of the major third since Serialism composition utilizes intervals based on the
tone rows [4]. Lastly, another issue that concerns us is that some rules generated by
the rule set are very weak. For instance, one of the Neoclassicism rules states that the
normalized value of H-P8 (perfect octave) needs to be larger than 0.01, a very small
lower threshold. Therefore, such a rule may not be as insightful since any music piece
that merely utilizes a few numbers of the horizontal perfect octave interval might satisfy
it. Hence, in certain parts, such rules do not highlight the important characteristics of
the styles but are redundant. However, certain weak rules are still able to show some
insights. For example, the rule H-M7 (skip 1) > 0.05 seems weak given that 0.05 is a
small lower threshold. However, based on observations, the excerpts in the other three
styles have this feature smaller than 0.05, meaning that the horizontal major seventh
interval with skip 1 rarely appears except in Serialism.

6 Conclusion

To conclude, the systematic study of rule-based interpretable algorithms for classifying
the styles of early twentieth-century music indicates that the rule-set-based algorithm,
Skope-rules, shows the best performance in the precision, recall, and F1-score of the
objective evaluation and also offers decent comprehensibility and consistency of music
theory in the subjective tests. In addition, the chosen algorithm with our feature design
can find the rules in line with the current music theory, as well as the promising unusual
rules which may show new insights regarding early twentieth-century music. Rule tree,
on the other hand, is able to provide the best result in visualization test, yet is unable
to outperform rule set in other evaluation sections. Thus, while the previous studies on
rule-based interpretable music AI mostly considered decision trees, we suggest using
rule-set-based algorithms for related research directions.
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Abstract. In the performance of Western art music, musicians apply various
strategies to manipulate the performed sound, and communicate their musical
interpretations via these subtle acoustic variations. It is a common practice for
musicians to use typical conventions to express each compositional style (e.g.
Baroque, Classical, or Romantic compositions). However, such stylistic expres-
sive conventions has yet been fully discussed in previous research. In this ini-
tial foray, we systematically compare the expressive strategies for different piano
compositions. A series of piano performance are recorded with a controlled ex-
perimental setting (3 compositions × 8 pianists × 3 repeated trials = 72 record-
ings), and expressive acoustic elements are derived using Music Information Re-
trieval techniques. In our analysis, we reveal that expressive manners in music
performance exhibit stable and systematic features corresponding to each music
composition, and those stylistic trends serve as empirical observations for typical
performance conventions in different music styles.

Keywords: expressiveness, performance style, piano performance, computational
musicology, Music Information Retrieval

1 Introduction
In the past decades, the way how music audiences approach, appreciate, and get to
understand music has been evolved with the revolution of digital technologies. From
attending physical concerts, purchasing audio/video medium (e.g. CD, DVD), to get-
ting access to large amount of digitized performance recordings via online streaming
services, audiences embrace the opportunities to explore the variety of music perfor-
mance. In the context of Western art music, musicians have the privilege to interpret the
written composition, and to communicate their understanding of the music piece via
intricate variations in their performance (e.g. micro-timing, dynamic, timbral, and ar-
ticulation arrangement). Audiences also enjoy the process to contemplate and compare
diverse artistic variations in different performance versions, and through which process
to discover potential insights for classical repertoire. The artistic, expressive variations
in music performances therefore serve as an essential communicative vehicle to deliver
musical ideas in the cultured convention.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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Recently, systematic studies for large-scale music performance corpus are advanced
with the facilitation of Music Information Retrieval (MIR) techniques. Computational
models have been established to map general connections between musical attributes
(e.g. note length, note pitch, phrase position) and expressive variations in performance
[12] [16]. From musicological aspect, scholars focus on specific genres (e.g. Baroque
music) and examine how particular aesthetic styles in music are shaped by artistic vari-
ations in performance [9]. Musicians also contribute their creative and unique inter-
pretations in the process of performance execution. [18] [33]. The execution of music
performance is therefore a complex and interactive process across aforementioned fac-
tors - the composition, stylistic convention, and individual musicians. The relationships
between these aspects and how they interact together, however, have yet been fully dis-
cussed in previous research, particularly with systematic analysis of individual factors.

In this study, we aim to provide context-valid observations in terms of the interac-
tions between different factors leading to musical expressiveness. A piano performance
corpus is collected under a controlled experimental setting, and Music Information Re-
trieval (MIR) techniques are applied to retrieve expressive variations in tempo and dy-
namics. The performance variations are analyzed in conjunction with compositional
elements through statistical and time-series methods. We identify important factors to
induce unique music expression, and then subsequently investigate how those factors
interact in different performing contexts. The contribution of this work is threehold:

• To compile a new piano performance dataset with controlled experimental design
for comparison;

• To identify different key factors affecting music expression in individual scenario
via statistical analysis;

• To provide empirical observations of how different factors interact together in a
time-series process.

In the next section, we will discuss previous studies regarding musical expressive-
ness. The data collection and data processing procedure of this study will be reported in
Section 3. In Section 4, we will investigate stylistic expressive trends found in individual
compositions, and distinctive expressions bound for different compositional elements.
In Section 5, our analysis results will be discussed in conjunction with findings in pre-
vious research, and we therefore suggest that our analysis can be implemented as an
empirical approach to describe systematic variations for different expressive styles in
music performance.

2 Related work

The expressiveness in music performance is shaped by complex interactions among di-
verse factors. In the context of Western art music, composers follow conventional rules
to construct the melodic, rhythmic, and harmonic configurations of music (composi-
tional factor) [1] [23], and each composer’s work would exhibit distinctive character
according to the composer’s preference (stylistic factor) [6]. During the performance
process, musicians have their unique fashion to communicate personal musical inter-
pretations, and control the variations in performed acoustic sound (e.g., micro-timing,
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dynamic, and articulation variations) (musician factor) [25] [26]. GERMS model sys-
tematically categorized different origin of musical expressiveness including: generative
rules, emotional expression, random variations, motion principles, and stylistic unex-
pectedness [19]. We will review related works regarding three different origin of musi-
cal expressiveness in this section.

2.1 Compositional factors in music performance
In previous studies, rule-based models are established to describe the connection be-
tween compositional elements and expressive variations. The KTH model combines
generative rules in melodic, harmonic, rhythmic, and phrase aspects to predict the tim-
ing, dynamics, and articulation execution in performance [12]. For piano performance,
rule-based models and linear Gaussian models can be applied to jointly predict the
tempo, dynamic, and articulation variations in performance according to multiple at-
tributes in melodic, rhythmic, and harmonic aspects of performance [11]. Based on
large amounts of jazz performance data, inductive logic rules for expressive elements
(note onset deviation, dynamic variation, and ornamentation) are found in jazz mu-
sic [14]. It is also found that tempo and dynamic variations interact together in music
performance, and the tempo-loudness trajectory is an effective description to illustrate
distinctive features of performance style [4].

Another cluster of studies apply machine learning approach to explore potential
relationships between compositional elements and expressive variations. The connec-
tion between expressive tempo variations and musical phrase is mapped using Gaussian
Mixture Models (GMMs)[24]. Models with transitional hidden state are applied to pre-
dict expressive variations according to score-informed attributes. For instance, Hidden
Markov Model (HMM) and Hierarchical HMM are used to estimate the expressive
variations in piano performance [17]. Conditional random fields (CRFs) are applied
to predict expressive elements based on melodic and harmonic components [20]. Feed
Forward Neural Networks (FFNNs) are used to predict the dynamic variations based
on local-level score-informed attributes including the pitch, duration, and the note’s
relative interval with neighboring notes [3]. Linear and non-linear models for musical
expression are systematically evaluated in [2], and it is concluded that compared to
linear models, non-linear models have better performance to estimate the tempo and
dynamic changes in music performance.

2.2 Stylistic factors in music performance
Computational models are also built to explore specific performance styles. Restricted
Boltzmann Machines (RBMs) are capable of predicting expressive accentuations in pi-
ano performance [36]. For solo violin performance, long-term dynamic variations can
be successfully modelled using Random Forest, k-nearest neighbors (k-NN), and Sup-
port Vector Machine (SVM) [15]. For string quartet, the timing deviation, dynamic
level, and the extent of vibrato in performance can be estimated based on melodic (e.g.
relative interval) and rhythmic (e.g. metrical hierarchy) descriptors using model trees,
k-NN, and SVM [21]. For jazz music, Decision Tree, SVM, and Neural Network (NN)
are developed to formulate the stylistic deviations in jazz performance, and the impro-
vised embellishments can be predicted from attributes including the chord type, note
duration, and phrase [14].
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Fig. 1. The repertoire for data collection: three piano solo works by Bach, Mozart and Beethoven.

2.3 Musician factors in music performance
Musicians have their personal expressive manners in music performance. In order to
compare different performance versions for the same composition, entropy-based de-
viation measures are used to describe expressive timing patterns in individual perfor-
mance versions [25]. Hierarchical clustering is also an useful implement to distinguish
different trends of performing styles for orchestral works [26]. For violin performance,
individual violinists have their own expressive strategies to convey melodic patterns and
phrase structure in the composition [29]. For jazz music, different performance styles by
individual musicians can be successfully distinguished based on their intra-note features
(e.g. note’s attack level, sustain duration, amount of legato, spectral centroid, spectral
tilt), inter-note features (e.g. relative pitch and duration to the neighboring notes), and
note-to-note transition (pitch contour) [34].

The style of music performance is highly idiosyncratic according to the music genre,
the music composition, and the musician. In particular, in Western art music, it is a
common practice for pianists to play compositions in Baroque, Classical, and Roman-
tic period following distinctive conventions. Aforementioned studies tends to explore
a specific aspect of musical expression (i.e. either compositional, stylistic, or musician
factor alone). Yet in music performance, the interactive, dynamical process among dif-
ferent factors work together to shape diverse variations. Based on the foundation of
previous research, this work collects a series of piano performance data, and system-
atically analyze how individual factors interplay together to shape the overall musical
expressiveness.

3 Method
In order to systematically examine how different factors affect the expressive variations
in piano performance, a series of piano performance data are collected in this study.
In this section, we report the procedure for data collection, and the data processing
methods to extract expressive variations from recorded performance audio.

3.1 Data collection
Eight pianists are recruited to participate the recording sessions. The recruited partic-
ipants are graduate/undergraduate students majoring in piano in music department at
university (male = 4, female = 4). We reached out the participant pool via personal con-
tact of music department staff. Participants are all right-handed, with the average age of
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Fig. 2. The automatic audio-to-score alignment process to extract note timing from performance.

21.63 (SD = 0.70). They have learnt piano for 14.88 years in average (SD = 2.42), and
practice for 3.75 hours in average per day at the time of data collection (SD = 1.84).

In order to compare different performance styles, piano solo works written by dif-
ferent composers are selected as materials (Fig. 1). Repeated measures design is used to
observe if pianists show stable features when performing the same piece of music mul-
tiple times. The three music pieces selected for data collection are Bach Well-tempered
Clavier, Book 1, Prelude 1, BWV.846; Mozart Piano Sonata no. 11, KV. 331, mov.1,
and Beethoven Piano Sonata no. 21, Op. 53, mov.1 (bar 1-86, Exposition). In our ex-
periment, each pianist played each music piece for 3 times in a random order, which
resulted in 72 performance recordings (3 music pieces x 3 performances x 8 pianists).
The recording sessions took place at the Motion Analysis Lab (National Yang Ming
Chiao Tung University, Taiwan), where the performances were recorded on Yamaha
digital piano P-115. In order to accurately align each notes in the performance with the
music scores in the subsequent stage of data analysis, the performance is recorded as
both midi and audio formats. During recording sessions, participants’ body were also
attached to optical markers to record 3-d motion capture data for their performance
body movement, which will be further analyzed elsewhere.

3.2 Data processing
The dynamic and tempo variations in piano performance are the two expressive features
to be analyzed in our subsequent investigation. In order to derive our target features, the
first step is to perform audio-to-score alignment and to obtain the time stamp for each
note in the performance. The audio-to-score alignment for polyphonic music, partic-
ularly with casual playing errors and asynchrony between two hands in piano perfor-
mance, has been considered as a challenging task in Music Information Retrieval [5]
[13] [30]. We applied an automatic alignment method to align recorded midi files and
music scores files, in which Viterbi algorithms are used to exclude playing error regions
and alignment errors in a pre-alignment process, and then hidden Markov models are
applied to divide notes playing by two hands and accurately re-align each note based
on the merged information [31] (see Fig. 2).

In order to associate expressive variations with the overall compositional structures,
we analyze the dynamic and tempo variations at bar-level instead of instant dynamics
and tempo. For tempo variations, the timing for each beat is extracted from the audio-
to-score alignment data. The note information (e.g. the note pitch, duration, bar and beat
position) is extracted from xml files using Python library Music21 [7], and such infor-
mation from music scores serves as the reference to locate corresponding onset timing
for each beat in the performance. In case of absent note on downbeat, linear interpola-
tion is performed based on the timing of neighboring beats; in case of the asynchrony
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Fig. 3. The data distribution and statistics for two expressive elements (tempo (upper), dynamics
(lower)) in piano works written by Bach (red), Mozart (green), and Beethoven (blue).

between two hands, the note with the lowest register is taken as the reference. The tempo
per bar is then defined as the average bpm (beat per minute) per bar. For dynamic data,
the decibel is computed from the input audio (sampling rate = 22050 Hz) using Python
library Librosa [28]. In order to eliminate the disturbance of local noise, moving aver-
age (window size = 220 samples, roughly 0.01 seconds) is used to smooth the original
data. Since each note has a natural ADSR (attack-decay-sustain-release) curve, and the
maximum volume on the attack is the main feature concerned, the dynamic level per
bar is defined as the maximum decibel within a bar duration. Conventional music anal-
ysis is performed on the music scores, and structural features of music works including
the harmonic progression, phrase and sectional boundaries are analyzed to be compared
with features extracted from performance audio.

4 Analysis results
Through the data collection and processing procedure, a series of piano performance
data are collected, and expressive tempo and dynamic variations are extracted. In this
section, we report our analyses and observations for stylistic expression in three aspects:
1) the general expressive manners, 2) the interaction between different compositional
elements and expressive features, and 3) the time-series expressive trends found in indi-
vidual compositions, which can be regarded as individual stylistic expressive strategies
attached to the composition.

4.1 General expressive manners

In our analysis, it appears that pianists use different strategies to express each compo-
sition. In Fig. 3, different tendencies of pianists’ expressive manners can be observed
in the distributions and statistics of tempo (the upper panel) and dynamics (the lower
panel). In order to distinguish the influence from compositions versus from pianists,
We perform statistical tests on two factors (composition and performer). Since the dis-
tributions of both tempo and dynamic data violate the assumption of homogeneity in
Levene’s test, non-parametric tests (Kruskal-Wallis tests) are performed instead of reg-
ular ANOVA, and Bonferroni correction is applied to post hoc analysis [10]. Regarding
the tempo data, the statistical analyses yield significant differences between all three
compositions, while the performances for Mozart’s and Beethoven’s pieces have more
similar average tempo (126.77 and 136.30 bpm) compared to Bach’s piece (69.70 bpm).
Comparing the performances for Mozart’s and Beethoven’s compositions, Beethoven’s
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composition possesses higher variations (SD = 14.58, range = 124.67) than Mozart’s
work (SD = 10.85, range = 96.27). It is worth noted that according to the statistic analy-
ses on the pianist factor, some pianists have distinctive expressive strategies, which can
be distinguished from other pianists’ expressive trend.

4.2 Interactions between compositional and expressive elements

Pianists perform individual compositions with diverse expressive manners, and they
may use different expressive strategies to communicate each compositional element.
In this section, we further analyze the interaction between different compositional el-
ements and expressive features. We focus on the phrase, section, and harmony aspects
of composition, and manually-annotate five different features for each musical bar in
each composition: 1) section boundary (on section boundary/ non-boundary), 2) phrase
boundary (on phrase boundary/ non-boundary), 3) section position (in the first /middle/
last one third of a section), 4) phrase position (in the first/ middle/ last one third of a
phrase), 5) harmony (I/ V/ other types of chord). We contemplate both the boundary
and relative position for section/phrase, since in our preliminary observation, we found
that musicians tend to show different manners at section/phrase boundaries, and their
expressive tendencies also vary when they initiate a new section/phrase versus when
they are approaching the end of section/phrase. For the harmonic aspect, we only com-
pare three types of chord to simplify the analysis process, since it is not straight forward
to observe the overall general tendency in the comparisons of many groups (e.g. com-
paring all 7 degrees of chord lead to C7

2 = 21 combinations). In many chord types, we
choose tonic and dominant chords to analyze, considering that those two chords take es-
sential position in Western tonal music and are often used to signify structural location
in music (authentic or half cadence).

For statistic analyses, we take the expressive measurements (tempo/ dynamics) in
each bar, and then split the data into groups according to their compositional elements.
Fig. 4 (A0 and B0) shows all the 26 comparison groups for statistic analysis. We first
perform normality tests for all groups, and subsequently carry out homogeneity tests
for three-group comparisons (section position, phrase position, and harmony type). For
groups violating the normality or homogeneity assumptions, the non-parametric coun-
terpart is performed instead of parametric test (i.e. t-test or Mann-Whitney U test for
two-group comparisons; one-way ANOVA or Kruskal-Wallis test for three-group com-
parisons). For three-group comparisons, we further carry out post hoc tests to com-
pare different combinations. Aforementioned procedure is performed three times for
the three compositions individually.

In Fig. 4, the general expressive tendencies (column 0) and differences between
compositions (column 1 - 3) can be observed. For tempo variations (Fig. 4, A0), musi-
cians generally incline to slow down at section and phrase boundaries, as well as at the
bars with tonic and dominate chords, since those chords may coincide with cadence.
But different expressions emerge when comparing three compositions. For the section
position, in Bach’s and Mozart’s music piece (Fig. 4, A1 and A2), musicians’ tempo
variation exhibits a U-shape curve, in which they tend to perform with faster tempi
at the beginning and end of section, and slightly slow down in the middle of section,
whereas in Beethoven’s music piece (Fig. 4, A3), musicians’ tempo curve tilts toward
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Fig. 4. The statistic analyses for 2 expressive elements (tempo (row A), dynamics (row B)), with
5 compositional elements in 3 music pieces (Bach (column 1), Mozart (column 2), Beethoven
(column 3)), including the means (bars), standard deviations (error bars), and significance level
(stars). Comparison groups are: section boundary (SB), phrase boundary (PB) (non-boundary
(pink), boundary (blue)), section position (SP), phrase position (PP) (the first 1/3 (pink), the
middle 1/3 (blue), the last 1/3 (green)), harmony types (HT) (others (pink), I (blue), V (green)).

the end of section, in which they apply a ritardando to highlight the end of section. For
dynamic variations (Fig. 4, B0), it is shown that pianists tend to perform with softer
dynamic levels when they are approaching the end of section or phrase. The softer
dynamic level sometimes incorporate with ritardando to be used as the expressive strat-
egy to shape ’the sense of direction toward the end of phrase/ section’ in performance.
We can observe that most of comparisons yield significant difference between groups,
which indicates that musicians generally jointly use the combination of different expres-
sive variations (tempo and dynamics) to deliver compositional traits in music, whereas
in Bach’s music piece, the section, phrase, and harmonic structures sometimes are not
manifest in expressive variations.

4.3 Stylistic time-series expressions in compositions

In addition to the comparison between different compositional elements, in music per-
formance, both expressive variations and compositional elements are revealed during
the course of time. We therefore take a step further in this section to discuss the time-
series connection between expressive and compositional elements. In Fig. 5, the time-
series curve of average tempo (Row A) and dynamics (Row B) per bar (for all trials
performed by all pianists) are aligned with musical elements in compositions including
phrases (Row C), sectional boundaries (Row D), and harmonic progression (Row E). In
our analysis, the expression curves show that pianists tend to adopt different patterns of
variation in their performance to convey distinctive traits in each composition.

In Bach’s work, pianists perform with a steady tempo, except an obvious ritardan-
dos indicating the cadence at the end of the piece (Fig. 5, 1A). The dynamic variation
in Bach shows distinct features corresponding to the phrase structure and the harmonic
progression (Fig. 5, 1B). For the phrase structure, the dynamic curve exhibits an in-
verted U-shape matching with phrase boundaries per 4 to 6 bars, which shows that
pianists tend to perform a crescendo for the first half of the phrase, and then perform
a decrescendo for the second half of the phrase. For the harmonic progression, louder
performance dynamics are applied to emphasize harmony with higher tension such as
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Fig. 5. Time-series trends of tempo and dynamic variations in piano performance.
The expressive curves of mean tempo (bpm) (Row A) and the mean dynamics (db) (Row B),
aligned with compositional elements including phrases (Row C), sectional boundaries (Row D),
and harmonic progression (Row E) in Bach’s (Column 1), Mozart’s (Column 2), and Beethoven’s
(Column 3) compositions.

secondary chords (red markers), whereas softer dynamics associate with tonic chord
(blue markers), which often coincides with the boundary of phrase and represents the
release of harmony tension.

In Mozart’s composition, the tempo and dynamic curves in pianists’ performances
exhibit different traits compared to Bach’s work. In contrast with the smooth tempo
curve in Bach’s work, pianists apply tempo variations to express the phrase structure
when performing Mozart’s work, in which their tempi tend to slow down at phrase
boundaries (Fig. 5, 2A). For dynamic variations, in Bach’s work, pianists use dynamic
variations (crescendo-decrescendo patterns) to express phrase structure, whereas dy-
namic variations in Mozart’s work serve as the means to convey higher-level music
structure (Fig. 5, 2B). In Mozart’s work, the regions with relatively louder dynamic
levels often coincide with the appearance of theme B. In Mozart’s this composition,
theme A and theme C possess contrasting characters compared to theme B. Theme A
and theme C mostly consist of rapid sixteenth notes, whereas the main components of
theme B are unison chords played by both hands simultaneously. It would be a natural
practice for pianists to perform theme B with a louder dynamic level in this case. An
interesting observation is that given the contrasting dynamic levels between different
themes (theme A, C versus theme B), the dynamic variations in Mozart’s work still
reflect the harmonic progression at the local-level. As shown in (Fig. 5, 2B), within
individual themes, the valleys of dynamic curve at local regions often coincide with
the release of harmonic tension, such as half cadences (pink markers) or full cadences
(purple markers). Those observations indicate that the dynamic curve in Mozart’s work
is formed by complex interactions between diverse musical components, including the
theme arrangement and the harmonic progression.

In Beethoven’s composition, pianists accentuate the musical structure using differ-
ent strategies compared to the previous two compositions. It appears that pianists tend
to focus on the higher-level structure of music rather than local-level details in this
composition, and employ combinative strategies to emphasize their interpretation of
the overall musical structure. For the tempo variation, Bach’s work has a smooth tempo
curve, and in Mozart’s work, pianists apply tempo variations (accelerando-ritardando
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pattern) to express local phrase boundaries. On the other hand, in Beethoven’s com-
position, obvious valleys in tempo curve tend to coincide with the end of structural
sections rather than local phrase boundaries (Fig. 5, 3A), which indicates that pianists
employ a noticeable ritardando to signify the end of the section. The dynamic variations
in Beethoven’s work exhibit multi-layered musical features in the composition (Fig. 5,
3B). The global trend in dynamic variation shows inverted U-shapes corresponding to
the high-level section structure of different themes, which suggests that pianists’ per-
formances exhibit the crescendo-decrescendo global pattern for each structural section.
In addition, the dynamic curve within local regions still reflects detailed local-level fea-
tures in the composition, in such a way that occasional fluctuations with limited range
match with phrase boundaries, and the curve valleys are usually consistent with the
locations with lower harmonic tension (half or full cadences).

To summarize general time-series trends observed in the tempo and dynamic vari-
ations, pianists employ diverse strategies to communicate the harmonic, phrase, and
sectional structure in the three music compositions. Pianists generally utilize dynamic
variations (crescendo-decrescendo pattern) to convey the phrase and harmonic struc-
ture in Bach’s work. In contrast, in Mozart’s work, dynamic variations are the means
to communicate higher-level sectional structure rather than local phrase boundaries,
and the phrase structure is more manifest in the tempo variation curve (ritardando at
phrase end). In Beethoven’s composition, tempo and dynamic variations exhibit com-
plex influences from diverse musical features. The sectional structure is evident in both
tempo (ritardando at section end) and dynamic variations (crescendo-decrescendo pat-
tern), and the dynamic fluctuations are affected by global features in sectional structure,
as well as by local features in phrase and harmony.

5 Discussion
In the previous section, we reported our findings regarding tempo and dynamic varia-
tions in performances of three piano pieces, and how pianists apply different expressive
variations to communicate distinctive musical structures in the composition. We will
further incorporate our findings with previous research in this section.

According to our analysis, musical phrase appears to be one of the main compo-
nents for musicians to express in their performance. Previous research reported that the
arching pattern in tempo curve [9] [35] and dynamic variations [15] are attached to
phrase formation. In our analysis, we further found that pianists apply diverse strate-
gies to express phrase structure when they are performing different compositions. For
instance, the dynamic variations indicate the phrase structure in Bach’s composition
(crescendo-decrescendo pattern per phrase), whereas tempo variations are mostly used
to express phrase in Mozart’s composition (slow down at phrase end). Different expres-
sive strategies also reflects diverse compositional characters in these two music pieces.
Bach’s composition holds an invariant rhythmic pattern, which is expressed by a sta-
ble tempo in pianists’ performances. In contrast, pianists are more likely to emphasize
the dynamic change in order to highlight the tension-release process for the harmonic
progression in Bach’s composition, and such harmonic progression usually conforms
with phrase structure (e.g. cadence at the end of phrase). The compositional structure in
Baroque period mostly focuses on the development of short motives, whereas composi-
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tions in Classical period emphasize clear formation of phrase. In Mozart’s composition,
pianists therefore apply the accelerando-ritardando pattern in the tempo curve to shape
the direction of the phrase.

Regarding the combination of local music elements and the global structure of mu-
sic, previous studies suggest that the expressive manner in music performance is af-
fected by both local elements (e.g. melodic peak, rhythmic grouping) [32] [22] and
global structure (e.g. sectional arrangement) [9]. In our analysis, we found that pianists
apply different strategies to stress local and global elements. For instance, Beethoven’s
composition exhibits an interesting combination of local and global factors, in which
the general curve in both tempo and dynamic variations remain mostly consistent with
global sectional arrangement, while the variations still show small-range fluctuations
corresponding to local phrase boundaries. Compared to Bach’s and Mozart’s works,
Beethoven’s composition has sophisticated theme transformation accompanied by fre-
quent modulation, and the manifest harmonic tension build-up process is one of the key
features in Beethoven’s compositions. Pianists may therefore manipulate both tempo
and dynamic variations in their performance to communicate this important structural
character.

It emerges from our analysis that in piano performance, expressive variations in
tempo and dynamics exhibit systematic variations consistent with musical structures.
Such systematic variations can be regarded as typical components to shape distinctive
performance style, in which we generally expect that pianists should apply different
expressive conventions when they are performing different styles of music in Western
art music (e.g. Baroque, Classical, Romantic compositions). Our analysis method and
results can serve as empirical means and provide observations for diverse performance
styles in Western art music. Our current analysis is limited to piano performances for
several selected compositions, and this analysis procedure can be further applied to the
investigation for wider range of repertoire and for different instrument’s performances.

6 Conclusion

In this paper, we show that pianists’ performances exhibit systematic expressive varia-
tions corresponding to diverse compositional styles in Western art music. We collected
72 piano performance recordings for three compositions, and derived expressive varia-
tions in tempo and dynamics using automatic audio-to-score alignment and MIR tech-
niques. Statistical and time-series analyses are performed to clarify the relationship
between different compositional and expressive element, as well as their time-series
connections during the course of performance. It is found that pianists apply stylis-
tic expressive variations to communicate musical components at both global (e.g. sec-
tional arrangement, harmonic progression) and local (e.g. phrase boundaries) levels,
and they choose different expressive strategies according to distinctive traits of each
composition. We suggest that those systematic variations in expressive elements con-
stitute the core of distinctive performance style, and the complex interaction among
diverse expressive elements (e.g. tempo and dynamic variations) at multi-layered musi-
cal structures (local and global levels) can compose an empirical approach to describe
and compare idiosyncratic music performance styles.
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Abstract. It is very important to access a rich music dataset that is useful in a
wide variety of applications. Currently, available datasets are mostly focused on
storing vocal or instrumental recording data and ignoring the requirement of its
visual representation and retrieval. This paper attempts to build an XML-based
public dataset, called SANGEET, that stores comprehensive information of Hin-
dustani Sangeet (North Indian Classical Music) compositions written by famous
musicologist Pt. Vishnu Narayan Bhatkhande. SANGEET preserves all the re-
quired information of any given composition including metadata, structural, no-
tational, rhythmic, and melodic information in a standardized way for easy and
efficient storage and extraction of musical information. The dataset is intended
to provide the ground truth information for music information research tasks,
thereby supporting several data driven analysis from a machine learning perspec-
tive. We present the usefulness of the dataset by demonstrating its application on
music information retrieval using XQuery, visualization through Omenad render-
ing system. Finally, we propose approaches to transform the dataset for perform-
ing statistical and machine learning tasks for a better understanding of Hindus-
tani Sangeet. The dataset can be found at https://github.com/cmisra/
Sangeet.

Keywords: Hindustani Sangeet, North Indian Classical Music, XML, Music Dataset,
Classification, XQuery, Music Rendition

1 Introduction

Having access to free, well-maintained databases of music is a crucial resource for
researchers. In the case of Indian Classical Music, this is also true since it has been
shown to be important for high-quality research in music information retrieval (MIR)
[8,11,21,15] and musicological analysis using machine learning [23,22,18], deep learn-
ing [12,20,16,19], etc. Several high-quality datasets, [1] and [2] for example, for re-
search in MIR and computational musicology can be found in the published literature.
⋆ We would like to thank the undergraduate students of School of Computer Science & Engi-

neering for helping create the dataset.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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Although audio recording-based music corpora are essential in certain types of mu-
sic applications, studies of existing literature reveal a dearth of substantial research
related to the varied domains of Sound and Music Computing (SMC), especially in
the design and development of interfaces for expressing Indic Music on an electronic
medium. One of the domains that interest us is the creation of an Indian music envi-
ronment through the transcription and rendering of an Indic music piece using Indic
notation systems and Indic language script. The ability to compose music electroni-
cally entirely in an Indian music environment necessitates the emergence of research
in different domains in SMC. This requires a musicological analysis of the grammar
and structure of the music sheets presently in use and the consequent development of
musical fonts and rendering engines ([5] for staff notation for example). Needless to
say, such endeavors would motivate the research community to create models for Indic
music notation systems and their language bases [14] and provide ample opportunities
to work in building interfaces for music expressions on an electronic medium.

The mere enabling of music practitioners in composing music electronically is in-
sufficient unless we have tools to exchange such musical information seamlessly across
applications. Consequently, this establishes the need for the development of a com-
mon music exchange format to communicate music independent of any genre, notation
system, language script, and music sheet structure [13]. XML-based formats for ex-
changing musical information have existed for quite some time [13,10,7] and are being
adopted by extremely robust and popular notation software like Finale [3], Sibelius [6],
MuseScore etc. Additionally, the ability to store musical information in XML solves the
problem of archiving our historic musical art form as an electronic database.

One of the most authentic sources of Hindustani Sangeet is the compositions pub-
lished in the book Hindusthani Sangeet Paddhati-Kramik Pustak Malika which com-
prises of approximately 1900 compositions belonging to North Indian Classical Music
penned by Pt. Vishnu Narayan Bhatkhande (1860 - 1936). In order to reach a greater
number of music students and scholars, the first volume of Kramik Pustak Malika has
been translated to Hindi language in 1953 by prominent music scholar Dr. Laxmi-
narayan Garg. This paper introduces SANGEET, arguably the first XML-based music
corpora that try to capture comprehensive musical information contained in these rich
music sources to apply in various music applications like music transcription, visual-
ization, MIR, computational musicology, etc. We begin the preparation of the dataset
with the second volume of Kramik Pustal Malika book series and our objective is to
store compositions of different genres in a carefully crafted XML database to preserve
comprehensive musical information in a single format. This will provide the users to
obtain a standard framework for efficient and easy access to the dataset that can be eas-
ily transformed to apply to various applications. We refer to three music applications
related to visualization, MIR, and machine learning in support of the coverage, quality,
and accessibility of SANGEET.

2 The Organization and Access of SANGEET

Pt. Vishnu Narayan Bhatkhande is the pioneer for providing a comprehensive theoreti-
cal foundation of Hindustani Sangeet in a published form in his six-volume book series
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titled Hindustani Sangeet Paddhati, Kramik Pustak Malika written in Marathi language
in 1920. His book contains a comprehensive description of music symbols for realizing
musical components including notes (Svar), time signatures (Lay), beats (Taal), orna-
ments (Alankar) etc. The dataset created in the current work has been taken from the
Hindi translation of the second volume of the series. The second volume of the book
series contains a total of 319 compositions belonging to 10 different raags. The present
work takes these written compositions as a source of musical information to create the
database for Hindustani Sangeet to be used in various applications.

We have taken 116 compositions of the three highest frequent raags i.e. raag Bhairav
(42), Todi (39), and Poorvi (35) respectively, from the entire collection of 319 compo-
sitions for performing our experimental analysis. Eventually, the entire collection of
compositions from all six volumes will be preserved in the dataset for applications re-
lated to music information retrieval, music-sheet visualization, etc.

The dataset consists of a number of XML documents that is equal to the number
of compositions in the dataset i.e. each XML document represents a single composi-
tion of the dataset. The XML documents are equipped with meaningful tags to store
all the necessary musical information for the compositions. The format of the XML
files is validated against a schema definition document so that the format of the dataset
or compositions are preserved. The schema definition document is an XML Schema
Definition (XSD) file against which each XML document is checked and validated for
legal elements and attributes. The XSD consists of four parts namely info, taal, raag,
and sheet responsible for storing metadata, rhythmic, melodic, structural, and notational
information in the XML files.

The metadata linked to the musical composition is represented by the info portion.
It contains information on the catalog, the genre, and the notational system as shown in
Listing 1.1 describing the first composition of the second volume of the book.

1 <INFO>
2 <TITLE>Composition 1 Volume 2 Kramik Pustak Malika</TITLE>
3 <AUTHOR>Pt. Vishnu Narayan Bhatkhande</AUTHOR>
4 <NOTATION_SYSTEM>Bhatkhande</NOTATION_SYSTEM>
5 <DATE_TIME>1923</DATE_TIME>
6 <GENRE>Hindusthani Sangeet</GENRE>
7 <ADDITIONAL>
8 <ENTRY>http://ndl.iitkgp.ac.in/document/

R2pPWGRxdkRWWnlvOVdPYzdzaWpTV0pYYTFIT0VnNTB6V1dnR1dJVW1kUT0</ENTRY>
9 </ADDITIONAL>

10 </INFO>

Listing 1.1: Info Part of XML file depicting metadata

The rhythmic foundation of Indian music is provided by taal. Indic music has nearly
hundreds of Taals, each with its own specific composition that includes the name, Bib-
haga or measure, Maatra or the number of beats, Avartana or the number of cycles per
line, etc. Additionally, Taal has two designated beat indices, known as Taali and Khali,
to signify stressed or unstressed strokes in addition to a specific beat pattern to uniquely
identify a Taal. These patterns, which are required to portray the Taal graphically or as
a music sheet accompanied by an Indian percussionist, have been illustrated as a se-
ries of numbers (seen in Listing 1.2). Additionally, the regular expression specifies the
expression for a beat pattern, making it easier to query the Taal’s structure.

1 <TAAL>
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2 <TAAL_NAME>Tritaal</TAAL_NAME>
3 <BIBHAGA>4</BIBHAGA>
4 <MAATRA>16</MAATRA>
5 <AVARTANA>1</AVARTANA>
6 <BEAT_PATTERN>4-4-4-4</BEAT_PATTERN>
7 <ALTERNATE_BEAT_PATTERN>NA</ALTERNATE_BEAT_PATTERN>
8 <TAALI_COUNT>3</TAALI_COUNT>
9 <KHALI_COUNT>1</KHALI_COUNT>

10 <TAALI_INDEX>1-5-13</TAALI_INDEX>
11 <KHALI_INDEX>9</KHALI_INDEX>
12 </TAAL>

Listing 1.2: Taal Part of XML file depicting Taal and its sub-components

Raag provides the melodic framework to Hindustani Sangeet and each raag can
be identified by characteristics like Arohana and Avarohana, which are ascending or
descending movements made up of a series of notes, Vadi and Samvadi, which are
consonant and dissonant notes, and classification forms like Pakad and Jaati. These
characteristics are note sequences and have been encoded using Ome Swarlipi [4], the
same rendition we use for storing notes in our dataset.

1 <RAAG>
2 <RAAG_NAME>Yaman</RAAG_NAME>
3 <THAAT>Kalyan</THAAT>
4 <AROHANA>n-r-g-M-d-n-su</AROHANA>
5 <AVAROHANA>su-n-d-p-M-g-r-s</AVAROHANA>
6 <VADI>g</VADI>
7 <SAMVADI>n</SAMVADI>
8 <JAATI>Sampoorna</JAATI>
9 <PAKAD>nlrgr-s-pMg-su</PAKAD>

10 </RAAG>

Listing 1.3: Raag Part of XML file depicting Raag and its sub-components

Sheet, which is based on the 2D matrix model Swaralipi [14], specifies the layout
of the music sheet and the placement of the notation symbols. As a result, it replicates
the entirety of the contents as a rectangular row-column arrangement. Even though we
haven’t yet transcribed the beat markings and lyrics, the model has the provision to
include them in the future. The format cleverly transforms row and column models into
helpful tags that make it easier to develop various applications, such as real-time note
playback, producing music sheets, and retrieving score data. For example, part of the
first line of the original composition (shown in Figure 1a) has been converted into the
sheet part (shown in Figure 1b and 1c).

3 Applications of the Dataset

Visualization of Music-sheets: One of the primary applications of any music dataset
is to visualize it or render it using a notation system in which it is preserved. We have
encountered several difficulties in visualizing the composition in the Bhatkhande no-
tation system since there is no standard font system for rendering Bhatkhande music
symbols in any language script. The closest rendition we have found is the Ome Swar-
lipi [4] system which is a compact version of the Bhatkhande notation system and easy
to use. In order to visualize in HTML format, the system provides the necessary styling
information to render it in Devanagari script. Therefore the pre-processing step for this
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(a)

1 <SHEET>
2 <TOTAL_LINE></TOTAL_LINE>
3 <LINES>
4 <LINE INDEX="1">
5 <ROW INDEX="1">
6 <COL INDEX="1">
7 <NOTE_COUNT>1</NOTE_COUNT>
8 <CONTENT>n</CONTENT>
9 </COL>

10 <COL INDEX="2">
11 <NOTE_COUNT>1</NOTE_COUNT>
12 <CONTENT>d</CONTENT>
13 </COL>
14 <COL INDEX="3">
15 <NOTE_COUNT>1</NOTE_COUNT>
16 <CONTENT>p</CONTENT>
17 </COL>
18 <COL INDEX="4">
19 <NOTE_COUNT>1</NOTE_COUNT>
20 <CONTENT>M</CONTENT>
21 </COL>
22 </ROW>
23 ......

(b)

1 <LINE INDEX="2">
2 <ROW INDEX="1">
3 <COL INDEX="1">
4 <NOTE_COUNT>1</NOTE_COUNT>
5 <CONTENT>g</CONTENT>
6 </COL>
7 <COL INDEX="2">
8 <NOTE_COUNT>1</NOTE_COUNT>
9 <CONTENT>M</CONTENT>

10 </COL>
11 <COL INDEX="3">
12 <NOTE_COUNT>1</NOTE_COUNT>
13 <CONTENT>p</CONTENT>
14 </COL>
15 <COL INDEX="4">
16 <NOTE_COUNT>1</NOTE_COUNT>
17 <CONTENT>M</CONTENT>
18 </COL>
19 </ROW>
20 </LINE>
21 </LINES>
22 </SHEET>

(c)

Fig. 1: Sheet part of the XML file (b) and (c) depicting part of the original music sheet
(a).

application is a converter that takes an XML file as a standalone composition and trans-
forms it into equivalent HTML with the Ome Swarlipi rendition of the score. The source
code of the converter has been given in the online repository link and the corresponding
rendition is shown in Figure 2.

Query and Retrieval of Musical Information: This is the application where we
can appreciate the power of XML as a means to build the music dataset. XML has
brought with it a number of tools and technologies to efficiently process the information
contained inside it. For the present application, we have used two tools, namely XPath
and XQuery. XPath, the XML Path Language, uses path expressions to parse through
the elements and attributes of an XML document and select node elements to extract
the contents inside it. This language is also used in another query language XQuery to
query an XML database and retrieve required information from it much like the SQL
that does the same on a relational database.

The preprocessing stage for this application is to create an XML database created
from the XML documents. We have used BaseX database engine to create the database
from our dataset and XQuery to efficiently and easily perform complex queries and
retrieve information from it and therefore, can be extremely useful for data-intensive
complex web applications. This also provides a single-point query and retrieval system,
as opposed to the current search and retrieval platforms [9,17] used for querying and
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Fig. 2: Music-sheet web visualization using Ome Swarlipi

1 (: List of compositions having Meend :)
2 for $songs in collection ("

Bhatkhande-Database")//swarlipi
3 let $title := $songs/INFO/TITLE/text()
4 let $contents := $songs/SHEET/LINES/

LINE/ROW/COL/CONTENT/text()
5 let $notes := (for $song in $songs
6 return $song/SHEET/LINES/LINE/ROW/COL/

CONTENT/text())
7 return if (contains(string-join($notes

, ""),"q")) then
8 $title

(a)

1 (: List of compositions having a
particular Arohana subsequence :)

2 for $songs in collection ("
Bhatkhande-Database")//swarlipi

3 let $title := $songs/INFO/TITLE/text()
4 let $aroha := $songs/RAAG/AROHANA/text()
5 return if (contains($aroha, "s-R-g"))

then
6 $title

(b)

1 (: Note frequency distribution of each composition :)
2 for $song in collection("Bhatkhande-Database")//swarlipi
3 let $raag := $song/RAAG/RAAG_NAME/text()
4 let $contents := $song/SHEET/LINES/LINE/ROW/COL/CONTENT/text()
5 let $joined_str := string-join(data($contents), ’,’)
6 let $joined_str := replace($joined_str, "<sup>|</sup>|@|u|l|\)|\(|-|,|\s+", "")
7 let $notes := (115,82,114,71,103,109,77,112,68,100,78,110)
8 let $code_points := string-to-codepoints($joined_str)
9 let $result := (for $i in $notes

10 return count(index-of($code_points, $i)) )
11 let $result := normalize-space(string-join($result, ","))
12 return $result

(c)

Fig. 3: XQuery to retrieve the (a) list of compositions having Meend, (b) List of com-
positions having a particular Arohana subsequence and (c) Note frequency distribution
of each composition

browsing musical data. Figure 3 provides a few interesting and complex queries that
satisfy the fine-grained information needs of the user. For example query 3c can be
used to generate dataset for raag classification as described in the following section.

Raag prediction through Machine Learning: This application refers to the musi-
cological analysis of various musical components present in Hindustani Sangeet. It cov-
ers statistical and structural analysis, data mining, and inference using machine learn-
ing and deep learning techniques. As an example of the application, we apply machine
learning techniques on the dataset for the task of raag prediction. The preprocessing
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Accuracy Score of Classification Models
Logistic Regression K-Nearest-Neighbors (KNN) Decision Tree

k = 3 k = 5 k = 7

0.9143 0.9714 0.9428 0.9428 0.9714
Table 1: Performance measure of Logistic Regression, K-Nearest Neighbors with vary-
ing values of k, and Decision Tree. The dataset is divided into 70:30 as training and test
set to calculate the accuracy score of different classification models.

step for raag prediction is to convert the XML dataset into a tabular data-frame con-
taining a number of features and a target variable. For raag prediction, we take features
as the frequencies of individual notes and the corresponding raag as a target variable
for any composition. Instead of taking the note-frequency distribution of 36 notes for a
composition spanning across three octaves, we merge the notes to obtain the frequency
distribution of 12 notes. Since, the positions of the notes of the Arohana and Avaro-
hana of any particular composition in different octaves do not affect the raag of the
composition, we map corresponding notes of three octaves and make a sum of frequen-
cies of corresponding notes to obtain 12 note-frequency distribution (can be obtained
from 3c given in GitHub). Table 1 shows the measure of performance of different ma-
chine learning techniques for raag prediction for our dataset. We have transformed our
dataset into a three-class classification problem by taking the three most frequent raags
i.e. Bhairav, Todi, and Poorvi, and applied the different classification models to gen-
erate the accuracy scores. Since each classifier examined shows high accuracy score
the dataset can be considered as a robust dataset for raag classification. Table 1 shows
that KNN with k = 3 and decision tree classifier gives better accuracy scores than the
logistic regression model.

4 Conclusions and Future Works

This paper presents SANGEET, a Hindustani Sangeet dataset based on XML to provide
easy and efficient access to a music corpora to perform various applications includ-
ing music visualization, MIR, and Raag prediction using machine learning techniques.
Backed by a robust music-sheet framework and a structured XSD, SANGEET provides
a comprehensive repository for rich musical information to be shared seamlessly across
applications. We have shown that SANGEET is quite efficient for accessing and trans-
forming musical data into a format suitable for various musical applications. Our future
objective is to extend SANGEET with the compositions of Bhatkhande’s other five
volumes of Kramik Pustak Malika and update the structure of the XML dataset with
taal markings and lyric information. This will provide better music-sheet rendition and
richer queries to fulfill the user’s information needs.
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Abstract. Jazz pianists often uniquely interpret jazz standards. Passages from
these interpretations can be viewed as sections of variation. We manually ex-
tracted such variations from solo jazz piano performances. The JAZZVAR dataset
is a collection of 502 pairs of ‘Original’ and ‘Variation’ MIDI segments. Each
Variation in the dataset is accompanied by a corresponding Original segment
containing the melody and chords from the original jazz standard. Our approach
differs from many existing jazz datasets in the music information retrieval (MIR)
community, which often focus on improvisation sections within jazz performances.
In this paper, we outline the curation process for obtaining and sorting the reper-
toire, the pipeline for creating the Original and Variation pairs, and our analysis
of the dataset. We also introduce a new generative music task, Music Overpaint-
ing, and present a baseline Transformer model trained on the JAZZVAR dataset
for this task. Other potential applications of our dataset include expressive per-
formance analysis and performer identification.

Keywords: Jazz piano dataset, music generation, transformer model

1 Introduction

The growing interest in generative music models has led to the exploration of their
potential in specialised music composition tasks. As current trends often focus on gen-
erating complete songs or music continuation tasks [2, 3], there is a lack of datasets
designed for specialised music tasks. However, these specialised music tasks, such as
music infilling [16, 19] and composition style transfer [15, 21], could contribute to the
development of artificial intelligence (AI) tools in music composition.
⋆ This work is supported by the UKRI Centre for Doctoral Training in Artificial Intelligence

and Music, funded by UK Research and Innovation [grant number EP/S022694/1]. J.Tang is
a research student also supported jointly by the China Scholarship Council and Queen Mary
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both him, Huan Zhang, and Corey Ford for reviewing our paper.
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We introduce Music Overpainting as a novel specialised generative music task, in-
spired by the concept of overpainting in fine art and Liszt’s compositional approaches
to rearrangement in his piano transcriptions from classical music. Music Overpainting
generates variations by providing a rearrangement of a music segment. While the task
aims to reframe the musical context by changing elements such as rhythmic, harmonic,
and melodic complexity and ornamentation, the core melodic and harmonic structure
of the music segment is preserved. Compared to related music generation tasks such
as compositional style transfer [4] and music infilling [16, 19], Music Overpainting
creates small variations within the same style and retains perceptible similarities in the
underlying melodic contour and harmonic structure of the music segment. Outputs from
Music Overpainting could be used in AI tools for music composition, to add variation
and novelty to desired sections of music.

Our motivation for creating this dataset stems from the lack of available datasets for
novel and specialised generative music tasks. Not only did we find that there was a lack
of clean and high-quality MIDI data for investigating tasks such as Music Overpainting,
but also in the context of solo jazz piano music in general. Most existing jazz datasets
consist of transcriptions of improvised “solo” sections within a jazz performance or
feature multiple instruments. Few datasets feature interpretations of the “head” sec-
tion, containing the main musical theme, for solo piano only. Additionally, we found
that many jazz datasets do not include performances from female musicians, so we are
proud to include several extracts of performances from female jazz pianists within our
dataset. Our dataset helps to fill this gap, while also providing insights into how jazz
pianists rearrange standards for solo piano from a music information retrieval (MIR)
perspective.

Table 1: Overview of Original and Variation Segments.

Feature Original Variation
Segment length 4 bars misc.
Location “head” section “head” section
File format Manually-transcribed MIDI Automatically-transcribed

MIDI
Musical format Melody and chords Two-handed solo piano
Type Lead sheet of Piano performance of

jazz standard jazz standard
Source MuseScore Youtube

The JAZZVAR dataset comprises of 502 pairs of Original and Variation MIDI seg-
ments from 22 jazz standards, 47 performances, and 35 pianists. An Original segment
is 4-bars long and manually transcribed from a lead sheet of a jazz standard. A Varia-
tion segment is manually found from an automatically transcribed piano performance of
the same jazz standard. We find Variation segments by searching for passages that are
melodically and harmonically similar to Original segments. Figure 1 shows more de-
tails of the data curation pipeline. Table 1 provides more information about the Original
and Variation segments. The jazz standards and the piano performances in our dataset
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are under copyright, therefore the JAZZVAR dataset cannot currently be made avail-
able for direct download. However, researchers will be allowed to access the dataset on
request.

Fig. 1: The process of creating Original and Variation pairs. Original sections are MIDI
segments from a lead sheet transcription of a jazz standard. Audio of a piano perfor-
mance playing the same jazz standard is transcribed automatically into MIDI. A Varia-
tion is found by manually searching for passages that are melodically and harmonically
similar to the Original in the “head” section of the piano performance.

The JAZZVAR dataset serves as a foundation for exploring the Music Overpaint-
ing task across genres. What we refer to as Variations are passages of music from a
jazz standard that have been reinterpreted or rearranged by jazz pianists’. However,
we can view these reinterpretations as variations on the melody and chords of the jazz
standards. We use the Original and Variation pairs in the dataset to train a Music Trans-
former model to generate novel passages of variation from a simple MIDI primer. By
presenting this novel dataset and introducing the Music Overpainting task, we aim to
contribute to the field of generative music research and encourage further exploration
of the relationship between composers and AI tools in various music genres.

The remainder of this paper is organised as follows: Section 2 provides an overview
of related datasets in the field of generative music and MIR, Sections 3 and 4 present an
in-depth description and analysis of the JAZZVAR dataset, Section 5 introduces Music
Overpainting as a generative music task and uses the JAZZVAR dataset to train the
Music Transformer model for generation.

2 Related Works

Existing jazz datasets that can be used for MIR and Generative Music tasks often fea-
ture the improvisation or solo section only of the jazz performance. The Weimar Jazz
Database (WDB) [17], consists of 456 manually transcribed solos by 78 performers
and contains no solo piano performances. The DTL1000 dataset [5] from the “Dig That
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Lick” project is a set of 1750 automatically transcribed solos from 1060 tracks. How-
ever, it is not clear how many of these tracks are piano solo tracks.

The Million Song Dataset (MSD) [1] is a collection of audio features and metadata
for one million contemporary popular music tracks. While the MSD does not specifi-
cally focus on jazz, it does include a substantial number of jazz recordings that could
be used for comparative analysis. The Lakh MIDI Dataset (LMD) [13] is a collec-
tion of 176,581 unique MIDI files that are matched to songs within the Million Song
Dataset using Dynamic Time Warping-based alignment methods [18]. Similarly, to the
DTL1000 dataset, the MSD and the LMD have no specific focus on solo jazz piano
performances.

3 JAZZVAR Dataset

3.1 Data Collection

Repertoire A jazz standard is a well-known, and commonly played song in the jazz
repertoire. Many popular songs composed in the early to mid-twentieth century for film,
television, and musical theatre are now prominent jazz standards. Some of the more fa-
mous jazz standards include Gershwin’s “Summertime” for the opera Porgy and Bess
(1935) and “All the Things You Are” by Jerome Kern and Oscar Hammerstein II for
the musical Very Warm for May (1939). These popular songs have been continually
played and rearranged by jazz musicians for decades. Popular songs originating from
these times contain a “refrain” section, which was the main theme of the song. In jazz
music, the “head” section is often synonymous with these “refrain” sections. Many jazz
musicians would learn the songs by ear, or through unofficial lead sheets, such as the
ones circulated within the Fake Real Book. Some jazz musicians, such as the trumpeter
Miles Davis (1926-1991) and Thelonious Monk (1917-1982), composed music them-
selves and these pieces have also become famous jazz standards.

Within this context, our goal was to find lead sheets of jazz standards and audio
recordings of solo piano performances of jazz standards. The first publication dates of
the jazz standards in our dataset range between 1918 and 1966, while the performances
span from the mid-twentieth to the beginning of the twenty-first century.

Jazz Standard Lead Sheets Lead sheets are condensed versions of song compositions
that musicians have transcribed and passed through the community. They are presented
as a single melodic line with accompanying chords.

We sourced MIDI and MusicXML lead sheets from MuseScore, created by users
who often referenced the Fake Real Book. Candidate pieces were found using the fol-
lowing criteria:

1. entirely in 4/4 timing,
2. jazz standards mostly consisting of popular songs from the early to mid-twentieth

century.

The lead sheets were cleaned and corrected by removing introductions and verses,
to retain only the refrain section. Songs with repeated refrains were further edited to
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include only the final repeat. We converted any MusicXML files to MIDI and made
corrections by referencing the chords in lead sheets. In some cases, we transcribe the
chords and melody by ear from early recordings of popular songs or completely rewrite
the MIDI, as many of the source files were corrupt. In total, we collected and cleaned
234 jazz standards, of which a subset of 22 appear within the JAZZVAR dataset.

Audio of Jazz Solo Piano Performances To compile a list of solo piano performances
of jazz standards, we manually searched for well-known jazz pianists’ solo perfor-
mances on Spotify and Youtube that matched the list of 234 MIDI lead sheets we had
collected. We also used the Solo piano jazz albums1 category on Wikipedia to help find
performances. We gathered Spotify Metadata for these performances, which we used to
collect the respective audio data. This approach allowed us to compile a diverse set of
performances, including some by female pianists, and to capture the rich history of jazz
piano performance.

3.2 Automatic Music Transcription of Jazz Audio

Automatic Music Transcription (AMT) algorithms such as [11, 8] enable us to tran-
scribe audio recordings into MIDI representations. According to results from a listening
test conducted by Zhang et al. [22], the High-Resolution transcription system proposed
by Kong et al. [11] is preferred over the other two systems by participants in terms
of conserving the expressiveness of the performances. We used the Spotify metadata
to download the jazz audio from Youtube and applied the High-Resolution model [11]
to transcribe the downloaded jazz audios into MIDIs. In total, we collected and tran-
scribed 760 audio recordings covering a wide range of performances from 148 albums
by 101 jazz pianists, of which a subset of 47 performances appear within the JAZZVAR
dataset.

3.3 Pair Matching Process

We segmented 4 bar sections from the MIDI lead sheets by taking into consideration
the phrases in the main melody. As the jazz standards that we chose were all in 4/4
time, most of the phrases were contained within a 4-bar structure. We labeled these four
bar sections as Original segments. We segmented 22 jazz standards and collected an
average of 6 segments per standard. In order to create our Variation segments to form a
data pair, we manually searched through the AMT solo jazz piano performances of the
jazz standards and found segments that were melodically and harmonically similar to
the Original segment for each jazz standard. To facilitate the matching process for find-
ing Original and Variation pairs, we created a Python application with a graphical user
interface (GUI), which allowed us to view and listen to individual Original segments. 2

We then searched through the AMT jazz performances and saved passages that closely
corresponded to the Original segments melodically and harmonically.

1 See Wikipedia: https://en.wikipedia.org/wiki/Category:Solo_piano_
jazz_albums

2 We plan to release the GUI for reproducing our dataset. A GitHub page will be released by the
publication of the paper.
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4 Analysis

4.1 Experimental Dataset Analysis

We calculated several musical statistics across the dataset to provide insights into the
dataset’s musical content and structure according to [6]. We compared the differences
between the Original and the Variation sections and summarise several characteristic
features in Table 2.

Table 2: Means and standard deviations for various statistics for combined segments in
Original and Variation sections.

Feature Originals Variations
Mean SD Mean SD

Pitch Class Entropy 2.94 0.24 3.13 0.24
Pitch Range 36.44 3.60 47.20 10.91
Polyphony 5.30 0.28 5.01 2.08
Number of Pitches 16.08 0.28 29.42 8.05
Pitch in Scale 0.89 0.24 0.83 0.08

Pitch Class Entropy The higher mean pitch class entropy in the Variation segments
(3.13) compared to the Original segments (2.94) suggests that jazz pianists tend to
introduce more diversity in pitch distribution when interpreting jazz standards. This
increased complexity and unpredictability in the variations reflect the improvisational
and creative nature of jazz music.
Pitch Range The mean pitch range in the Variation segments (47.20) is considerably
larger than in the Original segments (36.44), indicating that jazz pianists often expand
beyond the range of pitches used within a jazz standard. This expanded pitch range
could contribute to a richer and more expressive musical experience in the variations.
Polyphony Polyphony is defined as the mean number of pitches played simultaneously,
evaluated only at time steps where at least one pitch is played. The mean polyphony
is slightly lower in the Variation segments (5.01) compared to the Original segments
(5.30). This suggests that jazz pianists may use fewer simultaneous pitches on average
in their reinterpretations. However, the higher standard deviation in the Variation seg-
ments (2.08) indicates that the polyphonic structures in these reinterpretations can be
quite diverse.
Number of Pitches The higher mean number of pitches in the Variation segments
(29.42) compared to the Original segments (16.08) implies that jazz pianists tend to
incorporate more distinct pitches when rearranging jazz standards. This increase in the
number of pitches adds to the complexity and expressiveness of the variations.
Pitch in Scale Pitch-in-scale rate is defined as the ratio of the number of notes in a
certain scale to the total number of notes [6]. The slightly lower mean value of pitch
in scale in the Variation segments (0.83) compared to the Original segments (0.89)
indicates that jazz pianists may be more inclined to use pitches outside the underlying
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scale in their reinterpretations. This tendency could contribute to a more adventurous
and explorative musical experience in the variations.

In summary, the analysis of the JAZZVAR dataset reveals that jazz pianists often intro-
duce greater complexity, diversity, and expressiveness when rearranging jazz standards
for solo piano. Our findings highlight the dataset’s potential for application in tasks
such as Music Overpainting. Not only are these insights valuable for the development
of specialised generative music models, but they also provide a better understanding of
the creative process in jazz music.

4.2 Comparison of Multiple Pianists

Some of the jazz standards featured within the dataset are performed by multiple pi-
anists. Therefore, there are some Original segments that are matched to multiple Vari-
ation segments from different pianists. To further highlight the diversity of variations
within the dataset, we present a musical analysis of multiple pianists’ interpretations of
the same Original segment, from the jazz standard “All the Things You Are”.

Melody The melody from the Original segment was found and isolated within each
Variation segment. To obtain accurate representations of the melodies, we manually ex-
tracted the melody lines from the Variation segments. This manual extraction process
involved listening closely to the melody in the Original in order to carefully isolate the
melody line within the performances note by note, ensuring higher accuracy and fidelity
of melodic extraction in comparison to an automatic approach. We then compared the
isolated melodies to find their pitch and duration deviation from the ground truth, the
melody from the Original segment. We applied the Needleman-Wunsch [7, 12] align-
ment algorithm which aligns melodies by minimizing the differences in pitch class and
duration between the corresponding notes. Based on the alignment results, we calculate
the average deviation score using the following equation:

Average Deviation =
1

n

n∑
i=1

(PCi +Di), (1)

where PCi denotes the deviation of pitch class, Di denotes the deviation of note dura-
tion, and i refers to the i-th note in the melody. We excluded the missing notes in the
summation over the note sequences.

This average deviation score provides a measure of how similar the two melodies
are, with lower scores indicating higher similarity. The deviation scores of the pianists’
Variation from the Original melody can be found in Table 3. Our results show that
different pianists’ have unique and individual approaches to interpreting the Original
melody. Some pianists, such as Leslie North, have a closer adherence to the Original
melody, while others, like Bill Evans, exhibit greater differences.
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Table 3: Average deviation from Original melody for different pianists

Pianist Average Deviation
Jim McNeely 1.60
McCoy Tyner 1.04
Roland Hanna 1.50
Lennie Tristiano 0.92
Elmo Hope 1.11
Leslie North 0.65
Bill Evans 2.68

We also mapped the melodic contours of the performances to further explore the
differences between the interpretations, using the Contourviz3 package as shown in
Figure 2. The visual representation of melodic contours allowed us to observe the over-
all structure and direction of the melody as it evolved throughout the performance. By
comparing the melodic contours of different pianists, we found that some tended to be
more experimental with their melodic choices, while others adhered more closely to the
Original melody. This variation in melodic contours provides additional evidence of the
rich diversity present in our dataset.

Fig. 2: The melodic contours of the melody taken from the jazz standard “All The
Things You Are” (in Blue) and pianists’ interpretations.

Harmony The harmonies used within a performance can greatly impact the direction
of the music and also the intention of the performer. To analyse some of the harmonic
aspects of the dataset, we used Chordino and NNLS chroma [14]. We set out to find
the rate of harmonic change across each performance. As shown in Figure 3, we found
that some pianists had a higher harmonic rhythm (the rate of chord changes in a chord
progression) than others. Other pianists added more chords to the chord progression,
which sped up the harmonic rhythm. We observed that most pianists played in the key
of the Original, however, some transposed keys. Some pianists used the same chord pro-
gression as the Original but altered specific chords. For example, Jim McNeely used a

3 Contourviz can be found in: https://github.com/cjwit/contourviz
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similar chord progression to the Original, but modified a minor chord to major, result-
ing in a significant shift in the performance’s intention and musical direction. We also
observed that certain pianists used extended chords more extensively than others who
played more closely to the Original. Other pianists added more chords to the chord
progression, which sped up the harmonic rhythm.

Fig. 3: A line graph comparison of the Harmonic Rhythm of the original melody (in
Blue) and pianists’ interpretations of the melody.

Our analysis shows that the dataset contains a diverse range of interpretations, even
when playing the same jazz standard. Within jazz, performers are individualistic and can
be creative with their musical choices. The differences in melodic deviations, melodic
contours, and harmonic rhythms between performances not only demonstrate the artis-
tic freedom of each pianist but also indicates that the dataset could be a useful resource
for those interested in expressive performance analysis or performer identification tasks.

5 Music Overpainting

5.1 Problem Definition

As defined in Section 1, Music Overpainting is a generative music task that aims to
create variations on pre-existing music sections. Within the context of the JAZZVAR
dataset, we can specifically define the task as generating a Variation segment from a
given Original segment. Given an Original jazz standard segment O from the JAZ-
ZVAR dataset, and a Variation segment V , the goal of the Music Overpainting task is
to find a reinterpretation I(O) such that:

V = I(O) (2)

5.2 Generation with Music Transformer

Transformers have been widely applied to generate music in genres such as Pop, Clas-
sical, as well as Jazz [10, 9, 20]. Their convincing output demonstrate their capability
of modeling musical structures and patterns. In this work, we adopted the design of
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Music Transformer [9] which uses music motifs as primers for conditional generation.
To train the transformer model, we concatenated the Variation segments to the end of
the Original segments for each pair in the JAZZVAR dataset. In total, we obtained 502
concatenations and used 90% for training and 10% for validation. For the inference pro-
cess, we treated the Original segment as a primer and generated a Variation segment
following the probability distribution learned by the transformer model.

Fig. 4: Piano-rolls of two Original (left in Blue) and the corresponding generated Varia-
tion (right in Red) sections. The Original A is from the song “All the Things You Are”,
and the Original B is from the song “Alfie”.

5.3 Results

We present piano-rolls of two Original segments, referred to as A and B, and the cor-
responding generated Variation segments4 with Original segments used as primers to
the model in Figure 4. We use the same pitch-related features calculated for the dataset
in Table 2 to compare the Original segments and the corresponding generations. Ac-
cording to these results, we observe that the generated Variation segments are more
complex and diverse in terms of the music features presented in Table 4, as well as
the articulation and dynamics. By listening to the generations, we find that the model’s
ability to accurately preserve the melody and chord patterns of the Original segment in
the generated output can be improved.

4 Listening samples of the generations can be found at https://drive.google.com/
drive/folders/13SmiT2AevqP3ma3xWy4LanQwcjyRlLG1?usp=sharing
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Table 4: Comparison of musical features for the Original and the generated Variation
segments.

Feature Original Generated Variation
A B A B

Pitch Class Entropy 2.73 2.75 2.71 2.86
Pitch Range 28.00 36.00 34.00 36.00
Polyphony 3.98 2.74 4.88 4.68
Number of Pitches 12.00 17.00 13.00 14.00
Scale Consistency 1.00 0.90 1.00 0.98

6 Conclusion

We present the JAZZVAR dataset a collection of 502 MIDI pairs of Variation and Orig-
inal segments. We evaluated the dataset with regard to several musical features and
compared the melodic and harmonic features of Variations for different pianists per-
forming the same Original jazz standard. Our results indicate the diversity and com-
plexity of Variation in the dataset, which is one important component for successfully
training a specialised generative music model. We introduced the Music Overpainting
task, and trained a Music Transformer using the JAZZVAR dataset to generate Variation
segments with the Original segments as primers.

Having a collection of Variations performed by different pianists on the same jazz
standard allows us to apply the dataset to explore tasks such as performer identification
and expressive performance analysis. We aim to expand the JAZZVAR dataset in the
future, using our collection of AMT MIDI data of jazz performances and corresponding
jazz standards. This could either be achieved through the manual matching method
as shown in Section 3.3, or through an automatic method, which would allow for a
greater number of Original and Variation pairs to be produced. We believe that the
deep generative models for the Music Overpainting task will greatly benefit from the
increment of dataset size.
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Abstract. This paper describes ongoing work in programming a live perfor-
mance system for interpreting melodies in ways that mimic Irish traditional dance
music practice, and that allows plug and play human interaction. Existing perfor-
mance systems are almost exclusively aimed at piano performance and classical
music, and none are aimed specifically at traditional music. We develop a rule-
based approach using expert knowledge that converts a melody into control pa-
rameters to synthesize an expressive MIDI performance, focusing on ornamenta-
tion, dynamics and subtle time deviation. Furthermore, we make the system con-
trollable (e.g., via knobs or expression pedals) such that it can be controlled in
real time by a musician. Our preliminary evaluations show the system can render
expressive performances mimicking traditional practice, and allows for engag-
ing with Irish traditional dance music in new ways. We provide several examples
online.3

Keywords: Music performance modeling, traditional music, Irish

1 Introduction

The performance of an Irish traditional dance tune involves ornamentation and variation
over repetitions. Some practitioners employ small variations where the tune is always
recognizable (e.g., Irish accordionist Derek Hickey calls these “microvariations” of the
“bones”4), while others move far away from the tune (e.g., the fiddler Tommy Potts is
well-known as an extreme example). The ornamentation and variation employed in a
performance are often guided by the instrument one is playing, which certain choices
are made based on the accessibility of pitches, physical constraints, range, and so on.

⋆ Portions of this work are outcomes of projects that have received funding from the European
Research Council under the European Union’s Horizon 2020 research and innovation program:
DigiScore (Grant agreement No. 101002086) and MUSAiC (Grant agreement No. 864189).

3 See this website: https://www.kth.se/profile/bobs/page/research-data.
4 Private communication in a lesson with author Sturm.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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Irish traditional music is by and large an aural tradition, where notated music (“the dots
on the page”) is passed over in favor of listening to master musicians interpreting tunes
and then imitating their creative choices. When Irish traditional dance music is notated,
the convention is one of writing what one thinks are the most important notes, leaving
ornamentation and variation to the performer. Computer playback of such notated mu-
sic thus lacks important elements of the traditional music performance: how might we
program a performance system so that its rendition is closer to real-life performance?

While there is much research in modeling expressive music performance, e.g., clas-
sical piano, we do not find work devoted to traditional music. This paper presents a
performance system focused on Irish traditional dance music aiming to render perfor-
mances that mimic the practice. Our system operationalizes expert knowledge into a
set of rules binding musical elements, such as ornamentation and dynamics, to perfor-
mance parameters for controllable MIDI synthesis. The lack of explicit performance
data in the context of Irish music motivates an expert-knowledge-driven, rule-based ap-
proach, which is both computationally efficient and sufficient to create at least a baseline
model for Irish traditional music performance. Furthermore, since the performance of
Irish traditional dance music can involve heterophony (multiple musicians playing their
own versions of the same tune together), we make our system real-time and controllable
such that one can play with it in a live performance scenario. In the next sections we
review existing work in music performance modeling, as well as conventions in Irish
traditional music performance. We describe our system and how its components opera-
tionalize expert knowledge. We then provide some preliminary evaluation of its output,
and discuss its use in the context a live performance. Future research is discussed in the
conclusion.

2 Background

We now review research in the modeling of music performance. We then discuss spe-
cific characteristics in the performance of Irish traditional dance music.

2.1 Existing work in modeling music performance

Music performance modeling [4] is aimed at making machines perform music in ex-
pressive ways. This is accomplished by translating musical elements, such as pitches,
phrases, and timing, into expressive parameters, such as articulation, loudness, dynam-
ics, and phrasing. One example is the “KTH rule system” for musical performance [5],
which applies a user-weighted rule-based estimation of expressive parameters for each
note of a piece. The set of rules has been implemented in the software package Director
Musices [6], which allows one to inspect the generated expressive contours.

Most work in music performance modeling is aimed at the performance of classical
music, but a growing number of studies focus on popular music and jazz performance
[4]. While there exists research in the analysis of traditional music practice, we do not
find any attempting to generate such performances. For traditional music, computa-
tional approaches are usually employed for performance analysis rather than synthesis
[12,16,15,13].

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

278



The most commonly modeled parameters among performance systems include loud-
ness, tempo, ornamentation and articulation, and so the MIDI protocol is often used
since it allows some amount of modeling of the above through velocity, timing, pitch,
and control messages (e.g., pitch bend). Expressive parameters are often modeled jointly
since they can be highly related, e.g., tempo and dynamics [17]. Moreover, since human
performance can go beyond the written score, such as ornamentation and style-specific
musical practices, some work has explored the modeling of such performance con-
ventions, e.g., ornamentation of lead sheets in the performance of jazz standards [7].
Another example is the MusicTransformer system [9], which can generate realistic ac-
companiments and performances given only melody input. Improvisation and variation
are usually ignored when modeling classical music performance, but other styles (jazz
and some folk traditions) consider them essential aspects of expressive performance.

2.2 Performance of Irish traditional dance music

Irish traditional dance music has a history going back a few centuries at least [3,18,8].
A dance tune consists of parts, each typically built from simple musical ideas unfolding
over two to four beats. These parts are often repeated in performance, as is the whole
tune. Common dances are the reel, jig, hornpipe, and polka, each executed with charac-
teristic rhythms. Tunes are modal, most often in major, mixolydian, dorian or minor, and
typically involve melodic motion that combines stepwise movement with arpeggiated
chords. Ornamentation is an essential aspect of traditional performance, contributing to
the rhythmic drive of a dance tune.

Irish traditional music is an aural practice, the expert performance of which does
not involve playing tunes “as written”. Figure 1 notates the A part of the well-known
jig, The Connachtman’s Rambles, as printed in “O’Neill’s 1001” [14], along with a
transcription of one of its repetitions performed by master musician Máirtı́n O’Connor.
This shows his variation of the jig rhythm, playing with the timing of quavers within
each beat. He uses a variety of “cuts” (a grace note ornament emphasizing the attack of
the following note), some of which provide tonal value to establish a counter melody
(bars 11–12).

O’Connor’s performance of this tune demonstrates how the practice of the music
involves “microvariations”, which lends itself well to performance in “sessions” where
musicians of varied abilities gather informally to play tunes together. While varying
greatly, sessions tend to exhibit some common characteristics including [2] performers
joining and leaving throughout, numerous and diverse melody instruments playing in
unison (often accompanied by a few guitars, citterns and bouzoukis), musicians with
different skills – from beginners to seasoned experts – playing alongside one another,
and playing and learning by ear more often than playing from printed music. Further-
more, sessions feature tunes linked together in “sets” of two or more, each repeated
a number of times. This structure allows tunes to be learned by ear or recalled to the
fingers before then being embellished on subsequent repeats. There is also a degree
of improvisation in selecting tunes that fit well together as sets and in guessing which
tunes other players might or might not know and/or be able to pick up.
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Fig. 1. The A part of The Connachtman’s Rambles. Top: as printed in “The Dance Music of Ire-
land: O’Neill’s 1001”. Middle: as performed by Máirtı́n O’Connor on accordion in 1979 (trans-
posed down to D from Eb). Bottom: as interpreted by our performance model. The performance
hyperparameters were set to create a performance similar to Máirtı́n O’Connor’s.

3 Performance System

We now present our performance system, which processes MIDI input and outputs con-
trol parameters to synthesize an expressive MIDI performance that can be exported on
its own without human interaction, or input in real-time to any software or hardware
with MIDI input capabilities. The resulting performance incorporates style-specific or-
naments, time deviations, and dynamics to reflect conventions of Irish traditional dance
music practice. The performances of each of these three aspects (ornamentation, dy-
namics, tempo) are modeled with expert-knowledge-based rules and functions, user-
specified performance parameters, and metadata in the MIDI file itself (e.g., the key
signature MIDI meta-message).

The expert-knowledge-based rules and functions are motivated not only by our own
practical knowledge of Irish traditional dance music performance, but also that of noted
Irish musician and theorist Tomás Ó Canainn [18]. In his analysis of Irish music, Ó
Canainn presents a formalism of note importance in which he assigns points to each
note appearing in a tune:

1) a note frequency count giving a point for each appearance of the note; 2)
the addition of a further point (a) to a note which occurs on a strong beat, (b)
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Fig. 2. The performance system pipeline. An input MIDI tune is processed by computing control
functions to guide the performance and by evaluating rule-sets for each note (e.g. to generate
ornamentation). The performance can be live, and optionally steered in real-time, or otherwise
exported to a MIDI file.

to the highest note on its first appearance, (c) to the lowest note on its first
appearance, (d) to a note proceeded to by a leap greater than a fifth, (e) to the
first stressed note, (f) to a long note (e.g., a dotted crotchet in a jig).

Inspired by Ó Canainn our system assigns five scores to each note in a tune, and then
uses these to derive and apply control functions to guide the resulting performance. For
each note-on event of a MIDI source, we compute the following scores:

1. a number of points equal to the number of occurrences of that pitch class in the
entire tune (frequency score);

2. if the note occurs on a strong beat, it gets a number of points equal to the number
of times the pitch occurs on a strong beat; otherwise zero (beat score);

3. a point if it is either the highest or the lowest pitch of the tune (ambitus score);
4. a point if the interval leading to it is greater or equal to a fifth (leap score);
5. a point if its duration is longer than the mode of the note durations of the tune

(length score).

To generate control functions the system normalizes these scores and linearly com-
bines them to manifest particular musical qualities relevant to the three modeled per-
formance aspects. We hand-craft these linear combinations through a combination of
formalizing our musical experiences and expectations, as well as trial and error, e.g.,
that a cut is more likely to occur between a repetition of a pitch and on a strong beat.
Table 1 shows the weightings involved, which have proven to be sufficient at this pre-
liminary stage, but work is required to determine their sufficiency for modelling real
performance. Finally, we apply smoothing to these functions to reduce extreme sud-
den variations that make the performance erratic. In particular, we employ a third-order
Savitzky–Golay filter with a window size of 15 notes, and use mean-value padding at
the edges.

To illustrate the procedure of generating control functions, consider the A part of
The Connachtman’s Rambles from Fig. 1. Figure 3 show the five series of scores derived
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Control func-
tion

frequency beat ambitus leap length

Ornaments 0.2 0.3 0.15 0.15 0.2
Dynamics 0.1 0.25 0.25 0.2 0.2
Tempo 0.25 0.1 0.3 0.25 0.1
Table 1. Score weighting for computing control functions. For instance, the ornament score is
given by the sum 0.2·frequency score+0.3·beat score+0.15·ambitus score+0.15·leap score+
0.2 · length score.

Fig. 3. Individual scores used to generate control functions for each modeled aspect for the A part
of The Connachtman’s Rambles (Fig. 1). The single note-wise scores are summed and weighted
according to Table 1 to generate the control functions.

using the above method. Figure 4 show the control functions resulting from the linear
combination and smoothing for each performance model aspect. For each note in the
input melody, the system uses the corresponding value of the control functions to affect
its performance according to each modeled aspect.

Being intended not only as a performance generator, but also as an agent capable of
performing live with another musician, we make our system responsive to an external
user-defined control signal to steer the performance, e.g., an accompanying guitarist
with an expression pedal. The following subsections describe how our system models
each of the three performance aspects and how each of those is influenced by a control
function.
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Fig. 4. From the top, MIDI Pitch contour and generated ornament, dynamics, and tempo control
functions for the A part of The Connachtman’s Rambles (Fig. 1). The ornament control function
is directly mapped to the probability of ornamenting a note; the dynamics control function is
mapped to note velocity in the range [0, 127]; the tempo control function is mapped to a tempo
drift percentage with 0.5 being the original tempo, higher/lower values meaning a faster/slower
tempo.

3.1 Performing Ornamentation

Ornaments in Irish traditional music are partly dependent on the physical characteristics
of the traditional instruments [18] (e.g., sliding between pitches on the fiddle, “tapping”
on the tin whistle to articulate repeated notes) and musical characteristics (e.g., to ac-
centuate beats in accordance with traditional dancing). On top of that, musicians may
impose personal stylistic preferences and improvisational elements. We focus on the
modeling of three of the most common ornaments which can be easily modeled with
MIDI, and are not exclusive to particular instruments by and large. The particular orna-
ments performed by our system are slides, cuts and rolls:

– A slide entails approaching a note from a lower pitch. We create a slide ornament
by using a series of MIDI pitch-bend messages between a notes and next lowest
scale degree.

– A cut is like a grace-note that emphasizes the attack of a note, or separates repeated
notes. We create a cut by adding a short note one scale degree above the note.

– A roll is a decoration of three quavers that involves separating each with cuts, simi-
lar to the classical “gruppetto” or “turn”, and consist in approaching the pitch from
above and then from below. We create a roll by adding the appropriate notes.

In our system, the pitches of rolls and cuts are drawn from the mode of the tune.
For each note of a MIDI file, the system determines if it is a candidate for orna-

mentation with a probability computed from the ornament control function and user-
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specified parameters. If it is a candidate, the system selects one of the ornaments, or
possibly drops the note (a “humanizing” of the performance), at random.

3.2 Performing with dynamics and tempo deviations

Our systems models dynamics via MIDI note velocity using the dynamics control func-
tion, which is scaled to the range [0,127] and applied directly to the note velocity pa-
rameter. Notes falling on a beat are further accentuated by increasing their velocity.
To humanize the performance, the system implements tempo deviations around a user-
specified tempo by locally warping the performance tempo using the tempo control
function. The motivating idea is that musicians will tend to speed up or slow down at
times the melody has certain characteristics, e.g., ornamentation, repeated notes, and
melodic leaps.

3.3 Human Interaction

Our system is capable of continuously reading an external MIDI control change signal
on a specified MIDI control number during a performance with an accompanying mu-
sician. This signal is scaled to [0, 1] and interpolated with the control functions with a
user-defined weight. For instance, the musician can make the performance system play
without ornamentation at first, and then gradually make it more adventurous. While
basic, this approach can be quite versatile since any kind of user-generated control
function can manipulate the MIDI control signal processed by the system. Possibilities
include conventional controls, e.g., MIDI pedals and knobs, but also unconventional
ones such as body sensors.

4 Preliminary Evaluation

We now conduct a preliminary evaluation of our performance system to determine its
effectiveness and chart future work for development. We first compare an expert per-
formance of The Connachtman’s Rambles (Fig. 1) with that of our system to determine
acceptable parameters. We then apply the performance system to a novel tune generated
by Folktune-VAE [1] – a model trained on Irish traditional music – and gauge its plau-
sibility with respect to traditional practice. Audio examples of generated performances
are available on our website.

Figure 1 shows transcriptions of two performances of the A part of The Connacht-
man’s Rambles, one by an expert and another generated by our system. We see that
the system is able to mimic some of the ornamentation of the expert, with a general
difference in the pitch used to cut. Most of O’Connor’s cuts are pitches a third above
– which are convenient to do on the accordion because of the physical distribution of
its pitches. Our system at this time is not instrument-specific and produces “generic”
cuts within the mode of a tune. In terms of rhythm, our model accentuates the beats
using cuts as in the human performance. Rhythmic swing is clear in the human perfor-
mance (emphasizing the jig rhythm), while the performance system shows none since it
is only subtly adjusting tempo at this time. The performance system stays with a steady
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Fig. 5. A tune generated by the model Folktune-VAE [1]. Top: original tune as generated by the
model. Bottom: as interpreted by the performance system. A rolled note is notated with a tilde.

tempo but introduces subtle drifts. While still far from the human performance, our sys-
tem generates stylistically coherent elements that are more expressive than basic MIDI
synthesis.

We now analyze how our system performs the machine-generated tune shown at
top of Fig. 5. There is of course no reference performance for this tune, but we can
gauge the stylistic coherence of our system’s performance. The transcription, shown
at the bottom of Fig. 5, shows the system mainly employs cuts and occasional slides
and dropped notes. Cuts are placed appropriately, e.g., on the start of bars or between
repeated notes. The system generates a roll at the start of the B part on a dotted crochet,
which is also consistent with the practice. Listening to the performance, the reel rhythm
is clear and the dynamics are varied throughout.

While preliminary, this evaluation shows our system shows some success in ren-
dering a performance of melodies in ways that are consistent with the practice of Irish
traditional dance music. Linking probabilistic decisions with higher-level control sig-
nals derived from the music content make expressive and varied renditions that are more
interesting than straight MIDI playback. Furthermore, adding interactivity makes for a
dynamic playing partner.

5 Discussion: The system as a musician

The inspiration for our system arose from an ongoing project to explore how human and
AI musicians might perform together. Our distinctive focus was on how humans might
accompany AI, specifically on how a human guitarist might improvise an accompani-
ment to AI-generated and performed tunes. First, a human musician (Benford) used the
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FolkRNN system5 to generate around twenty tunes, from which eight were selected and
segued to form two sets – a set of four reels and a set of four jigs. While this yielded sets
of tunes potentially interesting to accompany, the automated playback of the resulting
MIDI files through a standard digital audio workstation was, unsurprisingly, flat and
immediately striking for its lack of variation when tunes were repeated. There was no
sense of the system pushing the performer or vice versa, and the human accompanist
was left to do all of the work in making the performance dynamic and interesting.

Our preliminary exploration involved a series of scripts generating ornamentation,
micro timing, and pitch errors6 based on random chances alone; with those, a human
musician generated twelve variations of each tune with different parameters (three lev-
els of ornamentation, note pitch error, micro timing, and three combinations of all of
them with the scripts applied in sequence). The human musician listened to and com-
pared these, selecting three versions of each tune to be sequenced together as part of
the overall set. This process already led to some immediate insights and inspirations for
further developments.

The traditional ornamentations of rolls, cuts, and slides worked to introduce aes-
thetically pleasing variation. Timing errors and dropped notes on the other hand gave
a sense of the agent struggling to play the tune, or being tentative, giving the impres-
sion that it was learning it or trying to recall it back to its fingers. Pitch errors were
sometimes heard as mistakes, but sometimes as more as attempted ‘jazzy’ (chromatic)
improvisations, especially if the system was otherwise performing fluidly (e.g., was
introducing odd pitched without obvious timing errors).

These observations led to the idea that the system might have a persona that would
support a narrative through the performance that would make sense of their variations.
For example, they might be a learner struggling to learn new tunes and/or to master their
instrument, or alternatively, a skilled and proficient player quickly trying to recall ‘out
of practice’ tunes. The latter felt particularly appealing, as a skilled musician might con-
ceivably play with various embellishments, but also errors depending on their situation,
and might even be expected to vary these through a performance. The journey through
such a narrative should be interactive, i.e. the human should be able to influence it. This
inspired the idea of a simple control based on an expression of musical intensity; that
the human musician should be able to signal that they would want their skilled AI col-
laborator to play with more or less intensity. This might be interpreted in various ways.
Lowering intensity might signal the AI to back off, perhaps playing more solidly (if bor-
ingly) and ultimately more tentatively (as if trying to recall a tune). Raising intensity
might cause it to introduce more traditional embellishments, and eventually introduce
jazzy improvisations or even take risks that would lead to mistakes. Intensity might be
signaled explicitly (e.g. through the expression pedal) or perhaps detected automatically
from the accompanist’s own playing. In this case, our performance system allows us to
hear a tune that is foreign to the tradition and which would have to be physically learned
and played by a musician to be heard otherwise.

5 https://folkrnn.org
6 The pitch errors were not included in the system presented here as we felt that more work was

needed in modeling this aspect.
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In summary, the variations introduced by our performance system felt potentially
productive in inspiring accompaniment, but might benefit from the creation of an under-
lying musical persona and narrative for the system that would help make sense of them
and enable them to be influenced during the performance. Our goal was to generate
a performance an authentic performance, more than an ideal one: such a performance
cannot be modeled without having an underlying musician, or an idea of them.

6 Conclusion

To the best of our knowledge, this is the first work explicitly modeling the perfor-
mance of folk music, and Irish traditional dance music in particular. We have opera-
tionalized expert knowledge to form a rule-based performance system that is able to
render a melody expressed in MIDI as an expressive and dynamic performance that
exemplifies conventions of the practice. Performance aspects that we have modeled in-
clude various ornaments, tempo variations and dynamics. Our preliminary evaluation
demonstrates the effectiveness of our system and points to its usefulness in human-AI
co-performance. The system has clear limitations, however. For example, its parame-
ters and hyperparameters are currently set by trial and error, but could be estimated
from expert performances. Another limitation is the performances it generates are not
instrument specific, possibly rendering a performance on a synthetic instrument that
would not be typical or even possible on a real instrument. More work should thus be
conducted to improve this baseline system, e.g., further humanizing the performance,
introducing melodic variation and extemporization, and modeling specific instruments.
Another aspect deserving of further work is the rendering of a session performance,
where two or more artificial performers play a melody together.

While the task of creating a performance system presents common elements across
styles, datasets, and approaches [4], a main difference in the modeling of folk music
performance is performance creativity [11], not limited to creativity in planning the
performance, but ranging from adding ornamentation and micro timing to explicitly
playing wrong notes and drifting in tempo. This is in contrast to the performance of
classical music, where one must play a score as written without mistakes, but taking
liberties with phrasing, dynamics, articulation, and tempo. It might seem at first that
modeling the performance of just a melody is a trivial matter, but the conventions of the
practice of Irish traditional dance music bring subtle and interesting challenges. Folk
music is more complex than it appears at first. The modeling of folk music performance
presents challenges that are different from those when modeling other styles, and in our
opinion should be pursued to enrich opportunities engaging with music traditions.

Of the performance systems dealing with performance creativity listed in [11], most
of them present very limited evaluation, if any at all. An obvious way of evaluating a
performance system is through listening tests, RENCON [10] being a key example. Our
preliminary evaluation analyzes generated performances from an expert-knowledge-
based perspective, but future work can conduct listening tests as done at RENCON, both
of the system’s output and its application in the context of human-AI co-performance.
This latter aspect brings ambiguity, however: if a performance system is difficult to
play with, it could be a bad performance system, or a good emulation of a bad musi-
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cian. Nonetheless, we aim for rendering performances that are expressive and faithfully
reflect practical conventions.
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Abstract. Even before the circumstances the global pandemic forced, a diverse
ecosystem of technologies and artistic practices for performances in digital and
virtual media was raising. Thus, not only is there a sustained interest in trans-
ferring existing performance practices into said media, but it also enables the
emergence of new practices and art forms. In particular, immersive, networked,
virtual multiuser environments (summarized under the term ”metaverse”) offer
many possibilities for creating new art experiences that need to be explored. In
this paper, we present VERSNIZ, a system for audiovisual worldbuilding, the
spatial shaping of virtual environments, as a collaborative real-time performance
or installation practice. It combines gamification concepts, known from popular
sandbox video games, with the performance practice of live coding based on the
esoteric programming language IBNIZ. We describe the technical implementa-
tion of the system, as well as the resulting artistic concepts and possibilities.

Keywords: Live Coding, Metaverse, Networked Music Performance, Virtual In-
stallations, IBNIZ

1 Introduction

The term ”metaverse” has become a real hype, and today all kinds of virtual and
augmented reality (VR, AR) applications are often promoted as ”metaverse”. Used
as a marketing term, the question of how these called metaverse applications differ
from other VR/AR applications often remains unclear. Derived from the dystopian sci-
ence fiction novel ”Snow Crash” [1], the definition of the metaverse as ”an intercon-
nected web of social, networked immersive environments in persistent multiuser plat-
forms” ([2], p. 1) seems to be gaining acceptance. According to this definition, the
term metaverse environments is suitable for classifying online, multiuser, interactive,
and interconnected virtual worlds, in contrast to other virtual applications. As virtual,
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freely experiential environments, metaverse worlds offer a high degree of immersion
and many creative possibilities. The manifold ways of multimodal interaction via text,
speech, and movement allow for diverse social exchange and self-expression [3]. Thus,
they have many properties that make them suitable for art experiences [4], also in the
context of music practice [5]. A particular challenge in the context of metaverse envi-
ronments for art expression is real-time performances with multimedia content of music
and visuals. Although there is a long history of realizations and concepts for live per-
formances in metaverse environments [6], in recent years, they have come into focus
for a broader audience due to the limitations imposed by the global pandemic. But as
all related areas of the metaverse continue to grow and advance technologically, we can
expect to see continued interest in these topics. Metaverse environments can provide an
immersive environment for telematic/networked music performances (NMPs) [7] and
are an environmentally friendly and barrier-free alternative for bringing together audi-
ences and artists from around the world.
Here, not only the issue of suitable streaming technologies is in the foreground [8],
but also the resulting artistic possibilities. It is not only about how to transfer existing
performance practices into such virtual environments but also about which new prac-
tices can emerge from these environments. Virtual environments, such as in VR, already
allow for expanded possibilities in terms of virtual instruments, composition, and per-
formance practice [9,10,11]. They also offer the possibility of creating entire worlds
under the concept of worldbuilding/worldmaking [12,13]. The technological overlap
with video games also allows for the incorporation of gamification elements for com-
posing or performing in such environments [14,15].
In comparison to the above-mentioned virtual instruments or systems for performances
in enclosed virtual environments, we present a system for real-time performances and
installations incorporating the audience in online, multiuser, metaverse environments.
Because they are shared virtual environments that are also accessible to the public via
the Internet, they enable audience participation in virtual performance and composition
processes and thus new art practices. How can the role of the performer, the stage, and
the audience be redefined in this process? To explore the emerging possibilities of such
environments, we combine the gamification concept of worldbuilding with the practice
of live coding. As a result, we propose a performance and composition system that is
only feasible in metaverse environments.
In the following, we describe the development of the metaverse environment ”VER-
SNIZ” for audiovisual live coding using the IBNIZ programming language [16]. The
implementation integrates the above-mentioned concepts, to dissolve conventional ideas
of performer, audience, and stage and enable a new performance practice in metaverse
environments.

2 Background

A long and wide-ranging history of virtual environments as a medium can be found
in video games. The perspective of the recipient is significant here. Usually, the user
does not take the passive role of a spectator, but is an active protagonist in narrative
scenarios or collaborative games. In concepts like sandbox games, such as the popular
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Fig. 1. A screen capture from the VERSNIZ environment, showing a live coding object placed in
the default virtual world. It is rendering music and an animated visual from an example algorithm.

Minecraft [17], the player also takes on the role of the creator, creatively shaping the en-
vironment and the game experience. Here, players build virtual worlds by placing static
or interactive elements as building blocks that shape the entire environment, referred to
here as the concept of worldbuilding.
Thus, especially in the medium of virtual environments, the long practice of video
games has led to a familiar blending of the recipient and the performing actor. The
surrounding world is thereby both, the material as well as the stage for the creation of
these experiences. When it comes to live performances of audio/visual content, there
are a growing number of musical live performances in multiplayer games like Fort-
nite or metaverse environments such as VRChat or Mozilla Hubs [18]. In its most ba-
sic application, these are concerts with 2D audio and video live streams on such plat-
forms [19,20]. The experience, with the audience viewing a large virtual screen, is more
akin to a public screening than an actual live performance. More complex approaches
allow artists to perform as virtual avatars, partly based on motion capture [21,22]. High-
quality, pre-recorded live performances with 3D sound and video are another form of
virtual live performances [23].
This century has seen a rise in the concept of the composer-programmer, which man-
ifests itself especially in the performance practice of live coding [24]. A practice in
which the on-the-fly programming of algorithms for the generative composition of mu-
sic and/or visuals is performed live in front of an audience [25,26]. As programming
languages, these can also be embedded well in new technologies, such as web-based
applications in the browser [27,28,29]. Therefore also into web-based metaverse envi-
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ronments. Embedding live coding into such environments allows live performances to
be executed within the platform without the need to stream audio and video from local
computers. For VERSNIZ we implemented an appropriate programming language for
audiovisual live coding in metaverse environments and present a performance practice
that combines the advantages of metaverse environments with the gamification concept
of worldbuilding.

3 Concept

Our objective for VERSNIZ was to create a metaverse environment where multiple
users can create a transforming virtual world as a collaborative performance or installa-
tion through audiovisual live coding. For this purpose, as in many worldbuilding video
games, objects can be placed in virtual space by the user (see Fig. 1). These objects
have a programming terminal and can be live-coded in the IBNIZ programming lan-
guage. The algorithms simultaneously create the visual form, the animation, and the
music. The placement and movement of the live coding objects, as well as the design of
the acoustics of the virtual environment, allow for the additional application of spatial
composition techniques [30].
Through movement in six degrees of freedom (6-DoF), the individual selection of what
is seen (field-of-view) and heard is influenced by the head orientation and the position
in space. Different visual details and a different ”mix” of auditory components have a
significant and individual influence on the perceived art experience.
Various criteria were considered during the implementation of a suitable system to meet
the definition of a metaverse environment: along with the fundamental requirement of
being a multiuser virtual platform, particular focus was put on the resulting immer-
sion. In addition to the 3D rendering of the visual environment, special attention was
also paid to the spatial audio rendering. Here, three-dimensional 6-DoF audio repro-
duction is realized with binaural synthesis for headphone-based auralization [31]. An
adequate auditive room simulation was additionally implemented. Compliance with the
WebXR [32] standard ensures the use of common VR/AR end devices. While com-
patibility with VR and AR devices using head-mounted displays (HMDs), controllers,
hand or room tracking enables immersive experiences, the ability to use a conventional
computer or mobile device ensures a low barrier to entry for the widest range of users.
As a web-based application, users do not need to perform platform-specific installa-
tions, and the environment is automatically networked as the metaverse concept intends.
Integrating audio and video streaming or text-based chats enables additional forms of
interaction and enhances the social component of the experience. In addition, the pos-
sibility of modifying the virtual environment allows new types of stage and design con-
cepts that can be realized with low effort compared to physical reality, and would oth-
erwise be difficult or impossible to realize.

4 Implementation

Implementing a system with the mentioned features requires a complex interchange of
various programming languages, frameworks, libraries, and interfaces (see Fig. 2).

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

292



A-Frame & Networked-Aframe Frameworks

Web Audio

Browser

WebGL WebXRAPI Layer:

Metaverse Base System:

Resonance AudioSpatial Audio Layer:

aframe-jibnizIBNIZ Live Coding Component:

WebRTC,
WebSockets

VR/AR Devices
PC

Mobile Devices

User Layer:

VERSNIZ Environment

Fig. 2. The architecture of the VERSNIZ metaverse environment. The graphic shows the involved
frameworks, libraries, and programming interfaces.

To comply with the described requirements for a metaverse environment, a selection
of suitable web technologies was made. Thus, the virtual environment was developed
based on the A-Frame framework [33]. Together with the library Networked-Aframe [34],
shared, multiuser virtual environments can be implemented. This combination is well
established, being the basis of the popular Mozilla Hub metaverse systems. The bin-
aural rendering of A-Frame was extended with an implementation of the Resonance
Audio spatializer [35]. The most critical component for the audio-visual composition is
the programming language for live coding. The programming language IBNIZ unites
various features that are particularly beneficial for programming in VR or AR and en-
ables simultaneous programming of audiovisual algorithms. The following describes
the development of these elements in more detail.

Metaverse Base System The web-based multiuser virtual environment was mainly re-
alized with the A-Frame framework. A-Frame is a framework developed in JavaScript
that enables the programming of virtual environments for VR and AR abstracted in
HTML-like syntax. It is based on the JavaScript library Three.js [36] for programming
WebGL applications. The HTML-like abstraction allows it to start designing 3D vir-
tual worlds easily, while the access to Three.js makes it still very powerful. Embedding
the WebXR application programming interface (API) enables integration with com-
mon VR/AR hardware and mobile devices - with stereoscopic rendering on HMDs and
interaction via controllers and tracking. A-Frame applications can still be used with
conventional computer hardware via screen, mouse, and keyboard. This allows most
users to experience it without requiring special hardware. A-Frame provides various
so-called ”components” that can be used to program 3D geometries and models, mate-
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rials, lights, shadows, and multimedia content such as images, videos, and sounds into
a virtual environment. The framework is also arbitrarily extendable by programming
custom A-Frame components in JavaScript.
The Networked-Aframe library builds on A-Frame and enables the programming of
multiuser environments for VR and AR. Networked-Aframe offers various adapters for
data exchange via WebRTC with a WebSockets fallback. The data is transferred from
user to user in a so-called peer-to-peer (P2P) network. The integration of the WebRTC
standard [37] enables the low-latency transmission of audio and video streams, so that
video and audio chats can be realized. Text can also be transmitted in-between users, as
can the parameters of all A-Frame components, including custom-developed ones. In
addition to sharing data, Networked-Aframe also provides templates for implementing
avatars and synchronized interaction with the environment to ensure interactivity and
persistence of the virtual environment.
For VERSNIZ, Networked-Aframe was integrated using the default EasyRTC adapters.
Besides the synchronization of avatars and user interaction, the IBNIZ source code of
the audiovisual live coding objects is shared. The virtual world unfolds its immersive
potential when immersive end devices are used [38]. Stereoscopic rendering on HMDs
and tracking head and movement in the room, create the feeling of presence in virtual
environments. Not only is the image rendered to match the user’s perspective, but so
is the sound. A-Frame, in combination with the Web Audio API [39], already creates
a dynamic three-dimensional sound experience through binaural rendering for head-
phone playback using real-time convolution with head-related transfer functions [31].
Sound sources are rendered at the appropriate location depending on the head orien-
tation and the user’s position in the room. To increase acoustic plausibility, a spatial
room simulation for reverberation that considers the material properties of reflective
surfaces, was added. This makes it possible to match the visually designed environment
acoustically and to increase audiovisual coherence [40]. As there is already an A-Frame
port [41] of the Resonance Audio spatializer, and Resonance Audio can be considered
an appropriate choice for web-based applications [42], the existing port was extended
and implemented in conjunction with the IBNIZ live coding component [43]. Based on
these technologies, any desired immersive world can be created to represent the stage
in VERSNIZ.

IBNIZ Live Coding Component IBNIZ, ”Ideally Bare Numeric Impression giZmo”,
is a virtual machine for low-level programming of audiovisual algorithms [16] which is
closely related to the Bytebeat concept [44]. It was developed by Ville-Matias ”Viznut”
Heikkilä and is linked to ideas present in the Demoscene. This is reflected in the min-
imalistic design of the language, resulting in the reduced instruction set, consisting of
only one character per instruction.
Through this minimalist approach, IBNIZ is often considered an esoteric programming
language [45]. A kind of programming language developed out of the motivation to
implement experimental, weird, or sometimes artistic concepts rather than to pursue a
practical use. Here many results can be already considered software art themselves.
The language design of IBNIZ also has artistic characteristics in it, and it is at the same
time a domain-specific language [46] for the programming of further 2D video and au-
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Fig. 3. A screen capture from the original IBNIZ code editor. It shows an example of the same
algorithm from Fig. 1.

dio art (see Fig. 3).
The language’s minimalism is not only ideal for live coding in real-time performances,
allowing the artist to program expressive algorithms quickly and with few characters
only, but also for typing with virtual keyboards on VR/AR devices. While the use of
virtual keyboards in VR is often limited to short texts due to the difficulty of using
them with the available input devices [47], the advantage of IBNIZ as the chosen lan-
guage is particularly evident here. The entire instruction set can be placed on a single
virtual keyboard view to code the desired algorithms quickly, even with controllers, the
mouse, or hand tracking. Building on a web-based port ’jibniz’ [48] in JavaScript, we
realized an implementation of IBNIZ as an audiovisual live coding language for meta-
verse environments. The IBNIZ virtual machine is implemented as an A-Frame and
Networked-Aframe compatible component ’aframe-jibniz’ [49] using the Web Audio
API. The resulting audio is linked to a Resonance Audio source and can be rendered
spatially depending on its position in relation to the listener. The visual output serves
as a displacement texture for arbitrary 3D geometries; in this way, using algorithms, an
animated, constantly changing object is generated. In combination, three-dimensional
audiovisual objects are created that continuously evolve in real-time. Each object can
be programmed independently with a programming terminal and a virtual keyboard,
implemented using the Aframe-Super-Keyboard component [50]. The written code and
the objects’ position are also synchronized P2P using Networked-Aframe with all other
users. Since the rendering is client-based for each user, neither audio nor video needs
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to be streamed, only the text of the programmed code. This way, low bandwidth is used
to transmit only text, enabling low-latency, real-time performances.

Fig. 4. A screen capture of a collaborative live coding scenario in VERSNIZ. Two people repre-
sented as a head point-cloud avatar performing together in the default environment setup.

5 Use Cases

With VERSNIZ we provide an exemplary template implementation of the ’aframe-
jibniz’ live coding component into an A-Frame/Networked-Aframe metaverse base sys-
tem. Using this template, users can create arbitrary virtual worlds and art experiences.
Within the possibilities offered by A-Frame, artists can freely design virtual environ-
ments, also specifically for use with VR or AR systems. It is intended for performances
or installations using the proposed worldbuilding concept (see Sec. 3): the placement
and live coding of multiple IBNIZ audiovisual objects in this environment, to enable the
algorithmic composition of a constantly changing virtual world. The composition can
then take place in real-time within the virtual experience, rather than being produced in
advance. The resulting music and the 3D visualization of the objects change constantly
depending on the algorithm. The location of their placement adds a spatial component to
the composition and allows for extensive integration of spatial composition techniques.
Placement and live coding can be done by any user or restricted to specific perform-
ers, allowing for different levels of audience engagement. The audience can not only
simultaneously take on the role of the performer by live coding themselves, but they
can also have their individual experience as passive spectators by interacting with the
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environment, for example by freely roaming around the world of various audiovisual
objects. The recipient is free to move around the virtual environment at any time; the
artist has no control over the time and place where the objects are experienced. This
adds a spatial component to a time-continuous performance whose control is entirely in
the hands of the recipient.
The above-mentioned properties allow a performance practice specifically tailored to
the possibilities of metaverse environments, where all actors (performers and audience)
come together in an immersive virtual world. The spatial aspect is important here; mul-
tiple IBNIZ live coding objects allow an audiovisual composition to be placed as indi-
vidual fragments in space. This concept, inspired by worldbuilding videogames, allows
different composition and performance concepts in combination with audiovisual live
coding:
1. virtual worlds can be used as a shared playground for free-form audiovisual cre-

ation by different users
2. as a multiuser environment, it can be used for networked music performances in

the form of collaborative improvisations or rehearsed compositions (see Fig. 4)
3. artists can create immersive, persistent audiovisual installations in virtual worlds

(see Fig. 5)

With VERSNIZ, a new dimension is added to live coding as a performance practice,
while the medium of virtual environments offers a high degree of freedom in designing
artistic experiences. The gamification concept of worldbuilding allows for a new way
of spatially distributed collaboration. A demo of the default VERSNIZ template imple-
mentation can be found at: https://versniz.glitch.me/
A video with a brief demonstration of the concept and mechanics is available at:
https://youtu.be/O4TmE1-bth4

Fig. 5. A screen capture of multiple audiovisual objects composed into a sculpture, as an example
for an audiovisual installation.
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6 Conclusion & Future Work

With VERSNIZ we have created a metaverse environment for networked, collabora-
tive live coding of audiovisual worlds. It allows for various novel performance and
composition concepts characterized by their spatial aspects. This makes it possible to
create art experiences that would be difficult or impossible to realize in physical reality.
As an open-source environment, it allows artists a high degree of freedom in design,
customization, and expansion. With the incorporation of the worldbuilding concept in-
spired by video games, we have described a specific performance practice that partic-
ularly benefits from the advantages of metaverse environments. The primary constraint
is the programming language IBNIZ. While its minimalist design has significant advan-
tages for programming in VR/AR, it is limited in stylistic variety. The properties of the
IBNIZ virtual machine in terms of visual and audio resolution or the lack of external
media integration, such as images and audio samples, limit the results to a lo-fi 8-bit-
like aesthetic.
The current implementation of VERSNIZ works best for Chromium-based browsers
and can be found at: https://github.com/AudioGroupCologne/VERSNIZ
However, it is still under continuous development to increase compatibility with browsers
and end devices, improve the user experience, provide additional features for artists, and
improve stability and performance. Referring to the limitations of IBNIZ mentioned
above, also other systems for performances in metaverse environments [51] are being
developed parallel to VERSNIZ. This includes additional programming languages for
live coding, systems for programming and performing with virtual instruments, and
performances using real-time streaming of volumetric audio and video [52].

References

1. Neal, S.: Snow Crash. New York: Bantam Books (1992)
2. Mystakidis, S.: Metaverse. Encyclopedia 2(1), 486–497 (2022)
3. Park, S.M., Kim, Y.G.: A Metaverse: Taxonomy, Components, Applications, and Open Chal-

lenges. IEEE Access 10, 4209–4251 (2022)
4. Lee, L., Lin, Z., Hu, R., Gong, Z., Kumar, A., Li, T., Li, S., Hui, P.: When creators meet

the metaverse: A survey on computational arts. CoRR abs/2111.13486 (2021), https://
arxiv.org/abs/2111.13486

5. Turchet, L.: Musical Metaverse: vision, opportunities, and challenges. Personal and Ubiqui-
tous Computing (2023)

6. Elen, R.: Music in the metaverse. Journal of the Audio Engineering Society (April 2008)
7. Oliveros, P., Weaver, S., Dresser, M., Pitcher, J., Braasch, J., Chafe, C.: Telematic music: Six

perspectives. Leonardo Music Journal 19, 95–96 (2009)
8. Rottondi, C., Chafe, C., Allocchio, C., Sarti, A.: An overview on networked music perfor-

mance technologies. IEEE Access 4, 8823–8843 (2016)
9. Turchet, L., Hamilton, R., Camci, A.: Music in Extended Realities. IEEE Access 9, 15810–

15832 (2021)
10. Loveridge, B.: Networked Music Performance in Virtual Reality: Current Perspectives. Jour-

nal of Network Music and Arts 2(1), 2 (2020)
11. Men, L., Bryan-Kinns, N.: Supporting Sonic Interaction in Creative, Shared Virtual Envi-

ronments, pp. 237–267. Springer International Publishing, Cham (2023), https://doi.
org/10.1007/978-3-031-04021-4_8

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

298

https://github.com/AudioGroupCologne/VERSNIZ
https://arxiv.org/abs/2111.13486
https://arxiv.org/abs/2111.13486
https://doi.org/10.1007/978-3-031-04021-4_8
https://doi.org/10.1007/978-3-031-04021-4_8


12. Wakefield, G., Ji, H.: Artificial nature: Immersive world making. In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics). vol. 5484 LNCS, pp. 597–602 (2009)

13. Wakefield, G., Smith, W.: Cosm : a Toolkit for Composing Immersive Audio-Visual Worlds
of Agency and Autonomy. In: Proceedings of the International Computer Music Conference
(2011)

14. Hamilton, R.: Collaborative and competitive futures for virtual reality music and sound. In:
2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). pp. 1510–1512
(2019)

15. Ciciliani, M.: Virtual 3D environments as composition and performance spaces*. Journal of
New Music Research 49(1), 104–113 (jan 2020)
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Abstract. Spatial Sampler XR is a new musical instrument linking gesture cap-
ture to sound production. In the same way that a sampler is an empty keyboard 
filled with sounds, Spatial Sampler XR uses gesture capture to transform the sur-
rounding physical space into an area of keys for, recording, indexing and playing 
back samples. Spatial Sampler XR let the musician arrange the sound around him 
or her through gesture, creating a spatialized and interactive soundstage. A virtual 
reality headset adds to the instrument the ability to visualize the layout of sounds. 
The 3D immersion greatly facilitates their organization and increases the preci-
sion of the interaction. Several modes of play are possible and the interaction 
modalities vary according to the type of performance and the number of perform-
ers. This article first introduces the Synekine project, a 10-year research project 
from which the concept of spatial sampling is derived. It presents the technical 
devices used, the instruments created, the different modes of play in performative 
situations. The instrument relies on movement to link time and space. Thus, the 
Spatial Sampler XR is particularly suitable for movement artists as well as for 
extra-musical applications. 

Keywords: Spatially Situated Media, Spatial Sampling, Gestural Interaction, 
New Musical Instrument, Gesture and Sound Processing, Interactive Perfor-
mance, Movement Computing  

1 Introduction 

For the past ten years, through residencies and artistic creations, the Synekine Project 
has invited performers to question the intimate relationship between vocal gestures and 
manual gestures, through the manipulation of scenic devices based on new technologies. 
Metaphorically, the preeminent neuromotor link between voice and gesture is closed by 
“creative prostheses” joining the capture of movement to the transformation of the voice 
by artificial intelligence. Linking space and time through movement then transforms the 
search for sound into a scenic exploration.  

          This work is licensed under a Creative Commons Attribution 4.0 International License 
(CC BY 4.0).  
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This paper presents the Synekine Project according to several dimensions. After the 
exhibition of the scientific basis and the genesis of the project, the new organology de-
veloped is described in chronological relation with the artistic works produced. Although 
it generates devices that can be used in other fields of application such as therapeutic 
rehabilitation, commercial signage or even dance and music education, these corollary 
results are not presented in this article for the sake of clarity of presentation. 

Researches on the augmented voice in the theater [Beller11e, Beller12a, Beller14c, 
Beller17a] led to the instinctive, expressive and pleonastic relationship between vocality 
and gesturality. The faculty of speaking with the hands would not only result from cul-
tural origins, but would also result from a deep neuronal relation connecting the speech 
to the gestures of the hands [Iverson98]. By analogy to synesthesia, a phenomenon by 
which two or more senses of perception are associated, “synekinesia” would reflect our 
ability to associate two or more motor senses.  

There is ample evidence for the ubiquitous link between manual motor and speech 
systems, in infant development, in deictic pointing, and in repetitive tapping and speak-
ing tasks [Parrel14]. So, it is obvious to most people to clap their hands with every syl-
lable spoken when we speak. Metaphorically, the Synekine Project proposes to “com-
plete” this neuronal loop by artificially establishing an “external” link between vocal 
gesture and manual gesture. The voice is conventionally captured by a microphone, 
while the positions and dynamics of the hands are informed by different movement cap-
ture processes, which have changed from one residence to another (glove-accelerome-
ters, Genki Wave, LeapMotion, Kinect, Optitrack and Metaquest2, see table 1.). Be-
tween the two, different computer programs based on artificial intelligence, allow the 
direct manipulation of sound by gesture or the learning of temporal relationships be-
tween vocal and gestural. In both cases, the result is a new organology made up of dif-
ferent intangible musical instruments offering the user to spread her.his voice in space, 
to multiply it, to segment it or to manipulate it.   

Taking advantage of the instinctive nature of the voice - gesture link, and taking 
advantage of new technologies allowing the joint capture of the sound of the voice and 
the coordinates of the gesture in real time, the Synekine Project has deployed across 
artistic productions and residencies, a new organology of sound, invisible and intangi-
ble instruments belonging to new Human-Computer Interactions. Motivated by artistic 
practice, the development of this organology is presented here in a genealogical form 
mixing innovations and creations. 

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

302



Table 1. Chronology of the works realized within the framework of the Synekine project pre-
senting the various instruments elaborated from various technical devices. 

Fig. 1. Different hardware used to realize the instruments: Top left an XBEE sensor, bottom left 
a Genki Wave ring, top right a Kinect V2, bottom right two Optitrack cameras. 
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2 Genesis: Expressivity, Sensors and Luna Park 

On generative models of expressivity and their applications for speech and music, an 
artificial intelligence algorithm based on a corpus of expressive sentences, has been used 
to generate an “emotional” speech, by modulating the prosody of a “neutral” utterance 
[Beller09a, Beller09b, Beller10]. During the development of this synthesizer of the emo-
tion in the voice came the desire to control the prosody by the gesture. At the same time, 
instrumental gesture sensors were developed allowing the measurement of the dynamics 
of a bow by integrating small accelerometers and gyroscopes. The data related to move-
ment is transmitted in real time by WIFI to a computer which triggers sounds and mod-
ulates effects according to the dynamics of the gesture [Bevilacqua06]. In 2010, as part 
of the creation of Luna Park1, a musical theater work by Georges Aperghis, these sensors 
have been integrated into gloves and a first instrument called SpokHands has been de-
veloped, which literally made it possible to speak with the hands [Beller11a, b ,c, d]. 

SpokHands2 allows the triggering and modulation of voice samples by aerial per-
cussion and hand elevation. Like a vocal Theremin, the instrument offers the performer 
the option of three-voice polyphony (her.his own and both hands) or control of text-to-
speech parameters.  

In this case, the natural division of a conductor's brain is used, the left brain (right 
hand) for the segmental part, and the right brain (left hand) for expressivity. The percus-
sive gestures of the right-hand trigger pre-selected syllables whose pitch and intensity 
are modulated by continuous gestures of the left hand. A particular aerial percussion 
technique aimed at triggering sounds in a temporally precise manner without hurting the 
self has been practiced by a percussionist. Indeed, the absence of haptic feedback from 
a physical object could cause, in the long run, pain in the handles which acted as a stop 
to the percussive movement. The research work on gestural control of speech synthesis 
has been pursued as part of an artistic research residency at IRCAM entitled The 
Synekine Project [Beller14a]. 

3 Babil-on: From speech to time 

Babil-on, for solo and electronic voice is an augmented musical theatre performance. 
The composition benefited from IRCAM's artistic research residency program and the 
piece was premiered by Richard Dubelski in Marseille, at the Théâtre des Bernardines, 
in 2013, as part of CMMR 2013. Like a close-up, a “Speech” character discovers his 
own voice, cuts it up, superimposes it, spreads it around him, multiplies it, and reveals 
the emotional charge intrinsic to the language. A pair of button-rings have been added 
to the sensor-gloves allowing for the picking and erasing of voice samples on the fly. 

1http://www.gregbeller.com/2011/06/luna-park/ 
2http://www.gregbeller.com/2011/06/spokhands/ 
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Thus, SpokHands and the triggering of pre-made sounds evolved into Hand Sampling, 
in which the vocal flow is cut and recombined in percussive gestures. 

Hand Sampling3 allows the performer to cut her.his voice in real time, and recom-
bine immediately by the gesture. It involves percussive gestures that will segment and 
trigger vocal fragments.  

The length of these fragments can vary from syllable to sentence. The order of the 
re-played segments can be sequential, random or palindromic, which allows different 
playing modes. In addition, the quality of the gesture influences the quality of the sound 
perceived, making the instrument expressive. 

To the fast capture of the dynamics of the gesture by the accelerometer gloves has 
been added the relatively slow capture of the absolute position of the hands in space, by 
the use of depth cameras of the Kinect type [Kean2011]. This made it possible to obtain, 
in addition to the fine temporal precision of the percussive type triggering, the continu-
ous control of sound processes according to the posture and the spatial position of the 
hands. On the other hand, the sensor brought other constraints such as a reduction in the 
playing area, a single performer possible, the need for a phase of calibration and detec-
tion of the skeleton, the risk of infrared disturbance by lights. The Body Choir uses the 
hand position to control a choir effect and the Hyper Ball to control a granular synthe-
sizer. 

Body Choir transforms a singer into a choir. This virtual choir accompanies the 
singer according to her.his gestures and the postures s.he adopts.  

Singing involves movement of the body. This movement is captured and used to 
magnify the singer's musical intentions. The posture of the body and the sung note mod-
ulate in real time the harmony, the number of voices, or the spatial density of the choir.  

Hyper Ball takes the form of a virtual sound ball, which the participant waters with 
her.his voice and modulates with her.his gesture.  

The position, size and orientation of the ball influence the height, density and volume 
of the sound generated. This type of musical activity, by its constitution, causes choreo-
graphic movements. 

In 2016 in Vancouver, Simon Fraser University, during ISEA2016, a new version 
Babil-on V2 has been premiered. The Kinect V2 replaced the V1 offering better acuity 
in capturing movement, greater flexibility of use and the possibility of following the 
hands of several people at the same time. Another pair of button-rings have been added 
to the sensor gloves.  

From a compositional point of view, this second pair of button-rings offers free nav-
igation in the structure of a work whose duration of each scene is flexible according to 
performer’s own perception of time. From there, from the table to the stage, a change of 
writing paradigm takes place and we evolve in an open form that can break with the 
linearity of the pre-defined musical structure. Now, an improvised form can emerge from 

3http://www.gregbeller.com/2014/02/hand-sampling/ 
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the dynamic choices made by the performers in a situation of comprovisation with these 
instruments. 

4 TIIIME: From time to memory: 

TIIIME stages three performers who play gestural, sound, visual and temporal mirror 
effects, in an apparent collective improvisation of which emerge from temporal themes: 
perception, memory, movement. the temporal relationship between vocal and manual 
gestures is modelled by artificial intelligence. On stage, a performer feeds a machine 
with his own vocal and gestural catalogue, then Wired Gestures restores fragments of 
this vocality in a way that is synchronous with the recognition and tracking of new ges-
tures.  

Wired Gestures dynamically links voice to gesture, in an artificial way. The machine 
simultaneously records a voice gesture and a manual gesture [Françoise2014]. It learns 
the temporal relationship between the two. Then it reproduces the voice, when the per-
former repeats the same gesture.  

The nuances of timing in the gesture are then heard as prosodic variations of the 
voice, and it becomes possible to break down the expressivity. 

Visual extension, Gesture Scape records jointly and categorizes voice, gesture and 
video. Then new gestures, either manual or vocal will activate the visual and auditory 
archive. Video capture is introduced as a referential element of sound time. Not only 
does the manual gesture reproduce the sound of the voice, it can now also reproduce the 
image of the performer at the time of recording. Gesture Scape can be seen as the visual 
extension of Wired Gestures. The performer dances with her.his double, in a dialogue 
made of unison and counterpoint with the past, finding her.his inspiration in the lapsus 
of memory. 

Gesture Scape jointly records voice, gesture and video. Then, new gestures will ac-
tivate this memory. The performer animates the video, by reproducing the same gesture, 
or by repeating the same associated sound.  

The performer dances with her.his double, in a dialogue made of unison and coun-
terpoint, inspired by lapsus of memory. From the development of these two devices, 
based solely on the dynamics of the gesture and not on its location, was born the desire 
to be able to arrange and organize it in space. Symbolically, a wave of the hand, placed 
above the head, to say goodbye, differs from a refusal, however expressed by the same 
gesture, but located below the shoulder. From a performative point of view, the staging 
of learners manipulating learning machines has necessarily questioned the situation of 
memory. 
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5 The Memory Palace: From memory to the process 

Three installations and a choreographic performance, all entitled The Memory Pal-
ace, were created during the FACTS - Bordeaux and EXPERIMENTA - Grenoble fes-
tivals in 2017, with the support of IRCAM and ADAMI. This work cycle benefited from 
an artistic research residency at IDEX - University of Bordeaux, in scientific compan-
ionship with the LaBRI.  

The Memory Palace is a mnemonic device practiced since antiquity allowing for 
memorizing long lists by arranging the elements of these in imaginary places 
[Yates66]. The construction of an interior architecture sensitive, has been realized with 
the Sound Space, a choreographic musical instrument linking space and time through 
movement. The surrounding space becomes a key zone in which the voice can be depos-
ited and awakened by the gesture.  

Sound Space is a choreographic musical instrument which links space and time, 
through movement. It transforms the physical space surrounding the performer, into a 
zone in which s.he can place her.his voice and awaken it by gesture.  

By drawing her.his voice, s.he creates a unique soundstage, while evolving within it, 
in a creative process. The space then vibrates with a sound quality in line with the quality 
of movement. The Sound Space won the prize for technical excellence during the Guth-
man competition for new musical instruments. 

Parable of the mnemonic, the installation transforms the place in which it is exhibited 
into a collective sound sculpture. Each participant is involved in the creation of a work 
of which s.he constitutes one of the many voices. Her.His gestures act as a reveler of the 
invisible sculpture. S.He can contribute to it by depositing elements of stories, sounds, 
or even songs that he can immediately recall in a creative process. A virtual but yet very 
audible forum, The Memory Palace acts as an indicator of the borders of the intimate, 
confronting the participant with the direct and immediate use of her.his voice imprint by 
others. In this mediation, the physical space, however empty, resonates with the different 
memories delivered by the participants in a temporal polyphony. Two sound installations 
based on the principle of Sound Space were presented.  

The first uses a Kinect V2 for the localization and recognition of gestures, an ambient 
microphone as well as a video projection which materializes the sound traces of the par-
ticipants on a screen. Two people were able to record sounds and play back the sounds 
of the others. The recording and erasing of sounds were controlled by gesture recognition 
(stone, leaf, scissors). The feedback showed that the main difficulty for the participants 
was to synchronize in order to avoid feedback (one playing while the other was record-
ing). Finally, the representation on a 2D screen of the 3D space was a great help for the 
audience and made us want to use a 3D visual representation using holography or mixed 
reality. 

The second uses the microphone and an ad hoc system of geo-localization in the 
confined space of mobile phones. This second version allows everyone to leave audio 
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messages for others by simply wandering through the space with their phone, after in-
stalling a small dedicated application.  

Within the former installation, the dancer Valencia James delivers a musical chore-
ography involving personal memories, ancestral traces and imaginary characters. The 
choreographic process consists of the progressive materialization of a memory palace by 
the deployment at different points of the stage of characters combining sound quality 
and quality of movement. Then, a free wandering generates by interpolation a new sound 
space which in turn provokes new states of the body. Everything happens as if the dancer 
were making an improvisation with herself and the traces of memory that she has just 
placed on the stage. 

This dramaturgical structure in three stages (discovery of a new device; development 
of an ad hoc language; expression of “something else” with this language) has the ca-
pacity to attract an audience and to take it somewhere to finally surprise it there. If “the 
something else” refers to the discovery, the device or the elaboration of language, this 
linear structure resonates and loops in mise en abyme generating meaning. This is the 
case, for example, in the musical theater solo Fissures, in which fragments of a text on 
amnesia are arranged in a spatial and repetitive cut-up.  

6 Birth of a Tree: From Process to Language 

As part of a Scientiarum Musicae doctorate in the framework of the KiSS program - 
Kinetics in Sound and Space - at the Hochschule für Musik und Theater Hamburg, Ger-
many, new technical gesture capture devices have been gradually being tested and inte-
grated, such as the Genki Wave accelerometer rings, the Optitrack Motion Capture sys-
tem or the Meta Quest 2 virtual reality headset. Spatial Sampling paradigm has been 
developed [Beller15a]. The constantly renewed interest in the device Sound Space in 
different artistic configurations stems from its adaptability. Indeed, it is an empty and 
silent box at the start, just like the musical sampler. So other instruments were derived 
from the hybridization of these two concepts and tested in the creation of Birth of a Tree. 
They are the basis of the creative improvisation process of the Air Sampling series.  

Air Sampling is a series of improvised performances in which a sound source is sam-
pled and distributed in space in real time. In the first performance #001, the sound source 
is given by Lin Chen on percussion and vocals. The author, playing the Sound Space, 
Spatial Trigger and Spatial Looper instruments, records and plays the samples in space. 
They perform with the percussionist an improvised musical choreography of which per-
cussions are the only acoustic source. 

In the 1970s, the sampler revolutionized music production. This electronic music 
instrument, whose memory is empty at the beginning, allows the musician to create 
her.his own universe from percussion samples, ensembles, groups of instruments or or-
chestras and can also serve as a platform for musical creation.  
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The paradigm of the Spatial Sampler is to substitute the midi keyboard which clas-
sically indexes the samples, with spatial coordinates describing the positions of the 
hands. 

Spatial Trigger allows the automatic segmentation of a sound and its distribution in 
space by the gesture, then the selection of one of these fragments according to its position 
and its triggering by aerial percussion.  

The Spatial Looper allows the mixing of several sound loops according to the prox-
imity of the hands, as well as the generation of music from the fragments distributed in 
space. 

Many musicians are now familiar with the "looper" or live looping. One of the main 
difficulties in this art is dealing with multiple layers of samples (usually dealt with a 
guitar pedal). The Spatial Looper transforms the space surrounding the performer into a 
spatial sequencer and makes it easier to not only access the different layers but also to 
remember them.  

7 Air Sampling: From Language To 3D Sculpture 

For Air Sampling #002, still using the percussion sounds played by Lin Chen, VR 
versions of the Sound Space, Spatial Trigger and Spatial Looper instruments were cre-
ated and tested in a performance situation. An OpenGL representation allows the per-
former to visualize the position of the recorded sounds in a Meta Quest 2 headset, which 
greatly facilitates the organization of the session and allows for greater spatio-temporal 
accuracy. 

The graphical representation of the recorded sounds also offers the possibility to 
draw 3D structures in the virtual space. The other performers and the audience can see 
the structure emerging from the gestures through video projection. Several performance 
situations have been explored with or without sharing the representation of the structure 
with the audience through video projection. Making it visible facilitates the understand-
ing of the instrument by the audience but unbalances the performance if other musicians 
contribute. The other musicians only show the scores and their interpretation choices in 
front of them through the sound produced. In Vanishing Mirror, the performer is the only 
one to visualize the recording of the sounds produced by a piano-cello-vocal trio. Dif-
ferent modes of interaction with the sound sources have been explored, from the duet 
with a percussionist in AirSampling #002, to the live sampling of an ensemble of seven 
instruments in The Fault (see Figure 2).  

While Virtual Reality allows for a better organization of the sounds recorded and 
produced, it has the unfortunate side effect of visually cutting the performer off from the 
other musicians as well as the audience. Not only does it reduce the facial expression of 
the performer whose eyes are no longer visible, but the rupture of the visual contact of 
the performer with the others can generate complex situations for the synchronization in 
a comprovisation situation. In AirSampling #003 - Macht macht, the strolling public 
interacts with the performer, who has a microphone. A protocol must then be established 
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between the participating visitor and the performer in order to synchronize the produc-
tion of sound on the one hand with the gesture of the other. 

The total obstruction of the visual contact in situation of comprovisation can cause 
an interesting situation of performance, but can also harm the connivance between the 
public, the musicians and the perfomer made "blind". As holographic video is not yet 
mature enough, mixed reality seems to be the way to reduce the loss of visual contact. 
The evolution of the Spatial Sampler VR to the Spatial Sampler XR is currently being 
developed with the Hololens 2 mixed reality technology. This evolution implies the sub-
stitution of controllers by gesture recognition, thus reducing the playability of the instru-
ment by decreasing its response time. Apart from the Optitrack system which operates 
at 120 frames per second, the other systems based on video or depth sensors do not offer 
a small enough latency to allow aerial percussion (latency lower than 20ms). Just as we 
added acceleration sensors to the data from the Kinect, the fusion of gesture recognition 
data with data from on-board accelerometers (Xbee sensors or Genki Wave rings) is 
being considered to improve gameplay in mixed reality. 

Fig. 2. The Fault, Opera composed by the g. Beller, 2023, Hamburg, Germany. In the back-
ground, a representation of a 3D sculpture elaborated from the sounds of the instrumentalists. 

8 Conclusion 

The nexialist approach of the Synekine Project aims to establish protocols that gen-
erate creative processes in a holistic approach mixing Arts and Sciences. The path oscil-
lates between meetings with scientific researchers, technical development phases, ex-
perimentation residencies of new scenic devices and crystallization of performative sit-
uations in shows or installations.  
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This article relates 10 years of research and artistic production accompanied by tech-
nological development. In chronological form, it exposes the development of the re-
search theme of spatial sampling, the new musical instruments elaborated through the 
evolution of the technologies of gesture capture as well as the artistic stakes approached 
in different works. From the link between gesture and voice, the research has evolved 
towards the manipulation of spatially situated media. From Hand Sampling or spatial 
sampler to sound space, different instruments make movement the link between time 
and space. The technical developments are based on the evolution of technologies for 
capturing gestures. The fusion of data from the capture of the dynamics of the gesture, 
the position of the hands in the space and the sound, allows the elaboration of an inter-
active sound scene. In performance, improvisation, comprovisation or composition sit-
uations, different modes of play are presented. The creation of about fifteen works with 
these instruments gives a context to the artistic stakes of spatial sampling. 

Virtual reality allows to represent and manipulate "sounds located in space" in an 
environment comparable to that of a 3D painting software. The custom arrangement of 
media whose recording and playback is done on the fly inaugurates the possibility of 
“spatially situated media” editing. Compared to modern sequencers whose organization 
of windows and sounds is constrained by 2D, the possibility of freely organizing media 
content in 3D space seems to accelerate the work of the editor, who joins spatial memory 
to content memory. The use of the memory palace in the audio-visual editing activity 
can greatly facilitate the access to the contents and accelerate the work steps without 
requiring any particular cognitive dispositions of the user. 
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Networked performance as a space for collective creation 
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Abstract. This article takes a practice-based approach to exploring the specific 
issues and problems of distributed networked performance, in the light of the 
various aesthetic categories directly affected by this practice. It considers how 
traditional categories of aesthetics, such as the notion of presence, are called in-
to question by the virtualisation of sonic space. Distributed performance also 
casts the notion of space in music in a new light. Another essential contribution 
of online practice is that it allows participants to decentre the question of aucto-
riality – or authorship – as it is anchored in a metaphysics of presence. 

Keywords: #Networked performance #Aesthetics of distributed performance 
#Philosophy of technology. 

1 Introduction 

This article takes as its starting point my experiences working with the Stanford New 
Ensemble (henceforth SNE) over the period 2020–21, as global circumstances pushed 
us to transition from in-person to online rehearsing and performing. This shift was 
accomplished thanks to the invaluable commitment and energy of the staff at 
CCRMA (the Center for Computer Research in Music and Acoustics at Stanford Uni-
versity, led by Chris Chafe), who made it possible for us performers to maintain our 
musical activities under the best possible online conditions. In the course of growing 
familiar with JackTrip – a software developed by Chris Chafe and Juan Pablo Caceres 
at CCRMA for high-quality, uncompressed audio in networked performance – the 
ensemble participants and I were able to develop our understanding of the particulars 
of online music-making, on both a musical and an aesthetic level. Questions of stu-
dent engagement and of community-making in this particular context were also criti-
cal to us. The article presents some of the outcomes of this reflective thought as it 
emerged through and beyond my and our engagement in network performance. 

I begin by discussing the necessity for an explicit aesthetic investigation into dis-
tributed performance, some of its particular problematics and stakes, and seek to show 
how this practice provides an opportunity to reassess and reevaluate some of the tradi-
tional questions of aesthetics. But the scope of networked performance extends be-
yond a reflection confined to the sphere of musical practice. Indeed, questioning the 
nature of the phenomena that occur in a virtual acoustic space calls for a rethinking of 

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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certain assumptions in the light of the philosophy of mind. I explore in detail the im-
plications for both thought and practice of the accentuation of musical space, a notion 
that in recent practice gains an unprecedented autonomy. I also consider how the 
knowledge gained through these contemplations can lead us to rethink the notion of 
the work of art as well as that of the musical object, and possibly the technical object 
– that is to say, the question of the modes of existence of works as well as of technical
objects. All these elements culminate in the question of the work considered natively
as an object that expresses itself online, in a plural way, namely as a collective crea-
tion that renews student commitment. I end by taking up again the notion of space,
now understood as the public space of both music-making and philosophical discus-
sion, and consider the potential for an ‘ethics of discussion’ seen through the lens of
technological artefacts.

2 The aesthetics of networked performance 

The literature devoted to distributed performance has blossomed over the past twenty 
years. A significant number of these publications have, unsurprisingly, been primarily 
concerned with technical questions as to the ways in which real-time interactions 
could be achieved, starting with video telephone with images updating every five 
seconds in the 1990s and, with the more recent development of JackTrip, achieving 
near-zero or ultra-low latency. If publications from the early 2000s such as Craig 
Saper’s Networked Art and Anna Munster and Geert Lovink’s ‘Theses on Distributed 
Aesthetics’ began to engage with the challenge posed by distributed performance to 
the very nature of artworks, it nonetheless remains common for performers to consid-
er online performance, however high the quality, as always a substitute: the ideal 
scenario is presumed always to be on-site presence shared with audience members. 

Since 2019, the Journal of Network Music and Arts, a peer-reviewed open-access 
digital research journal published by Stony Brook University, has been offering a 
transdisciplinary approach to a diversity of questions raised by network performance, 
beyond the already existing literature of technological import. The questions ad-
dressed involve network arts technologies such as JackTrip, LoLa (a low-latency, 
high-quality audio/video transmission system for network musical performances and 
interaction), virtual reality, OBS Studio (OBS = Open Broadcaster Software) and 
other software. The journal also engages with thematic approaches, among which 
aesthetic issues have begun to find their place. For example, the latest issue focused 
on the notion of ‘distance’ and its transformations, whether ‘physical, emotional, 
societal, environmental [or] dimensional’.[1] 

In addition to the innovations and technological developments in networked per-
formance since the beginning of the pandemic, this performance practice has thus lent 
itself to the emergence of a vast corpus of research questions. This context calls for 
the progress of a philosophical and aesthetic inquiry that could potentially inform 
performers, researchers and technologists – a perspective I would compare to Hubert 
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L. Dreyfus’ phenomenology-based approach to technology in his critique of Artificial
Intelligence, which led to an enhanced dialogue between philosophers and AI engi-
neers that culminated in technological developments founded precisely upon the re-
sults of this dialogue.

In particular, I believe that thinking about networked performance can lead to a re-
framing of traditional questions in aesthetics. Such common notions as the concept of 
presence, from Plato to Derrida through Heidegger, need to be rearticulated or rein-
vestigated in the light of the notion of telepresence, which has assumed such critical 
importance since the development of VR and augmented reality in the arts. Jack 
Loomis’s 1992 article ‘Distal Attribution and Presence’ is foundational here, as is 
Stephen Jones’s ‘Towards a Philosophy of Virtual Reality’; a more recent publication 
of primary interest focuses on the UnStumm | Augmented Voyage mobile app and 
server infrastructure, an artistic vehicle for the realization of telematic live perfor-
mances (video art, music, and dance in augmented reality).[2] If, traditionally, the 
notion of presence in art has been linked to that of truth, the ontology of the work of 
art must question the way telepresence challenges its fundamental assumptions. 

3 From aesthetics to philosophy of mind 

Because of the focus on technical aspects, there was a lack of development of aesthet-
ic thought in early thinking/writing about networked performance. Thus, an oppor-
tunity was missed to renew or reframe canonical aesthetic questions in the context of 
a performance practice that, by virtue of the communities it serves and reaches out to, 
paradigmatically associates art and technology. Some of the questions raised by dis-
tributed performance, such as the nature and qualities of the virtual sonic space in 
which the performers ‘meet’, extend beyond a solely aesthetic inquiry (for example in 
the notion of presence – phanesthai – or telepresence), and touch also upon questions 
of philosophy of mind. (Are musical mental phenomena internal or external, are they 
to be found ‘within’ the mind or are they only real in as much as they are actualised in 
the public sphere? What if this reality is enacted in a virtual space? Etc.) These are 
some of the questions that would benefit from being confronted to philosophical ap-
proaches other than aesthetics under the paradigm of subject philosophy (a paradigm 
under whose influence Heidegger remains, even though he seeks to distance himself 
from it). 

4 Accentuation of the musical concept of space 

One concept that has received recent interdisciplinary attention, bringing together 
artists and scientists to consider the notion in both its aesthetic and cognitive dimen-
sions, is the question of space. For example, this topic was a focus of discussion in a 
2021 event in Aalto University’s LASER Talks series (LASER = Leonardo Art Sci-
ence Evening Rendezvous).[3]  
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Thinking about the concept of space has merits also on a strictly musical level. A 
number of questions and assumptions of compositional and/or theoretical significance 
can be profitably reassessed in the light of the experiences to which online jamming 
exposes participants. One of the most obvious is the question of reconciling improvi-
sation and composition (improvisation in writing, or notions such as musical dis-
course in improvisation and written music, etc.), since many contexts in which net-
worked performance is produced call for improvisation. Another obvious area of 
questioning is the concept of space and how musical space can be elaborated compo-
sitionally; how it differs from one composer to the next; how different compositional 
approaches entail a particular relation to the notion of space, compositionally speak-
ing (whether tonal, polytonal, atonal, metatonal, concrete, stochastic, repetitive, etc.). 
Thus, internet acoustics and audio panning systems could go hand in hand with a 
reflection of space as an intraspecific category of compositional practice. In that con-
text, it would be particularly interesting to question whether or not the technological 
means used entail a predetermination of certain aesthetic aspects, or whether the tech-
nology employed has no aesthetic qualities, in the same way Langdon Winner in a 
canonical essay from 1980 investigated whether, beyond mere efficiency, “technical 
things” (as he calls them) were embodying “specific forms of power and authori-
ty”.[4] I would like to pursue this reflection by investigating more thoroughly what a 
reevaluation of space as a musical category, or parameter, entails, both in terms of 
sonic and acoustic qualities, but also as a notion that appears to be relatively little 
looked into compared to, say, the notion of time in music. 

When referred to the use of technological means that enable ultra-low latency in 
sharing sound for collective music-making, one cannot fail to wonder whether these 
tools do not implicitly call for a reevaluation of notions that had previously received 
little attention. A virtual space whose sonic qualities are not predetermined as they 
would be in a physical space – i.e. a space whose morphology is dependent upon fac-
tors that can be largely acted upon, such as latency, spatialisation of sound sources, 
panning, reverb, loopback, etc. – underlines the fact that sonic space is as much the 
result of a deliberate compositional decision as musical figures themselves are the 
result of a compositional strategy. Different archetypal harmonic patterns or distinc-
tive musical figures, the relations different sounds have with one another in general, 
convey for each composer a particular image of a sonic space that is dependent on 
idiomatic syntactical features. The exceptional breadth and diversity of musical ap-
proaches to organising sound and material after World War II (from constructivist 
procedures to indeterminacy, microintervals to a mathematical approach to sonic 
space (Xenakis), composition using algorithms to metatonality, etc.), concurrent with 
key developments in electronic music, pushed to the foreground compositional con-
cerns about space and the localisation of a sonic source as an intraspecific component 
of sound itself, along with pitch, duration, timbre and dynamics. It is of utmost im-
portance at this point in the discussion to make a clear distinction between two differ-
ent aspects covered by space as a musical phenomenon. As I referred to different 
styles and composers having their idiosyncratic signature as to what a space is, I in-
tend to highlight an understanding of musical space as a sonic space, i.e. a space de-
pendent on pitch organisation. In that regard, space enables a certain phenomenality 
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of sonic perception that is different from one typology of sonic space to another. This 
phenomenality is accompanied by certain physical effects the music has on the listen-
er. On the other hand, the concern with spatialisation has to do with the notion of 
acoustic space – a separate notion from sonic space in that the spatialisation of music 
and the constitution of a sonic space specific to music are two different things. Thus, 
no music can escape dealing with space, as it develops concurrently with the sonic 
organisation of the musical phenomenon itself. We could therefore think of sonic 
space as a notion entirely defined by pitch organisation. Another way of characteris-
ing both notions is to think of sound space as an intrinsic space, dependent on spatial 
configurations generated by the relationships sounds have with one another. Acoustic 
space, on the other hand, can be thought of as an extrinsic space that deals with the 
physical spatialisation of sound in the space in which the music is being performed 
and heard. Of the latter, Stockhausen says that it constitutes a “new dimension of 
musical experience”.[5] An appropriate way to summarise the specifics of both no-
tions while maintaining in the listener’s mind their conceptual proximity is to say that 
acoustic space has to do with spatialising the music, while sonic space musicalises 
compositional space. By the musicalisation of compositional space, I mean the char-
acterisation of a space proper to music, an intrinsic component, as opposed to space in 
other artistic media, such as sculpture in its making or painting in its making. 

Before turning to broader philosophical and political considerations, what provi-
sional conclusions can be drawn from the previous reflections concerning the diversi-
ty of musical and aesthetic investigations to which the reevaluation of the notion of 
sonic space lends itself? First and foremost, it seems to me that the increased sensibil-
ity to space that distributed performance calls for, and which it helps shape as a musi-
cal parameter equal in importance to the four traditional parameters (timbre, duration, 
pitch, dynamics), highlights the need to question the idea of space as a ‘given’, as a 
compositional a priori – as a void component, deprived of any intrinsic qualities, that 
merely needs to be filled with sounds – or as a domain of music creation in and of 
itself that calls for an active elaboration. I have sought to indicate already that if I 
consider space to be a valuable means of questioning our auditory sensibility, this is 
precisely because it results from a deliberate compositional strategy or decision. If I 
do not think of musical space as an a priori, a void to be filled, I nevertheless consider 
it to be an a priori of our sensibility, as any trained musician will necessarily perceive 
its plasticity differently, from one composer to another, from one principle of sound 
organisation (tonal, atonal, etc.) to another. Music therefore does not ‘happen’ in a 
given metaphorical space, but it gives that metaphorical space its specific form or 
Gestalt. There is an expressive plasticity to music as much as there is a plastic expres-
sivity to it. The category that we can deduce from these considerations is that of mor-
phology: morphology of the musical figures and morphology of the sound space that 
results from these figures. 

The particularity of being part of a networked performance is that two different 
spaces, that of the musical figures created by the composer(s)/improvisers and that of 
the virtual shared space, become spheres of expression that can be acted upon in such 
a way that the performers are hearing an actual polyphony of spaces: the space imma-
nent to the pitch organisation, and the shared space of the performance that becomes 
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audible as such through the headset. This experience is particularly acute when using 
the software JackTrip. 

Distributed performances call for an ‘augmented’ approach to musical composi-
tion, one in which sonic space is dealt with as a parameter of equal importance to the 
other parameters – both on a metaphorical level as well as on an acoustic level, and 
their mapping. Latency, too, can be turned into a compositional constraint from which 
imagination can flourish, rather than an impediment to real-time interactions. In a 
similar fashion, we must reconsider how we can make sense of the sonic organisation 
of these pieces on an analytical level. The question that arises is how to formalise new 
analytical models that would facilitate a taxonomy of the different approaches that 
composers and improvisers in distributed performances take as they develop a musi-
cal approach based on the particularities of the software. At stake is the possibility of 
giving an account of the phenomenality of sound and its physical aspects in a virtual 
acoustic space. In addition, the fact that the virtual acoustic space is the space per-
ceived by the performers, not the one perceived by the audience members, who expe-
rience the rendition of the piece or improvisation on their computer, creates a dispari-
ty between the performer’s and the listener’s experience of the music. 

5 Rethinking the artwork, decentring the composer 

Network performance calls for reevaluating the notion of the artwork itself. As men-
tioned earlier, if traditionally the notion of presence in art has been linked to that of 
truth, the ontology of the work of art has to take into consideration the modifications 
that it has undergone since the emergence of the concept of telepresence. 

The theory of telematics is rooted in questions pertaining to the philosophy of 
technology, notably that of the articulation of the social sphere of cultural practices 
and of the technological sphere. Concretely, this means that questions are raised about 
technological determinism applied to ensemble music – questions of ‘reverse adapta-
tion’ (Langdon Winner) and of the social practices linked to the traditional practice of 
music in Western societies. To take a concrete example: how can telematics help call 
into question or reformulate a fundamental assumption of Western classical music 
such as the distinction between the categories of improviser and composer? While this 
question is not specific to telematics, network performance poses it with particular 
insistence. Besides asking whether network performance bears predetermined aesthet-
ic attributes or whether it is a ‘transparent’ environment on which technological con-
structivism has no hold, then, the issue that I would like to address here is that of the 
decentring of the figure of the composer. In doing so, I hope to establish which as-
pects of the discussion are dependent upon the technological artefact, or made possi-
ble by the artefact, or whether this decentring is cultural in nature, i.e. emerges from 
the supportive and collaborative nature of the community of music practitioners who 
work with technology. 
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If telematics does not entail the death of the author in the structuralist sense of the 
term, it leads to what I would call a ‘decentring and redistribution’ of the role of the 
composer, concomitant with the reevaluation of the traditional distribution of roles in 
Western musical practices to which it also leads. Telematics has the ability to refor-
mulate the spatial distribution of instruments, as instruments can be remixed and res-
patialised in real-time diffusion. This leads to a metaphorical democratisation of ac-
cess to sound, as the musicians can reassign their placement in the virtual space, while 
heterogeneous timbres can be remixed and rebalanced. The hierarchy of roles as-
signed to the different instrumental groups in a classical ensemble thereby becomes 
scrambled and recoded. As for the role of the composer, it is in large part determined 
by the culture of the musicians participating in telematics concerts, as is exemplified 
by pioneering figures such as Pauline Oliveros: this culture by its nature and history 
encourages collaborative practices. The programme notes of the pieces PicTyour-
Score 2020 – Pandemic Edition by Hassan Estakhrian and Whose turn is it anyway by 
Michele Cheng exemplify this tendency, as the composers position their works as the 
product of a collective effort. Both works were performed by the SNE in the period 
2020–21, after its shift to online activity, and were composed specifically for this 
online performance environment.  

5 Collective creation and student engagement 

The question of international community-making is at the heart of networked perfor-
mance. A significant example of this is a collaboration whose results, both artistic and 
musical, are still vividly remembered by the community of performers and musical 
technologists involved. In 2008, musicians from Beijing and Stanford universities 
were able to perform Pauline Oliveros’ The Tuning Meditation with audio that the 
composer subsequently described as ‘beautifully clear’.[6] This kind of collaboration 
highlights the importance of thinking of collective practices as a way to enhance a 
sense of community in music-making, precisely Oliveros’ project in the aforemen-
tioned piece. At the same time, the technological means used make it possible for the 
participants to identify as a community, despite the almost 6,000 miles that separate 
the two campuses. 

As artistic and musical director of the SNE, I have placed great value, during the 
pandemic, on cultivating a sense of community, of which students risked being de-
prived. The outreach initiatives extended way beyond the usual students who register 
for the ensemble, as online music-making with uncompressed audio and near-zero 
latency was made available to virtually anyone interested, regardless of their location 
at the time the pandemic started. CCRMA and the Department of Music sent tens of 
JackStreamer kits that contained a mic, cabling and a digital audio interface. The in-
timate sonic rendition of JackTrip, once the initial setup was done, made it possible 
for all SNE participants to maintain an ensemble musical activity in a virtual acoustic 
space that made them feel as if they were in the same ‘room’, even though some of 
them were thousands of miles away from the Bay Area, where CCRMA’s servers are 
located. Because of the long distance, we frequently had to use a larger window size 
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with more latency, so as to avoid glitches and packet loss. That technological aspect 
itself determined musical and compositional strategies, in terms of what was possible 
and how. 

Reflecting on my own experience using these tools in pedagogical settings, the 
community- building potential of networked performance is clear, especially in the 
context of the pandemic era. As a sense of belonging to a learning community was 
made very difficult for many students, the impression of shared audio space provided 
by networked performance – as opposed to videoconferencing software, which is 
designed for turn-taking in audio rather than simultaneity – conveyed the impression 
of being in the same room or space, even though the ‘room’ was the internet. This 
creation of a shared virtual space allowed for the formation of musical ensembles 
which connect across geographical distances, allowing students who spent significant 
periods of the pandemic in other states or other countries to remain connected with 
their classmates in a unique space for sonic sharing.  

The question of technology (latency, quality of service, etc.) is not simply a ques-
tion of the milieu in which music is being performed, a milieu which one hopes would 
provide optimal sonic rendition. The question of technology here is intramusical. 
Reevaluating the notion of sonic space in the light of its becoming an online virtual 
space implies reevaluating both the notions of sonic object and musical object, i.e. the 
notion of artwork itself. Rethinking the notion of the artwork implies questioning its 
genealogy. In the context of products of the mind, it means questioning the notion of 
authorship as it was inherited from modern philosophy, centred around the notions of 
subject and consciousness. 

Highlighting the erasure of the authorial presence seems to involve a paradox. I 
have argued in favour of distributed performance as a musical practice that has the 
potential to dehierarchise the traditional roles of music-making as they are conven-
tionally delineated by different specialisms, and thus to help marginalised practices by 
underrepresented artists and technologists gain visibility and audibility. The decen-
tring of the authorial presence remains a paradox for as long as the discussion remains 
informed by subject philosophy. But a more eloquent and potentially fecund approach 
to the disappearance of the author may come from reconsidering the notion in a dif-
ferent philosophical context. For if we set aside the philosophy of consciousness, a 
holistic approach to philosophy of mind reveals itself to be a suitable analogy to the 
way musical minds interact with each other in a virtual space. In Barthes’ text, the 
death of the author had “the birth of the reader” as its corollary. Now, to the question 
of whether the mind is ‘inside’ or ‘outside’, the performer can respond, with Wittgen-
stein or C. S. Peirce: outside, within the public sonic sphere. 

6 Towards a conclusion: aesthetics and politics 

Having presented what I believe to be some of the most salient aspects of networked 
performance, particularly in relation to the kind of use we made of JackTrip, and as I 
reflect upon these aspects, not only as a sequence of separate considerations, but as a 
bundle of problematics to be made sense of together, I would like in closing to offer 
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an outline of how distributed performance might help us think about the relation be-
tween aesthetics and the political. The work of Jacques Rancière provides a particu-
larly eloquent account of this interrelation, with his notion of ‘artistic regimes’; as 
does that of Jean-Louis Déotte, who in addition to politics and aesthetics managed to 
develop – through the notion of appareil, inherited from Walter Benjamin – a poly-
phonic dialogue at the crossroads of art, politics, the sciences and philosophy. 

Rancière refers to aesthetics as: 
the system of a priori forms determining what presents itself to sense experi-
ence. It is a delimitation of spaces and times, of the visible and the invisible, 
of speech and noise, that simultaneously determines the place and the stakes 
of politics as a form of experience.[7] 

For this reason, according to Rancière, the “distribution of the sensible” is what “is 
at stake in politics”.[8] The redistribution of the attributed roles to which I referred 
above, made possible by networked performances conceived natively as distributed 
performances, therefore fosters a reconsideration of the political and ethical import of 
a sense experience that is made possible by the mediation of computers – that is to 
say, it questions computing ethics directly through the lens of aesthetics and politics. 
As it redistributes sense experience, networked performance thus gives form to com-
munities that become conscious of themselves as communities as they display “what 
is common to the community, the forms of its visibility and of its organization”.[9] 

I only briefly mention these aspects that are currently central to my research on 
communicational activity, technology and philosophy of culture, so as to indicate 
perspectives that in my view live up to the task of thinking in the context of liberal 
democracies. In conclusion, I will just hint at potential further steps for my research 
that I think are the corollary of some of the ideas I have exposed in the present article.  

The conceptual framework in which we can think freshly of an ethics of discussion 
has necessarily to be informed by the computing breakthrough of recent decades. 
Such a dimension was noticeably lacking in the attempts of philosophers in the late 
1970s and early 1980s such as Karl-Otto Apel and Jürgen Habermas – a lack all the 
more disconcerting when one considers that information technology was at that time a 
blooming topic that directly impacted the philosophy of communication.[10] The idea 
of a virtual and metaphorical space for a community that defies attributed roles and 
rearranges the sense experience of the singular and the collective, the near and the far, 
entails the idea of an unlimited communication community, and of a reconfiguration 
of the sensible within an ethics of discussion that acknowledges the mediating role of 
the computer.  

It is the question of ‘community’ that makes dealing with the notion of an ethics of 
discussion a necessity; and the particular modification that ‘community’ undergoes in 
the context of networked performance, as I have argued, is that of a redistribution of 
sense experience. JackTrip thus offers an analogy to the ideal community of commu-
nication, without needing to anchor it in an a priori that seeks to absolutely found the 
moral requirement in a transcendental pragmatics. From phrase to musical phrase, 
from proposition to philosophical counter-proposition, an ethics of discussion requires 
a continual exercise of judgment, without any guarantee of communicational felicity 
or infelicity, without searching for the consensus that precisely inhibits our philosoph-
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ical faculty of judgment. Networked performance allows this reconfiguration of sen-
sible experience, and hints at a way of approaching computer ethics in which human-
computer interactions can help us imagine a potentially unlimited macro-ethics of 
communication. 
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Abstract. dispersion.eLabOrate(D) is a networked performance system which
augments and supports Deep Listening workshop experiences through an envi-
ronment that integrates human and machine collaboration. The sonic materials
for this co-performance/creation are seeded by vocal activity of human partici-
pants, which continually contribute to an audio corpus of past content used for
resynthesis of machine voices. Each participant experiences their own spatial
sonic reality within a shared virtual audio space, as relative placement to other
collaborative sources provide a unique vantage point via an accompanying vir-
tual acoustics system. Responses from public play sessions are analyzed using
a grounded theory approach to report on salient qualitative data resulting from
performances with the system.

Keywords: Telematic Performance, Networked Audio, Interactive Agents, Deep
Listening

1 Introduction

Network-based communal activity and connection in the area of telematic music grew
dramatically throughout the early lockdowns and cancellations caused by the global
COVID-19 pandemic [13], as musicians turned to software solutions in order to con-
tinue their regular performance sessions at a distance. For example, in this period via the
DisPerSion Lab we produced over forty telematic performance events involving more
than forty performers. Research and development in our current “post-pandemic” con-
text continues to foster distributed musical practice and telepresence, for ourselves and
many others, through various systems capable of very low latency and high quality au-
dio. One distinct performative practice that was impeded by the lack of in person events,
both in our own local lab context and more broadly, was Deep Listening – described as
“a practice that is intended to heighten and expand consciousness of sound in as many
dimensions of awareness and attentional dynamics as humanly possible” [18], by its
creator Pauline Oliveros. Public engagement with the typically in-person and group-
based Deep Listening workshop events were therefore put on hold until restrictions had
lightened.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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Continuing this trajectory of research-creation work conducted on telematic perfor-
mance, Deep Listening practice and human/machine co-creation, the system outlined
in this paper was developed to explore the results of augmenting a well-known Sonic
Meditation-style [20] text piece by Oliveros from the Deep Listening literature called
The Tuning Meditation. In particular, this augmentation introduces non-human agents
directly performing alongside human participants. Entitled dispersion.eLabOrate(D),
this project is a conceptual reconstruction and extension of a previous system by the
authors, entitled dispersion.eLabOrate [10] - with the updated name reflecting that the
system, and the practice that it fosters, is now (D)istributed. Vocalizations made by hu-
man performers during this piece are captured in an audio corpus which is then used
both as raw material for the synthesis of new tones by the machine agents, as well as
functioning as their running memory of past sonic events. The population of agents is
variable and each acts autonomously according to the score for The Tuning Meditation
(which will be outlined in section 2). While physically dispersed, players and machine
agents are placed within a singular virtual acoustics space to be heard within the same
environmental conditions.

One challenge for this project, something faced by most telematic-based perfor-
mances, is the collapse of spatial qualities to a (typically) stereo mix of all performers.
This flattens any variance in positioning of local sound sources one would find within
an in-person event, which can provide contextual information or sonic material to react
to. Systems that can support spatial representations of source placement typically orient
sound to a particular “sweet-spot” in the centre of the virtual space, which all sources
are placed relative to. For dispersion.eLabOrate(D), we develop and present a spatial
audio setup which allows for unique sonic perspectives tied to relative placement within
the virtual acoustics environment.

Following the completion of the system, Deep Listening workshop sessions were
held to gather qualitative feedback on various elements of the experience. These re-
sponses are presented and analyzed with a grounded theory approach in section 5. Key
categories of responses are discussed, which were found to focus on immersion and
communal space, diversity of machine voices, and strategies for human/machine col-
laboration.

2 Related Work

Our previous work on augmenting Deep Listening practices emerged over the course
of a 12-week DisPerSion Lab seminar that posed the question: “Can we imagine ways
that interactive systems might synergize, entangle with, and augment – but not dis-
tract from – Deep Listening practice?” This resulted in our performance system Dis-
persion.eLabOrate, created for collective listening and sounding in a shared physical
space. This system can detect and react to player vocalizations as well as ambient sound
within an environment. Like this newer project, eLabOrate was designed to engage and
augment group performances of The Tuning Meditation (TM), placing the output of the
system as a machine agent which engages with the vocal and collaborative dynamics
of the human participants. The TM asks participants to focus on their breath – inhale
deeply, exhaling on a tone of their choice for one full breath. On the following exhala-
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tion, match a tone currently being sung by another player. Then on the next vocalization,
sing a new tone that hasn’t been sung yet. This cycle continues until a natural end point
is reached where each player has stopped.

Building upon this past work, we once again begin from the position that the ma-
chine voice/participation is not an element which should conceptually or perceptually
dominate the piece, but rather should work in tandem alongside human performers to
facilitate broadened sonic potentials. We investigated the past system through the lens
of “Sonic Ecosystems”, foregrounding resonance, feedback, and autonomous behaviour
inside/outside the direct influence of human action. Building upon related works in the
field, Sonic Ecosystems are framed here as performative contexts – ones which estab-
lish environments that in turn adapt to agents, which define their own self-regulating
populations and their own ambience. This ambience may be naturally-occurring within
the acoustic space facilitating the system, or could be generated as a result of the sonic
ecosystem’s behaviour. These systems rely on self-monitoring techniques both virtually
and physically, often including microphones or other sensing devices within the space
in order to enact and react to these recurrent activity loops [6]. Musick (2016) [16] pro-
vides a thorough look at the theory and practice of the field within their Sonic Space
Project, and includes assessment strategies of sonic ecosystems within their 2014 paper
[15].

In addition to eLabOrate, another recent DisPerSion Lab project by Maraj and Van
Nort [14] also focused on developing an agent-based system for interactive perfor-
mance, building upon rules found in a Sonic Meditation-style piece. In this case the
text piece Interdepence was used as a starting principle for structuring agent interac-
tion, and the focus was on gestural performance with an interactive system rather than
collective vocalization in a workshop setting. Both projects emerge from and sit at the
intersection of two larger DisPerSion Lab projects that engage this broader area, entitled
Deeply Listening Machines and Deep Listening Entanglements [7], both of which build
upon past work on intersecting machine improvisation and Deep Listening principles
[24].

3 System

eLabOrate(D) allows for more complex, refined, and flexible agent behaviour to that
of its predecessor eLabOrate. Where eLabOrate created a pervasive and mirroring-like
behaviour for all vocalizations and ambient sound, eLabOrate(D) more closely follows
the cyclical behaviors of new tones, matching, and most importantly active listening
as is requested within the context of The Tuning Meditation. A key concept discussed
within the Deep Listening community of practice is the distinction between directed
and focused active listening, as opposed to the passive physiological process of hearing
[19]. The behaviour for each machine agent in the system enacts this active listening as
opposed to the more passive and reflexive hearing and sounding which occurred in our
past work. Situating this performance system as a telematic piece, we also investigate
the viability of a remote virtual shared space as a facilitator for the characteristics and
behaviour of sonic ecosystems.
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In practice, the eLabOrate(D) system is comprised of modules to capture human
signals and generate machine voices created in Max/MSP, which are detailed in the
following subsections. These are instantiated at the beginning of a session, with an
individual module for each human/machine participant being scripted once the total
number of participants is selected. These modules allow captured and generated sound
to be sent to an accompanying patch to be spatialized appropriately for each human
participant. All participants (both human and machine) are placed in a circle within
this virtual acoustics space, which is relevant for machine voice behaviour and will be
outlined in subsection 3.2.

3.1 Audio Corpus - Sonic Memory

The audio corpus is implemented through the Mubu package [21] in Max, and is used
within the system as a running memory of all vocalized tones. Input signals from human
players are segmented into audio buffers based on detected onsets, with recording taking
place until the signal falls below an established threshold. The system is limited to the
last n (default 50) segmented tones in order to avoid memory & processing issues, but
could be extended depending on the hardware capabilities of the host computer. This
places the corpus as a short term memory of sonic events, as the oldest events are erased
when a new buffer is saved to the corpus beyond the limit. Buffer input is held for a short
time after vocalization ends, to allow machine voices the opportunity to match without
the target voice being explicitly active. This behaviour is similar to human participants
matching another tone briefly after a given vocalization has stopped, which happens
often in practice. The buffer content is analyzed and segmented through Mubu and is
made accessible within the corpus as separated grains.

3.2 Machine Module

Each machine module consists of separate logic sub-modules inside. Controlling the
movement between matching and new tone behaviors is the breath control module,
which mimics a range of human time scale breath cycles (Fig. 1). This approximation
of human breath allows the machine agents a voicing and breathing alternation, so as
to both avoid continuous output and to better align with the time scales present within
a typical performance of the Tuning Meditation.

New tones are made up of grains from the collective audio corpus populated by
human participant voices, scrubbed through and resynthesized using a concatenative
synthesis [22] method within Mubu. A target frequency area is scrubbed to playback
these grains as a continuous voice, with the resulting tone constituting a new voice
comprised of grains from various participant sounds.

Machine voices are assigned one of 6 possible states upon instantiation, which de-
fine either their matching (Seeker or Buddy) or their spatial biasing (Close, Far, Un-
biased) behaviors. Matched tones result from copying a desired target’s current voice
buffer content into the acting machine voice’s buffer. This buffer is then played back
with a granular synthesis method to mimic the held tone by another player (both hu-
man and machine). The Seeker state implements a spatial encoding neural net using
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Fig. 1. Machine voice module depicting breath cycle alternating between both vocalization states
and synthesis engines

ml.spatial [5] to keep track of recently-matched participants. A recent match of a par-
ticipant would mean that on the next match behaviour, they become the least likely to
be chosen. The Buddy state chooses a small subset of the total population to use as po-
tential matching targets. A spatial bias of near/far/unbiased for both Seeker and Buddy
skews the likelihood to match a specific subgroup based on angular proximity within
the established virtual circle. Participants within a ±90° degree arc from a given voice or
less are deemed “close”, while beyond this places a voice as “far”. Through these added
logic modules, the system possesses possible “listening behaviours” that are above and
beyond the basic instructions of the TM piece, thereby providing differing kinds of
performative identities for each machine voice.

3.3 Human Module

Human participants are connected to the system and to one another by utilizing Jack-
Trip [1], a software tool for low latency and high quality audio. Depending on the
microphone setup of each participant, acoustic characteristics of each player’s environ-
ment may be sent along with their vocal input allowing for a perceived commingling
of ambient sounds within the virtual acoustics space. These various local sonic realities
are relayed along with one’s intended vocal utterance of a new tone or matched tone,
and may therefore become sonic material that a machine voice may pull from to gener-
ate its own new tone. In this way, the expanded sense of shared acoustic environments
remains present as a point of focus during these sessions - in the spirit of Deep Listening
practice that emphases attention to one’s sonic environment. These vocalizations can be
conceived of as “the performer-instrument articulation”, theorized by Waters as
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“[...]result[ing] not only from the physiology of the player, but also from the
complex feedback into that player’s body of vibrating materials, air, room,
and the physiological adaptations and adjustments in that body and its ‘soft-
ware’ which themselves feed back into the vibrating complex of instrument
and room.” [25]

This feedback is additionally facilitated by the networked nature of the system, and
in the individual behaviours of each machine voices. Resynthesis of vocal material of
participants continually shapes the timbral range of the machine voice, and in turn has
influence over the potential tones a human participant may match through the score.
This also comes about through the matching behaviour of the machine voices, as they
are able to copy another vocalizing machine.

Fig. 2. Layout of human and machine voices (top-down) within the accompanying virtual acous-
tics space. Lines denote matching behaviour and rings denote new tones being vocalized.

3.4 Multi-Spat - Virtual Acoustics

All output is processed and positioned spatially within an accompanying multi-listener
spatialization patch developed for this system. Audio from each human and machine
participant is placed at a corresponding source location distributed evenly in a circular
pattern around the virtual space. Relative spatial listening mixes are achieved through
separate instances of IRCAM’s Spat 5 [2], with one virtual space model per human
player. In practice, this allows a hypothetical listener 2 to be placed to the left of listener
1, and be heard from that direction by listener 1. The same is true for listener 2; their
relative position to 1 would perceptually place listener 1 to their right. Each instance
of Spat is run using a binaural panning mode for a stereo output, as headphone based
monitoring is encouraged for the performance. Two virtual audio drivers [12] [9] are
employed to allow for routing to and from JackTrip for each participant and allows a
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separate and accurate binaural mix to be passed individually back to players in relation
to their virtual orientation. An accompanying visual layout of the spatial positions and
behaviour of each participant can be displayed to depict current activity of sources
(Fig. 2). New tones are depicted as rings around a given source, and matching behaviors
point to the target source a voice is matching.

4 Study/Play Sessions

Telematic Deep Listening workshop sessions were held with various sized groups of
players in order to explore multiple factors of engaging with machine agents in this
setting. The sessions were facilitated by the second author, a certified Deep Listening
instructor, and placed focus on performance of the Tuning Meditation in the context
of also drawing attention to the shared sonic environment, one’s local environment,
one’s body and to inner listening - all common elements of a Deep Listening workshop
session.

Participants were invited through calls sent out to online email lists and social media
groups focused on computer music, Deep Listening, sound art/studies and listening
more broadly. Based on scheduling alignments, we arrived at 8 total participants who
connected from disparate locations in North America and Europe. Multiple sessions
were held, which included an equal number of human and machine players at a given
time (eg. 4 human players, 4 machine players in one session). Sessions were an hour in
length and included two different performances of the TM, each with a different active
state for the machine voices. States were decided randomly (without duplicates) in order
to have at least one response to each of the varied matching behaviors across all of the
sessions. To recap, these states include:

– Far Seeker, Close Seeker, Non-biased Seeker
– Far Buddy, Close Buddy, Non-biased Buddy

These states introduce a bias towards spatial positioning of participants (far, close, un-
biased), and a matching behaviour (Seeker or Buddy) which alters how the machine
voices attempt to match another vocalizing participant.

Participants were not primed on several factors of the experience, as we were in-
terested in gathering undirected qualitative data for analysis using a grounded theory
approach. Grounded theory is a qualitative methodology aimed at uncovering key in-
formation from responses and allowing for central themes to emerge via multiple stages
of coding - extracting relevant data and ultimately “Crystallizing the significance of the
points” [3]. Our grounded theory-based approach for this study consisted of separate
open coding steps each done individually by both authors. After this initial coding pass,
cross-checking of codes occurred followed by focused coding - creating larger cate-
gories of responses that were synthesized from the resulting codes and will be presented
in the following section.

After engaging in two runs of the meditation, players were invited to complete an
online form in the (approximately) fifteen minutes remaining within their given session.
The questions were designed to allow for open reporting on the experience with the
goal of allowing key areas of personal interest and thought processes to come to the
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forefront. That said, once the session was completed it was clear to participants that
there were both human and machine voices present, and so we explicitly asked about
the experience relative to these distinct entities. The questions provided were as follows:

1. What are your general thoughts about the session?
2. How would you characterize the various voices (both human and machine)?
3. Could you compare and contrast your experience of the two (human/machine)?
4. What was your strategy for following the TM piece?
5. Could you characterize your relationship to space and describe if (and how) it might

have influenced your experience?

To clarify demographic and background information, we also asked participants if
they had any previous experience with Deep Listening as a practice, and if they had
ever performed The Tuning Meditation.

5 Analysis

Three key categories of focus emerged through our process of coding participant re-
sponses and subsequent analysis, which we will discuss in the following sub-sections.

5.1 Experience of Immersion in a Shared Communal Space

A recurring theme that was prevalent throughout participant responses was a sense of
immersion, with this being tied to a characterization of the session as a shared commu-
nal space. “I lost all sense of my local space. With eyes closed I was entirely in a shared
space with everyone. I forgot we were not physically together”, noted one participant
with an extensive background in Deep Listening practices. As one might expect, spe-
cific mention of the term “sonic ecosystems” was not present in responses, however
those characteristics we previously identified as belonging to sonic ecosystems were
indeed reported, with one player explicitly noting “I noticed a bit of a back and forth
between being influenced by the machines and the other humans in the session”. In
response to a subsequent question, they evoked metaphors of physical ecosystems:

“I was visualizing the sound itself a lot more. I felt like I was contributing to
a moving stream. I didn’t know how loud I was, and so it felt like I was occa-
sionally throwing a bucket of dyed water into the stream as the water flowed
by, changing it in ways I wasn’t aware of.”

This ambiguity of outcome also gestures to the lack of direct control over the system.
While each performer is an active participant in seeding the amalgamated voices gener-
ated by the audio corpus, there is a blurring of causal human action to machine reaction.
This is congruent with the concept of a “floating phenomena/floating piece of art” from
Weibel & Dinkla, described by Dixon as “[...] no longer the expression of a single indi-
vidual. Neither is it the expression of a collective, but it is the state of a ‘connective’ -
a web of influences that are continually reorganized by all participants.” [8] This is fur-
ther emphasized by another participant, in commenting on the influence that the space
had on their interaction with others:
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“The relationship with space was expansive, I was traveling across the space to
meet the tones. It highly influenced my experience particularly in the second
tuning. I was able to go with more ease and pleasure, as the space expanded for
me, on the possible tones and voices to tune in.”

These performer statements, representative of the broader viewpoints expressed, depict
experience within the session as taking part within a shared space which affected their
perception of the inter-relational action present within the Tuning Meditation.

5.2 Diversity of Machine Voices Expanding Timbral Content of Meditation

The sense of a diversity of voices from machine agents was reported, and this was char-
acterized as allowing for extended timbral content beyond the human. One participant
stated: “[...] it was a great experience to listen to both human and machine voices and
respond to them in real time, reflecting my own impression on them. Analyzing various
notes of multiple voices was not an easy task but I enjoyed finding atonal harmony in
inharmonious sounds.” Similarly, conception of collective space was also addressed via
perception of the machine voice character, as one participant articulated: “The expan-
sion of tones was really helping me to expand my sense of space and time, and my
connection with others, and with my body tuning in.” This reinforces sentiment from
the previous subsection (5.1) while here being expressed in relation to the “expansion
of tones” offered by the machine voices.

One participant characterized the voices taking part within the piece as “diverse,
some calmer than others. Most of them steady, but some evolving and agile”, which
highlights the varied approaches that both human and machine voices took in either
matching or new tone vocalizations. Another participant expressed that the character of
the machine voices was “[...] radical, refined, with a different atmosphere, pleasant too
in a different way.” These statements cause us to question if this evolutionary/radical
character was a product of the cyclical matching behaviours that are capable within
the system, depending on the nature of the machine voices’ behavioural states. As one
voice matches another, a chain-like effect can occur between both human and machine
players that either match that same voice, or a voice that is already matching another
(visible in Fig. 2). Once established, this type of chain may build upon and subtly (or
not so subtlety) alter the timbres at play and seed new material into the audio corpus
which defines the machine voices. If and when this is established, such diversity and
“refined” nature of the machine voices may also be a direct result of the concatenative
synthesis technique used to derive the new machine tones via the “raw material” of the
captured player’s voices.

In this complex human/machine network we can only speculate on the specific
causalities - though we do note the above as affordances of the eLabOrate(D) system
that we know to be at play in establishing a sense of evolution and refinement over time.
What we can say with more certainty however, is that the machine voices were charac-
terized as diverse, refined and evolving, both in terms of their timbral character and in
their behaviours of interaction. This was articulated as a central influence in moving the
dynamics of human attention forward in time.
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5.3 Reflexive Engagement with Machine Voices and Influence Upon
Performance Strategies

An openness towards the involvement of the machine agents was clear in the previously-
mentioned responses. For some participants, the overall experience was that all audio
was collapsed into a cohesive sounding body: “At a few points, I couldn’t tell which
were human and which were not.”

When they are clearly recognized, the incorporation of accompanying machine
agents introduces such Deep Listening sessions to sonic material and gestures which
would not occur within a human-only performance. It was reported by some partici-
pants that this coaxed out playful transgressions upon the score itself, with one player
noting: “I tried to make sound[s] that were machine-like myself. I tried to ‘chop’ my
voice, by tapping my cheek or throat, as I was influenced by the other sounds that were
made.” Such transgressions certainly can (and do) come about in general during pieces
such as the TM by participants who would like to push the limits of what constitutes
a held tone, a pitched sound, etc. – and this is an important aspect of the social dy-
namics of this and similar pieces. Through the interjected behaviours of the machine
voices, new timbral and rhythmic components are often introduced into the palette of
materials which participants are engaging with. This added dimension of uncertainty
and dynamism from this hybrid context is captured by Waters, who states “One of the
benefits of hybrid (physical/virtual) systems is their very impurity: their propensity to
suggest or afford rich unforeseen behaviors which engage the player (and the listener)
at a variety of levels: sonic, tactile, and dynamic.” [25].

For some respondents, the incorporation of machine voices changed the conception
of their own voice in relation to others. One participant stated, “The machine tones bring
a strength from me, fearless voicing. The human voices invite me to listen more, and to
engage with care for them, trying to explore the soft voices I haven’t listen[ed] to yet.” In
contrasting human and machine contributions (Q3), another respondent expressed, “The
human is easier to follow accurately, the machine leaves more room for interpretation
of the note and timbre (which I enjoyed!)”, further relating these characteristics to one’s
own strategy for realization of the score’s instructions.

6 Conclusion & Future Work

We have presented our system dispersion.eLabOrate(D), a set of telematic autonomous
participants who engage the Tuning Meditation in the context of a Deep Listening work-
shop setting. An overview of our previous research and a system overview were pre-
sented, providing context and structure for relating the design of the system to a set of
broader reflections, which were informed by a set of qualitative data that emerged from
a series of workshop sessions with the system. Through these sessions, we investigated
the potentials for augmenting group Deep Listening practices in a telematic setting via
machine participation, and presented an accompanying virtual acoustics system allow-
ing for unique sonic vantage points into the collective virtual performance space.

Responses to play sessions were approached and processed through a grounded
theory methodology to parse out key “codes” and broader themes, resulting in the three
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salient response categories outlined in section 5. These revealed a sense of immersion
that was tied to “space”, understood as dual conception that was both social and sonic,
a sense of evolving diversity that was carried forward by awareness of machine actors,
and a set of strategies that articulated human responses towards positioning themselves
within this sonic-communal engagement.

In future work, we will look to further explore and assess these perceived dimen-
sions in this Deep Listening performative context, iterating our design (both computa-
tional and workshop structure) in light of what we’ve learned this far. This includes an
examination of the concepts of immersion intensity [4] & presence [23]). From a de-
sign perspective, future considerations include new and varied implementations of vir-
tual acoustic parameters, and expanding timbral possibilities concerning voices of the
machine agents. Both realistic representations of in-person performance spaces and ex-
tended potentials for virtual space (physically impossible listening orientations, source
positions, room qualities, etc.) offer new potentials for facilitating Deep Listening prac-
tices. This virtualized potential for Deep Listening practice is a key component of the
eLabOrate(D) project in particular.

More broadly, this work contributes to the larger Deeply Listening Machines and
Deep Listening Entanglements lab projects. These sister projects seek to transform and
augment the kinds of listening and sounding practices found within the Deep Listening
literature, such as that expressed by the Tuning Meditation (or Interdependence, in the
case of Intergestura). These existing text scores act as starting points - seed ideas - for an
evolving set of structured approaches to collective listening and sounding, both in public
workshop and improvised performance settings. Each system such as eLabOrate(D) is
part of this ecosystem of human/machine engagement in a Deep Listening context. Thus
future work for this system is focused on diversity of approaches, such as exploring
different methods for machine voice synthesis based on sound analysis and machine
learning from human vocal inputs, and on modularity such that these particular machine
voices might evolve new listening/sounding rules, and interact with other agents that
emerge from the larger project.
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Abstract. Modern music notation software is extensive and so can be a compara-
tive analysis. Since they employ a lot of different interactions to write scores, due
to the mass of different symbols and their combinations, we developed a method
to estimate the time spent by the user in interacting with the software interface in
order to perform fundamental operations. For this we applied and extended the
Keystroke-Level Model by analyzing interaction percentages in MusicXML files.
Our findings contribute to modeling interaction and usability/ user experience re-
search about interaction in music notation editors. These findings can be then
transferred to analyze other editors and we expect to use the method in formative
analyses to reduce user studies and thus development time in the long run.

Keywords: Human Computer Interaction · Music Notation Editor · Keystroke
Level Model

1 Introduction

Score editors allow users to create, edit and play musical scores. They are widely used
by composers, musicians, teachers and students for various purposes, such as com-
posing music, arranging songs, transcribing audio, or learning music theory. However,
developing score editor interfaces with good usability and user experience is hard. User
interface design is a complex task in general, as evidenced by the documents of the ex-
tensive ISO standard 9421 [1], which provides various guidelines for interface design.
In the context of score editors, it is necessary to identify the needs and context of use for
the score editors, to specify the design criteria as well as functional and non-functional
requirements, to produce design solutions, create prototypes and test them with users or
experts. Implement the design solutions and evaluate the use of the score editors in real
or simulated situations.

⋆ We would like to thank Claudia Cecchinato, Árpad Kovács and Juan Sebastian Mora Lopez
for creating the KLM encodings and giving valuable input for task description and selection.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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Another important challenge is media specificity by which we mean the purpose
for which a software is created and by which means the (editable) medium can be ac-
cessed. For example, a word processor is created for the purpose of writing and editing
text documents. In the case of text editing, consensual interactions and modalities with
mouse and keyboard were established which are based on the metaphor of the type
writer. These interactions are familiar and so feel intuitive to most users. Transferring
the input modality to another medium—namely sheet music, music creation and music
editing in general—may cause conceptual dissonance simply because of mismatch of
input and output symbols and gestures. This means that users may find more difficult to
match interactions that rely on a text-based keyboard to interact with musical symbols.
In lack of consensual metaphors, it is symptomatic that widely used notation editors
such as Sibelius, MuseScore, Dorico and Finale often employ vastly different interac-
tion paradigms combining mouse and keyboard interaction in idiosyncratic ways. We
could already show that standard questionnaires yield mostly low ratings for usability
and user experience [2]. Moreover, we found in that study that most users used the score
editors mainly for practical purposes and tend not to require features that are specifically
supporting the creative process.

By visualizing a distribution profile of task-specific interaction times, we can gain
insight into how long different tasks take and which ones are particularly time-consuming.
With this approach we analyze six widely used score editors as well of our web-based
score editor for Learning Management Systems, which uses the Verovio1 engraving
packet to render musical scores.

2 Related Work

To our knowledge there is no systematic and comparative work which deals with us-
ability and user experience of notation editors. Nevertheless, Human Computer Inter-
action (HCI) is a prevalent topic in music research especially in the context of New
Instruments for Musical Expression (NIME) [4] and Education [5]. Dealing with music
production specifically Nash et al. [6][7][8] were interested in the creative involvement
of the user with trackers and sequencers based on the concepts of Cognitive Dimensions
[9] and Flow [10]. Although score editors are not explicitly analyzed they employ the
same feedback loops as trackers, albeit by using different symbols. Based on this we
also applied these metrics to analyze characteristics of usage of different score editors
and isolate significant items by which they can be best described and most efficiently
assessed [2]. Peterson et al. [11] approached the quality of creative outcome in digital
media and on paper respectively by measuring interaction times.

A good starting point to research interaction times in general is to refer to the earliest
of HCI research relating to text editors which can be adjusted and applied to music no-
tation editors which we could view as text editors with special requirements. First wave
HCI methodology in the 1980s was concentrated on operations which could be modeled
as simple reactions in order to operate a system, ignoring such factors as emotions or
the personality of the user. Card et al. [3] introduced the Keystroke-Level model which

1 https://www.verovio.org/index.xhtml
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was intended to model expert user interactions with text editing software on a low level,
consisting of operations such as “Keystroke”, “Button Press” and “Pointing”. However,
mental operations were also introduced and with higher complexity of software core
tasks had to be defined [12] to focus on the most relevant interactions, i.e. tasks which
every software with the same purpose should have it implemented. We will discuss how
we defined these operators and core tasks for our research in Section 3.

In contrast to this, the GOMS (Goals, Operators, Methods, Selection rules) Model
tries to explain a users behavior from a top-down perspective. It takes the actual goal
of the action into account and fragments it into the actions that have to be taken to
accomplish it [13]. This is useful in analyzing the procedural knowledge users and why
they might use a certain interaction path. It is also useful to model new tasks around the
given goals, since it is not based on an existing system [14].

Today the Keystroke-Level model remains a viable tool for fundamental research
with new input modalities and situations, e.g with touch screens [15][16], in virtual
reality [17], device interaction while driving [18] or exploring interactions with non-
western writing systems [19]. Of course, the list of operators was adapted, where nec-
essary to accommodate for new input devices and gestures [20].

3 Method

3.1 Program Selection

To decide for which music notation editors to compare we referenced to a previously
conducted study in which we analyzed the most used ones [2]. From the 29 mentioned
programs six were viable for statistical analysis, being Capella, MuseScore, Dorico, Fi-
nale, Sibelius and Lilypond. For the paper at hand we were not able to make a KLM
analysis for Lilypond, since it is entirely text based and cannot be adequately com-
pared to graphical user interfaces (GUI) we implicitly had in mind for the study. Since
MuseScore had a major update during the preparation of the data, we also decided to
integrate the KLM of MuseScore Versions 3 and 4, giving us the opportunity to discuss
recent changes in their interaction design.

3.2 Data Collection & Evaluation

First we agreed on a set of unit tasks, meaning any atomic tasks that can be accom-
plished with a music notation editor. Encoding these tasks then was then performed by
three people according to Card et al. [3]. We did not expect the encoders to know every
program, but they must have worked with music score editors in the past. We are aware
that each encoder might have more experience with a certain program and to ensure an
average view on the multiple interaction paths we have taken the following measures:

– Multiple people explored each software for the same unit task. This accounts for
different ways to solve a task in the case the software has different paths.

– Encodings were taken for different modalities, i.e. major keyboard and major mouse
use respectively. This represents people with different ways of working. Although
many people might prefer a mix of both, we have a potential range and a basis to
interpolate between those values.
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– The resulting times of all encoders were averaged for each software and modality.

The KLM provides encodings and already fixed times for series of actions (opera-
tors) as “methods” that are necessary to perform a certain task. The operators can be
mental preparation (M), keystroke (K), button click (B), homing (H), pointing (P) and
selecting from a pull down menu (pd) in different combinations which are empirically
determined and applied in our study. The encoders worked on their own computers.
We regard the variability of screen sizes as negligible, since the KLM already provides
times which are insensitive to this factor.

We also aim to incorporate actions involving multiple inputs that lead to valid
changes in the score, such as composing compound elements like tempi or chords. To
achieve this, in the following section we calculated average sequence lengths, which we
utilized as factors for encoding interaction methods.

As we cannot anticipate every potential context in which a task might arise, the
encoding process may result in tasks being coded with slightly slower execution times
than they would exhibit in actual scenarios. For instance, consider the scenario where a
specific palette must be accessed before adding an articulation, and typically, the palette
remains open when multiple articulations are added in sequence. However, in our en-
coding approach, the act of opening the palette is always included. Consequently, it’s
important to acknowledge a margin of error, which could extend up to 20% according
to previous research [3].

3.3 Task Selection

KLM describes existing systems on a single level by taking inventory of interaction
durations and so making tasks comparable between systems. Since not all tasks are
used with equal frequency, we decided to perform four steps that helped us to access
interaction times for relevant tasks:

1. Define all unit tasks that are found in at least one music notation editor.
2. Analyze MusicXML data to find frequencies of all elements that result from inter-

actions.
3. Apply the frequencies from step 2 as weights to compute distributions for all unit

tasks.
4. Filter unit tasks with the help of step 2 that account for 95% of interactions. Include

interactions that are necessary to write a valid music score to get a more manageable
number of tasks to discuss. All these tasks we will be denoted as “core tasks”.

In total we defined 234 unit tasks first. These are actions that lead to a visual and/
or sound change in the GUI (including score and menus). This effectively filters out
all subordinate system interactions which only indirectly contribute in visual outcome.
Unit tasks do not have to be solely tasks that change sound events such as notes, chords
or articulations. This can be annotations of every kind, as well as lyrics, but also the act
of selecting elements, since they add highlighting to the score, and playing the music
which adds automatic highlighting to the currently sounding events.

According to Roberts et al. [12] core tasks consist of a cross product of the fol-
lowing operations and objects as seen in Table 1. We had to do some accommodations
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for musical syntax, since some operations like “transpose” have different meanings in
music. We also omitted “swapping”, “splitting” and “merging” for which we found no
scenarios in the described GUIs. Also the number of objects is much larger than in lin-
guistic text, so that we had to group symbols in a similar hierarchical manner (Table
2).

Table 1. Operations and objects according to [12].

Operations Objects

insert

character
word
line
sentence
paragraph
section

delete
replace
move
copy
transpose (≈ swap)
split
merge

Table 2. Adjusted operations and objects for music notation editors.

Operations Objects

add

primitives (notes, rests, lines, clefs, marks, etc.)
diacritic signs (beams, articulations, ornaments, etc.)
compounds (chord, measures, key signatures, tempo, etc.)
semantic structures (parts, voices, lyrics, annotations, etc.)

delete
replace
move/displace
rebind
copy
paste

Some operations are only applicable to some objects such as transposing can only
be applied to chords and notes while rebinding (bind an anchor to a new event and
so making also a change in the synthesized sound) is mostly associated with elements
which modify the sound on larger time scales such as crescendo/ decrescendo, tempi,
slurs, dynamics, etc.

To get a more concise view of the frequencies of occurrence of all elements we an-
alyzed freely available MusicXML files by simply counting the elements and mapping
them to their corresponding tasks. We also counted sequences of inputs to account for
unit tasks that require multiple consecutive inputs, like writing a sequence of notes with
the same duration, writing a chord, writing chord symbols or textual tempo instructions.
For durations this value lies at 1.4, word length is 5.7 on average. The mean of all found
sequences in the analyzed pieces is 3.6 which we will use as a multiplier to compute
individual task related times.

As a base for our model we took four pieces from different time periods, with dif-
ferent instrumentation to cover a wide range of quantities of used symbols:

– Johann Sebastian Bach: Orchestral Suite in D Major (BWV 1068)
20897 elements

– Wolfgang Amadeus Mozart: Clarinet Concerto in A Major (KV 622)
81844 elements

– Frédéric Chopin: Three Waltzes (Op. 64)
13209 elements
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– Frederik Pfohl: Symphonic Phantasy for great Orchestra The Sea, Movement 5
Frisian Rhapsody (PWV 24)
92519 elements

– Gabriel Fauré: Piano Quintet No. 2 (Op. 115)
75591 elements

Table 3 shows the most used elements in the MusicXML that account for ≈ 95%
of interaction according to the weighted means. These percentages are representing the
weights which we will apply to the tasks resulting in the distribution in Figure 1.

In the table “type” is referring to the symbolic duration (quarter, 16th, etc.), which
by itself accounts for 35.72% of interactions in a notation program, followed by pitch
with 29.25%. Slurs and articulations are child elements of “notations” element and can
include further symbols that modify the note such as ornaments, arepeggios etc. “Dot”
represents the prolongation of a note.

We decided to base our evaluation on the weighted mean, since we have wide dif-
ferences in element numbers per piece. By this we assume that the selected pieces are
somewhat representative for scores produced for music of this period.

The ranks of the elements for each piece follow the ranks of th arithmetic and the
weighted mean in general. The arthmetic mean has some shifted numbers, only the
ranks for “slur” and “accidentals” are swapped. Higher shares of accidentals are found
for Chopin, Fauré and Pfohl, whose pieces may include extended harmonic develop-
ment which can likely occur in 19th century pieces. Rests have higher percentages in
the large orchestra pieces (Mozart and Pfohl), where entire instruments could stop play-
ing for long times which results in a relatively high standard deviation of 4.8%.

Table 3. Percentages of MusicXML elements that are found in all of the analyzed pieces and
account for ≈ 95 % of the interacton with the score. sd = standard deviation, mad = mean absolute
deviation, wt ... = weighted ...

element name BWV 1068 Chopin Op.64 Fauré Op.115 PWV 24 (Mvt 5) KV 622 mean sd mad wt mean wt sd wt mad

type (= symbolic duration) 38.98 41.24 34.01 34.54 36.92 37.14 3.03 3.52 35.72 1.96 1.77
pitch 33.88 39.44 29.76 27.49 27.94 31.70 5.01 3.37 29.25 2.83 1.20
rest 5.10 2.03 5.68 13.20 11.98 7.60 4.78 5.42 9.73 3.75 3.74
beam 14.16 2.99 7.06 1.63 7.32 6.63 4.89 6.03 5.70 3.50 3.41
slur 0.58 2.94 5.16 4.72 5.48 3.78 2.04 1.12 4.67 1.27 0.51
accidental 1.38 5.65 7.93 2.82 2.39 4.04 2.69 2.13 4.08 2.44 0.83
articulations 0.22 0.11 0.99 8.06 3.73 2.62 3.37 1.30 3.98 3.09 4.15
dot (= prolongation) 2.94 0.91 3.22 2.86 1.92 2.37 0.95 0.52 2.60 0.63 0.44

However, these elements do not encompass the entirety of essential functionalities
found in music notation editors. The editor must include specific features for initializing
and managing information necessary for reading and playing from a score, as these
aspects are imperative for its validity. We have meticulously selected these features and
refer to them as ”essential tasks”. Table 4 summarizes the number of relevant tasks over
the 12 most central unit task areas according to the combination scheme of operations
and objects mentioned in Table 2 and Table 3.
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Table 4. Number of core tasks accounting for most relevant interactions in music notation editors.

unit task area correspondences in XML elements number of core tasks

duration type, dot, rest, chord 16

pitch pitch 6

accidental accidental 5

beam beam 3

notations
slur 5
articulations 6

initial score configuration

essential tasks comprising various
compounds of XML elements

2
time signatures 5
key signatures 6
tempo 7
clefs 6
playback 1
staff/ measure 11

tasks total 101

4 Results

4.1 General

In Figure 1 we show all accumulated KLM values that we encoded for all accessi-
ble functionalities, separated by using (if possible) only keyboard or only mouse. It is
not surprising that mouse interaction is much slower than pure keyboard interaction in
general. The distributions are already weighted according to Table 4. Mouse modality
has less outliers in general which points to more equally distributed data. The violin
plots now mostly remind hi-hats, meaning that interaction times of core tasks cluster
around different regions with few tasks in between. Despite some variations between
the graphs one can clearly identify peaks in the lower portions which mostly represent
core tasks. Tasks that could be subsumed under “notations” as well as pitch and dura-
tion related tasks have usually similar speeds within the software and modality and so
forming distinguishable peaks.

The descriptive statistics in Table 5 show that most of the tasks are performed in
very similar speeds. Overall Sibelius is slowest for mouse interaction with 6.89 sec-
onds. MuseScore4 is the fastest in key interaction with 3.22 seconds. Dorico, Finale
and MuseScore 3 are significantly faster in mouse interaction than the rest. In general
most tasks are performed in between 3 to 9 seconds.

Comparing MuseScore 3 and 4 we can see, that the later Version tends to make some
interactions slower especially with mouse interaction. Pitch and and duration related
tasks are clearly visible in the peaks. For mouse interaction the times in both editors are
similar, but MuseScore4 having a higher median despite having a similar interquarile
range. This indicates that non-essential tasks have become faster, which are not heavily
weighted. Comparing the peaks around 7 seconds with Sibelius we can find mostly
tasks for “notations” like in MuseScore 3 and 4 but Sibelius also includes many tasks
about various changes about staves and element displacement which is usually faster
in other editors. Many similar peaks over a wide range resulting in a mostly symmetric
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Table 5. Descriptive statistics for Figure 1. q1 = first quartile, q3 = third quartile, iqr = interquar-
tile range, mad = median absolute deviation, sd = standard deviation, se = standard error, ci =
95% confidence interval.

software modality min max median q1 q3 iqr mad mean sd se ci

Capella
key 2.08 13.58 3.56 2.96 4.46 1.51 1.3 4.14 1.66 0.01 0.01
mouse 2.55 14.89 6.86 5.34 8.1 2.75 1.84 6.6 2.17 0.01 0.02

Dorico
key 1.95 15.17 3.58 2.95 4.01 1.06 0.74 3.81 1.33 0 0.01
mouse 1.95 15.17 4.46 3.75 8.01 4.26 1.48 5.88 2.56 0.01 0.02

Finale
key 1.75 16.26 3.91 3.7 4.66 0.96 0.78 4.24 1.08 0 0.01
mouse 2.52 19.18 4.94 3.76 8.32 4.56 1.76 5.96 2.85 0.01 0.02

MuseScore 3
key 1.68 15.62 3.47 2.86 4.04 1.19 0.85 3.64 1.15 0 0.01
mouse 2.42 16.36 4.93 3.75 7.86 4.11 2.79 5.96 2.66 0.01 0.02

MuseScore 4
key 1.75 15.15 3.22 2.72 4.15 1.43 0.94 3.54 1.33 0 0.01
mouse 2.15 14.25 6.58 3.75 7.79 4.04 3.8 5.99 2.51 0.01 0.02

Sibelius
key 1.68 13.67 3.7 3.2 4.2 1 0.75 4.05 1.42 0 0.01
mouse 2.35 15.92 6.89 4.56 8.67 4.12 3.46 7.17 3.07 0.01 0.02

shape can be an indicator that some core tasks may be inconsistently modeled, also
more coherent plots over a wide range can show special treatment of some methods
that are less consistent with similar tasks and should be examined in more detail.

4.2 Outliers

As a rule it is not problematic having many outliers in the set of interactions. Since most
of the editors have low third quartile boundaries in the key modality, interactions with
lengths of 5 to 7 seconds can already count as outliers in these cases.

From the perspective of the software designer this might point to concentration
on faster speeds in interaction design and addressing specific problems that have to
be solved in order to appeal to a certain user group. Also, this does not mean, that
one program is more preferable over the other due to interaction speed differences. As
mentioned our previous study [2] Capella has the best usability and user experience
ratings in our experiments, while from a KLM perspective there are more peaks in
higher regions in both modalities. With this method it is more important to analyze
different peculiarities, like for example having mostly core tasks hidden behind slow or
dissimilar interactions.

In Dorico we can see, that the data is much wider distributed using a mouse than
using solely keys. Only changing the instrument for a specific staff, transfer notes be-
tween voices and creating multiple bars at the end were considered to be very slow.
In contrast we have 38 outliers for key interaction, most of them including tasks that
immediately result in a different layout, especially adding and deleting measures. But
we can also find frequently used objects as described in Table 3, like beams and staves,
while 101 Tasks can be completed between 3 to 4 seconds.

Finale has a very characteristic peak at 12.5 seconds for the mouse modality, which
consist of some layout and MIDI operations. Also there seems to be no simple way to
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Fig. 1. Violin plots with quartiles of the weighted Keystroke-Level Model of the six music nota-
tion score editors. The red ’+’-Symbols mark outliers. The width on the x-axis is not

paste notes, chords or rests—objects which are highly weighted—by mouse which in
turn is better handled by keyboard interaction.

In general keyboard interactions across all editors are especially slow making major
changes to the layouts or creating scores. Most outliers consist of these since there are
seldom adequate methods so that here are no options despite using the mouse. These
are actions that one might access rarely are not among outliers in any mouse interaction.
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This also applies for more fine grained interactions considering changes around staffs
and notes, like beams, meter changes or barline related tasks like creating repetitions. It
is debatable, if fast keyboard access is necessary if such actions account for less than 2%
of the total. Outliers in mouse interactions are mostly idiosyncratic and revolve around
elements outside the staff like tempi and charts. Here especially Sibelius, MuseScore3
and Finale seem to have deficits.

4.3 Application

The results shown above provide guidelines for monitoring the ongoing development of
our music notation interface called VIBE (Verovio Interface for Browser-based Editing)
2, as well as for assessing its performance in comparison to other solutions. While the
method presented above entails a summative analysis, we are confident that it can also
be adapted to formative scenarios. These scenarios can then be employed at different
stages throughout the development process.

Fig. 2. Violin plot of VIBE. The red ’+’-Symbols mark outliers.

VIBE currently implements 41 of the 101 listed core tasks (see Table 4), most of
them use mouse interactions which are better explorable visually when using the pro-
gram for the first time. Mostly “notations” and “dynamics” have to be implemented yet,
as well as several actions of copying, pasting and rebinding. Main development dealt
with actions around adjusting durations, interacting with the identity of a note directly
and creating a valid score. Additionally we were also interested in handling annotations
and chord symbols since these are important features for analyzing a score and make
information accessible for other persons in a teaching environment, as required by the

2 Source Code: https://github.com/mnowakow/VerovioScoreEditor
Demo: https://mnowakow.github.io/
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underlying project for which it is developed. This added possible 14 unit tasks of which
10 are implemented, combining to 51 implemented unit tasks in total.

In Figure 2 we can see, that most of the interactions are around 3.75 seconds (with
the median at this point and a very narrow third quartile) which belong to the relevant
core tasks handling durations and pitch. Although we concentrated on mouse interac-
tion first, the results can keep up with other editors sometimes even with fast keyboard
inputs. In our case especially creating time signatures is slow, since it is currently re-
quired to choose always from two drop down menus to create a combination of count
and unit which then has to be dragged to the intended position. Generally actions that
include dragging and dropping items (clef, key, time) are found among the outliers, as
well as actions which have to be performed multiple times to accomplish the intended
result, like deleting or adding multiple measures at the end of the score.

5 Discussion

In this paper we presented an approach to evaluate music notation editors objectively
by simulating and comparing their interaction times. We oriented our research on the
original publications about the KLM and applied them to editors by several annotators.
By defining unit tasks and model their weights after element occurrence in MusicXML
we can find slow and fast interactions and especially locate relevant ones in the resulting
distributions. Same speeds usually point to similar sequences of operators. Horizontally
symmetric plots over a wide range might point to inconsistencies in the interaction mod-
eling. This helps us to evaluate different music notation editors and model interactions
in new interfaces according to access times. These times do not represent rigid metrics
but a way do identify potential shortcomings fast.

By listing and ranking core tasks, this paper also contributes to monitor the process
of development and functional completeness of notation editors as shown in section 4.3.
New editors will at least have to implement the core tasks presented here, but might
have different requirements for working more creatively or making elaborate editions.
In these cases the list of unit tasks can be extended as presented in section 3.3. KLM is
flawed when it comes to evaluating user responses. In our case we approached the topic
by modeling methods which are not informed by the user manual, but by exploration
and restriction to input modalities which might represent a user with average skills. We
did not expect a perfect and efficient user, but did assume a perfectly set score. So still
questions remain about the system and user behavior in case of errors: How fast can
users correct their errors? What methods does the system provide to make corrections?
That is why most research using KLM is concerned with user tests to verify interaction
times with new interaction modalities such as touch, pen or VR. In our case, we adopted
an established model, as we focused on mouse and keyboard interactions. We then
extended its application to a domain within HCI that has received limited scientific
attention until now. However, since we base our method on informed assumptions, we
still would like to verify these results with actual user tests. This will also help us to
bring the results from this paper closer to the field of user experience. When conducting
user tests it will be also fruitful to combine it with discussions and questionnaires to
evaluate specific usability issues, which could not be represented by the KLM directly.
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Abstract. This paper presents considerations for developing Human-Swarm In-
teractive Music Systems (IMS), based on previous work in the field. We discuss
design principles, algorithms, technologies, and evaluation methods for creating
user-centred Human-Swarm IMSs using architectural approaches, swarm strate-
gies, and levels of embodiment in implementation. Our contribution aims to es-
tablish a framework for future applications and research studies on swarm-based
music platforms.

Keywords: Interactive Music Systems, Digital Instruments Design, Swarm In-
telligence, Multimodality

1 Introduction

Sending, processing, and response are three stages that form a concise and straight-
forward model to represent Interactive Music Systems (IMS). However, the different
contexts in which an IMS can be developed give rise to several levels of complexity,
demanding a critical cross-disciplinary investigation. This expands the model to more
concrete representations and design considerations for innovative applications [9].

This paper focuses on a specific instance of an IMS related to a Human-Swarm
system. This type of IMS refers to improvisational systems that allow a user to inter-
act with a swarm of artificial agents that are self-organized (working locally without
a central controller) and exhibit emergence (interaction between agents in the swarm
produces higher-level patterns and structures) [32]. These and other properties are com-
monly based on the theory of Swarm Intelligence, which can be found in nature and has
been modelled in computational simulations.

This type of IMS is important in its potential to develop various levels of representa-
tion of sonic and/or musical units, ranging from micro sounds for granular synthesis to
the embodiment of individual artificial musicians capable of collaborating with human
performers to achieve complex music improvisations.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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Depending on the levels of representation, modelling an IMS as a Human-Swarm
system can have benefits. In the case of music improvisation, musical elements can be
highly interactive and uncertain. Therefore, swarm strategies are a good fit for a process
that can reproduce such behaviour for real-time music composition [1]. Additionally,
embodied representations of artificial musical agents with the role of additional musi-
cians can lead to collaborative and enjoyable human-machine experiences [14].

To advance the development of Human-Swarm systems, we contribute with the pro-
posal of a framework that includes four relevant areas: design considerations, algo-
rithms, technologies, and evaluation methods. This proposal is based on previous work
on swarm intelligence applied to IMS, theoretical explorations of multi-agent systems
that use swarms in music, and musical agents. A thematic analysis approach was used
to extract information from these works, having these four areas as central themes. Our
contribution is intended to support applications and research studies concerning mu-
sic platforms that use swarm approaches, as well as provide a foundation upon which
creativity can be effectively channelled.

This paper is organized as follows: Section 2 presents a background of Human-
Swarm IMSs. Section 3 presents the framework including a detailed discussion focused
on the four areas mentioned above. Finally, Section 4 provides conclusions and future
directions for Human-Swarm IMSs.

2 Background and Related Work

The interest in musical interaction with artificial swarms began with Blackwell and
Bently’s work [2], where they proposed the first application of swarm intelligence to
music. They related music features to swarm descriptors, such as attraction and re-
pulsion, suggesting that improvised music is a self-organized system that can lead to
complex musical structures. This self-organization is carried out by local interactions
between individuals and the environment, which can be direct or indirect. Indirect in-
teractions are mainly focused on in some works [4] [1] [32], considering the concept of
Stigmergy, which is a mechanism that manifests when an individual modifies charac-
teristics of the environment so that other individuals respond to it later.

In most swarm applications, the elements that participate in self-organization inter-
actions can vary in terms of the size of the musical material. Blackwell [1] presented
a classification based on perceptual time-scales, which can be seen as musical mate-
rial elements organized by size. The elements as events are: micro (small-scale times
like tenths of a millisecond), mini (musical notes or sound objects), meso (phrases or
groups of mini-events), and macro (time encompasses form and lasts several minutes or
more). This classification is also useful to determine the level of embodiment that the
agents from swarms can have regarding their interaction with human performers, which
is reflected in the works described below.

The usual strategies that utilize swarm intelligence in music systems are focused on
mappings of sonic or musical features over spatial properties in swarms. The musical
interaction is given by the swarm dynamics, which commonly has led to interactive
solutions in which the agents from the swarm are hidden elements with a low em-
bodied perception. This concept is portrayed by Swarm Music [2] [4], which is based
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on flocking algorithms and a process of capturing, updating, and interpretation so that
users can modify the dynamics of the swarm for influencing the musical input. Another
relevant work is Musebots [6], which explores the concept of Musical Metacreation
(MuMe) related to the automation of aspects regarding musical creativity to model a
musician more than an instrument, and thus closer to working on music improvisation.
A higher embodiment can be achieved through visual feedback and gestures in a 3D
environment to display agents, as the work of Unemi and Bisig [30], which shows an
interactive installation where the user acts as a conductor for influencing flock’s musical
activity; moreover, agents can also perceive aspects of musical outputs and operate in a
3D space as virtual sound sources, as shown in [7] and [23]. Physical implementations
develop mappings with spatial or sonic properties from entities as robots, as described
in works such as [31], [33], and [13]. Other approaches include using quantum physics
simulations [16] and physical-virtual environments that portray full embodiment with
agents as musicians [14].

Theoretical frameworks that support swarm applications have been explored for
Human-Swarm IMS. In this case, we have the concept of Musical Agents, which are
entities as computer programs that generate music autonomously or in collaboration
with human musicians [25]. These entities can be part of Multi-Agent systems, such as
the Virtual Musical Multi-Agent System (VMMAS) [34] and the Mobile Musical Agents
project based on the Andante project, which deals with musical agents that decide to
migrate and react to changes in the environment [29]. Architectures under these theo-
retical structures have been proposed, such as MAMA [19] [18], which is grounded on
the theory of communicative acts and enables agents to reason about intentionality, or
the MASOM architecture [24] that works with Self-Organizing Maps based on musical
agents, that has been used in works such as REVIVE [26] [27], and Spire Muse [28].
Additionally, an approach that involves improvisation with human interaction was elab-
orated and presented as a concept called Live algorithms [3] for representing analysis,
process, and synthesis modules for IMSs in the human-machine domain.

When it comes to Human-Swarm interaction and collaboration, it is essential to
consider how agents can work together, which can be achieved through negotiation be-
haviours to satisfy the interests of the individual agents, such as in [10]. Synchronized
works, as in the case of those based on pulse-coupled oscillators inspired by fireflies and
implemented as fireflies [21] [20], or self-synchronization with percussive robots that
achieve equilibrium [13], are also examples of collaboration. Interaction and collabo-
ration can be conceptualized in terms of influence and motion, as seen in the system
Swarm Lake [12], which also uses a game development approach for its design and
considers environmental features to conceptualize a theme in a hypothetical world pre-
sented to the user. Moreover, it is possible to have higher levels of control for swarm
collaboration considering swarm dynamics (e.g. swarm-wide; that is, control over a
group more than an individual) instead of direct control of sound parameters (e.g. au-
dio volume). Control regarding swarm dynamics is present in most related works and
significantly affects the resulting music [32].

In summary, most of the previously cited works that involve systems use a swarm
representation to map sonic or music features, which can be based on different musi-
cal material sizes. The complexity for some of them rises in a final musical piece that
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can be achieved in an improvisation musical session together with a human performer,
but others can reach a higher level and become actual artificial musicians interacting
with each other and with the user, which demands more sophisticated ways to develop
and represent agents. We are mainly interested in this last type of system to remark
the embodiment of agents in a swarm, but without discarding the possibility of build-
ing solutions with more abstract representations for lower levels of embodiment. As
the human is part of the system, this work intends to provide means to increase the
understating of a swarming process in human-machine music performances.

3 Human-Swarm IMS Framework

The section presents a framework to enhance the creation process of a Human-Swarm
IMS. The developer can start to look at the general considerations described below to
create a unique solution, then specify the architecture to use and check if the solution
complies with the swarm design properties listed later. Moreover, the sound generation
can follow mapping strategies according to the nature of the designed swarm, and suit-
able algorithms can be implemented to support that design. Finally, the technologies to
choose would depend on the design and the available resources.

All these considerations are presented and discussed below.

3.1 Design Principles

The design and development of IMSs have been explored in a variety of works for
several years [8] [9] [15], emphasizing user interaction, system design, and mapping
strategies. In this work, we want to provide a more specific scenario for Human-Swarm
IMSs which have used implicitly or explicitly the design approaches explored before.
In consequence, we present in this section a set of design principles based on previous
work related to Swarm Intelligence applied to IMSs.

3.1.1 General Considerations

The following sections focus on specific considerations regarding architectures, swarm
design, and sound mappings. On top of this, other considerations are recommended to
develop a Human-Swarm IMS as illustrated commonly in literature, such as:

-Idiosyncratic Approach: Design is mostly a personal choice [1], and that is reflected
in IMSs that want to achieve specific goals which are recommended to be primarily
related to artistic intentions and creative process more than technological-driven moti-
vations. This is also called a practice-driven approach [17]. However, guidance in this
process is relevant for a solid structure that supports those personal choices, and this
paper intends to suggest such guidance.

-Representation and Dynamics: Two significant decisions are required to design a
swarming system: representation and dynamics [1]. The representation has to do with
inputs and outputs and how they are processed, and dynamics is the swarm algorithm
that interacts with the representation. These decisions are based on an architectural
approach that is explained in Section 3.1.2.
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-Novelty: We can achieve novelty through self-organized approaches considering three
aspects: music representation, music style definition, and music style evolution [11].
These aspects can be explored in the results obtained from the system. Finding ways
to have a fast switch between instances of these aspects helps to fine-tune our musical
intentions.

-External Inspiration: The design of a Human-Swarm IMSs can approach several
levels of embodiment, which require integrating multiple disciples in complex cases.
Thus look at other areas such as game design (e.g. Swarm Lake [12]) and human-
robot interaction (e.g. Dr.Squiggles [13]) can enable several possibilities to enhance
the experience.

3.1.2 Architectures

  
   f
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E
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Fig. 1: PQf+K Architecture. This structure is based on Black-
well’s work [1] with the addition of a knowledge base for
swarm dynamics.

Works on Human-Swarm IMSs usually
depict specific architectures based on
the particular problem they are solving.
However, especially in theoretical works,
there are proposals where system mod-
ularization can lead to a clear design
base. We depart from the simplest send-
ing, processing, and response stages to
model an IMS as in [9], which can be
seen as the traditional minimized struc-
ture input, process, output. This model
can be expanded to a complex set of units
to describe a system to capture, update,
and interpret information in the environ-
ment in which a human performer is a
participant [2] [4], and if we want to see
them closer to the human process of im-
provising music, we can portrait them as
perception, cognition, and musical exe-
cution [34].

For Human-Swarm IMSs, we need structures that encourage coexistence between
the human performer and the artificial entities, thus considering the models mentioned
above, the concept of Live Algorithms developed by Blackwell et al. [3] is a suitable
choice of representation. A Live Algorithm is “an autonomous music system capable
of human-compatible performance... the Live Algorithm listens, reflects, selects, imag-
ines, and articulates its musical thoughts as sound in a continuous process”, hence a Live
Algorithm works with collective human-machine musical improvisation. This concept
is structurally represented by the PQf architecture proposed in [1], having P for analy-
sis, Q for synthesis, and f for patterning supporting the two major decisions mentioned
previously: representation (P, Q) and dynamics (f ).

We propose to add an explicit module to this representation called Knowledge since
there are applications that require a knowledge base for the dynamics depending on the
algorithm that is being used as in [34] that applies a fuzzy mechanism, or in [19] that
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uses a knowledge base for musical agents based on communicative acts. Fig. 1 illustrate
this proposal as the PQf+k architecture.

The knowledge can itself be modelled with high complexity; however, it is sensible
to take into account limitations and the trade-off of using a knowledge base in a real-
time setup since IMSs are improvisational systems and potential problems like latency
can affect the user experience significantly.

The advantage of this modularization is the flexibility to change among strategies
so that system properties are adjusted in real-time if needed (e.g. change the knowledge
base or swarm algorithm in the middle of the performance); that is why a particular
emphasis on this architecture is given for the interfacing between modules.

Another useful approach is using a Finite State Machine (FSM) to model an individ-
ual agent behaviour or the external influences of the human performer, which can ex-
hibit different states when the performer interferes in the environment [23]. Moreover,
FSM can help to minimize the complexity of designing multimodal systems, which is
relevant, especially for Human-Swarm IMSs that target higher embodiment [5].

3.1.3 Swarm Design

Commonalities found in previous work referenced in Section 2 related to Human-
Swarm IMSs lead us to propose the following design principles:

-Decentralization: Even though most swarm systems are developed over a centralized
platform, the nature of a swarm should target decentralization, which implies look-
ing for local communication methods and rules between individuals and the environ-
ment to portray independence from global management. Inspiration of decentralized
behaviours can be found in animal swarms.

-Emergence: Emergent behaviour allows a swarm to create dynamic and unpredictable
musical outcomes. This is also known as self-organization, which arises from the col-
lective actions of individuals. The system should allow the emergence of complex and
adaptive behaviours from the interactions of individuals, resulting in unique and cre-
ative musical compositions that are co-created by the swarm.

-Stigmergy: As mentioned earlier, this mechanism manifests when an individual mod-
ifies characteristics of the environment so that other individuals respond to it later.
Modelling stigmergy can be useful for indirect control through the environment and
limit direct interaction with agents when it is not entirely possible (e.g. interaction
with a swarm of physical drones).

-Scalability: The design should support the accommodation of various agents, ranging
from small groups to large crowds. This feature is the system’s scalability in terms
of technical infrastructure and user experience, which ensures that the system han-
dles different swarm sizes and that the interaction remains meaningful and enjoyable,
regardless of the group size when the design allows it.

-Stability: For some swarm systems in which agents can fail individually (e.g. each
agent can be a physical robot that could potentially withdraw), the musical task should
continue with the rest of the participants and the consequences of losing some of them
should not impact, at least, the essence of the performance. Consideration of this aspect
results in a more stable swarm system.
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-Flexibility and adaptability: Systems should be flexible and adaptable to different
musical styles, genres, and contexts, as the goal is music improvisation. The system
should allow for customization and configuration to suit different musical perspectives
and should be able to adapt to changes regarding the swarm’s size, behaviour, or mu-
sical preferences over time.

-Time-scale of Material: Depending on the system’s focus, the sonic or musical ma-
terial in terms of duration can be framed as micro, mini, meso, or macro, as described
earlier. The solution’s complexity level could rise as time increases since more sophis-
tication is required for higher levels like macro, which deals with complex musical
structures.

-Level of Embodiment: The swarm individuals can be conceived as mere abstract units
that contribute to a musical solution, which can be hidden from the user to a certain
extent. However, if these individuals are closer to artificial musicians to collaborate
with, it is necessary to provide a level of embodiment that transcends into the spatial
domain. In that sense, multimodal approaches through 3D environments are helpful,
which could require spatial audio solutions and visualization strategies.

-Environmental Perception and Actuation: The swarm system should sense the envi-
ronment to respond accordingly with actions through direct interaction or by stigmergy.
Thus it requires defining and designing sensing capabilities according to the level of
embodiment and decentralization as well as suitable output mediums. For instance, a
robot swarm can be equipped with microphones and speakers for music sensing and
actuation in the environment.

-Level of Control: Human-Swarm IMSs require a certain level of control from a hu-
man operator, in which the designer should define how much of this control is pro-
vided from a fully manual operation to a completely autonomous system. Allowing a
real-time definition of these levels could increase the diversity of the music material
produced by human-machine improvisations. Additionally, controls can act over the
swarm dynamics, sound parameters, or higher descriptors as commands.

-Feedback and Transparency: To support decision-making during music improvi-
sation, it is essential that the actions performed by the swarm are transparent to the
user. This can be achieved through adequate feedback from the artificial agents and
any human operators involved in the system. Auditory feedback is particularly impor-
tant in an IMS, but visualization and haptic feedback can also be useful for confirming
actions. However, designers need to be careful not to overwhelm the user with too
much information and consider whether certain types of feedback might go against the
artistic purposes of the system.

-Accessibility and Inclusivity: The design can consider an inclusive and accessible
system for diverse participants, including individuals with different abilities, back-
grounds, and musical skills. If the intention is to cover a wide variety of performers,
the design should consider multiple modes of participation and accommodate different
levels of physical, cognitive, and musical abilities, ensuring that everyone can partici-
pate and contribute to the music-making process.

-Trust: Building trust with a non-human agent requires calibration between a person’s
expectations of the agent and the agent’s capabilities. Exploration of trust at different
levels might significantly enhance the musical result.
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-Room for Failure: We can design a system with a high amount of constraints, but it
could restrict potential interesting results that can emerge from the music improvisa-
tional process; thus, to encourage the element of surprise in the results, we can leave
some room for failures and user exploration in that context.

Several of these principles overlap and belong mostly to the swarming nature of the
solution, which mainly deals with spatial properties.

3.1.4 Mapping Strategies

The most common mapping strategies for Human-Swarm IMSs relate sonic or music
parameters to spatial properties; for instance, amplitude and pitch from a specific sound
sample could be associated with coordinates X and Y of an agent, and music can emerge
from the swarming behaviour. These associations can be simple and direct, as the ex-
ample provided, or use non-linear or probabilistic approaches; it depends on personal
choices and the designer’s goals.

The previous example considers swarm-sound/music mapping; however, the
interaction with a user demands establishing human-swarm mapping strategies. In
that sense, apart from usual ways to feed musical input (e.g. using MIDI controllers),
motion capture techniques for gestures, or other sensing solutions, can be used to ma-
nipulate swarm parameters to have a human-swarm-sound/music mapping; nev-
ertheless, an option of human-sound/music mapping can be combined with swarm
dynamics depending on the design.

As we deal with swarms, mappings can also focus on the dynamics of collective
actions and general descriptors. For instance, as the swarm explores the spatial envi-
ronment, the centre of mass can be a parameter that influences higher musical features,
like the global panning or a general reverb effect, which can also have more complex
interaction in terms of the behaviour of every individual, leading to a dense music result.

For certain applications, especially in a physical domain, there could be noises with
a significant effect on the sonic result (e.g. motors, propellers, etc., from robot swarms);
in that case, we can include these sounds as part of the performance by processing them
through mapping strategies that allow their inclusion to the musical result.

Consequently, we can create a rich and engaging musical experience through a map-
ping design that encourages the participation of all actors and situations while allowing
individual expression and creativity from the user, according to adjustable levels of au-
tonomy in the system.

3.2 Algorithms

Based on the works listed in Section 2, we can identify common strategies for handling
the input, the processing algorithm, and the synthesis of sonic output or other useful
feedback, as described below.

-Input: The audio stream of a music performance is a typical source of input. It can be
analyzed using signal processing techniques to extract features for further usage, such
as loudness, pitch, and onsets. Musical material can also be collected directly from
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human performers through common interfaces like musical keyboards or traditional
instruments. However, complex control mediums like gestures and image recognition
require sophisticated capture strategies. In such cases, machine learning algorithms
for real-time data collection can be useful for these tasks by applying classification
techniques to identify discrete states and regression strategies for continuous values.

-Process: Common Swarm intelligence approaches use flocking strategies based on the
Reynolds’s boids algorithm, in which agents have attraction and repulsion rules con-
cerning neighbours as well as velocity matching. These rules can be structured on rea-
soning mechanisms that take advantage of descriptive parameters through algorithms
such as fuzzy logic or language processing through communicative acts. Other propos-
als consider mathematical models that define acceleration or velocities for the agents’
position calculated from local individuals and the performer’s spatial features.
Additional techniques used in this category include Particle Swarm Optimization (PSO),
Ant Colony Optimization (ACO), and Genetic Algorithms. However, in some cases, the
goal is not to optimize specific parameters but to fulfil musical intentions that take ad-
vantage of the algorithm’s mechanics. Other strategies, such as Self-Organizing Maps,
can be used for sound organization and pattern recognition. Music generation through
real-time input and pre-loaded knowledge as Markov Chains, can lead to interesting
results. Synchronization techniques, such as Pulse-Coupled Oscillators inspired by the
behaviour of fireflies or custom strategies based on the analysis of temporal events in
the audio stream, can be applied to rhythm.
Switching between algorithms requires that they share similarities in a swarm. The se-
lection of behaviours determines the overall structure of the swarm, while the weight-
ing of different behaviours affects the current dynamics of the simulation.

-Output: The output depends on the mapping between the swarm’s spatial properties
and the sonic and musical result. Possible mapping strategies include additive synthe-
sis, granular synthesis, control based on agents’ proximity, procedural patching from
swarm dynamics, modulation synthesis, and sound physical modelling. The choice of
mapping depends on the specific musical goals.

The designer can decide the suitable technique to use, and there is plenty of room
for applications and research studies regarding algorithms that can be explored at dif-
ferent levels of embodiment, so the user experience has to be taken into account as a
centre point of departure to develop a system that characterizes the nature of the musical
interaction between human and machine.

3.3 Technologies

We classify potential technologies to use into three categories according to their level
of embodiment, as described below.

-Virtual: In this category, agents exist solely in a virtual environment implemented
through software on a central device, such as a computer. Input is received via inte-
grated peripherals, MIDI keyboards, or sophisticated devices such as cameras with im-
age recognition algorithms. Sonic output is played through loudspeakers, ranging from
a simple mono configuration to multiple channels for spatial audio. While complexity
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can increase in terms of input and output devices, processing remains centralized, and
agents are virtual objects that can produce music as a hidden process or with a higher
representation visualized on a screen.

-Physical-Virtual: This category builds on the previous virtual category, but agents
reach a higher level of embodiment by sharing the physical space with the performer
and being aware of the real environment. Extended reality technologies, such as mixed
reality headsets or augmented reality systems, can support this configuration. For a
more immersive experience, it may require additional complexity in terms of motion
capture, visualization, and audio playback to portray a virtual 3D world that overlaps
the physical space where the performance is happening.

-Physical: In this category, agents exist as actual entities, such as robots, which can
interact with the human performer. Design principles for human-robot interaction can
be applied, and additional considerations such as trust, safety, and treatment of noises
are considered. Each agent requires its own input and output capabilities and capacity
for local communication, as this category can be approached as a decentralized system.

As technology advances, we can improve the response time for the interaction, inte-
grate better ways to reach transparency, and potentially extrapolate to the participation
of larger groups to the performance (e.g. audience with no musical skills).

3.4 Evaluation Methods

Evaluation methods have been proposed before, such as in the work of O’Modhrain [22]
that describes methodologies depending on the stakeholder and recommends clearly
understanding of what to apply and to whom depending on the interest of the study.
In that sense, Human-Swarm systems are focused on the performer/composer and the
designer. The following types of evaluations can be considered to assess these systems.

-Autoethnography: The designer can evaluate the system by using it and reflecting on
the music creation process to improve the design.

-Observation: The system can be used by different users in different settings, such as
a controlled environment like a laboratory or a concert. The designer can observe the
advantages and limitations in those environments to understand how different users
can approach the system.

-System Measurements: The designer can measure sections of interest in the system
to discover limitations that can impact the user experience, such as latency or jitter.

-Physical and Physiological measurements: For user studies, data can be captured
while participants use the system. Physical data, such as positions in space, can be
useful for higher embodiment applications, and physiological measurements can give
insights into the user’s state while performing. An important consideration is that the
measurement methods should not interfere with the performance.

-Surveys: We can evaluate the user’s response to the system by applying surveys before
to gather expectations and, commonly after, to collect points of interest that help to
improve the user experience.

We suggest integrating these methods in alignment with the system and the de-
signer’s goals. It is important to prioritize the user’s experience and the quality of the
music created during the evaluation process.
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4 Conclusions

This paper presents previous work on Human-Swarm Interactive Music Systems to dis-
til design principles, algorithms, technologies, and evaluation methods to establish a
framework for swarm-based music platforms. We organize this information so that de-
signers can explore novel solutions for performers, and researchers can have additional
support to contribute to this field.

We do not intend to provide a strict recipe for Human-Swarm IMSs but a starting
guide to propose specific principles that work for particular projects, which can increase
and optimize the definition of new approaches for future applications.

For future work, we plan to use this framework to create multiple music platforms
and enhance these suggestions through research and data analysis.
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Abstract. In this study, the improvement in a new audio effect called sound col-

lage, whereby one sound waveform (target sound) is synthesized using another 

sound waveform (element sound), is investigated. We propose a new model of 

convolutional NMF (CNMF) with constraints. And we compared the perfor-

mance of three methods: the original CNMF, the new CNMF constraint model, 

and modified of Driedger's NMF (non-negative matrix factorization method). 

Sound collage sounds are synthesized using a combination of animal calls as the 

target sound and several instrumental sounds as the element sounds. Psycholog-

ical experiments are conducted to evaluate the extent to which the target sound 

and instrumental character, namely reproducibility and instrumentality, are 

demonstrated. The results confirm that the instrumental nature of the synthesized 

sounds for both models improve compared with CNMF. 

Keywords: CNMF, NMF, Audio mosaicking, sound collage, instrumentality 

1 Introduction 

Audio effects have applications in various domains, such as game music and animation; 

furthermore, new effects are desired to achieve richer expression. Previously, we have 

analyzed an effect called “sound collage” or “audio mosaicking” whereby one sound 

waveform (target sound) is synthesized using another sound waveform (element 

sound). Our interest here is a case of an environmental sound as a target sound and 

instrumental sound as an element sound. Furthermore, we have studied several methods 

to improve the performance of this effect. Additionally, we have defined two indices 

for evaluating this effect: (1) reproducibility, which is the degree to which the target 

sound is represented, and (2) instrumentality, which is the degree to which the sound is 

perceived to be instrumental. 

Previously, we proposed a method for sound collage based on nonnegative matrix 

factorization (NMF) for sound source separation [1]. This method reproduces the sound 

by fitting a very short frame of the element sounds, and it has very high reproducibility; 

     This work is licensed under a Creative Commons Attribution 4.0 International License 

(CC BY 4.0).  

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

359



however, it has low instrumentality owing to the destruction of the temporal structure 

of the element sounds. To overcome this limitation, Ikeda et al. proposed a method that 

improved on Driedger's NMF method with three constraints [2] by adding one more 

constraint (NMF_DM) [3] and a method using convolutive NMF [4]. Although 

NMF_DM improved the instrumentality, the convolutional NMF (CNMF) method at 

that time was not guaranteed to be an optimal solution and was impractical. 

Later, a new optimal solution was reported [5], and a revised method based the new 

CNMF was proposed by the authors [6]. As the CNMF method can treat all part of 

element sound  as a single basis, the temporal structure of element sounds is preserved; 

however, the same sound is repeated multiple times in a short period of time, thus ren-

dering difficulty in perceiving instrumentality. In this study, a horizontal proximity re-

striction was added to the temporal activation of the CNMF method to create a CNMF 

constraint model (CNMF_C), and a sound collage was synthesized. 

Herein, we compared the three methods, including the new method, and conducted 

psychological experiments to improve both the instrumentality and reproducibility to 

the greatest extent possible. 

2 Sound collage 

2.1 Sound collage with NMF 

The NMF algorithm decomposes matrix V into the product of matrices W and H, with 

error matrix C, as follows.  

 𝑉 = 𝑊 × 𝐻 + 𝐶      (1) 

To estimate W and H, C is minimized with various criteria, such as by using Frobenius 

norm. W and H are not estimated by an analytical method but rather as an optimization 

problem, wherein the error C with the original data is reduced through iterative com-

putation. 

In audio signal processing, V is a spectrogram. Therefore, W consists of spectra of 

the target sound (basis matrix) and H is the temporal activation corresponding to the 

basis matrix. The original NMF is a supervised algorithm, which simultaneously esti-

mates W and H. However, in sound collage, we adopted unsupervised algorithm, where 

the spectrogram is synthesized, considering the target sound to V and spectra of element 

sounds as the basis matrix to W, and only the time-axis activation H is estimated. 

This method can represent the target sound with significantly high reproducibility 

because it fits a very short frame of the element sound; however, the temporal structure 

of the element sound is destroyed, which renders difficulty in perceiving the instrumen-

tality of the element sound. 
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2.2  Sound collage with NMF modified model 

To improve the instrumentality, a model which preserves the temporal structure is nec-

essary. Driedger proposed an improved NMF, NMF_D [2], which imposes constraints 

on the estimated activation matrix with respect to 

1. Horizontal Repetition Restriction: This constraint limits the repetition of spectra

within a certain interval along the horizontal direction of the activation matrix.

2. Polyphony Inhibition in Activation Matrix: The proposed polyphony-restricted acti-

vation matrix suppresses the presence of multiple sounds within a single frame.

3. Enhanced Element Sound Continuity: Another constraint aims at enhancing the con-

tinuity of element sounds, which is manifested as diagonal patterns in the activation

matrix.

However, the NMF_D is insufficient to improve instrumentality as it synthesizes only 

a portion of the element sound, rather than the whole. Moreover, this modification re-

sults in degradation caused by the synthesis of sound solely from the power spectrum, 

devoid of phase information. 

To improve the instrumentality, we modify Driedger's third proposal with the addition 

of the following constraint referred to as NMF-DM: 

1. Instead of utilizing a portion of an element sound, the entire sound is employed from

start to finish.

2. To prevent any compromise in sound quality, the original waveform is retained,

while the amplitude is drawn from the activation result, which is different from nor-

mal Griffin-Lim method [7].

Fig.1 depicts the correspondence between element sounds as basis and synthesized

signal using modified activation (inverted upside down). Both are drawn in wave

instead of spectrogram in convenience.
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Fig. 1. Modification of activation and preservation of temporal structure in NMF-DM. 

2.3 Sound collage with CNMF 

The CNMF algorithm does not differ from NMF in its basic structure of decomposition 

in the form of a product of matrices; however, the basis matrix is decomposed into a 

third-order tensor. For the length of the sound, the prescribed matrix W is provided, 

thus allowing for the preservation of temporal ordering. The structural schematic is 

shown in Fig. 2 and is expressed as follows. 

𝑉 ≈ ∑ 𝑊(𝑡) × 𝐻𝑡→𝑇
𝑡=0 (2) 

where the right arrow (→) indicates that the matrix is shifted t to the right and 0 is 

assigned to the vacant space.  

Previously, we studied sound collage using CNMF [8]; in this CNMF version, the 

value of the evaluation function did not decrease monotonously, and the result could 

not be guaranteed as an optimal solution. However, in 2019, Dylan Fagot et al. proposed 

a new method to explore the optimal solution of the evaluation function [5]. We applied 

this method to implement a new sound collage synthesis method. Despite the mathe-

matical optimization, this method has a problem in that the same sound is played mul-

tiple times in a short period of time, which causes stuttering and degrades instrumen-

tality. 

Fig. 2. Structural schematic of CNMF. 

2.4 Sound collage CNMF with constraint model (CNMF_C) 

We proposed a new model CNMF_C that prevents temporal proximity caused by an 

estimated activation. The algorithm that imposes a constraint to the activation is shown 

in Fig 3. It modifies the activation as a post-processing of CNMF such that only a dom-

inant (local maximum) value survives in a fixed interval and the rest approaches zero 

as the iteration continues, as shown in the most outside loop.  
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Fig. 3. Constraint algorithm for H in CNMF_C (constraint part only). 

3 Experiments 

We considered three models: CNMF (as baseline), CNMF_C, and NMF_DM, and ex-

ecuted psychological evaluation test. In the experiment, sound sources were played 

back randomly; furthermore, six male and four female experimental collaborators in 

their 20s were asked to rate the reproducibility and instrumentality of the two items in 

an opinion test (five-category test). 

3.1 Experiment details 

For the experiment, animal calls were used as the target sound and instrumental sounds 

were used as the element sounds. The experimental parameters are listed in Table 1. 

Furthermore, element sounds of each number are presented in Table 2. For the experi-

ment participants, the target and instrument of the synthesized sound to be heard were 

written in advance on an evaluation sheet. In addition, each original sound was also 

demonstrated in advance. The synthesized sound is also available at the following web-

site.  

https://acl.im.dendai.ac.jp/index.php/team/sora-miyaguchi/ 

Regarding the instrumentality, the participants were asked to evaluate the degree to 

which the synthesized sound resembled an instrument sound on a 5-point scale (1~5). 

They were instructed to give a score of 5 if it felt very similar. For reproducibility, the 

participants were asked to evaluate how close the synthesized sound was to the target 

sound on a 5-point scale (1~5). They were instructed to give a score of 5 if it felt very 

close. 

w = appropriate frame length 

for i = 1 → N_iteration

for k_number = 1 → number of element sounds

R = frame length of the element sound 

for j = 1 → R

j0 = argmax_[j-w,j+w](H(j)) 

if j == j0 

H(j) remains unchanged. 

else 

 % Damping H(j) 

H(j)=H(j)*(1-(i + 1/N_iteration)) 

end 

end 

 end 

end 
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Table 1. Experimental parameters. 

Target sound Frog, cicada, horse, elephant 

Element sound Marimba, Accordion, Metallophone, violin (single note, glis-

sando, trill, pizzicato) 

Evaluation method MOS 

Test participants 6 men and 4 women 

Table 2. Element sound of each number. 

Target Sound Element Sound 

1 Cicada Violin (Glissando), Metallophone 

2 Frog Marimba 

3 Frog Violin 

4 Frog Accordion 

5 Elephant Marimba 

6 Elephant Violin (Glissando), Accordion 

7 Elephant Violin (Single note) 

8 Elephant Violin (Glissando, Trill), Accordion 

9 Horse Marimba 

10 Horse Accordion 

11 Horse Violin 

3.2 Comparison of CNMF and CNMF_C with CNMF 

The instrumentality and reproducibility results of the experiment are shown in Figs. 4 

and 5, respectively. The 95% confidence intervals are indicated on the bar graph. Com-

pared with the CNMF, both CNMF_C and NMF_D exhibited higher instrumentality, 

as shown in Fig. 4; thus, the instrumentality improved. By contrast, for reproducibility, 

the evaluation changes significantly depended on the target sound, as shown in Fig. 5. 

In particular, when the elephant was used as the target sound, the results for CNMF_C 

were significantly lower.  

Comparing CNMF and CNMF_C, the evaluation was higher for instrumentality except 

for conditions #6 and #7. On the other hand, for reproducibility, the evaluations were 

low except for conditions #3 and #11. 
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Fig. 4. Evaluation results of the three models for instrumentality. 

Fig. 5. Evaluations results of the three models for reproducibility. 

3.3 Discussion 

Compared to CNMF, CNMF_C showed improved instrumentality in almost all condi-

tions, except when the target sound is an elephant. On the other hand, the reproducibil-

ity results were lower under almost all conditions. This demonstrates that limiting the 

temporal proximity of element sounds affects instrumentality. Additionally, combining 

CNMF with CNMF_C makes it possible to control the trade-off between instrumental-

ity and reproducibility. Instrumentality and reproducibility are a trade-off: when one 

rises, the other falls.  

Certainly, NMF_DM showed higher instrumentality than CNMF_C depending on the 

combination of element sounds and target sounds. This indicates that NMF_DM has 

the potential to show higher instrumentality than CNMF_C with the appropriate com-

bination of timbres. However, In terms of controllability, CNMF_C, a generalization 
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of CNMF, is higher because of its wider control over reproducibility and instrumental-

ity. Therefore, in designing sound collages, CNMF_C, which allows moderate control 

of the two, is desirable and will better meet the user's needs. 

4 Conclusions 

In this paper, we compared three methods: CNMF_C, CNMF, and NMF_DM. Through 

experimentation, it was demonstrated that, by adding constraints in CNMF_C, the in-

strumental quality could be improved in most cases compared to CNMF, although the 

reproducibility decreased. This suggests that when CNMF_C is defined as a generali-

zation of CNMF, there is a trade-off between instrumental quality and reproducibility, 

and that this trade-off can be controlled. Since users of Sound collage should be able to 

synthesize at their preferred level of reproducibility, we can say that our research was 

successful in improving the performance as Sound collage. Certainly, in some condi-

tions, NMF_DM showed higher instrumental score than CNMF_C. However, control-

lability is important in sound collage, so CNMF_C can be considered more suitable in 

this study than NMF_DM. 

In the future, we plan to explore ways to improve the performance of CNMF_C, such 

as finding more appropriate combinations of sounds, and examining finer control over 

instrumental quality and reproducibility. Furthermore, we will attempt to define a com-

prehensive evaluation in scalar values, incorporating both subjective evaluation and yet 

to be defined physical evaluation. 
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Abstract. In this paper, we explore the potential of quantum computing for mu-
sic generation, particularly for generating melodies. We propose a method of
designing quantum circuits with genetic algorithms for melody generation. Our
method allows for the generation of subsequent musical notes for arbitrary input
notes and the production of melodies of varying lengths based on the transition
distribution between melodies in the training data. We compared the accuracy
of a quantum computer in predicting the subsequent note based on the training
data with that of a classical computer. Our results demonstrate the potential of
quantum computing for melody generation.

Keywords: Melody generation; quantum computing; genetic algorithm

1 Introduction

The first instance of music being automatically generated by a computer was the “IL-
LIAC Suite, for String Quartet,” composed by ILLIAC I in 1957 [1]. Since then, re-
searchers have been investigating music generation techniques, including automatic
composition, from the early days of computing to the present day

The realization of quantum computing, expected to be the next-generation comput-
ing paradigm, is becoming increasingly feasible. As of May 2023, Noisy Intermediate-
Scale Quantum Computers (NISQ), a quantum computer designed with the assumption
of the inclusion of various types of noise, have been realized with hundreds of qubits
and are available on the cloud.

To discuss the need for a quantum computer, it is important to explore its potential
applications. The extent and fields in which quantum computers will be useful remain
uncertain at present. It is also unclear whether quantum computers can be considered
superior to classical computers.

In this paper, we investigate the potential applications of quantum computing for
the task of music generation, a domain that has been extensively studied using classi-
cal computing methods. We specifically assess the feasibility of music generation using
current gated quantum computer architectures and propose a novel approach for design-
ing quantum circuits by employing genetic algorithms.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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2 Related Work

The utilization of quantum computers for musical expression, termed “quantum mu-
sic,” has been the subject of multiple investigations in recent years, reflecting a growing
interest in this interdisciplinary field. For example, Kirke et al. proposed Q-MUSE, a
live performance music system where output sound is modulated by altering input pa-
rameters of a quantum computer through a button controller and gesture controller [2].
Additionally, Clemente et al. introduced a keyboard, termed “qeyboard,” in which sound
parameters are controlled by quantum circuits [3].

The QuTune project [4] is a research project focused on generating music through
quantum computing, culminating in the organization of the first international sympo-
sium on quantum music in 2021. The QuTune team has produced several technical
papers and comprehensive reviews on this subject. In previously published review arti-
cles [5], [6], the authors discuss the fundamentals of quantum computers and computer
music, introducing specific applications such as the Quantum Vocal Synthesizer and the
Quantum Walk Sequencer. Notably, the Quantum Walk Sequencer is a sequencer that
facilitates note-to-note transitions using a quantum random walk [7]. This approach,
which utilizes quantum circuits to represent note transitions, offers valuable insights
for melody generation. Furthermore, the QuTune team is developing a music genera-
tion system that incorporates a quantum natural language processing (QNLP) approach,
integrating quantum computing within a natural language processing framework [8].

Kirke proposed the hybrid music generation system qGEN, which integrates a gated
quantum computer and a quantum annealing machine [9]. qGEN produces music by
combining GATEMEL, a melody generator utilizing a gated quantum computer, with
qHARMONY, a system that generates accompaniments for given melodies using a
quantum annealing machine. Souma proposed quantum live coding, a method for gen-
erating improvised music based on gated quantum algorithms [10]. This approach in-
volves producing melodies by connecting consecutive notes through quantum entangle-
ment.

The recent efforts applying quantum computing to musical expression outlined in
this section signify the emerging development of this research domain.

3 Possibilities of Quantum Computing in Music Generation

A key feature of quantum computers is the superposition state of qubits. Upon mea-
surement, the superposition collapses, yielding a 0 or 1 state similar to classical bits.
Quantum algorithms leverage superposition states, representing all possible inputs, to
increase the likelihood of obtaining the desired outcome through measurement.

In this context, we explore the application of quantum computers to the task of mu-
sic generation. It is essential to recognize that in music, there is no definitive “correct”
answer, and pursuing a singular answer might not be ideal, especially in the context
of music generation. The pursuit of a single correct answer in generative tasks is un-
likely to be accomplished, regardless of the efficiency of search algorithms developed.
In music, there are many sequences and combinations of sounds that are considered
undesirable by many people. Therefore, it is desirable to develop an algorithm that can
avoid such results when generating music.
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Table 1. A binary representation of a note name.

note name C D E F G A B R
binary digits 000 001 010 011 100 101 110 111

The superposition state of qubits in a quantum computer enables the representa-
tion of all possible melody combinations simultaneously when generating melodies. As
there are numerous undesirable note combinations included in all possible melodies,
designing the quantum algorithm such that the probability of measuring such an un-
desired combination is reduced is a potential approach. However, the final measurable
result is just one of all possible combinations, meaning that even though the quantum
computer considers all combinations simultaneously, the resulting melody is only one.

Due to the distinct features of quantum and classical computers, it may be possible
to achieve efficient results by incorporating a quantum computer, depending on the al-
gorithm being used. An example of a successful application of quantum computing is
the generation of random numbers. Quantum computing can successfully generate true
random numbers, thanks to the probabilistic nature of qubits. However, since precision
is not crucial in music generation, the significance of introducing a quantum computer
remains debatable. In this paper, we propose a melody generation algorithm that utilizes
quantum circuits to replicate the note transitions observed in training data, taking ad-
vantage of the characteristic of true random number generation in quantum computers.

4 Data Representation for Quantum Circuit Design

In this chapter, we introduce the data representation for melody generation with a quan-
tum computer. Generating melodies using quantum circuits necessitates determining an
appropriate method to represent notes and quantum gates numerically.

4.1 Data Representation of Note Names

Here, we have simplified the problem to its core elements to enable clear observation
of the behavior of the quantum circuit. The problem is set up by considering only the
essential elements that compose a melody, namely note names. To handle melodies as
simply as possible, we represent notes using a 3-bit binary number that only represents
the note name. Specifically, the note names are represented as a 3-bit binary number,
with C being represented as 000. A total of 8 note names are used, including seven
types of notes from C (000) to B (110) and a rest represented as R (111). Note durations
are not considered, and all notes are assumed to have a fixed duration of one quarter
note. The binary representation and corresponding note names are presented in Table 1.
When applying this data representation to a quantum computer, the problem is set up
such that a 3-qubit quantum circuit generates the next note based on the input note.

4.2 Data Representation of Quantum Gates

There are various types of quantum gates that compose quantum circuits. To realize
melody generation in the simplest problem setting, we selected 4 basic types of gates
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Table 2. Numerical representation of quantum gates.

quantum gate numerical representation
H gate (register 0) 0
H gate (register 1) 1
H gate (register 2) 2

X-axis rotation gate : π/4 (register 0) 3
X-axis rotation gate : π/4 (register 1) 4
X-axis rotation gate : π/4 (register 2) 5

CX gate (register 0 to 1) 6
CX gate (register 0 to 2) 7
CX gate (register 1 to 2) 8
CX gate (register 1 to 0) 9
CX gate (register 2 to 0) 10 (A)
CX gate (register 2 to 1) 11 (B)

CCX gate (register 0,1 to 2) 12 (C)
CCX gate (register 0,2 to 1) 13 (D)
CCX gate (register 2,1 to 0) 14 (E)

no gate 15 (F)

and numerically represented 16 different gate placement patterns. These patterns in-
clude variations in which qubits the gates act upon among the 3 input registers. The 16
possible gate arrangements include a state with no gates, and each arrangement is rep-
resented by a unique hexadecimal number. For each quantum circuit representation, we
use 8-digit hexadecimal numbers to represent the gate arrangement. This enables repre-
sentation of quantum circuits with 0-8 gate combinations. Table 2 shows the numerical
representation of quantum gates and their corresponding gate arrangement patterns.

Fig. 1. Example of quantum circuit represented by “04F7A6F5.”

Using the hexadecimal numerical representation of quantum gates in Table 2, a
quantum circuit can be represented by an 8-digit hexadecimal number. For example,
the circuit diagram represented by “04F7A6F5” is shown in Fig.1. According to the
correspondence shown in Table 2, F represents no gates, so in this case, the quantum
circuit consists of 6 gates. The 0 represents the H gate (Hadamard gate) applied to regis-
ter 0 (the register corresponding to q0 in Fig.1), which puts the qubit in a superposition.
The 4 and 5 are rotation gates around the X-axis applied to registers 1 and 2, respec-
tively, with rotation angles of π/4. The 7, A, and 6 are all CX gates (controlled-NOT
gates), which enable interactions between the registers.
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Table 3. Measurement results (for 200 shots) when |000⟩ (C) is input to the quantum circuit
shown in Fig.1.

output 000(C) 001(D) 010(E) 011(F) 100(G) 101(A) 110(B) 111(R)
measurement count 80 0 17 0 93 0 10 0

There exist many more varieties of quantum gates beyond those listed here. While
more complex quantum circuits can be expressed in the same numerical framework by
assigning numbers to other gates, this paper prioritizes simplicity, and only the basic
gates listed here will be utilized. Experiments with more complex quantum circuit con-
figurations are also possible, but are left as future work, as current quantum computers
are highly susceptible to errors in constructing such circuits.

To ensure the usefulness of quantum circuits, it is necessary to take advantage of
the superposition of quantum states. If superposition is not utilized, the quantum circuit
operation can be reproduced using a classical computer, making the use of quantum
circuits meaningless. Hence, we operate the H gate once for all inputs of registers 0
to 2, and then add other gates represented by 8-digit hexadecimal numbers to utilize
superposition.

4.3 Generation of subsequent Note with Quantum Circuit

The problem of generating a subsequent note for an input note can be represented by
the input/output of data to/from a quantum circuit, achieved by combining the data
representation of note names and quantum gate representation. To generate a melody,
the initial note is determined and input to the quantum circuit to generate subsequent
notes by measuring the output qubits. The process is repeated by inputting the generated
subsequent note as input data to the quantum circuit to generate further notes, thus
completing the melody.

Table 3 shows the measurement results (for 200 shots) obtained when the input note
C, represented as |000⟩, is used as the input to the quantum circuit shown in Fig.1. If
this quantum circuit were used to generate the subsequent note, it would only output
notes corresponding to the states of C, E, G, or B. The results presented in Table 3 are
obtained when |000⟩, corresponding to C, is directly input to the quantum circuit in
Fig.1 without using the H gates at the beginning.

We attempted two methods for generating quantum circuits:

– Training-A: train one circuit for each type of input note.
– Training-B: train a single circuit for all input-output combinations.

In a case circuit is trained for each input note (Training-A), the C circuit generates the
subsequent note from the input C, and the D circuit generates the subsequent note from
the input D. The design process of each quantum circuit will be presented in the next
chapter.

5 Designing Quantum Circuits with Genetic Algorithms
Designing a quantum circuit is equivalent to determining a quantum algorithm. It affects
the quality of the generation results. There are several possible approaches to design
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quantum circuits, and one example is to use a H gate in every register to represent a
superposition of all combinations, resulting in a circuit with completely random outputs.

Manual gate determination in quantum circuits can lead to inflexible designs with
fixed outcome patterns. Thus, this paper investigates a flexible circuit design method us-
ing training data. We prepare arbitrary melodies as training data and search for optimal
quantum gate combinations that reproduce the desired output distribution based on that
training data. This approach establishes a well-defined criterion for designing quantum
circuits that accurately emulate the input-output relationship in the training data.

We utilize a genetic algorithm to explore quantum gate combinations, aiming to
minimize the discrepancy between the quantum circuit’s output and the training data’s
note transition distribution. The genetic algorithm runs on a classical computer, while
the quantum computer generates subsequent notes based on input notes, making our ap-
proach a hybrid method. Moreover, training processes are conducted using a quantum
circuit simulator on a classical computer, while the actual quantum computer is used
for generating melodies with the resulting quantum circuit. Using a quantum computer
during circuit design is feasible, but the extensive trials needed for training make it chal-
lenging within a realistic time frame, given current capabilities. Future advancements
in quantum computing may address these challenges.

5.1 Preparation of Training Data
The training data is created from the note sequences present in pre-existing musical
compositions. The types of notes that can be handled by the algorithm proposed in
this study are limited to eight types, from C to B and R. Therefore, the melody used
for training is composed solely of simple quarter notes in the key of C major. In this
study, melodies from three pieces, namely “Twinkle, Twinkle, Little Star,” “Tulip,” and
“Froggy’s Song,” were chosen for the purpose of training.

For instance, when creating training data based on the initial melody
of “Twinkle, Twinkle, Little Star,” the melody can be represented as
“C→C→G→G→A→A→G→R.” Consequently, the note following C is exclu-
sively either C or G, with no transition to other notes. To replicate this pattern, an ideal
quantum circuit would measure C (000) and G (100) with a 50% probability each for
an input of C (000). This input-output relationship can be achieved using a quantum
circuit with a single H gate in the second register. For the actual training process with a
more intricate output distribution, we automate quantum circuit design using a genetic
algorithm instead of manual configuration.

The training data in this study is composed of transition probabilities between note
names. As a result, the generated quantum circuit serves as a model for generating
subsequent notes utilizing a bi-gram approach. The actual training data consists of a
single matrix representing the transition probabilities between note names found in the
three selected pieces. The transition probabilities for the note names utilized as training
data are presented in Table 4. According to these transition probabilities, when note A
is input, the likelihood of G being generated as the subsequent note is the highest at
0.57, followed by A at 0.43, while the probabilities for the other notes are 0. Notably,
none of the melodies in the training data included the note B.

The training data can be readily expanded by incorporating a greater number of mu-
sical pieces. However, the melody generation approach presented in this paper is limited
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Table 4. Training data (transition probability of note names).

subsequent note
C D E F G A B R

in
pu

tn
ot

e

C 0.10 0.38 0 0 0.10 0 0 0.43
D 0.33 0.14 0.38 0 0 0 0 0.14
E 0.04 0.40 0.20 0.12 0.04 0 0 0.20
F 0 0 0.58 0.33 0.08 0 0 0
G 0 0 0.17 0.17 0.28 0.22 0 0.17
A 0 0 0 0 0.57 0.43 0 0
B 0 0 0 0 0 0 0 0
R 0.50 0 0.11 0.11 0.28 0 0 0

to eight note types. Given that all notes are quarter notes, the range of applicable pieces
is somewhat restricted. While it is feasible to learn more complex melody distributions
within the same framework by eliminating constraints on note value and increasing the
diversity of manageable note names, such considerations are beyond the scope of this
paper. In order to validate the efficacy of automating quantum circuit design, it is crucial
to initially establish a simplified problem framework to the greatest extent possible.

5.2 Details of Genetic Algorithm

The genetic algorithm is utilized to learn a sequence of 8-digit hexadecimal numbers
representing quantum gate combinations, as introduced in Section 4.2. A randomly ini-
tialized sequence of 8-digit hexadecimal numbers is treated as an individual within the
genetic algorithm, with each digit corresponding to a gene. The process was repeated
for 100 generations, with 1000 individuals in each generation subjected to tournament
selection, two-point crossover, and mutation steps, ensuring a preference for individuals
exhibiting high fitness. The fitness value is computed by taking the mean squared error
between the output distribution of 200 shots from a quantum circuit, as shown in Ta-
ble 3, and the target output note distribution (Table 4) used for training. The crossover
probability was set to 0.5, the probability of individual mutation was set to 0.2, and the
gene mutation probability was set to 0.05.

In the case that no gates are present to compose a quantum circuit, the gene se-
quence is represented as “FFFFFFFF.” In this state, each H gate operates once on every
input qubit, resulting in a superposition of all possible states, which implies that the out-
put may consist of any of the eight notes. Building upon this initial state, the quantum
circuit’s gate configuration is trained by altering the gene sequence and incorporating
quantum gates corresponding to the sequence modifications, thereby generating outputs
that more closely align with the training data. The more closely the distribution of out-
puts aligns with the training data, the more desirable the design of the quantum circuit
can become to achieve the desired output distribution.

One of a quantum circuit designed by the genetic algorithm utilizing the training
data (Table 4) is depicted in Fig.2. Given that the quantum circuit in Fig.2 is designed
for the input note R (rest), X gates are placed at all the registers before the remaining
gates to set the input bit value to 1. Consequently, the input state |000⟩ transitions to
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Fig. 2. A quantum circuit designed by genetic algorithm (“60C86D14”), with the input note R
(Training-A).

|111⟩, followed by the H gates operating on all qubits and the subsequent operations,
as represented by the 8-digit hexadecimal numbers. For Training-B, where a common
quantum circuit is used for all note inputs, the configuration of the initial X gates varies
for each input note, while the circuit represented by the 8-digit hexadecimal number
remains consistent.

Although the quantum circuit in Fig.2 contains redundant gate arrangements, such
as consecutive utilization of CX and CCX gates, its output distribution closely approx-
imates the training data [0.5, 0, 0.11, 0.11, 0.28, 0, 0, 0] (bottom row of Table 4). The
output result will be described in Section 5.3.

Fig. 3. A quantum circuit designed by genetic algorithm (“3D24ADB5”), for all input/output note
combinations (Training-B). X gates for distinguishing the types of input notes are omitted here.

In the Training-B setting, an integrated version of a quantum circuit capable of
handling all input notes within a single circuit was trained. The training result for all
input notes in a single quantum circuit are presented in Fig.3. This quantum circuit
accommodates all input notes by inserting X gates that correspond to each input note
name at the beginning of the quantum circuit. For input notes other than C, X gates are
applied to modify the input qubits to the corresponding input state.

5.3 Generation of subsequent Note by Trained Quantum Circuits

A subsequent note corresponding to the input note was generated using a quantum
circuit that had been trained on the given data through a genetic algorithm. First, as
a result of training distinct quantum circuits for each input note (Training-A), Table
5 displays the outputs obtained by executing 100 shots for each of the eight different
circuits corresponding to each input note respectively. It is important to note that, during
the actual generation step, only one shot is executed, and the measured output serves as
the generated subsequent note. Table 5 displays the distribution of outputs obtained by
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Table 5. The results of generating subsequent notes with the Training-A setting, using quantum
circuits trained for each input note (100 shots). Each row corresponds to a trained quantum circuit.

Generated subsequent notes (measurement counts)
C D E F G A B R

qu
an

tu
m

ci
rc

ui
t

C 29 25 0 0 25 0 0 21
D 27 22 28 2 0 6 0 15
E 4 30 15 4 12 10 2 23
F 0 0 55 45 0 0 0 0
G 6 1 26 20 19 23 3 2
A 0 0 0 0 49 51 0 0
B 8 11 12 16 6 18 17 12
R 53 0 4 0 36 0 7 0

Table 6. The results of generating subsequent notes with the Training-B setting, using a single
quantum circuit (Fig.3) trained for all input notes (100 shots).

Generated subsequent notes (measurement counts)
C D E F G A B R

in
pu

tn
ot

e

C 28 21 3 3 2 3 24 16
D 24 35 15 11 0 0 5 10
E 21 22 4 3 5 9 16 20
F 14 15 26 22 9 14 0 0
G 2 4 25 21 20 19 5 4
A 0 0 15 10 26 28 10 11
B 4 2 16 25 25 21 3 4
R 7 9 0 0 19 12 29 24

executing 100 shots. Although the results vary with each execution, the distribution of
subsequent notes closely resembles that presented in the training data (Table 4).

Subsequently, the output obtained by executing 100 shots for each of the eight dis-
tinct input notes on a single quantum circuit trained for all notes (Training-B) is pre-
sented in Table 6. In this case, the quantum circuits, represented as 8-digit hexadecimal
numbers (i.e., “3D24ASB5”), remain the same for all inputs. As a result, the subtle
bias in the distribution for each input note could not be trained as effectively as when
employing different circuits for each input note.

A comparison of Table 4 and 5, or Table 4 and 6, reveals the extent to which the out-
put distribution of the quantum circuits resembles the training data distribution. In the
training data, the transition probability to note B was zero for all input notes; however,
the resulting quantum circuits did allow for transitions to note B. This was particularly
noticeable when training a single quantum circuit for all input notes (Training-B). For
the input note B, all outputs were measured in both the results of Table 5 and 6, since
the distribution of outputs to be trained comprised only zeros. Therefore, this result is
not an erroneous.

It should be noted that exact replication of the output distribution is impossible for
a quantum computer, as the outcome varies with each execution.
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Table 7. Comparison of error rates in reproducing note transitions. Comparison of random num-
ber generation with classical computers, quantum circuit for each input (Training-A), and quan-
tum circuit for all input (Training-B).

Random number generated Quantum circuit for Quantum circuit for
with classical computer each input note (Trainig-A) all input notes (Trainig-B)

6.90× 10−4 4.63× 10−3 1.91× 10−2

5.4 Comparison of Note Transition Reproduction

In this section, we investigate the extent to which the generation of subsequent notes
by quantum circuits can accurately reproduce the note transitions in the training data.
To make a comparison, we also include results obtained from a classical computer that
generates subsequent notes according to the distribution of training data using random
numbers. For generating random numbers with a classical computer, we utilized the
random module in the Python standard library.

The error rate R of reproducing subsequent note is defined as follows:

R =

√√√√ 1

64

8∑
i=1

8∑
j=1

(tij − xij)2 (1)

where tij denotes the note transition probability of the training data from note i to
note j, and xij denotes the probability of transition with each method to be compared.
The xij is calculated based on the distribution obtained from 100 generated subsequent
notes for each input note (i.e. Table 5 and Table 6). The error rate of subsequent note
reproduction corresponds to the mean square error (MSE).

We generated xij for the classical computer by generating 100 random numbers for
each input note. The subsequent notes are then determined by comparing the generated
random numbers with the distribution of the training data. In other words, subsequent
notes are directly generated from the note transition probabilities of the training data.

Table 7 shows a comparison of error rate R in reproducing subsequent notes us-
ing each circuit/computer, where smaller R values indicate higher reproducibility. The
classical computer achieved high accuracy by directly using the training data’s transi-
tion probability distribution. On the other hand, in the case of quantum circuits, the error
rate was lower when using different circuits for each input note (Training-A setting),
suggesting that varying circuits yield better output distribution. Due to the randomness
of all methods, the error rate of reproduction varies to some extent with each execution.

Note that the training data did not include note B, so the values for the note tran-
sitions from note B were excluded from the calculation in Table 7 (x7j and xi7 were
set to 0). This is because including note B would simply increase the error rate for all
methods, thus it was excluded from the analysis.

This comparison was verified using the Qasm simulator, a quantum circuit simulator
that uses a classical computer. It should be noted that in the case of an actual quantum
computer, errors in the quantum circuit must also be considered.
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6 Melody Generation Results

We utilized the quantum circuit designed using the above methodology to generate mu-
sical melodies. The process starts with selecting the first note and obtaining the output
from the corresponding quantum circuit specifically designed for the input note. The
next note in the sequence is determined by inputting the initial output note into the quan-
tum circuit that corresponds to it, and this process is repeated iteratively. The choice of
the first note and the number of iterations can be arbitrarily determined, contingent on
the desired length of the melody.

Fig.4 shows scores of melodies generated by the quantum computer. Two 4-measure
melodies were generated for each quantum circuit design pattern (Training-A and
Training-B), starting with C and G. We employed the ibm bogota quantum computer,
provided by IBM Q, which can operate up to five qubits. It should be noted that when
using an actual quantum computer, errors may occasionally arise, leading to note tran-
sitions that exhibit zero probabilities in Table 5 (C→A and F→C in Fig.4 bottom-left)
and Table 6 (D→G in Fig.4 top-right).

Fig. 4. Examples of melody generation utilizing an actual quantum computer. Left: results em-
ploying eight different trained quantum circuits for each input note (Training-A). Right: results
employing single trained quantum circuit for all input note names (Training-B).

The execution time required for generating a melody utilizing an actual quantum
computer is dependent on the waiting time experienced by the quantum computer when
performing the task at a particular instance. In our experiments, generating a 16-note
melody necessitated approximately 15 to 30 minutes. This observation does not neces-
sarily suggest that the process inherently requires an extended execution time; instead,
it reflects the current limitations of quantum computing resources accessible through
cloud services, which result in the increased execution time.

7 Conclusions
In this paper, we explored the potential application of quantum computers in music
generation and proposed a genetic algorithm-based method for designing quantum cir-
cuits to generate melodies. We compared the accuracy of reproducing subsequent notes
between quantum and classical computers. The results of new melodies generated by
quantum circuits trained on specific musical pieces are presented. Although a similar
melody generation can be achieved with a classical computer, the distinct difference
lies in the randomness of the outcome. Nevertheless, we demonstrated that the process
of generating subsequent notes, as performed by classical computers, can also be im-
plemented with a quantum computer without manual design of quantum circuits. The
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input/output relationship of notes is successfully represented using quantum circuits,
indicating that music generation algorithms on classical computers may also be fea-
sible in quantum circuits. We aim to further investigate the possibilities of quantum
computing in the domain of music generation in future research.

In order to maintain a simple problem setup, the melody generation approach pro-
posed in this study employed a limited number of available note types and lengths, as
well as restricted types and quantities of quantum gates. Although these constraints can
be easily mitigated, the primary focus of this paper was not to increase the complexity
of the results. Instead, the central objective of this work was to explore the potential of
quantum computing for music generation.

Quantum computing is currently in the early stages of development. Future quan-
tum programming paradigms may not rely on quantum circuits. Moreover, the opti-
mal design of applications may experience considerable transformations in response
to changes in the utilization of quantum computing. We will persist in investigating
the potential application of quantum computers for music generation. In our future re-
search, we aim to utilize quantum computing to enhance the expressiveness of music
generation in ways that have not been achievable with classical computers.
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Abstract. Arranging music for a different set of instruments that it was originally
written for is traditionally a tedious and time-consuming process, performed by
experts with intricate knowledge of the specific instruments and involving signif-
icant experimentation. In this paper we study the problem of automating music
arrangements for music pieces written for monophonic instruments or voices. We
designed and implemented an algorithm that can always produce a music arrange-
ment when feasible by potentially transposing the music piece to a different scale,
permuting the assigned parts to instruments/voices, and transposing individual
parts by one or more octaves. We also published open source software written in
Python that processes MusicXML files and allows musicians to experiment with
music arrangements. Our software can serve as a platform for future extensions
that will include music reductions and inclusion of polyphonic instruments.

Keywords: music arrangement, music algorithms

1 Introduction

Music arrangements involve the adaptation of a piece of music for different instruments
or ensembles. This allows the music to be performed in a variety of settings, enhances
the repertory of musicians, and can also help to bring new life to a piece that may have
been composed for a specific instrument or ensemble [16]. Additionally, arrangements
can help to showcase the unique strengths of different instruments or even create en-
tirely new interpretations of a piece. The process of arranging a piece of music can be a
creative endeavor in itself, giving the arranger the opportunity to put their own spin on
a familiar work, greatly enhancing the listening experience for audiences [1, 5, 12].

The computational complexity of arranging music written for a set of instruments
toward a target single instrument, often employing reasonable reductive constraints, has
⋆ The authors acknowledge use of the ELSA high performance computing cluster at The College

of New Jersey for conducting the research reported in this paper. This cluster is funded in part
by the National Science Foundation under grant numbers OAC-1826915 and OAC-1828163.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
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been examined in the work of Moses and Demaine [4]. Complexities of dealing with
polyphonic instruments, such as piano and guitar, include the need of considering pos-
sible fingerings as well as reductions, the elimination of certain notes for playability of
even feasibility. Most research in automating music arrangements has concentrated on
the piano, primarily concerning orchestral pieces [2,8,10,11,13,14]. Much of that work
involves reductions to enable feasibility. Other work in the field has examined arrange-
ments for the guitar [6,7,15], wind ensembles [9], and other orchestral instruments [3].

Despite its obvious benefits, we are not aware of any published algorithm or widely
available software that allows for the automated arrangement of a given music piece to
a different set of instruments that it was originally written for in the general case. Work-
ing toward filling that need, we designed and implemented an algorithm that arranges
music written for monophonic instruments and guarantees a successful outcome when
an arrangement is possible without score reduction. Our recursive backtracking algo-
rithm exhaustively examines all feasible assignments of parts to available instruments
and all possible transpositions of the piece, including independent octave transpositions
of individual parts, to determine a successful arrangement that minimally affects the
musicality of the piece. The use of memoization, storing partial results for reuse, fur-
ther enhances the time efficiency of our software and allows processing of most music
pieces in a matter of seconds.

2 Methods

2.1 Definitions

For the purposes of our research, a music piece is written in a chromatic scale and notes
are separated by the interval of a semitone. We will assume that all notes fall within a
total range of 88 semitones, the notes of a traditional piano, from A0 to C8. We will
assign an integer to each note in the range, such that all notes can be represented by an
integer from 1 to 88. For our discussion, a monophonic instrument is one that can only
play one pitch at a time, such as the flute, the oboe, or a voice. Polyphonic instruments
can play multiple notes simultaneously, such as the piano, guitar, or harp. A polyphonic
instrument can always play a monophonic part within its range.

For our study an input music piece will consist of n parts, each being assigned to
a single monophonic instrument or voice. Such parts are presented in the sheet music
representation of the piece in an equal number of staves each. Our algorithm preserves
the rhythm, rhythmic values of notes and rests, as well as bar lines of the music piece.
Clefs, key signatures and accidentals are adjusted based on the scale of the transposed
music and the instruments/voices that parts are assigned to. Our algorithm does not
control for instrument timbre that may be expected in any part of the music; similarly,
the thickness of the piece is not being necessarily maintained.

We will assume that an input music piece is originally written for n instruments
I1, I2, · · · , In, each assigned to play a part Pi of the piece, with 1 ≤ i ≤ n. We seek
to arrange the music for n output instruments O1, O2, · · · , On. The range of each part
i is an integer interval Ri = Jai, biK, where ai is the integer value corresponding to the
lowest frequency note and bi to the highest frequency note played by instrument Ii in
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Fig. 1: Approximate sounding ranges of instruments and voices. Figure reproduced with
permission from Dr. Brian Blood (dolmetch.com)

part Pi, 1 ≤ i ≤ n. Likewise, the playing range of each output instrument Oi will be
denoted by ORi, 1 ≤ i ≤ n, indicating the integer interval of values corresponding to
the notes the instrument is able to play. Approximate ranges for a set of instruments and
voices can be seen in Figure 1.

2.2 Monophonic instrument set arrangement algorithm

Our Monophonic Music Arrangement (MMS) algorithm performs a nearly comprehen-
sive search of possible permutations of parts. The music is transposed to all twelve
keys, and the algorithm runs on each key, unless a solution has been found so far that
results in fewer sharps/flats over all keys for each part. This is designed to prevent the
”ideal” transposition from having a complex key signature if not necessary. Other than
that, the search is fully comprehensive. For each part, the algorithm finds all possible
transpositions of each part in the source piece that can be played by at least one avail-
able instrument. All permutations of these possible transpositions are then examined.
If all parts can be played by at least one instrument, the algorithm then checks if there
exists a set of part assignments that is valid. This is performed by a recursive function
that is memoized to improve performance. If a transposed key yields valid permuta-
tions, the transposition with the least total deviation from the original composition is
selected. Once all twelve keys have been checked, all permutations are tried using the
selected transposition, unless there is no selected transposition, in which case the al-
gorithm fails. All permutations are checked, and for those that are valid in the given
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transposition, the best arrangement is selected based on how closely the average pitch
of each part matches the median pitch of the instrument’s range.

The MMA algorithm implementation consists of four main function described in
pseudocode below.

Algorithm 1 Find Transposed Options
procedure FINDTRANSPOSEDOPTIONS(originalStream, arrangementParts, semitones)

stream←− originalStream transposed by given semitones
parts←− new list
for part in stream do

choices←− new list
for each transposition do

set←− the subset of arrangementParts that can play at this transposition
add (semitones+ transposition, set) to choices

end for
if choices is empty then

return null
end if
add choices to parts

end for
return parts

end procedure

Algorithm 2 Run Transposed
procedure RUNTRANSPOSED(stream, parts, semitones)

selections←− new list
for option in all possible transpositions from FINDTRANSPOSEDOP-

TIONS(stream, parts, semitones) do
partsCovered←− new list
selection←− new list
for transposition in option do

add set of parts covered to partsCovered
add deviation of transposition to selection

end for
allPartsCovered←− the union of all sets in partsCovered
if allPartsCovered contains all parts and V alidateArrangement(parts,

partsCovered, allPartsCovered) then
add selection to selections

end if
end for
return selections

end procedure
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Algorithm 3 Find Best Choice
procedure FINDBESTCHOICE(stream, parts)

bestChoice←− null
bestSharps←−∞
for semitones from −6 through 5 do

sharps ←− the total number of sharps/flats that would appear in the key signature for
each part

if sharps ≤ bestSharps then
thisBestChoice ←− element from RUNTRANS-

POSED(stream, parts, semitones) with the least deviation
if thisBestChoice ̸= null and either sharps < bestSharps or deviation of

thisBestChoice < deviation of bestChoice then
bestChoice←− thisBestChoice
bestSharps←− thisBestSharps

end if
end if

end for
return bestChoice

end procedure

Algorithm 4 MMA Algorithm
procedure MMA(stream, parts)

bestChoice←− FINDBESTCHOICE(stream, parts)
if bestChoice = null then

return null
end if
transpose each part by the resulting transposition
bestF it←−∞
for each permutation of newParts do

if all parts are valid in the given permutation then
fit ←− the total absolute difference between the average pitches and the median

pitch of each part
if fit < bestF it then

bestF it←− fit
bestPermutation←− this permutation

end if
end if

end for
return bestPermutation

end procedure
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2.3 Implementation

The MMA algorithm was implemented in Python utilizing the Music21 library and the
MuseScore software. Our program requires two input files and produces a single output
file with the music arrangement. The required input files consist of the original piece
of music in MusicXML format and a TOML file listing the instrument set to arrange
for, where an assigned value of k to an instrument indicates k parts should be arranged
for that instrument. An example of a TOML file with an input instrument set consisting
of one clarinet, two tenor saxophones, and two alto saxophones is shown in Figure 2a.
Metadata about each instrument, consisting of its key in notation and a reasonable note
range, is defined in a separate TOML file which is loaded separately by the program
and is populated with common music instruments. An example of an entry for the alto
saxophone in the instrument metadata file is shown in Figure 2b.

clarinet = 1
tenor-sax = 2
alto-sax = 2

(a) An example arrangement file

[alto-sax]
name = "AltoSaxophone"
minimum = "Db3"
maximum = "Bb5"
key = "Eb"

(b) An entry in the instrument metadata file

Fig. 2: Examples of input instrument set and instrument information files

During execution our program checks whether the number of input instruments
matches the number of parts in the piece, and then attempts to arrange for the given
instruments as previously described. If arrangements are found, the best arrangement
based on the criteria described in section 2.2 is output as a MusicXML file. If no feasi-
ble arrangement is found, or if the number of instruments does not match, then an error
message is displayed and no output file is produced.

3 Results

We tested our software on a variety of music pieces written for monophonic instru-
ments. In Figure 3 we show three measures, starting at measure 16, of the Puttin’ on
the Ritz song by Irving Berlin. Part (a) shows the input score composed of four mono-
phonic parts. Part (b) displays the arranged piece for saxophone quartet, consisting of
a soprano, alto, tenor, and baritone saxophones. Similarly, in Figure 4 we display three
measures of Carol of the Bells, as arranged and performed by the Pentatonix voice
group, starting at measure 18 of the piece.

Complete input/output files for three test cases of our software, including the Puttin’
on the Ritz and Carol of the Bells above, can be examined at:
https://owd.tcnj.edu/∼papamicd/music/mma/examples/

The software repository for this project can be found at: https://github.com/spazzylemons/music-
arrangement/
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(a) Original Score (b) Arranged score

Fig. 3: Three measures from an arrangement of ’Puttin’ on the Ritz’ from piano to
saxophone quartet

(a) Original Score (b) Arranged score

Fig. 4: Three measures from an arrangement of ’Carol of the Bells’ from voices to
saxophone quartet

4 Conclusions and future work

Our monophonic music arrangement algorithm and its software implementation cre-
ate a platform for automating music arrangements with minimal user input. Although
currently basic in its functionality, it is now being extended in a number of different
directions. For accommodating arrangements for a smaller sets of instruments than the
number of parts in the music, we are examining score reduction techniques to elimi-
nate certain parts or at least reduce the number of simultaneous notes that are played
throughout the piece, while maintaining faithfulness to the original. To allow for the
inclusion of polyphonic instruments in the arrangements, we are looking into analyzing
and decomposing polyphonic parts into monophonic ones and inversely, while adhering
to constraints related to fingerings and other instrument and player restrictions.
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Abstract. We present a deep learning method for generating wind band scores
with user-specified instrumentation from piano scores. The difficulty in curating
large-scale pair data with accurately aligned wind band and piano scores poses
two major challenges: (i) efficient preparation of training data and (ii) effective
learning of orchestration rules, particularly for infrequently used instruments. We
propose using an automatic piano arrangement method to generate pair data from
existing wind band scores. Our method utilizes U-Net to assign notes in an input
piano score to individual instrument parts, and we propose refined network ar-
chitectures for efficient learning of characteristics of instrument parts in the wind
band scores. We show that the method can generate partially playable scores that
capture voicing rules and mutual relationships among instrument parts.

Keywords: symbolic music processing; automatic arrangement; orchestration
for wind band; deep learning; U-Net.

1 Introduction

Wind band is a popular form of musical performance for amateur musicians; numerous
schools and communities own wind bands. These bands often have only limited kinds
of musical instruments, and the instrumentation may vary from year to year depending
on the members’ circumstances. Consequently, the repertoire for amateur wind bands
is limited because wind band scores in the market tend to be expensive and may be
difficult to perform due to discrepancies in the instrumentation of a particular band.
This study aims to expand the available repertoire for wind bands by studying automatic
orchestration of piano scores, which are relatively easy to obtain, for wind bands with
user-specified instrumentation.

Orchestration is a challenging task even for human experts. It requires a high degree
of expertise because it must take into account the simultaneous and temporal relation-
ships among dozens of instrument parts, in addition to their pitch ranges and character-
istics [1,2]. A previous study developed a method for converting a large wind band score
? We thank Moyu Terao for cooperation and Hitomi Kaneko for useful discussions. This

work was supported by JST PRESTO No. JPMJPR20CB, JSPS KAKENHI Nos. 19H04137,
21H03572, 21K02846, 21K12187, 22H03661, and JST FOREST Program No. JPMJPR226X.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
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to a smaller one, by implementing manually constructed criteria for phrase segmenta-
tion, instrument group extraction, and instrument assignment [3]. This approach cannot
be easily generalized for orchestration of piano scores and it is difficult to manually set
up constraints to incorporate all of the aforementioned aspects of expert knowledge. A
viable approach is then to use machine learning and infer such constraints from data.
Another study explored a spectral-based approach for orchestration [4]. However, it
is inappropriate for orchestrating piano scores since spectral features cannot directly
capture relevant musical structures such as melody and bass lines.

Recent studies have explored the potential of deep neural networks (DNNs) and
statistical models for automatic music generation and arrangement (e.g. [5,6]). A study
attempted automatic orchestration of piano scores using a restricted Boltzmann ma-
chine [7]. It was shown that curation of pair data with accurately aligned orchestra and
piano scores requires high cost [8]. A more recent study used a Transformer to generate
symphonic music using a larger dataset [9]. In these studies, how to control the instru-
mentation and assure the playability of the output was not focused on. The problem
in data curation is even more severe when we allow arbitrary instrumentations because
some instruments are much less frequently used in wind band scores than others. There-
fore, to train DNNs for converting piano scores into wind band scores, we need to solve
two problems: (i) efficient preparation of pair data and (ii) effective learning of orches-
tration rules, particularly for infrequently used instruments.

To address these problems, we attempt to create pair data by generating piano scores
from existing wind band scores using an automatic piano arrangement method [10].
Then, using the U-Net [11], we estimate a mask that determines whether or not to as-
sign each note of the piano score to an instrument part. To improve the quality of infre-
quently used instrument parts, we propose refined network architectures to effectively
use instrumentation information during training and inference. The results are evaluated
quantitatively and analyzed in terms of the ability to reproduce the co-occurrence and
exclusion relations among instrument parts.

2 Method

2.1 Problem setup

The input of the proposed method is a piano score consisting of two parts for both
hands, and the output is a wind band score with an instrumentation specified by the
user. We assume that the user specifies the instrumentation by selecting any number of
parts from the maximum instrumentation. Based on several sources of information (e.g.
[2]), we define the maximum instrumentation to be consisting of N = 43 parts for 28
commonly used instruments (e.g. clarinet in B[ has three parts), excluding percussion
instruments with no pitch. Abbreviated labels for these 43 instrument parts will be listed
in Fig. 4C. Thus, the user-specified instrumentation I = (In)

N
n=1 is represented by an

N -dimensional binary vector (In = 1 indicates that instrument part n is used).
Each of the two hand parts, AL = (Ao

L, A
a
L) and AR = (Ao

R, A
a
R), in the piano

score and each instrument part Bn = (Bo
n, B

a
n) (n = 1, . . . , N ) in the wind band score

are represented by a pair of binary matrices, Mo = [Mo(q, t)] and Ma = [Ma(q, t)],
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representing the onset times and activations for individual pitches, respectively; the
number of rows is Q = 128, same as the number of pitches in the MIDI format, and
the number of columns is the length of the piece with 1/3 of a 16th note as the unit. For
example, Bo

n(q, t) = 1 indicates that instrument part n has an onset of pitch q at time t,
and Ba

n(q, t) = 1 indicates that part n is playing pitch q at time t. Thus, the activation
matrix Ba

n represents the piano roll when graphically visualized, and correspondingly,
the onset matrix Bo

n the onset positions. The latter is necessary to represent repeated
notes of the same pitch without gaps. For the input and output of the U-Net described
below, these matrices are segmented by a time length of T = 192 corresponding to four
measures in 4/4 time (zero padding is applied for fractional segments).

2.2 Preparation of pair data

First, we collected wind band scores in the MusicXML format from a public website
(musescore.com). We extracted from the obtained scores only the 43 parts in the maxi-
mum instrumentation and used them for the following analysis.

Next, an automatic piano arrangement method [10] was applied to convert these
wind band scores to piano scores, thus obtaining pair data with accurately aligned wind
band and piano scores that can be used as output and input data for training a DNN.
Since this method generates a piano score by selecting some of the notes in an input
ensemble score, the notes in the obtained piano score are included in the wind band
score. This is a desired property for our method, which generates a wind band score by
assigning the notes of the piano score to individual instrument parts.

2.3 Network architecture

We formulate the problem of converting a piano score A = (AL, AR) to a wind band
score B = (Bn)

N
n=1 as the estimation of a mask indicating whether or not to assign

the notes of the piano score to each instrument part [7]. We use U-Net [11], which has
been successfully applied to mask estimation problems such as singing voice separa-
tion [12] and piano reduction [13]. U-Net is an encoder-decoder model that performs
feature extraction at multiple levels by a stack of convolution and deconvolution layers
(Fig. 1). At each level, the features extracted in the encoder side are concatenated to the
decoder side. This is expected to enable processing that captures properties at multiple
resolutions in the pitch and time directions.

The output of the U-Net is a set of matrices, B̃o
n and B̃a

n (n = 1, . . . , N ), each of
which corresponds to a binary matrix representing the wind band score. More specifi-
cally, for example, the element B̃o

n(q, t) represents the probability that the correspond-
ing elementBo

n(q, t) of the wind band score have a value 1. The following cross-entropy
loss function is used for training:

L = −
N∑

n=1

Q∑
q=1

T∑
t=1

{
wBo

n(q, t) log B̃
o
n(q, t) + [1−Bo

n(q, t)] log [1− B̃o
n(q, t)]

+ wBa
n(q, t) log B̃

a
n(q, t) + [1−Ba

n(q, t)] log [1− B̃a
n(q, t)]

}
.
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Fig. 1. Proposed network architecture. The output from the U-Net is differently processed in the
joint output method (JOM) and individual output method (IOM).

Here, we introduced a weight w for positive samples since the onset and activation
matrices are generally sparse in our data (w = 100 in our analysis). As we explain
below, in the inference step the matrices B̃o

n are subjected to thresholding and other
post-processes to obtain a wind band score. We consider the following three network
architectures with different formats of input and output for the U-Net.

First, in the simple method (SM), Only the piano score A (4 channels) is used as
input, and the maximum instrumentation wind band scoreBall (86 channels) is obtained
as output. During training, the loss function is computed using all instrument parts
including those not used in each piece. During inference, only the instrument parts used
in the specified instrumentation I are extracted. This method cannot adaptively change
the output depending on the specified instrumentation.

Second, in the joint output method (JOM), we add to the input 43 channels of matri-
ces Cn = [Cn(q, t)] representing the instrumentation I (Fig. 1). All elements of matrix
Cn are set to one, i.e. Cn(q, t) = 1 for all q and t, if instrument part n is used and
Cn(q, t) = 0 if it is not used. During training, we set Cn(q, t) = 1 at all time frames in
a piece if instrument part n plays at least one note in the piece. In this way, the network
is trained to learn note assignment including rest intervals. The output form and loss
function are the same as those of the SM. This method is expected to be more robust to
unbalanced frequencies of use of instrument parts in the training data and to learn the
dependence on instrumentation, such as balance among instrument parts.

Third, in the individual output method (IOM), the output is the score Bn (2 chan-
nels) of each instrument part n, and a single U-Net is used to process all instrument
parts. As in the JOM, 43 matrices Cn representing instrumentation I are added to the
input, but here all the matrices except for the instrument part to be processed are filled
with zeros. During training, a loss function is computed for each instrument part in each
piece. During inference, the output Bn for each instrument part n used in the specified
instrumentation is combined to generate a wind band score. With this method, it is dif-
ficult to adjust the balance among instrument parts according to the instrumentation I ,
but even more efficient learning of infrequently used instruments is expected.
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Method Octave augmentation Precision Recall F-score

SM 29.2 30.1 28.8
SM X 32.3 21.1 25.1

JOM 22.0 2.3 3.8
JOM X 19.5 6.2 8.4
IOM 33.9 41.3 36.8
IOM X 31.9 42.2 35.9

Table 1. Average accuracies (%) for the simple method (SM), joint output method (JOM), and
individual output method (IOM). The highest values are indicated in bold fonts.

In all of the above three methods, the following processes are applied in the infer-
ence step. After thresholding the probability estimates of the onset time matrix of each
instrument part, the output score is obtained by selecting only the notes contained in
the input piano score and imposing the instrument’s pitch range and monophonic con-
straint. We use the pitch ranges written in standard books on orchestration. To impose
the monophonic constraint, if more than one onset remain as candidates at a time frame,
we choose the one with the largest probability. The duration of each note obtained is
determined by referring to the input piano score.

Finally, to generate wind band scores that take advantage of the wide pitch range,
it is desired to extend the method and utilize octave-shifted notes from the input pi-
ano score. This can be realized in the same mask estimation framework by adding
the octave-shifted piano scores, A+

L , A+
R, A−L , and A−R, to the input. For example,

Ao+
L (q, t) = Ao

L(q − 12, t) and Aa−
R (q, t) = Aa

R(q + 12, t). With this octave aug-
mentation, the number of channels in the input increases by 8.

3 Result

From the pair data of 110 pieces obtained as in Sec. 2.2, we used randomly selected 80
pieces as training data and the remaining 30 pieces as test data. As evaluation metrics,
we used the precisions, recalls, and F-scores for the output scores calculated individu-
ally for all instrumental parts with a criterion of exact match of pitch and onset time.
The networks were trained by the AdamW optimizer with a learning rate of 10−6 for
the SM and JOM and 10−7 for the IOM, batch size of 32, and dropout (p = 0.5) applied
to the first two layers of the decoder. A threshold value of 0.5 was used for inference.

The results in Table 1 show that the IOM outperformed the SM in F-scores, con-
firming the effectiveness of the method using instrumentation information as input1.
A comparison of the F-scores for individual instrument parts for the SM and the IOM
shows that the latter method significantly improved the F-scores, especially for instru-
ment parts that are used infrequently (Fig. 2). On the other hand, the JOM, which was
expected to be the most effective, showed significantly lower accuracies, suggesting that
the complex network structure may have reduced the learning efficiency. Therefore, for

1 See also our demo webpage https://nabeshinabe.github.io/
PianoToBrassBand_nabeoka/demo.html
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Fig. 2. Partwise F-scores for the SM and IOM (without octave augmentation), shown in three
groups according to the number of pieces in the test data in which each instrument part is used.
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Fig. 3. Wind band score generated by the IOM (without octave augmentation) from Joplin’s “The
Entertainer.” All instruments are notated in concert pitches.

the JOM, refinement of the learning method, for example, by improving the optimiza-
tion method and increasing the amount of data, should further be investigated. As for
the effect of octave augmentation, the metrics changed only slightly for the IOM, with
an increased recall and decreased precision and F-score.

Fig. 3 shows an output score with seven instrument parts score obtained by the IOM
with piece-level instrumentation information. The input was an existing piano score that
was not included in our dataset. The three woodwind parts play the notes in the right
hand part of the piano score, and the four brass parts mainly play the notes in the left
hand part. The voicing of the chords follows the natural order of the parts within each
instrument group. This suggests that the method enables orchestration that captures
not only the pitch range of each instrument part, but also the characteristics of the
instruments and the mutual relationships among the instrument parts. On the other hand,
the IOM has limitations that it cannot adaptively change the roles of the instrument parts
according to the specified instrumentation and it cannot assign notes from the piano
score to each instrument part without omission. In addition, in the second measure of
the 2nd Flute, only some notes of the melody are assigned, which is usually judged as
inappropriate. Thus, a proper handling of sequential dependencies of notes, which is
necessary for generating smoothly playable arrangements, needs to be improved.
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Fig. 4. Correlations of the sounding rates (A) and of the conditional significances (B) between
real data and data generated by the IOM (with octave augmentation). C: Conditional significances
between all pairs of instrument parts, with positive and negative significances indicated by blue
and red lines, respectively (high significances are indicated in dark colors).

To examine the potential of the IOM for learning the interdependence between
instrument parts in a larger time scale, we analyzed the sounding rates of individual
instrument parts and their correlations. Let hmn ∈ {0, 1} represent whether part n
plays at least one note in measure m (hmn = 1) or not (hmn = 0). We define the
sounding rate rn of part n as rn =

∑
m hmn/M , where M is the total number of

measures analyzed. Similarly, we define the simultaneously sounding rate rnn′ of parts
n and n′ as rnn′ =

∑
m hmnhmn′/M . Then, their correlation can be calculated as

ρnn′ = rnn′ − rnrn′ , which measures the deviation from the independence hypothesis.
The statistical significance of this quantity can be measured by the conditional signif-
icance Z(n′|n) := (rn′n − rn′rn)

√
M/
√
rn′rn(1− rn′), where we assumed a bino-

mial process for estimating the statistical error. A positive (negative) value of Z(n′|n)
indicates a co-occurrence (exclusion) of part n′ conditioned on the presence of part n.

Results in Fig. 4 show that both the sounding rates and simultaneous sounding rates
were highly correlated between the real and generated data of wind band scores. This
indicates that the U-Net trained by the the IOM learned the co-occurrence and exclusion
relations between instrument parts. For example, Fig. 4C indicates a co-occurrence of
Soprano Sax and Cornet parts, both of which are expected to be used in large bands but
not in small bands, and an exclusion relationship between Bass Trombone and Tuba and
between 2nd Bassoon and Electric Bass, which are likely to be a result of substitutability
of these instrument parts. These properties of wind band scores were reproduced in the
data generated by the IOM. We also conducted the same analysis for the SM but did
not observed such clear correlations in the data generated by this method, showing the
nontriviality of learning these statistical properties.

4 Discussion

In this paper, we showed the possibility of training DNNs for automatic orchestra-
tion of piano scores for wind bands, by generating pair data only from existing wind
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band scores using a method for piano arrangement. The experimental results indi-
cated the ability of the proposed U-Net-based method to learn voicing rules and co-
occurrence/exclusion relations among instrument parts, and demonstrated the potential
for generating partially playable wind band scores in user-specified instrumentations.

A number of challenges remain for the generation of wind band scores suitable for
actual performance. Increasing training data and further refinements of network archi-
tectures should be attempted to successfully train the JOM or similar networks that can
adaptively change the roles of instrument parts according to the specified instrumenta-
tion. To suppress note sequences with unnatural leap motions, rhythms, etc. in the out-
puts that are difficult to play, use of autoregressive networks, such as a long short-term
memory (LSTM) network and Transformer, is expected to be effective. More thorough
evaluations by arrangement experts and through actual performance tests of the output
results should be conducted in the future.
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Abstract. This article discusses the effects of a pitch feedback system integrated 

into Google Glass, called the MVP (Musical pitch Visualization Perception) sup-

port system, on the musical performance of wind instrumentalists. The study 

adopted the Goldsmith Musical Sophistication Index (Gold-MSI) to discuss the 

contribution of the MVP support system to the improvement of musical perfor-

mance. The Gold-MSI is a popular tool in the field of music research that 

measures musical sophistication based on observable behaviors. The study re-

ports the effects of the MVP support system from a quantitative standpoint, and 

the results show that the system had a positive impact on the participants' pitch 

accuracy.  

Keywords: ICT, Performance support, Pitch Feedback, Performance evalua-

tion, Quantitative analysis  

1 Introduction 

The intonation of instrumentalists has been extensively discussed in the literature [1], 

with correct intonation being viewed as particularly important for novice instrumental-

ists when performing in an ensemble. Effective methods for improving intonation have 

been widely studied in music education research [2]. In recent years, many researchers 

have shown an interest in real-time pitch feedback systems, owing to the development 

of Information and Communication Technologies (ICT). For instance, Wang et al. [3] 

investigated the potential of real-time feedback for violinists. This study, however, will 

focuse on wind instrumentalists who perform in a concert band or orchestra. 

Instrumentalists must pay attention not only to their intonation but also to other cru-

cial aspects of performance, such as sheet music, rhythm, dynamics, fingering, tempo, 

expression, ensemble, and conductor cues[4]. Information provided by the conductor is 

     This work is licensed under a Creative Commons Attribution 4.0 International License 

(CC BY 4.0).  
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as essential as auditory information. However, during performances, some novice and 

student instrumentalists tend to rely on their tuner, which is typically placed on their 

music stand. This habit may cause fixation of gaze, narrowing of visual field, and poor 

posture. Therefore, Yamaguchi et al. [5,6]proposed a pitch feedback system integrated 

into Google Glass as a Musical pitch Visualization Perception (MVP) support system 

to solve the problems mentioned above. 

Yamaguchi et al. [5,6] argue that the MVP support system has advantages over the 

conventional tuner in that it provides flexibility to the instrumentalist's physical and 

visual angle and reduces cognitive load during performance, according to usability tests 

and interview surveys. However, these qualitative methods have not escaped criticism, 

such as subjectivity and generalizability. Furthermore, these kinds of investigations do 

not fully represent the contribution of the musical performance system. The difficulty 

of quantitative analysis is an overall problem regarding musical performance research, 

however, evaluation of musical skill and ability have been conveniently defined by 

years of experience of musical activity. Yet these ideas should be dealt with as a mul-

tifaceted and complex concept. Thus, some of the aforementioned, convenient defini-

tions are unworthy of trust. Controlling for musical sophistication, including skill and 

ability, is a major problem which still exists in the literature. 

In this research, we report the effects of the MVP support system from a quantitative 

standpoint. To discuss the contribution of the MVP support system to the improvement 

of musical performance, we adopted the Goldsmith Musical Sophistication Index 

(Gold-MSI) [7, 15]. It is promising that the level of musical sophistication, such as skill 

and experience, will greatly affect the effectiveness of musical performance support 

systems.  

2 MVP support system 

The MVP support system has been developed for wind instrumentalists. Although, the 

main concept was a pitch feedback system for them, it would also become a perfor-

mance support system by utilizing Google Glass. The system can be defined as a glass-

type tuner for instrumentalists and shows promise regarding the reduction of physical 

burden and the improvement of gaze flexibility and cognitive load during musical per-

formances when compared to using a conventional tuner on a music stand [5,6].  

The feedback system utilized a three-tier scale rating system of "correct", "higher", 

or "lower" compared to the correct pitch, with the participant receiving real-time feed-

back through color indicators on the display. The correct pitch range was defined as the 

target, expressed in Hertz, ±1% [5,6]. The Glass Enterprise edition 2 by Google was 

used in the study. The reliability of the Google Glass system as a musical tuner was 

verified by a professional musician and the first author, who has experience conducting 

and training concert bands (for a detailed explanation, see [5]). The system was devel-

oped with four key standpoints: timeliness, ease of understanding, recordability, and 

stability [5]. To achieve this goal, the system utilized the ml5.js library [8], run in Ten-

sorFlow, which includes the PitchDetection package that implements the deep-learn-

ing-based CREPE algorithm [9,10]. In this study, we also used the Glass Enterprise 
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edition 2 by Google to send tonal pitch feedback to participants in real time. We also 

recorded the performance data and pitch estimate data in a CSV file, with the evaluation 

of the performance pitch stored in a separate column [5]. The schematic drawing of the 

MVP support system is shown in Figure 1. 

Fig. 1. The schematic of the MVP support system 

3 Goldsmith Musical Sophistication Index 

The Gold-MSI is a popular tool in the field of music research [7]. The term "musical 

sophistication" was introduced by Müllensiefen and colleagues as a more inclusive and 

neutral alternative to terms such as "talent" and "aptitude," and is based on observable 

behaviors. The Gold-MSI is composed of 38 self-report questions divided into five sub-

scales: Active Engagement, Perceptual Abilities, Musical Training, Singing Abilities, 

and Emotions. These questions were carefully selected from a pool of 153 statements 

extracted from previous studies. The Gold-MSI has been validated by a large number 

of primarily English-speaking participants and has demonstrated good internal reliabil-

ity for each subscale as well as the overall sophistication index, high test-retest reliabil-

ity, and reliable correlation with a variety of objective listening ability tests. 

The Gold-MSI has been widely used since its inception in 2014 and has been trans-

lated into various languages including Traditional Chinese, Simplified Chinese, Portu-

guese, German, and French [11-14]. These translations have shown high internal con-

sistency and test-retest reliability, and the validation data collected from these studies 

indicate a good fit with the bifactor model structure proposed by the original Gold-MSI. 

These findings suggest that the structure and set of questions used to measure musical 

sophistication by the Gold-MSI are applicable to other cultures and languages. 

 The development of batteries for assessing musical abilities in Japan has resulted in 

the creation of several tests, including the Onken Musical Aptitude Test for Young 

Children [16], and the New Musical Aptitude Test [17]. Most of these tests are designed 

to assess the musical abilities of children. While there are few non-Japanese standard-

ized tests that have been translated into Japanese, some, such as the Bentley Measure 

of Musical Abilities [18], have been translated and are available for use. However, there 

is currently no validated Japanese version of the Gold-MSI, which is widely used to 

assess musical sophistication.  
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Therefore, Sadakata et al. [15] translated the Gold-MSI into Japanese (Gold-MSI-J) 

and, after validating the translation with 689 Japanese speakers, it was found that the 

internal consistency and test-retest reliability were excellent. Furthermore, the confirm-

atory factor analysis showed that the bifactor model structure proposed by the original 

study of Gold-MSI is reasonably maintained in the data.  

4 Method 

4.1 Participants 

We conducted the experiment which consisted of 22 student participants with an aver-

age age of 22.14 years (SD=1.39). Students were selected from national universities’ 

concert band and orchestra clubs. Their musical ability as wind instrumentalists was 

confirmed to be at an intermediate or advanced level by the Japanese version of Gold-

smith Musical Sophistication Index (Gold-MSI-J) [15]. Their musical training factor 

score in Gold-MSI-J was 3 or more. The participants were 4 clarinet players, 4 trumpet 

players, 4 flute players, 3 French horn players, 2 saxophone players, 2 trombone play-

ers, 1 oboe player, and 1 bassoon player. 

4.2 Procedure 

The study comprised two distinct sections, namely a performance task section and a 

questionnaire and interview section. In the performance task section, the participants 

were instructed to perform the B-flat equal temperament major scale in long-tone while 

synchronizing with a metronome presented on the screen in front of them, set to a beat 

per minute (BPM) of 60. This long-tone scale task is the fundamental performance for 

wind instrumentalists in Japanese concert band societies. To gauge the efficacy of the 

Google Glass tuner system, a commercially available conventional tuner (YAMAHA 

TDM-70) which was placed on a music stand, was employed as a baseline. The order 

effects were counterbalanced for the performance task section. In both the baseline and 

Google Glass settings, the participants were advised to focus on their tempo and into-

nation while performing the task. There was no repetition and the duration of the ex-

periment was approximately 30 minutes including explanation and warming up. After 

the performance section, we conducted a questionnaire survey regarding the musical 

sophistication using Gold-MSI-J. Finally, we ensured that all measurements were made 

using the same microphone, computer, browser, network environment and Google 

Glass system.  

5 Results 

Figure 2 shows the boxplots regarding the scores of the Gold-MSI-J subscales. Com-

pared to the results of Sadakata et al. [15], these scores clearly show that musical so-

phistication of the participants is much higher than laypeople.  
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Fig. 2. The boxplots regarding the results of Gold-MSI-J 

Table 1. List of participants and pitch accuracy data 

ID Instrument Conventional tuner Google Glass 

1 Clarinet 78.52% 81.87% 

2 French Horn 62.26% 91.93% 

3 Euphonium 73.61% 86.70% 

4 Trombone 75.65% 76.91% 

5 Oboe 94.52% 96.58% 

6 Flute 98.95% 97.75% 

7 Trumpet 91.79% 95.16% 

8 French Horn 84.67% 82.78% 

9 Clarinet 54.88% 62.58% 

10 French Horn 82.36% 92.86% 

11 Flute 87.49% 96.18% 

12 Trombone 54.66% 72.18% 

13 Trumpet 85.56% 89.90% 

14 Trumpet 93.68% 87.45% 

15 Saxophone 71.54% 82.78% 

16 Flute 95.32% 91.34% 

17 Flute 97.63% 95.61% 

18 Saxophone 87.59% 88.24% 

19 Clarinet 94.70% 94.22% 

20 Bassoon 95.46% 96.07% 

21 Clarinet 94.37% 97.65% 

22 Trumpet 76.15% 85.28% 

The median score of each factor in Gold-MSI-J was used as the threshold to divide 

participants into low and high groups for each factor, which were then used as between-
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participant factors. The tuner use condition and the Google Glass use condition were 

defined as within-participant factors. Two-way repeated measures analysis of variance, 

for the effects of musical sophistication and the tuner system condition, was conducted 

on the pitch accuracy during the performance. Pitch accuracy was estimated by the 

recorded data of the MVP support system and transformed to angle data before analysis 

because it was ratio data by arcsine transformation. Table 1 shows the instrument of 

each participant and the pitch accuracy under both conditions. The accuracy rate was 

calculated by dividing the length of time the performed pitch was within the correct 

pitch range by the total length of the performance. 

The results show that there was no significant main effect between participant groups 

for the Active Engagement factor (F(1,20)=0.31, ns., ηp
2=0.02), and only the main ef-

fect of tuner system factors was significant (F(1,20)=9.68, p<.01, ηp
2=0.33). There was 

no significant interaction between Active Engagement factor and tuner system factors 

(F(1,20)=2.68, ns., ηp
2=0.19). For the Perceptual Abilities factor, there was no signifi-

cant main effect between participant groups (F(1,20)=1.90, ns., ηp
2=0.09), and only the 

main effect of tuner system factors was significant (F(1,20)=5.27, p<.05, ηp
2=0.21). 

There was no significant interaction between Perceptual Abilities factor and tuner sys-

tem factors (F(1,20)=3.27, ns., ηp
2=0.14). For the Musical Training factor, both the 

main effect between participant groups (F(1,20)=6.04, p<.05, ηp
2=0.23) and the main 

effect of tuner system factors (F(1,20)=9.96, p<.01, ηp
2=0.31) were significant. There 

was no significant interaction between Musical Training factor and tuner system factors 

(F(1,20)=2.44, ns., ηp
2=0.11). However, this factor can be hypothesized that it has an 

effect of the performance, we conducted exploratory testing of simple main effects. The 

result showed that pitch accuracy increased significantly only when the Google Glass 

tuner was used in the low group of between-participants factor (F(1,20)=8.92, p<.01, 

ηp
2=0.47). For the Singing Abilities factor, there was no significant main effect between 

participant groups (F(1,20)=1.26, ns., ηp
2=0.06), and only the main effect of tuner sys-

tem factors was significant (F F(1,20)=7.43, p<.05, ηp
2=0.27). There was no significant 

interaction between Singing Abilities factor and tuner system factors (F(1,20)=2.68, 

ns., ηp
2=0.03). For the Emotions factor, there was no significant main effect between 

participant groups (F(1,20)=0.32, ns., ηp
2=0.02), and only the main effect of tuner sys-

tem factors was significant (F(1,20)=6.32, p<.05, ηp
2=0.24). There was no significant 

interaction between Emotions factor and tuner system factors (F(1,20)=2.26, ns., 

ηp
2=0.10). 

For all analyses, the main effect of tuner system factors was significantly higher for 

Google Glass tuner conditions than for tuner conditions in terms of pitch accuracy. The 

main effect between participant groups for the Musical Training factor showed that the 

high group had significantly higher pitch accuracy than the low group. For this factor, 

the result of the test of simple main effects showed that the Google Glass conditions 

significantly improved pitch accuracy only in the low group. 
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6 Discussion 

When using the Google Glass tuner, the accuracy of participant’s pitch showed good 

values. Regarding the relationship with Gold-MSI-J, participants were divided into 

high and low groups based on their factor scores, and for all factors of Gold-MSI-J, the 

main effect of the tuner system was significant. On the other hand, the main effect be-

tween participant groups was significant only for the Musical Training factor. Further-

more, as a significant difference in pitch accuracy was observed only in the low group 

in the simple main effect test, it is suggested that the Google Glass tuners may have a 

strong effect as a performance support system for individuals with relatively low levels 

of musical training among instrument players. In the high musical training group, pitch 

accuracy was sufficiently high even under tuner use conditions, and there was no sig-

nificant difference between the two conditions. However, the sample size is relatively 

small, so the statistical analysis was conducted with the aim of obtaining an overview 

of the data. Thus, we will have to conduct large-scale experiments for valid discussions, 

for example, the influence different instruments have on the results and the usablitity 

of the system. It will be also necessary to rely on qualitative analysis or subjective eval-

uations of participants, as described below, to understand how this system contributes 

to such individuals. 

The results of this study show the effect of the MVP support system from each factor 

of musical sophistication by Gold-MSI-J. Compared with existing qualitative surveys, 

this method allowed a valid investigation regarding the individual performance and 

musical sophistication from multifaced standpoints. It should be noted that the present 

study also emphasized the effectiveness of the MVP support system. Further work in 

this area is underway to develop an effective pitch feedback system that is suitable to 

each instrumentalist. It is hoped that the outcome of this study will be of use for future 

empirical research regarding musical performance study. 
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Abstract. In this research, we developed a model that can estimate appropriate
chord progression based on lyrics input. It outputs a sequence of chord that can
be used to compose the corresponding lyrics input. By training the model with
different datasets, it is also possible to estimate other musical components that
are correlated with lyrics, for example rhythm pattern, instrument, tempo, and
drum pattern. Using this set of musical components as a setup recommendation
for composition can potentially automate the configuration process on AI-based
composition tools. We sourced our training data from “Orpheus”, a web-based
automatic composition system, resulting in more than 6,000 paired data of lyrics
and musical components chosen by users who published their songs in the plat-
form. Lyrics are pre-processed into semantics embedding using Sentence-BERT
before being fed as training data into the multi-layer perceptron model as a clas-
sifier to estimate chord progression. Evaluation of this model is done objectively
with ROC and F1 score, and subjectively through a survey.

Keywords: chord progression estimation, lyrics pre-processing, musical compo-
nents, automatic composition, Orpheus, semantics embeddings, Sentence-BERT,
multi-layer perceptron

1 Introduction
Following the recent trend in AI research, there have been tools (eg: soundraw.io, Or-
pheus [1]) developed to automate music composition. They depend on user input to
generate music, some by asking users to select genre or mood, while others expect
more detailed input such as lyrics and chord progression. The simpler a tool is, the
more attractive it is to new users, but unfortunately, the output will never be as personal
as the input is limited. On the other hand, while a more complex tool can result in more
personalized music, it can be overwhelming for new users.
⋆ This research was funded by Grant-in-Aid for Scientific Research (B) No. 21H03462 from

Japan Society for the Promotion of Science (JSPS) and a scholarship from The Ministry of
Education, Culture, Sports, Science and Technology (MEXT) Japan with the cooperation of
fellow members of Nakashika Laboratory, The University of Electro-Communications (UEC).

This work is licensed under a Creative Commons Attribution 4.0 International Li-
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Ideally, such tedious process should be presented with an offer of automated assis-
tance. The easiest approach to this would be by recommending randomly selected setup
during configuration. However, this can possibly result in music that does not match the
lyrics. The system may end up recommending an upbeat musical configurations when
a user inputs sad lyrics, for example. As mood and nuance can be inferred from text,
we argue that it should be possible to estimate appropriate musical compositions based
on lyrics input. To achieve this, we decided to experiment with a number of classifier
models and train them on relevant training data. We use semantics embeddings of lyrics
as input and estimate the appropriate chord progression and other musical components
based on what they learned from the training data.

Fortunately, such data can be extracted from existing compositions, as long as the
necessary musical components data are also accessible. Even with appropriate training
data, however, estimating appropriate musical components is not that straightforward.
Since music is not strictly derivable from lyrics, there will never be one true exact
match of a composition setup for a specific lyrics input. In fact, we cannot say that
any setup is wrong at all, considering that one lyrics input can potentially result in
various compositions that can equally be considered as good matches. For this reason,
subjective approach is also necessary to evaluate the model performance.

By automating the selection process based on lyrics input, we offer a solution that
can leverage a tedious process to be more user-friendly, and thus, encourage existing or
potential users to use the system to compose more music. The data of future composi-
tions can also be used to further train the system and improve its performance, allowing
the system to evolve over time.

2 Related Works
Our work was initially inspired by [2] in which Turkish lyrics are used to estimate the
meta-data of the song, which includes: genre, authors, and year of publication. Similar
studies had also been done on genre classification for lyrics in different languages. In
[3] for example, an approach similar to [2] is applied on Nordic lyrics. These works
were done with conventional approach using feature-based text pre-processing.

In [4], word2vec [5] is used to pre-process the lyrics. Their goal was to estimate
chord progression based on lyrics using the data extracted from Orpheus, which then
made it the base of this research. It is unfortunate that their model was of a low accuracy,
but we argue that it is expected as they included all chord progressions available on
Orpheus regardless the number of samples. It is not ideal to train a model to classify a
class with insufficient number of samples as it will result in overfitting. To ensure that
each class has enough samples for training, we decided to focus our research on the top
10 chord progression available on Orpheus.

Another problem with this approach is that using word2vec to pre-process lyrics
means the semantics of the sentence is not considered, as it is meant to be used for
word pre-processing. Different lyrics that consist of the same words will result in the
same embedding despite the order, for example ”king likes queen” shares the same em-
bedding as ”queen likes king”. To consider the semantics of the lyrics, we decided to
take a more state-of-the-art approach for the lyrics pre-processing by utilizing a lan-
guage model that is able to directly derive embedding from sentences.
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Fortunately, many language models have been developed in recent years. An exam-
ple of this would be BERT [6], which is designed to pre-train deep bidirectional repre-
sentations from unlabeled text. Several task specific modifications have also been done
on BERT, including Sentence-BERT [7], which can be used to quickly measure simi-
larity between two or more sentences, which would originally take hours for BERT to
compute. By using SBERT, we convert our lyrics data into their semantics embeddings,
which can then be paired with chord progression or other relevant musical components
data and used to train our multi-layer perceptron models. Considering that it has been
proven possible to infer genre from lyrics by [2], [3], and other studies, we argue that it
should also be possible to infer specific musical components based on lyrics input.

3 Dataset
To train our models, we extracted composition data of the published songs in Orpheus
[1], a Japanese automatic composition system with over 700,000 pieces composition
generated by their users. As shown in table 1, this data consists of lyrics, musical com-
ponents, and several statistics in regard to the composition. According to [8], chord
progression can be used to infer music emotion, which has been proven by [10] to be
derivable from lyrics. In Orpheus, there are over 1500 variations of chord progression
to choose from, available for view on page1.

Table 1: Raw Data Sample of a Published Composition in Orpheus
Lyrics Chord Rhythm Instr. Tempo Drum #Likes #Bms

からまつの林を過ぎて、
Pachelbel-
Kanon

sync-
auf-3-
8sf

48 100
perc-
hirata-
rocknroll2

114 3
からまつをしみじみと見き。
からまつはさびしかりけり。
たびゆくはさびしかりけり。

We extracted paired data of lyrics and chord progression for our main experiment
and truncated our dataset by only taking samples of the top 10 chord progression to
avoid overfitting. Experiment results of the other musical components will be included
as ablation studies to consider potential future research.

4 Proposed Model
Conceptually, our system takes lyrics as input and outputs a recommendation of chord
progression. To achieve this, we convert lyrics into semantics embedding with SBERT
models pre-trained with Japanese corpus before feeding them into a multi-layer percep-
tron model as training data. The conversion from lyrics into numerical embedding is
necessary because computers do not understand the meaning of words. This conversion
allows computers to assign values to lyrics and understand which lyrics are similar or
different based on their numerical representations.

For comparison purpose, we also rebuilt the word2vec model as proposed in [4]
with the Japanese corpus used by the SBERT model. The pre-processing results of these
models differ in terms of dimension, with a size of 768 for the SBERT model and 50
for the word2vec model which affects the input layer size of the multi-layer perceptron
model used for chord progression estimation as shown in Fig. 1:

1 https://www.orpheus-music.org/Orpheus-lib-harmony.php
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Fig. 1: Estimation Model Architecture

In [4], there was no mention of using a specific loss function on the training phase.
For this reason, we used categorical cross-entropy to rebuild the word2vec mode, which
is defined as follows, where pi is the softmax probability of the ith class:

LCE = −
n∑

i=1

log(pi) (1)

Unfortunately, applying this loss function to train an estimation model with im-
balanced training data will likely result in overfitting. To mitigate this issue, we at-
tempted a different approach that is based on [9], which claimed that applying focal
factor (1 − pt)

γ can help to balance the weight of easy and hard samples and thus
minimize the overfitting problem. Focal loss is calculated as follows:

LFCE = −
n∑

i=1

(1− pi)
γ log(pi) (2)

5 Experiments
5.1 Training with the Top 10 Chord Progression Dataset
In this section, we will discuss the result of our experiments on top 10 chord progression
in terms of having the highest the number of samples. This was extracted from published
Orpheus data with number of samples as shown in Table 2.

Table 2: Top 10 chord progression in published Orpheus Data
Label #Samples
pattern O 1121
pattern FF 947
pattern Q 606
pattern P 570
pattern H 567
pattern E 539
pattern W 508
pattern R 402
Pachelbel Kanon Ending 394
User Harmony zkrxx7 388
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Looking at the table, it is clear that there is a big difference in number of samples
between the labels, showing an imbalance in data. Note that these labels represent dif-
ferent sequence of chords and not the chord progression itself. Refer to the link provided
in section 3 for the full list of chord progression available on Orpheus.

5.2 Lyrics Pre-Processing and Loss Function
We experimented with the pre-processing using Japanese SBERT model and compare it
with the word2vec model. The multi-layer perceptron models are also trained with two
different cross-entropy (CE) loss functions, resulting in a total of four model variations:
Word2Vec Categorical CE (WC), Word2Vec Focal CE (WF), Japanese SBERT Cate-
gorical CE (JC), and Japanese SBERT Categorical Focal CE (JF). They were trained
with the top 10 chord progression dataset in 1000 epochs, with the ratio of 8:1:1, for
training, validation, and test data respectively.

5.3 Final Accuracy and Overfitting of the Models on Chord Progression
We have compiled the final accuracy on both training (T) and validation (V) of each
model in Table 3. We can see that using SBERT model pre-trained with the Japanese
corpus results in higher accuracy (JC and JF) compared to those of word2vec (WC and
WF). Note that due to the dataset unavailability, the word2vec model was pre-trained
with a newer version of the Japanese corpus, and despite having this advantage, it was
not able to achieve comparable accuracy values.

Table 3: Final training (T) and validation (V) accuracy of the 4 models
Model T. Acc.(%)↑ V. Acc.(%)↑

WC 37.3 21.4
JC 96.0 31.2
WF 32.7 23.4
JF 80.7 31.1

In Fig. 2, we can see that the models with categorical CE (WC and JC) are overfit-
ting, and this can be minimized by applying focal CE during training (WF and JF) as
shown in Fig. 3. Note that while JF seems to overfit badly based on the graph, the loss
value is still below 0.5, which is still not to far off of WF.

(a) WF (b) JF

Fig. 2: Loss over time of the 2 models trained with CE
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(a) WF (b) JF

Fig. 3: Loss over time of the 2 models trained with focal CE

Judging from both the accuracy and overfitting, it is safe to say that JF can replicate
human preference in chord progression based on lyrics better than the other models,
according to the data taken from composition published in Orpheus.

5.4 Objective and Subjective Evaluation
We evaluate the proposed model JF objectively by comparing its ROC AUC and F1
score with the word2vec approach WC and subjectively through survey to evaluate the
quality of the generated music, in which a random composition published in Orpheus
is recomposed with the chord progression recommended by JF and WC. We asked 10
respondents to score them based on how well the music matches the lyrics on a Likert
scale from 1 (bad) to 5 (good). Note that the original composition is used as the ground
truth in objective evaluations, and thus the lack of scores in Table 4.

Table 4: ROC AUC, F1, and Likert scores on chord progression
Model ROC AUC (%) F1 (%) Likert (ave.±dev.)
Original - - 3.5(±1.08)
WC 64.2 23.4 2.7(±1.16)
JF 69.6 32.1 2.8(±1.03)

JF managed to get higher ROC AUC and F1 scores compared to WC. The Likert
score of JF is also higher than WC with the lowest deviation. It can be concluded that
using semantics instead of word embedding and changing the loss function to minimize
overfitting result in better performance of the models in terms of recreating human
preference and selecting the proper chord progression based on lyrics input.

5.5 Ablation Studies
To see the potential of applying this approach on other musical components, we consid-
ered four other subjects: rhythm pattern, instrument, tempo, and drum pattern. In [11],
rhythm patterns were used to generate lyrics, which led us to believe that the opposite
can also be done. Instruments are generally chosen by a composer according to the
genre of music they are trying to produce. There is a typical tendency in tempo accord-
ing to the genre of music as mentioned in [12]. Lastly, drum patterns in Orpheus were
created with regards to musical genre with some variations.
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As they are correlated with genre which is derivable from lyrics, it may be possible
to derive them straight from lyrics. We experimented on top 10 dataset of these subjects
with WC and JF and have compiled the evaluation result in Table 5. More details on
these experiments, including the number of samples of each class in the top 10 datasets
are available on their respective sheet in this spreadsheet 2.

Table 5: Models evaluation on the other 4 musical components
Musical Component Model ROC AUC (%) F1 (%) Likert (ave.±dev.)
Rhythm Pattern Original - - 2.8(±1.14)

WC 59.8 35.8 3.0(±1.41)
JF 67.4 38.2 3.0(±1.15)

Instrument Original - - 2.3(±1.25)
WC 60.2 25.1 2.0(±0.94)
JF 65.5 28.8 3.0(±1.56)

Tempo Original - - 3.6(±1.17)
WC 58.7 23.3 3.2(±1.03)
JF 66.2 28.9 3.4(±1.35)

Drum Pattern Original - - 2.9(±0.88)
WC 56.0 21.8 2.7(±0.82)
JF 61.5 24.5 2.7(±1.06)

Table 5 shows that JF is consistently superior than WC in terms of ROC AUC and F1
score. In the survey, it is also generally better in terms of performance compared to WC,
with the exception on drum pattern. However, the drum pattern survey data shows that
respondents were unsure of the sample difference and not confident in their answers.
It can be concluded that JF performs better than WC when there is clear differences
between the samples and respondents are confident. Another interesting point that is
worth mentioning here is that on rhythm pattern, both WC and JF scored higher than
the original composition, which shows the potential of these models in recommending
appropriate musical components based on lyrics input.

6 Discussion
The proposed model JF managed to achieve higher ROC AUC, F1, and Likert score
on chord progression estimation in comparison to the model WC as proposed in [4],
and it is interesting that with similar approach, similar results are also reflected on other
musical components, although with some degrees of deviation. However, the ROC AUC
and F1 scores of the proposed model JF are still considerably low and mixed results can
be seen on the survey. As the training is done by labelling to represent each class,
similarities between each class are not considered.

By considering the feature similarities that are unique to each musical component,
we argue that it is possible to achieve higher ROC AUC, F1, and Likert score of the
classifier model. Chord sequence, for example, may be processed better with seq2seq
approach instead of considering each sequence of chord as an entirely different class,
rhythm pattern can be labeled with their individual notes, instrument can be grouped
according to their similarities in terms of timbre, and so on.

2 https://docs.google.com/spreadsheets/d/16-MMdycFS2SN44hR5kFLeR
myNNquK3hHwhs4Lou3kY8/edit?usp=sharing
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7 Conclusion and Future Works
In this paper, we proposed a an approach to estimate chord progression, and potentially
other specific musical components based on lyrics input by using SBERT model for
lyrics pre-processing instead of word2vec as proposed in [4]. We also consider the
imbalance in data and limit our scope by using top 10 dataset as training data. During
training, focal cross-entropy is applied instead of cross-entropy loss function to mitigate
the overfitting caused by the difference in number of samples between the classes.

The proposed model achieved higher ROC AUC and F1 score in comparison to the
model proposed in [4]. Through a survey that compares audio samples configured with
the two models and the original composition, it can be concluded that the proposed
model generally performs better than the previous model, and can potentially generate
music better than the original work in terms of how well they match the lyrics input. The
proposed model can also be potentially improved by considering similarities between
each class and features that are unique to each musical component.
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Abstract. This paper presents a work-in-progress DSP architecture1 building
from the basis of the Differentiable Digital Signal Processing (DDSP) library
by Engel et al. (2020). The architecture is designed to process polyphonic mu-
sical audio in real-time, making use of classical DSP methods for greater inter-
pretability. Utilising recent advancements in lightweight polyphonic pitch detec-
tion models, multiple input audio streams can be processed simultaneously, and
with a novel stochastic latent dimension, the model can generate novel audio tim-
bres outside of the training dataset. Due to its lightweight nature, the proposed
architecture is designed to be used for live audio transformations with minimal
input latency. The paper also discusses the limitations of the existing state-of-
the-art model, which is deterministic and restricted to monophonic processing.
Throughout, the paper explores potential applications of the proposed model.
These include not only versatile timbre transfer between distinct instruments but
interpolation between timbres, resulting in the creation of new sounds that can ex-
pand the aural pallet of musicians, sound designers, and experimental composers
using live electronics. Furthermore, the model extends the library’s toolkit, such
as natural pitch shifting and room acoustic reverb modelling to previously unus-
able polyphonic inputs.

Keywords: Digital Signal Processing, Machine Learning, Real-time, Polyphony,
Timbre Transfer

1 Introduction

Digital signal processing (DSP) refers to the utilisation of algorithms and methodolo-
gies to process and analyse signals, including but not limited to audio and video. The
use of DSP is a cornerstone in creative expression for the digital artist, using technol-
ogy to explore sounds otherwise not possible acoustically. These techniques are often
developed based on a solid foundation of knowledge and theory, enabling the creation
of processes that can effectively extract desirable features or reduce unwanted noise,

1 Code and audio examples at https://github.com/TeeJayBaker/PolyDDSP

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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among other applications. This theoretical basis enables the creation of efficient mod-
els that can generalise well over the relevant domain. This approach is also reflected in
the use of structural priors within neural networks, such as convolution and recurrence,
which are designed to take advantage of underlying patterns and relationships in the
data being processed.

For Musical audio, we can exploit many structures straight from music theory and
spectral analysis. Given its harmonic nature, we can approximate music as a combina-
tion of two components: harmonic - a series of sinusoids with integer multiples of a
fundamental frequency, and noise - any remaining elements not so clearly defined in
the frequency domain. We can leverage this decomposition to construct a decoder us-
ing classical synthesis techniques, resulting in lightweight, robust, and expressive audio
generation. While the DDSP [1] library’s current state-of-the-art (SOTA) work offers
an excellent implementation of these techniques, it has a significant limitation: it cannot
handle polyphonic audio.

In music, polyphony denotes the act of playing or singing multiple distinct notes at
the same time. While some instruments, such as most woodwind instruments, are mono-
phonic and can generally only play one note at a time2, many others are polyphonic and
rely on playing multiple notes at once for creative expression. The CREPE [2] pitch
encoder is a critical component for gathering pitch information within the DDSP li-
brary, and while CREPE is both lightweight and state-of-the-art for pitch accuracy, it is
limited by its monophonic nature. Consequently, the DDSP library is only capable of
reproducing monophonic audio signals, which restricts its applicability to polyphonic
musical audio.

In this paper, we introduce the PolyDDSP model, which combines the modular and
classical techniques from the DDSP architecture with state-of-the-art polyphonic pitch
detection models. This new architecture is designed to handle polyphonic audio while
maintaining lightweight performance and modular interpretability through the incorpo-
ration of multiple audio channels throughout the model. In addition, incorporating a
stochastic latent dimension that closely resembles that of a traditional VAE will enable
a more organic variation in the generated sounds, including the ability to interpolate
between various timbres that have been learned. This allows the creation of new novel
hybrid instrument sounds, broadening the possibilities of musical expression in the digi-
tal studio. The lightweight design of the proposed model also creates the opportunity for
the development of a real-time audio plugin, similar to DDSP-VST, which can be used
for live audio transformations within a digital audio workstation powered by machine
learning.

The main feature of the DDSP toolkit is its timbre transfer capability, creating a
unique tool for the digital studio to surpass the limitations of acoustic instruments by
facilitating novel routes for real-time timbral hybridisation. However, its capabilities ex-
tend far beyond this. Through the complete reconstruction of audio from fundamental
elements, the toolkit can accomplish tasks such as transposing audio while maintain-
ing accurate instrument timbre, modifying performance dynamics, and even manipulat-
ing reverb characteristics, including complete dereverberation. The generalisation work

2 They are capable of polyphonic expression using contempory extended techniques such as
multiphonics.
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presented in this paper extends the applicability of this toolkit to polyphonic audio, sig-
nificantly expanding the potential usage by accommodating audio inputs with multiple
simultaneous notes.

2 Related Work

Transcription: Automatic Music Transcription (AMT) has been a long-standing prob-
lem in music, with Klapuri et al.’s probabilistic model for polyphonic pitch estimation
setting the baseline in 2006 [4]. Recently, the CREPE model [2] achieved state-of-the-
art accuracy for monophonic pitch estimation and was utilised in the original DDSP
paper [1]. However, there has been no model that has matched CREPE’s monophonic
accuracy in the polyphonic domain. Bittner et al. proposed a deep learning-based ap-
proach for polyphonic pitch estimation in their paper on deep salience representations
[5], laying the groundwork for further development. In their latest work, Basic-Pitch [6],
Bittner et al. split the pitch detection pipeline into three tasks and created a lightweight,
instrument-agnostic model that accurately detects pitch deviations and relates them to
score-level note continuity. The accuracy of frame-level pitch detection is only slightly
less than that of more computationally intensive, instrument-specific models.

Style/Timbre Transfer In the relatively young field of timbre transfer, earlier ap-
proaches such as the Universal Music Translation Network [7] relied on multiple sepa-
rately trained decoders for domain transfer. This led to the timbre reconstruction falling
entirely on the decoder, causing costly training. In contrast, Engel et al. [1] split the en-
coding between a fundamental pitch encoder, a residual encoder for timbre, and a raw
extracted loudness envelope. Their model has a strong pre-baked music theory foun-
dation, which allows it to require less training time and data to specialise to a specific
domain and generate high-quality audio. However, the model’s restrictive monophonic
pitch detector and lack of latent interpolation leave significant room for improvement.

Audio Generation Audio generative modelling encompasses various disciplines, such
as music, speech, and sound design. Various methods have been developed to address
the complexity and controllability of generating high-quality audio. WaveNet [8] is a
pioneering autoregressive generative model that produces realistic audio. However, it
comes at a high computational cost, particularly for long output sequences. Recently,
models based on techniques such as Diffusion [9] and Language Modelling [10] have
been developed that produce excellent audio quality from minimal input. However,
these models are also computationally costly and lack fine user control.

In contrast, Spectral Modelling Synthesis (SMS) [11] is a lightweight and modular
approach that splits audio into harmonic and noise components [12]. These components
can be generated separately using simpler techniques like additive and subtractive syn-
thesis, driven by simple parameters. SMS provides greater control over the synthesis
process, avoiding issues such as phasing alignment and spectral leakage and offering
fully parametric flexibility. Thus, it is capable of producing quality audio from minimal
training.
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3 Methodology
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Fig. 1: Pathway through the model, with deterministic elements in red, trainable ele-
ments in blue, and the pre-trained elements in green. Tensor operations are labelled in
yellow (with c being concatenation and + being addition) and dashed lines indicate op-
tional components.

In this section we will discuss the methodology currently implemented within the
proposed audio generative approach as well as the DDSP components that have been
modified for multi-channel operation. Within this paper, each audio channel within the
model will be referred to as a voice, in line with more traditional synthesis vocabulary.

3.1 Encoders

Pitch encoder: The model utilises a pre-trained basic pitch encoder developed by Bit-
tner et al. [6]. Unlike most AMT models, this fully-convolutional model generates three
distinct posteriorgrams (Yo, Yp, Yn), each representing a different aspect of musical
transcription. Yo captures note onsets, Yp tracks fine pitch, and Yn records note events.
This approach enables the model to achieve precise frequency quantised note-tracking
while retaining detailed pitch information necessary for expressive performance, such
as bends and vibrato.

To ensure continuous reproduction for each note during the synthesis step, we use
the note-tracking Yn to allocate each full note instance to a single voice in the pitch
encoding F . As new notes appear, we assign them to the next inactive voice to ensure
multiple non-overlapping voices. Finally, we apply fine pitch changes from Yp to more
closely match the input pitch and create a matching array within V with relevant note
velocity values for each note in F .

Z-Encoder In certain musical instruments like the violin and piano, each performed
note is typically played with a consistent timbre3. However, with instruments like the

3 This is in the context of the general performer. Virtuoso performers will often use many tech-
niques to explore the timbral aspects of their instrument for expressive performance.
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guitar, a single pitch can be and is often produced with a diverse range of timbres, in-
fluenced by factors like the neck position and use of extended techniques. To accurately
reproduce the audio in these cases, it is important to extract additional timbre informa-
tion from the input and therefore we employ the optional Z-Encoder.

The Z-Encoder extracts this extra timbre information from the input audio in the
form of Mel Frequency Cepstrum Coefficients (MFCCs). These coefficients are ex-
tracted by analysing the spectral envelope of the audio through a log mel-scaled spec-
trogram and they represent the distribution of spectral energy across the frequency scale.
To utilise these coefficients, they are passed through a scalable normalisation layer, fol-
lowed by a 512 unit Gated Recurrent Unit (GRU), then finally each time-step is fed
through a linear layer to obtain Z, a frame-wise timbre representation for the input
audio.

To improve the accuracy of timbre construction and reduce model complexity in re-
construction steps further into the model, we are developing a novel convolution based,
pitch-informed source separation step. Utilising the temporally aligned transcription of
the audio input provided by our pitch encoder, we can more easily separate individ-
ual voices by fundamental frequency from input spectrograms using simple lightweight
convolution steps. This will allow for individual voices to have unique MFCCs and
loudness envelopes to more closely reconstruct each voices timbre at later stages in the
model, more closely to the much simpler monophonic case.

Loudness Extraction: To extract a loudness envelope, we also utilise the same steps as
Hantrakul et al. [13] based on a simple psychometric model of perceived loudness. An
A-Weighting of the power spectrum of input audio is log-scaled and centred according
to the mean and standard deviation of the whole dataset. This specific weighting places
higher value on higher frequencies to more closely match human perception.

3.2 Decoders

Latent Spaces and Envelopes: The majority of the control parameters driving the out-
put synthesisers are contained in filter envelopes, A and H as shown in Figure 1. The
tensor A contains a concatenation of both the global output amplitude envelope AG,
functionally controlling the ADSR envelope of each note generated, and each voice’s
harmonic spectra amplitude envelope Av,i, responsible for creating the correct har-
monic balance for each instrument. The envelope H controls the individual frequency
bands in our filtered noise.

The multi-voice operation of the model requires the use of more complex latent
space structure. Some components of the model perform better with limited input in-
formation, while other aspects require global information to function. Extracting each
envelope from the latent space involves a two-step process: the specific features are fed
through a GRU layer, followed by a dense linear layer. However, there is a distinction
in the choice of features. In the case of Av,i, the GRU layer for each voice only receives
input related to the pitch, velocity, loudness, and timbre encoding of that specific voice.
On the other hand, for the global amplitude envelope AG and noise filter envelopes H ,
their respective GRU layers are fed with inputs consisting of encoding for the pitch and
velocity of every voice, as well as the global amplitude and timbre.
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Additive Harmonic Synthesiser: An Additive Harmonic Synthesiser is a type of syn-
thesizer that generates complex waveforms by adding multiple simpler waveforms, typ-
ically sinusoidal waves. All acoustic instruments produce sound by using a resonating
body, which is often a string or an air chamber. Due to the physics of standing-wave
oscillations in resonant bodies, the timbre’s generated by these instruments are char-
acterised by a spectrum of harmonics. These harmonics start with a fundamental fre-
quency denoted by f0 and are followed by an infinite series of integer multiples of that
frequency i∗f0. The key to recreating an instruments timbre lies in accurately recreating
the correct balance of these harmonics via our harmonic amplitude envelope Av,i.

In this model, the sinusoidal oscillator is constructed as a bank of V ∗H oscillators,
where V is number of voices and H is our set harmonic cutoff, that outputs signal x(n)
of discrete time steps n:

x(n) = AG(n)
V∑

v=1

H∑
i=1

Av,i(n) sin(ϕv,i(n))

Where AG(n) is our global amplitude envelope, Av,i(n) is our specific harmonic am-
plitude envelope, ϕv,i(n) is the instantaneous phase at timestep n, obtained from the
frequency embedding Fv as follows: ϕv,i(n) = 2π

∑n
m=0 i ∗ Fv(m)

In summary, the whole harmonic oscillator is parameterised by the three time depen-
dent parameter sets: Fv(n) the fundamental frequencies, AG(n) the global amplitude
envelope and Av,i(n) the harmonic distribution for each voice.

Filtered Noise: Subtractive synthesis works in the opposite way to additive synthesis.
Rather than compounding simple waveforms to create more complex sounds, it starts
with a colourful audio signal such as white noise and filters it until it reaches the desired
sound. In this work, we implement a filtered noise technique similar to that of Engel et
al. [1] by applying a Linear Time-Variant Finite Impulse Response (LTV-FIR) filter to
a stream of uniform noise. To process this efficiently, we use frame-wise convolution
through multiplication in the Fourier domain. Our extracted envelope tensor, denoted
as H , represents our filter convolution function for each frequency band. We then apply
this filter to the Inverse Discrete Fourier Transform (IDFT) of uniform noise, N , to
obtain Y . We convert back to the audio domain by taking the IDFT of Y , resulting
in the framed audio output, y, from which we construct the full audiorate signal using
overlap-add.

Reverb: In most neural synthesis models, the room reverb is baked into generative pro-
cess, as it is an essential component of producing realistic sounding audio. In contrast,
this model applies room reverb after synthesis using a convolution step. This approach
offers several benefits: it allows for greater transparency by enabling the extraction of
dry audio from the model, and it offers more control over the room acoustics in the
generated audio. However, standard convolution via matrix multiplication is computa-
tionally intensive and can hinder training and performance. To address this, we utilise
the same techniques as those used in the filtered noise model - explicit convolution via
multiplication in the frequency domain, which has been found to produce sufficiently
accurate reproduction.
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3.3 Other Methodology

Upsampling: The information contained within audio data is very dense, and at pure
audiorate, it has a resolution that is too high to work with in real-time, even at the
reduced 16kbps used in this model. To solve this problem, the model employs audio
frames with a 64-bit length, and the encoder only extracts information at this frame rate
level before upsampling it back up to audiorate much later in the model for resynthesis.
Each frame lasts for 4ms, which is fine enough to fully track changes in important
attributes such as F0 and loudness envelopes while reducing the temporal dimension of
a second of audio from 16,000 to 250.

Bilinear interpolation is sufficient to upsample discrete variables, such as F0, for
parameterising the additive synthesizer. However, when it comes to smoothing the up-
sampling of various continuous envelopes and preventing artifacting, we use overlap-
ping Hamming windows centered at each frame.

Spectral reconstruction loss: For our training objective we utilise spectral reconstruc-
tion loss. This will allow for comparisons without considering audio phase differences
between input and output, as these will not affect how the reconstruction sounds and
therefore are not important to consider during the training process.

For input spectrogram S and reconstruction Ŝ, the L1 loss for a given spectrogram
is as given:

L = ||S − Ŝ||1 − α|| logS − log Ŝ||1,

where α is log weighting term. This is summed over multiple FFT window sizes i to
get a multi-scale loss Lmulti−scale =

∑
i Li. Calculating the sum of different windows

sizes produces a better match over multiple resolutions, some fine detail matching with-
out loss of the overall picture.

4 Experiments

The proposed polyphonic model’s effectiveness hinges on two key contributions: ex-
tending the DDSP model for polyphonic use ensuring no loss in performance compared
to the monophonic case, and the effectiveness of a stochastic latent space for learn-
ing various timbres within one model. To evaluate, tests mirroring the original DDSP
paper will be conducted, assessing timbre and loudness accuracy through MFCC and
Loudness L1 deviations on GuitarSet and the Solo Violin dataset. GuitarSet allows for
complex timbre test on a polyphonic dataset, while Solo Violin allows a direct compar-
ison to the older model. The models performance on both sets combined will showcase
the abilities of the stochastic latent space.

4.1 Datasets

GuitarSet [14] is a dataset of 360 audio recordings of guitars, each lasting approxi-
mately 30 seconds, featuring six different players playing 30 musical leadsheets across
various genres and tempos in both comping and soloing styles. The recordings were
played on the same guitar with consistent room acoustics to ensure uniform timbre.
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Solo Violin comprises 13 minutes of monophonic solo violin performances by John
Garner from the MusOpen royalty-free music library. All performed on a single violin
in a consistent room environment.

4.2 Evaluation Metrics

MFCC L1 Distance: An important measure of the models reconstruction accuracy
is it’s ability to match input and output timbre. Mel Frequency Cepstrum Coefficients
are used as part of the timbral encoder (z-encoder) step as they are an accurate rep-
resentation of timbral quality and so two indentical timbres at the same pitch should
produce identical MFCCs. The L1 distance between input and output MFCC vectors
should provide a representative measure of the models ability to match timbre.

Loudness L1 Distance: Similarly to MFCCs, the reconstructed track should produce
an identical loudness envelope if it is reproduced accurately. Again, this is computed by
computing the L1 distance between the ground truth audio and the synthesised audio’s
loudness encoding L. Please note that neither of these metrics are used by the model to
evaluate during training, so there should be no inherent training bias.
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Abstract. In this article we examine how we as composers of electronic music
organize our material, files, samples, settings, and compositions, and how exist-
ing technologies fails to meet our expectations. This text is based on a pseudo-
autobiographical pilot study, where we and one other composer wrote journal
notes of a preparation for an improvisation based on previous works or other ma-
terial. The notes were coded and analyzed using thematic analysis that resulted
in six themes: Storage media; Date, time, and remembering; Matured material;
Structure, metadata, and collection of material; Associations; and Tool. Despite
the enormous amounts of storage capacity available, the practice we use today we
bear similarities to Barreau and Nardi’s [1] nearly 30-year-old article Finding and
Reminding. However, current operating systems were originally designed primar-
ily to handle text files, the file system user interface has shortcomings in allowing
for the kind of diversity and plethora of methods for storing and finding audio
files in current music practices. Our study indicates that in order to support the
way electronic music composers work, we need a usable, dynamic, plain, and
transparent storage and material retrieval system.

Keywords: Personal Information Management, Information Retrieval, Artistic
Sensibility, Electronic Music Composition, Thematic Analysis

1 Introduction

Although we believe that it is feasible that the study of artistic practices may generate
results that are of general value also outside of the field of the arts, any results that may
be drawn from this particular study are only valid in relation to the artistic practices of
the three participants. In their often cited and important paper in personal information
management Barreau and Nardi [1] describe how users organize and retrieve files rely-
ing on the hierarchical file system. The similarities between the results of this almost 30
year old article, written at a time when storage devices were measured in mega-bytes
⋆ KKS

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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at best, and the practice of digital artists in the present day with enormous amounts of
digital material at their hands, still has relevance. In this paper we present the results
of a pilot study of electronic musicians’ personal information management of digital
material: How do musicians organize their material (samplings, settings, naming files,
etc.) on the various tools that they use before, during, and after a performance, and what
are the needs that are not satisfied by existing technologies?

This question has a particular meaning in the genre of electronic music since there
is often a lack of visual traces of what goes on in the sound producing engine. Whereas
drummers, for example, moves their hands and hits cymbals that move. A laptop per-
former lacks a similar sense of immersion in performance: moving a finger, if even that,
may result in a range of sonic effects, all of which lacks visual aspects.

Our study is part of a larger research project where we explore new designs to handle
artistic material in electronic instruments, before, during, and after a performance. One
of the central threads in the project is allowing for a widened view on information
retrieval as a method. The hypothesis is that improved access to material creates an
opportunity for a sense of immersion in electronic music. In order to address this we
need to better understand what constitutes relevant material in a musical performance
in electronic music, and how this material is assembled.

This paper is based on a pre-study that we have performed partly to develop a rea-
sonable method with which we can gather results about how a musician working with
electronic instruments handle the material that is generated through their practice, both
live and in the studio. Both of the authors and one student at the Electroacoustic Mu-
sic composition program at the Royal College of Music in Stockholm participated as
subjects in the study.

2 Background

The background to this study is the need to better understand how material that is gen-
erated in the process of composing music on a computer or with electronic instruments
is handled by the user. How are files stored? How are they named? How are they re-
trieved? A session can generate large amounts of material, this material, though often
invisible to the listener, and even the musician, can contain structural information about
the piece. Furthermore, it can be of interest to the musician to re-use the material in
forthcoming projects. To approach this complex field we have chosen to study how
we, in our musical practices, handle the situation and compare it to results in previous
studies in personal information management.

As mentioned in the Introduction the paper Finding and Reminding: File Organiza-
tion from the Desktop by Barreau and Nardi[1] is an important reference. It “suggests
that the way information is used is a primary determinant of how it will be organized,
stored, and retrieved.” They write that the users practice has a bigger impact on the
strategies than the design of the system. Another finding they present is that the value
and quality of the information decrease with time and that users give up on elaborate
filing systems because in the end they do not yield enough value.

Ravasio, Schär, and Krueger [3] investigated how office personnel use their com-
puters. In their study they found two overarching problems. First, the computer desktop
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interface itself and the users’ dealings with the technology; and second, the way the hi-
erarchical file system navigation tools failed to support the information management. Of
specific interest to our study are their findings concerning users’ problems that often the
information was distributes into different parts of the system, such as files, e-mails, and
bookmarks, when these disparate pieces of information formed parts of a larger whole.
These complicated searching and backup procedures forced users to redundantly move
material across different storage media.

With the aforementioned paper being twenty years old, and the changes that cloud
storage backup and ubiquitous WiFi and mobile internet connection has led to, one
might conclude that this paper is no longer relevant. However, Wilken and Kennedy [4]
recently found that people today still use and rely on portable storage devices, both for
file sharing and for backup. File navigation activity still plays a crucial part in moving
files across these different storage media.

Bergman et al. [5] suggests that sophistication of the organizational strategy makes
a difference to the time it takes to retrieve files and that visual cues also speed up finding
files. They also indicate that despite the advent of sophisticated tools for system wide
text based search, such as Google Desktop, Catfish or Apple’s Spotlight, users still rely
on file navigation for their information retrieval and personal information management.
Another study by Horst and Sinanan [6] finds that some of the participants feel a strong
sense of nostalgia, evoked from file navigation, towards old data which affects the way
users deal with their material: the emotional relation to the material impacts on choices
made concerning storage. This contradicts the suggestion by Barreau and Nardi [1] that
old files loose value over time.

Dupont et. al [7] found that there was a lack of efficient systems for retrieving
data: “the tools available today for browsing through large musical libraries hinders the
creative process”, and “with the growing availability of multimedia content, there is a
still larger demand for more flexible and efficient tools to access content and search
for data”. This is consistent with several of the findings in the more general studies of
personal information management and retrieval above.

Recent contributions suggest that machine learning and results from the field of mu-
sic information retrieval can support artists and supply artistic materials in performances
[8, 9]. Here, Knees and Schedl [10] showed that context-based music information re-
trieval methods in general outperform content-based methods, whereas, content-based
methods capture qualities closer to the material.

2.1 Theory

Contemporary music since the twentieth century, including popular music, is full of ex-
amples of how change is a quality in itself: unexpected turns, erratic behavior and un-
predictability are virtues that have been revered and supported creating stylistic changes
at an ever increasing rate, where in popular music there is an abundance of genres and
sub-genres. This is most likely connected to the fact that artistic work in general is en-
gaged in multiple methods and is governed by change and difference to a large degree.

Artistic practice in music, and in particular experimental electronic music, which
is the style we are focusing on in this paper, encapsulates all the things musicians do
when they are engaged in making music. There is no real distinction between composer
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and performer in this genre and the practice includes everything from thinking about
making music and thinking back on past activities involving music to preparing for a
performance or talking to a sound engineer. The artistic practice is guided by artistic
sensibility which operates in a logic of non-conceptual free play where associations can
shift rapidly. Ingman [11] defines artistic sensibility “as the sensitivity and capacity to
appreciate and act upon concerns of or pertaining to art and its production”. Thomp-
son [12] includes an intersubjective perspective into the definition of artistic sensibility
and claims it “embodies the awareness of the self as an artist through the integration of
artistic and aesthetic attributes toward self and other.” This awareness is of importance
in this project as it extends not only to the other musicians that may be involved in the
performance, but also to the material that the artist is handling. It contributes to “a cer-
tain freedom of responsiveness as the client’s artistic sensibility pervades and informs
affective and cognitive reactions to his or her internal process and the wider environ-
ment.” [12]. Even if the genre, context, economy, ethics, and social circumstances set
the confines for what is possible, there may not be a set goal against which the results
can be measured. The critical judgment needs to happen continuously. Even if activities
are geared towards a general end objective, such as a concert, distinctive for artistic
practices is that they may always change direction at any time.

Artistic practices may have much in common with, and be very similar to, other
practices such as programming, engineering, publicizing and many other tasks, how-
ever artistic practices are distinct from these because they are governed by an artistic
sensibility towards all materials in the project. Schön [13] delineates this process as “a
conversation with the material of a situation.” In our study we have considered the mate-
rial to be the materials of a composition such as score, source code, sound patches, text,
images, and recordings that can be stored in files. In conversation with the material,
artistic practices pivot around methods of finding rather than creating, of uncovering
rather than control, change rather than uniformity, and they are generally experiential
rather than propositional.

3 Method

As part of a larger study where we engage with electroacoustic under graduate com-
position students, this pilot study includes one male student and the two authors as
previously mentioned. One of the purposes here is to develop the method for a larger
study in which gender balance, background, and genre are of importance. In the study
all participants worked on a computer and a set of various software and hardware. We
kept a journal of the preparation for an improvisation based on material from previous
works or other sources. In a project journal the participants reflect on how they orga-
nizes their material, and in a final reflection to identify and describe advantages and
disadvantages of the structure, or lack thereof, they were using. Furthermore, we asked
him to briefly describe an utopian optimal solution for how to organize material in a
practice such as his own that would support the composition process. Because we as
authors are also part of the electronic music community our perspective in this study is
emic. According to Pike [14], this means analyzing the unique meanings and symbols
used within a culture or group that we as researchers are part of. He argues that the un-
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derstanding of a culture requires examining the language and communication methods
from within. Our insight in the experiences and perspectives of the practices of elec-
tronic music composers allowed us to also understand the underlying assumptions and
values. On the other hand there is a risk that we from our privileged perspective have
assumptions that may mask events in the practice that we then fail to expose because
they are, to us, self-evident. We managed this risk by staying open to the data we ana-
lyzed and by relying in the thematic analysis method [16, 18]. In the written reflections
in the study related to the information retrieval process and how material is organized
the method is inspired by autoethnography [15]. Thus, the main data for this pilot study
consists of the written reflections of three participants. Instead of proof by numbers
we have cross-examined the qualitative data, and trusted in our reflections and in the
thematic analysis method.

Thematic analysis [16, 18] is a pragmatic method to guide and organize the inter-
pretation of data performed in six steps: (1) become familiar with the data, (2) generate
codes, (3) search for themes, (4) review themes, (5) define themes, and (6) write-up. We
made the initial three steps individually, where we both analyzed the student’s journal
and each other’s journal. In the second step we relied on open coding without preset
codes. To document initial ideas and interpretation of the codes and themes we wrote
memos inspired by the Strauss and Glaser’s [19] grounded theory method. We made
the remaining three steps collaboratively. This allowed us to calibrate ourselves in the
analysis of the student’s reflections and double check our codes and themes because we
both looked at each other’s texts where the interpretation, codes and themes, of an ex-
tract from the reflection could be discussed with its author. Initially we had seventeen,
mostly semantic, themes [16], based on the explicit meaning of utterances. In the fourth
and fifth step we used the initial memos, revised, and redefined the themes into latent
themes [16]) where the themes express underlying ideas and processes.

4 Research ethics statement

The study did not handle any sensitive personal data. To use the data produced in
the study, we have obtained the explicit consent from the participant. The participant
has certified voluntary participation, providing us the right to publish pseudonymized
quotes from the journal and sample recordings that illustrate findings, and the partici-
pant has certified awareness of the study’s procedure. Quotations from the project jour-
nal have been presented pseudonymously. The data from the study is stored pseudony-
mously.

5 Findings

From the data and codes we initially found twelve themes where each theme was built
from a few codes. These themes were further developed and focused into six themes:
Storage media; Date, time, and remembering; Matured material; Structure, metadata,
and collection of material; Associations; and Tool. Figure 1 presents a model of these
themes and their relative inter-connections, and the themes are described in the follow-
ing.
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5.1 Storage media

This theme refers to the activity of dealing with storage media. Media types and media
storage location are both aspects that are included, as explained by P2: “the resulting
piece, when I believe it is worth it, is stored via SoundCloud or Vimeo”. The develop-
ment of storage media impacts on the workflow of artists and P2 further comments upon
the ways in which this development allowed for new practices. When audio files ”were
too large for the floppy discs” the relationships changed and “eventually I did not store
anything except the recording to the fixed media” (P2). P3 comments that they “usually
copy the whole directory [...] which is problematic and takes up disk space”. Economic
awareness of disk space usage may impact on artistic processes. Storage media is at the
very heart of the activities discussed here and is of central importance. It can stretch
from discontinued media such as physical tapes and disks, hard drives and SSD disks,
and online storage formats. P1 explains: “Hard drives, cassette tapes, USB sticks and
memory cards are tucked away everywhere in the studio and the workflow takes shape
there as well.” These types of storage media have a huge impact on the material and
a sound file stored on one media may change to a significant degree if transferred to
another, both in terms of its properties and the ways in which it can be interacted with.
This theme is connected to the themes Structure, metadata, and collection of material;
Date, time and remembering; and, Matured material, see Figure 1, because all these
themes are consequences of the design of, and interface for the hierarchical file system
media storage.

5.2 Date, time, and remembering

This theme relates to the navigation, structuring, sorting, and information management
of content material based on time and date. For instance, P2 describes how files are or-
ganized in date order: “However, the bundle files are sorted in the date order. For more
elaborate pieces that constitute a plethora of different files, sketches, samples files, im-
ages, source code for SuperCollider.” It also accounts for associations to when pieces
were made, or locating files from date associations. Date, time and remembering is im-
portant within the storage container for a work (see Structure and metadata, collection
of material) but also describes the organization of the works themselves. Furthermore,
forgetting about content material is also a part of this theme explained by P1 as “what is
lost or forgotten is not used”. P1 continues by describing how sorting based on date can
help the rediscovery of such forgotten content: “Sometimes I use sorting principles for
lists of folders like ”last opened/modified” to see what’s hiding among the storage de-
vices.” Memory is obviously central to this kind of practice since all musical practices
rely on memory and mnemonic associations, also on an overarching level. P3 describes
how rememberance is a part of a performance: “The advantage with my method is that
once I start to play, I know what kind of material I have to work with.” P2 comments
that “I can more easily remember when I made a piece of music rather than what I
called it” which hints at the organizational importance of date and time. Materials that
have been forgotten or lost that are perceived in a new way related to, acousmatic lis-
tening [17], are directly connected to the theme of Matured material. Figure 1, shows
that this theme has a relationship to Matured material where time alters the perception
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of the material. It is related to the theme Structure, metadata, and collection of material
where date and time is explicitly used to organise the material. This theme is also re-
lated to Associations due to the date supported in current systems, and to media storage
because of the current implementation support for creation, last edited, and last opened
dates.

5.3 Matured material

This theme is about the phenomenon of materials and the way they change over time,
such as files maturing as a function of change in the user’s perception. This is illustrated
by P1 in the following quote: “In my view, it is like having a wine cellar without an
inventory list and that the work in the studio can be equated with collecting the bottles
that can be thought of as working well together or in some other way picked out to be
uncorked.” This may be both due to the altered perspective, and because the material
has actually deteriorated expressed by P1 as in “files may be processed and/or they
may retain their original appearance”. Furthermore, files can be reused and repurposed
based on their matured artistic qualities. There is a natural connection between this
theme and the Date, time and remembering theme because the main operative structure
here is the passing of time, see Figure 1. Matured material is also related to Schaeffer’s
reduced listening [17], where time makes us forget the origin of, or the circumstances
of the creation of the sound. This is poetically described by P1 as a Darwinian archive
in which only the strong, or used, material survives. Matured material that resides in
folders or on external drives, relates this theme to the Storage media theme and to the
Structure, metadata, and collection of material theme, see also Figure 1.

5.4 Structure, metadata, and collection of material

This theme describes the organization of content and material in files. A common exem-
plification of this is where pieces and works are structured inside a container, or a folder
in a file system. Within this container, however, the file order is often unstructured, and
the structure of the files may instead rely on metadata, for instance, date, color tags, file
type, location — the cartesian position within a folder. This can be achieved loosely
via the file manager tools of the operating system, as illustrated in the quote: “Tags and
color coding of files as well as combinations of these to be able to more easily navigate
what is linked by association due to content or area of use. [. . . ] I use a hard drive where
files are arranged in different formations purely graphically in a folder.” (P1). These as-
sociations between material files makes this theme related to the Associations theme,
files located on different hard drives relates to the media storage theme, and the use of
date metadata relates this theme to Date, time, and remembering, see Figure 1. Another,
more rigid, method to organize content in the container formally is through a structured
description, such as a makefile. As reflected on by P3, choosing a strict method like
this impacts on the voice of software. (See more under the theme of Tool). Maintain-
ing structure may be difficult due to inconsistencies in file names and metadata. P3,
however, comments that “the disadvantage is that it is difficult to use/reuse material in
other projects” if all the project files are assembled in one container. To reuse parts of
a project, or the parameter structure and relations within the project container, while
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preserving the integrity of the material; related to the theme Associations, see Figure 1;
it may be necessary to make copies of the entire container rather than copying individ-
ual files. This kind of organization is akin to the common paradigm of files in a DAW
where, as commented by P2, “each song was a file or bundle that included everything
for the piece”. P2 continues that “the disadvantage [with this method] is the lack of or-
der inside each piece, in particular for the more elaborate and experimental works that
include many different file formats.” Dynamic organization of content, where the work
rather than the storage constitutes the semantic structure, with querying for metadata
across all projects would support the reuse of content.

5.5 Associations

This theme is about various associations between media, files and other aspects of artis-
tic production, or systems that may operate with such associations. In the following
quote, the whole network of association within a piece, between it content, parame-
ters, and external connections is reused: “A composition is often based on presets from
a previous project, but channels and connections go to new inputs. Control data with
step patterns or start and stop points, pitch changes, or automated effect parameters and
pans can be transferred from one thing to another, and in an improvisational/intuitive
way create a whole reminiscent of the previous project because junctions between them
are built into the technical infrastructure of the work.” (P1)

In commonly used personal computer file navigation systems associations based
on date are important, which is related to the Date, time, and remembering theme, see
Figure 1, whereas current information retrieval tools appear to not sufficiently support
complex associations. P1 comments: “I sometimes use principles for sorting material
that are related to ‘most recently opened/changed’ whereby I get information about
what is hidden behind the structures of storage, and the result is often creative.” This
may be understood as a method of choosing files that is not necessarily based on a
musical association to the present material, but one that may generate surprising effects.
The association in this case is temporal, and meta-structural (as in material often used
are getting more exposure than others) rather than relational.

5.6 Tool

This theme concerns the tools, or lack thereof, in the artistic work for the management
of content, which is either tool dependent, where the tool “dictates” how to handle
content, or the lack of tool independent means for organizing and/or finding materials.
Tools can also be aspects of a larger system for production such as a DAW that contains
synths with presets, the use of which may also be considered a tool. Here the theme is
related to Associations theme, see Figure 1, because tools may impose or capture the
associations of materials. A distinction between “tool” and “content” may be difficult
to draw but is of interest in this context and is explored in the following quote: “It is
a lengthy process if I want to change the sounds loaded, it’s simply not possible to
change loaded sounds in real time; they are hard coded.” (P3) Here, the tool makes
it difficult to handle content. The actual practice of using an instrument may dictate
the kinds of tools that are useful. In the case of a modular synthesizer, for example,
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Fig. 1. This figure depicts the relationships between the themes. Each line represents an explicit
relationship from the findings, where most of the relationships has a caption. For instance, the
Date, time, and remembering and Associations themes have a relationship based on the file date
metadata supported in current operating systems file navigation interfaces.
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a mobile phone camera may be useful to recreate a piece, whereas in programming a
photo is less useful. A modular synthesizer, for example, depicts the possible means for
documentation: “When I believe the patch of the modular synthesizer is worth saving,
I use a notation or a patch description language that allows me to recreate a patch with
some degree of precision.” (P2) Recording and storing wave files in the file structure
of the operating system is different from recording using a DAW that also provides
the user with a management system, hence this theme is also related to the Structure,
metadata, and collection of material theme, see Figure 1.

6 Conclusions

Wilken and Kennedy’s [4] notes on the nostalgia of data and its age may determine its
value has links to the analysis under Matured material, Storage media (Section 5.1)
and Date, time and remembering (Section 5.2) where in particular the discussion on
“old wine” (see also Figure 1) suggests an objectification of the material. This aspect
of nostalgia give rise to a further abstraction where the actual storage results in a rep-
resentation of a memory and becomes more important than the data it holds: “archives
are felt to be significant, even if the data is no longer accessible” [4] - the media is truly
the message.

Our findings, in particular for the theme describing the Structure, metadata, and
collection of material (Section 5.4) indicate that electronic music composers are filing
information according to systems of keywords, tags, and carefully architectured logical
schemes. This contradicts one of the key points of Barreau and Nardi [1]. Although our
study shows that there are systematic and logical schemes for storing files by the users,
these strategies were constructed based on the needs of the current project rather than on
a general and reusable format. In other words, organization of files is structured accord-
ing to the composition and production work, which is loosely in line with the conclusion
by Wilken and Kennedy [4]. Barreau and Nardi are also stressing that “finding and re-
minding are intimately linked in users’ practice and should be considered together” [1].
Storage arrangements today commonly range over a large number of different kinds
of systems, such as cloud based, disks and USB-sticks, each with different levels of
tangibility that offer different possibilities. These do indeed support individuality (see
Section 5.1) but are commonly tied to the logic of the file system at hand. File access in
current operating systems were originally constructed primarily for handling text files.
According to aspects discussed in the themes Date and time, and remembering (Section
5.2), and Associations (Section 5.5) relating to the organization of audio file and music
information, our study indicates that the file system user interfaces has deficiencies in
allowing for the kind of multiplicity of methods for storing and finding audio files that
the participants in this study deploy. However, this study is mainly valid in relation to
the three participants. Hence, our findings indicate the need for a larger study, with pos-
sibly more general results. Such a study could furthermore provide insight into other
fields of creative practices but most importantly: We believe that there need to rethink
the design of a usable, dynamic, plain, and transparent storage and material retrieval
system to support how electronic music composers and performers work.
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Abstract. The usefulness of computer-based tools in supporting singing ped-
agogy has been demonstrated. With the increasing use of artificial intelligence
(AI) in education, machine learning (ML) has been applied in music-pedagogy
related tasks too, e. g., singing technique recognition. Research has also shown
that comparing ML performance with human perception can elucidate the usabil-
ity of AI in real-life scenarios. Nevertheless, this assessment is still missing for
singing technique recognition. Thus, we comparatively evaluate classification and
perceptual results from the identification of singing techniques. Since computer-
assisted singing often relays on visual feedback, both an auditory task (recogni-
tion from a capella singing), and a visual one (recognition from spectrograms)
were performed. Responses by 60 humans were compared with ML outcomes.
By guaranteeing comparable setups, our results indicate that ML can capture dif-
ferences in human auditory and visual perception. This opens new horizons in the
application of AI-supported learning.

Keywords: AI-supported Education, Singing Techniques, Perception

1 Introduction

Singing techniques, as well as the strategies to teach them, have evolved over the his-
tory, in correspondence with chronological and geographical factors influencing music
development [1]. Nevertheless, singing pedagogy has been mostly based in oral tradi-
tion, which is the reason why the description of how to perform such techniques is, in
some cases, vague and imprecise [2]. Due to this, while experienced singers and teach-
ers can naturally evaluate the quality of singing by simply following their intuition [3],
this task might be particularly challenging for beginners.

The advantages of using computer-based applications to support teaching and learn-
ing have been shown [4]. Within music pedagogy, the use of computer-assisted singing
tools, able to enhance singers’ awareness, have become of common use in combination
with traditional pedagogy [5]. Indeed, some of these tools have shown to be particularly

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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assessment of singing quality [7]. Similarly, research on the automatic recognition of
specific singing techniques has recently gained popularity [8, 9].

Nevertheless, the development of ML tools to support singing training is still on
its infancy, which comes along with not yet well-defined use-cases and prevents a real
connection between music pedagogy and the AI field. In this work, we present a pre-
liminary study aimed to pave the way for future research on the use of AI in singing
pedagogy. Since it has been shown that assessing how well a ML algorithm performs
in comparison to humans can bring light about the utility of AI in real life [10–13], we
assess, for the first time, the performance of ML methods in singing technique classifi-
cation with respect to humans. By evaluating the perceptual ratings of two participant
groups (with and without musical expertise) in comparison to ML we aim to: (i) assess
how different feature representations perform in comparison to different learners level;
and (ii) try to define potential applications of ML in singing education scenarios.

2 Related Work
The use of technology as an auxiliary educational tool has shown to successfully en-
hance singing pedagogy [14]. This is achieved by integrating acoustic voice analysis
in the learning context as well as by using it as a biofeedback for singers’ training
[15]. Indeed, analysing audio recordings and computer-based feedback are two impor-
tant elements of up-to-date singing pedagogy [16]. In particular, it has been shown
that using visual representations of vocal properties effectively supports learners [5].
For instance, the understanding of phrasing can be enhanced by illustrating vocal pres-
sure [17]. ALBERT [18] and VOXed [19], aiming to promote a more effective singing
learning, are tools developed for real-time educational visual feedback. Finally, the use
of computer-based tools complementing traditional pedagogy has shown to effectively
promote curiosity and motivation [20], two essential aspects for a successful learning.

Within AI, the automatic classification of singing techniques has gained relevance,
which lead to the development of dataset such as VocalSet [8] or J-POP [21]. Research
on VocalSet showed that features learned from multi-resolution-spectrograms can out-
perform the original baseline, based on a Convolutional Neural Network (CNN), with a
much less sophisticated architecture, i. e., Random Forest [9]. Similarly, a recent work
on automatic recognition of paralinguistic singing attributes, e. g., vocal register and
vibrato, has confirmed that feeding traditional ML models, such as Support Vector Ma-
chine (SVM), with spectrograms is a suitable approach for singing-related tasks [22].

3 Methodology
3.1 Dataset, Preprocessing, and Evaluation Metrics
In this work, we use VocalSet [8], a dataset consisting of 3 560 audio instances (10.1
hours of recordings) produced by 11 male and 9 female singers performing 17 different
singing techniques. As in the original baseline, the experiments were performed by
considering only 10 singing techniques (1 736 audio instances), i. e., the most relevant
in practice: Belt, Breathy, Inhaled, Lip Trill, Spoken, Straight, Trill, Trillo, Vibrato, and
Vocal Fry. In Table 1, the frequency distribution of the used audio instances across the
singing techniques, as well as their duration in minutes, is indicated.
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Singing technique Number of instances Duration
Belt 205 26.24
Breathy 200 28.00
Inhaled 100 9.95
Lip Trill 202 24.40
Spoken 20 4.06
Straight 361 71.65
Trill 95 18.45
Trillo 100 14.54
Vibrato 255 57.79
Vocal Fry 198 34.10

Table 1: Overview of the samples from VocalSet
used in the experiments. For each singing tech-
nique, the total number of instance and overall
duration in minutes is given.

Fig. 1: Distribution of chunks across singing
techniques. Besides the total, those used in the
user study and as test set in the machine learn-
ing experiments, are displayed.

Following the pre-procesing guidelines used in the baseline of VocalSet [8], the
silence at the beginning, middle, and end of the audio files were removed and the in-
stances were split into chunks of approx. 3 seconds length. The distribution of the re-
sulting 3 934 audio chunks across the corresponding singing techniques is displayed in
Figure 1 (cf. Total). For the user study and as a test set for the ML experiments, the
chunks extracted from the audio instances produced by singers F2, F6, M3, and M11
(i. e., 777), were considered (cf. Test Set in Figure 1). These singers were selected as
they produced samples for all the considered techniques.

The experimental results, for both the user-based and the ML experiments, will be
evaluated in terms of Unweighted Average Recall (UAR), precision, and recall. UAR,
also known as Balanced Accuracy, is the recommended metric for datasets with an
imbalanced distribution of samples across classes [23]. Besides precision and recall,
confusion matrices will be used to interpret confusion patterns amongst classes.

3.2 Singing Techniques
To enable a better interpretation of the results, a brief description of each singing tech-
nique (illustrated by a spectrogram generated with Praat, cf. Figure 2), is presented.
Since not all the techniques are produced through the same vocalisations in VocalSet,
the spectrograms display a variety of them, i. e., arpeggios, long tones, and scales.

The sound produced by the technique Straight is natural, without any pressure or
ornamentation. This is what we typically refer to as ‘normal’ singing, with the complete
elimination of vibrato [24], which is shown by the horizontal lines in the spectrogram
representing the pitch (cf. Figure 2a). In contrast, when singing Vibrato, the fundamen-
tal frequency and amplitude are intentionally altered by the singer [25], oscillations
clearly visible in the spectrogram generated from the same instance (cf. Figure 2b).

Vibrato is often confused with the technique Trill. However, Vibrato should sound
like one single tone rather than two different ones, which is expected in Trill [24]. This
is achieved by producing oscillations that do not exceed a semitone beyond the main
tone [26]. On the contrary, Trill is perceived as a fluctuation between two clearly distin-
guished pitches [24]. This can be observed in the spectrogram (cf. Figure 2f), where the
regular pitch oscillations are clearly defined contrasting with a dark background which
indicates much less presence of upper and lower tones.
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(a) Straight (b) Vibrato (c) Belt

(d) Lip Trill (e) Inhaled

(f) Trill (g) Trillo (h) Breathy

(i) Vocal Fry (j) Spoken

Fig. 2: Spectrograms displaying each of the evalauted singing techniques. All of them
are generated from samples performed by the female singer F1 producing the vowel ‘a’
except Spoken, for which a text is read. The used vocalisations are: arpeggio (Straight,
Belt, Vibrato, Lip Trill); long tone (Inhaled, Trill, Trillo); scale (Breathy, Vocal Fry).

Trillo is a singing technique described as a rapid Trill similar to the sound of a
‘bleating goat’ [24]. It sounds like a quick repetition of one single note and is produced
by larynx movement. In the spectrogram (cf. Figure 2g) it can be observed that the pitch
oscillations are much less pronounced than for Trill. Another distinguishable property
are the pitch breaks visible in the spectrogram, which are due to breaks needed by the
singer to catch air when performing this exhausting technique.

In comparison to ‘normal’ singing, Belt is produced through a higher subglottal
pressure and by keeping more firm vocal cords adduction, which results in higher sound
levels [25, 27]. This technique sounds ‘forced’, i. e., it is not perceived as relaxed singing
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but rather uptight. Belting is referred to as raising the chest voice above the typical
register and implies a higher level of physical effort [28]. This can be observed in the
spectrogram by the rather straight and tense pitch lines (cf. Figure 2c).

The technique Lip Trill, often used as a warm up exercise, is done by continuously
vibrating with the lips while simultaneously maintaining phonation [29]. This technique
is the only one where the mouth and lips remain closed, something distinctive in the
spectrogram, where there is barely any black background (cf. Figure 2d).

Another characteristic technique is Inhaled, as its main feature is that, unlike all
the other techniques, the sound is produced using an inspiratory airflow instead of an
expiratory one. Therefore, the sound is generated while the singer inhales [30], which
can be observed in the spectrogram by less clearly defined pitch lines (cf. Figure 2e).

The technique Inhaled sounds, to some extent, similar to the techniques Breathy and
Vocal Fry. In Breathy, a low subglottal pressure is combined with a less efficient adduc-
tion of the vocal cords [31]. This results in a sound characterised by audible airflow,
which is shown in the spectrogram by broader and blurrier pitch lines (cf. Figure 2h).
In Vocal Fry, characterised by lower subglottal air pressure and transglottal air flow,
the vocal folds are shortened, even when frequency increases [32]. This is shown in the
spectrogram by diffuse and irregular pitch lines (cf. Figure 2i).

Finally, Spoken, in contrast to singing, is the only technique that does not require the
control of the pitch. The distinguishing feature visible in the spectrogram is a grid-like
pattern (cf. Figure 2j) where the horizontal lines (relatively stable) represent the pitch
and the vertical ones (unequally spaced out) correspond to the words’ articulation.

3.3 User Study

The user study consists on two experiments performed by different groups: (i) musically
trained individuals (task based on auditory perception); (ii) non-musically trained indi-
viduals (task based on visual perception). Both experiments were performed through a
web-based interface and began with an example (either an audio or an spectrogram) of
each singing technique. Then, an explanation of the task, presented as a multiple choice
test, was given. For each sample, the participants could choose one singing technique
out of the ten given possibilities. 60 volunteers (31 female, 29 male; µ = 32.3 years)
participated in the study. Most of them were Austrian (43), the rest were German (14)
and Australian (3).4 They were recruited through the authors’ social networks and con-
sent, requested through the interface, was a requirement to take part in the experiment.5

In the auditory experiment, the participants were expected to identify the singing
techniques by listening to the audio excerpts. Since a trained ear is necessary for this
task, in the auditory task only participants with a musical education (9 female, 11 male)
took part. Their formal training included choir conductor, singing, and vocal studies. In
the visual experiment, the participants were expected to identify the techniques by look-
ing at spectrograms generated from the audio excerpts. Spectrograms were chosen since
typically used in singing lessons [16], specially to support beginners [33]. Since for the

4 Due to the imbalanced distribution of participants, nationalities’ role will not be evaluated.
5 The procedures used in this study adhere to the tenets of the Declaration of Helsinki. Partici-

pants consented the use of their anonymous responses only for research.
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auditory task a trained ear is needed, the visual task was considered a more suitable
alternative for the participants without musical background (22 female, 18 male).

In order to avoid fatigue, the 777 excerpts were randomly distributed across the
participants. For the auditory task, this was made in a way that each would annotate
between 75 and 80 audio chunks. Since we expect the evaluation of spectrograms to
required more time than assessing audio samples, in order to preserve the reliability
of the experiment, for the visual task each participant would annotate between 37 and
41 images. In both experiments, in order to prevent individual biases, each sample was
evaluated by two different participants, which lead to 1 554 annotations per task.

We are aware that assessing two user groups (experts and non-experts), makes the
setups not comparable within the user study. However, the final goal of this study is to
make a one-to-one comparison between perception (auditory as well as visual) and ML.
In addition, in base of the principle that learning should be tailored to individuals capa-
bilities [34] (which are not the same for musically trained users and non-trained ones)
we believe that considering the same task for both user-groups would heavily penalise
the non-trained group. Thus, to perform a fair comparison of trained and non-trained
users with the ML algorithms, two different perceptual experiments were performed.

3.4 Machine Learning Setup
Following previous works on singing classification [8, 22], both traditional models and
neural-based were implemented. Due to space limitations, the results for the traditional
models (outperformed by the neural ones) will not be reported. A Neural Network (NN)
and a Convolutional Neural Network (CNN) were implemented in the tensorflow frame-
work. The NN, presenting eight layers, Relu as activation function, and categorical
crossentropy as loss function, was trained for 40 epochs. The CNN was implemented
as in the VocalSet baseline [8], i. e., consisted of seven convolutional layers, seven max
pooling layers, learning rate of 0.001, a momentum of 0.6, and categorical crossentropy
as loss function. It was trained for 30 epochs.

Two type of features were considered: Mel-Frequency Cepstral Coefficients (MFCCs)
and spectrograms. They were chosen as suitable representations according to state-of-
the-art literature [35] and their corresponding outcomes will be compared with the au-
ditory and visual perceptual results, respectively. The features were extracted from the
audio files (sampling rate: 44100 Hz) with default parameters of the librosa package:
fft-size of 2048; frame size of 93ms; and frame step of 23ms. For the MFCCs, the first
20 coefficients were extracted. As already mentioned, the 777 excerpts produced by the
singers F2, F6, M3, and M11 were used as test set and the remaining 3 157 excerpts as
training set. By this guaranteeing a comparable setup w. r. t. the user study, where only
the 777 excerpts were assessed.

4 Results
4.1 User Study
As expected, the experimental outcomes show a higher performance from the musically
trained participants: UAR= 76% for the auditory task w. r. t. to a UAR= 41% for the
visual one. In Figure 3 the confusion matrices for both experiments are displayed. The
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Fig. 3: Confusion matrices for: perception in the auditory task (UAR= 76%); percep-
tion in the visual task (UAR= 41%); classification from a Neural Network (NN) fed
with MFCCs (UAR= 59%); and classification from a CNN fed with Spectrograms
(UAR= 57%). Darker cells indicate higher values (%); rows encode real labels. Re-
calls are given in the diagonal; precisions are shown in the last row of each matrix.
Note that the UAR is an overall measure computed from the whole confusion matrix.

higher recall and precision achieved by musically trained users is shown for all the
techniques, which is displayed by a well defined diagonal and a darker precision row
for the auditory results. The confusion between singing techniques experienced by users
without musical training is shown by the spread of responses across the matrix as well
as by the lower precision (cf. light colour of the last row) for the visual results.

Remarkable results are shown for the techniques Lip Trill and Spoken, recognised
with the highest recall in both experiments: in the auditory, both techniques achieved
100% recall; in the visual experiment, they achieved 69.5% and 73.1%, respectively.
Indeed, these two techniques are particularly distinctive w. r. t. the others, which make
them more easily recognisable. As mentioned in Section 3.2, from an auditory point
of view, Lip Trill is the only technique produced with a closed mouth and Spoken is
the only one for which the pitch is not controlled. Although these aspects are visible in
the spectrograms, it is important to note the low precision achieved for both techniques
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in the visual task: 33.2% and 24.1%, respectively; which indicates that despite their
characteristics, these techniques are often wrongly chosen by the non-experts group.

Beyond the expected performance differences between listeners’ groups, a promi-
nent confusion pattern is common in both experiments, i. e., samples from Vibrato are
wrongly identified as Trill. In both tasks, the amount of misclassifications is nearly half
of the correctly identified samples. For the auditory experiment, 25.5% misclassifica-
tions vs. 55.7% correct hits; for the visual one, 24% misclassifications vs. 41.7% correct
hits. The confusion pattern is also shown in the opposite direction, i. e., Trill instances
are wrongly identified as Vibrato, a result consistent with previous research showing
that Trill might be similar to Vibrato performed with an ‘exaggerated extent’ [36]. The
described confusion pattern involves Trillo as well, i. e., Trill and Trillo are misclassi-
fied not only as Vibrato, but also amongst themselves. Indeed, the three techniques are
similar, since produced by modulating the fundamental frequency (cf. Section 3.2).

Finally, a prominent confusion is displayed for the visual experiment, i. e., Vocal
Fry is wrongly identified as Lip Trill. The percentage of misclassifications exceeds by
far the amount of correctly identified instances: 36.2% vs 15.2%. The pattern is not
shown for the auditory experiment, which suggest that this type of confusion relates to
similarities in the spectrograms difficultly disentangled without audio information.

4.2 Machine Learning
Amongst the evaluated algorithms and feature sets, the best performing model was
the NN fed with MFCCs (UAR= 59%) followed by the CNN fed with spectrograms
(UAR= 57%). Confirming the results shown in both perceptual experiments, Lip Trill,
and to some extent Spoken, are also the two techniques best recognised by the model
fed with MFCCs: 98.1% and 84.6% of recall, respectively; cf. diagonal in Figure 3 (NN
- MFCCs). This was also shown for the model fed with spectrograms concerning Lip
Trill, achieving the highest recall (83.8%), but not for Spoken, reaching only 38.5% re-
call; cf. Figure 3 (CNN - Spectrograms). It is important to note, that despite the low
recall for Spoken, the precision for this technique is lower for the NN than for the CNN,
which indicates that the promising recall is only due to the high confusion attracted by
the class; the same is displayed for the visual experiment but not for the auditory one.

The results from the model trained with MFCCs show that except for Belt (recall=
92%), all other techniques achieved a considerably lower recall: 39.6%≤recall≤53.7%.
Belt was also well recognised in the auditory experiment but not in the visual one,
which suggests that acoustic properties characteristic of this technique, recognisable
by ear, can be better captured by specific acoustic features such as MFCCs than by
spectrograms. In fact, this is to some extent confirmed by the lower recall for Belt
achieved by the CNN trained with spectrograms, i. e., 72%.

As shown in the user study, the most prominent confusion pattern displayed by the
ML results is between Trill, Trillo, and Vibrato. This is clearly shown by the misclassifi-
cation of Trill instances as Trillo: 24% and 26% for the model trained with MFCCs and
spectrograms, respectively; as well as those misclassified as Vibrato: 16% and 38%,
respectively. However, unlike in the user study, this confusion is not displayed in the
opposite direction for the ML task, i. e., almost no instances of Vibrato are wrongly
classified as neither Trill nor Trillo, misclassifications ≤ 4.7% for both models.
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Interestingly, Vibrato is particularly well classified by the CNN, i. e., the model
trained with the spectrograms (76.5%). This is also shown, to some extent, by the non-
trained user participating in the visual task, for whom this technique is identified as the
fourth best (41.7%). Differently, in the auditory study, Vibrato was the technique worse
recognised (55.7%), and also for the NN (model trained with MFCCs), Vibrato was
by far worse classified than for the CNN (53.7% vs 76.5%). This suggest that spectro-
grams are more suitable than acoustic features for characterising Vibrato’s properties,
something observable both perceptually and from a computational point of view.

Finally, another prominent confusion pattern shown by the model trained with MFCCs
is given by the high percentage of Breathy and Inhaled samples wrongly classified as
Vocal Fry: 41.7% and 32.3%, respectively. This is partially mirrored by the results from
the user study. A major confusion of Inhaled towards Vocal Fry is shown in the auditory
task (16.9%); while a major confusion of Breathy towards Vocal Fry is shown in the vi-
sual experiments (15.5%). However, this confusion pattern is not shown for the model
trained with spectrograms, for which the misclassification is shown between Breathy
and Inhaled themselves: 22.6% of Inhaled samples are wrongly classified as Breathy.
This suggests that training a ML model with acoustic features such as MFCCs might
enable to artificially mirror, and even amplify, perceptual patterns shown by humans
assessing different modalities. Something not possible when using spectrograms.

5 AI in Singing Education: Future Directions
Within the e-learning context, the most obvious use-case for a system able to recog-
nise singing techniques is to provide feedback during students’ training. For instance,
since the singing technique Breathy, sometimes also referred to as Rough, is not de-
sired in most genres [22], the ML-based application would first detect Breathy singing
and subsequently suggest exercises to prevent it. Our comparative results confirm pre-
vious works on human vs. machine speech identification [13], indicating that the most
predominant perception patterns shown by humans can be mirrored by ML. Neverthe-
less, while our models outperform non trained users, they are still less accurate than
musically trained individuals. This indicates that standard ML architectures (as those
used in this study) could be useful in providing feedback to beginners; however, more
sophisticated models should be developed to meaningfully support advanced learners.

Our experimental outcomes also show that ML can capture confusion patterns com-
ing from different perceptual modalities. This type of parallelism might be particularly
informative when integrated in a XAI system, i. e., a ML systems which besides giv-
ing a prediction, is also able to provide a human-understandable reasoning justifying
it. Thus, an XAI assistant could propose specific warm-up exercises depending on the
singers’ voice [37], subsequently assess whether the performed technique match the
target, and finally illustrate (either visually or acoustically, depending on which feature
representation is more informative), the predicted class (performed by the student) with
respect to the target one (performed by a professional singer of the system’s database).

Similarly, in base of our results, an XAI assistant could also highlight the most
prominent confusion patterns shown for both perception and classification, i. e., the
confusion between Trill, Trillo, and Vibrato. By displaying not only a visual (qualita-
tive) representation but also precision (quantitative) measures achieved by the model,
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learners might gain a more objective understanding of the similarities between tech-
niques, something that beyond being perceived, can also be measured. At the same
time, this would also illustrate real challenges in distinguishing amongst some tech-
niques, which would encourage a more constructive learning experience. We believe
that the use of intelligent systems as the one just described, specially when including an
XAI component, would promote in first place exploration, motivated by the curiosity of
interacting with the XAI assistant. Furthermore, another important expected outcome is
to encourage the students to carefully evaluate their own performance, both visually and
acoustically, which would lead to the development of self-reflective and critical skills.

Needless to say that such a system, in particular considering that the current re-
sults are way below human proficiency, would be expected to be used as a complemen-
tary tool to traditional teaching, i. e., supporting the student (specially during individual
learning), but used under the close supervision of the teacher. Indeed, a full develop-
ment of the system, including an user interface as well as a usability assessment in a
real pedagogical scenario, is still to be done and constitutes one of our future priorities.
In this process, a continuous monitoring from singing educators, critically assessing the
potential of the system in complementing their own practice, is essential.

Finally, beyond supporting vocal training, the recognition of specific singing tech-
niques in a song might also enable the classification of a given piece into a musical
style or genre. For instance, the use of the Belting technique, particularly for women, is
typically used in pop genre [38] while Vibrato is a strong indicator of operatic singing
style [39]. The application of this technology in the context of automatic genre classifi-
cation is clearly relevant for music recommendation systems [40]. Similarly, an efficient
singing detection system could also be utilised for an e-learning application aimed to
support students’ understanding of musical genres in relationship to singing styles.

6 Conclusions

We presented a comparative assessment of humans’ and ML performance in singing
technique recognition. Our study shows that some confusion patterns typical of percep-
tion are mirrored by ML, which highlights the potential of supporting education with
AI to illustrate (and further understand) perceptual processed. Our results also indicate
that ML can capture patterns displayed by different perceptual cues: auditory and vi-
sual. This suggests that AI could be of interest to enhance learning through different
perceptual modalities. The presented results seem to encourage further research on the
application of XAI in singing pedagogy, which could promote students’ reflective and
critical skills, by this enhancing the outcomes of a student-centered learning process.
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16. Lã, F.M.: Teaching singing and technology. In Basa, K.S., ed.: Aspects of singing II: Unity
in understanding - Diversity in aesthetics. VoxHumana, Nürnberg, Germany (2012) 88–109

17. Friberg, A., Bresin, R., Sundberg, J.: Overview of the kth rule system for musical perfor-
mance. Advances in Cognitive Psychology 2(2) (2006) 145

18. Rossiter, D., Howard, D.M.: Albert: a real-time visual feedback computer tool for profes-
sional vocal development. Journal of voice: official journal of the Voice Foundation 10(4)
(1996) 321–336

19. Welch, G.F., Howard, D.M., Himonides, E., Brereton, J.: Real-time feedback in the singing
studio: An innovatory action-research project using new voice technology. Music Education
Research 7(2) (2005) 225–249

20. Stavropoulou, S., Georgaki, A., Moschos, F.: The effectiveness of visual feedback singing
vocal technology in greek elementary school. In: Proceedings of the International Computing
Music Conference, Athens, Greece (2014) 1786–1792

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

440



21. Yamamoto, Y., Nam, J., Terasawa, H.: Analysis and detection of singing techniques in reper-
toires of j-pop solo singers. In: Proceedings of the International Society for Music Informa-
tion Retrieval Conference, Bangaluru, India (2022) 384–391

22. Xu, Y., Wang, W., Cui, H., Xu, M., Li, M.: Paralinguistic singing attribute recognition using
supervised machine learning for describing the classical tenor solo singing voice in vocal
pedagogy. EURASIP Journal on Audio, Speech, and Music Processing (1) (2022) 1–16

23. Bekkar, M., Djemaa, H.K., Alitouche, T.: Evaluation measures for models assessment over
imbalanced data sets. Journal of Information Engineering and Applications 3 (2013) 27–39

24. Isherwood, N.: Vocal vibrato: New directions. Journal of Singing 65(3) (2009) 271
25. Kob, M.: Physical Modeling of the Singing Voice. PhD thesis, Bibliothek der RWTH Aachen

(2002)
26. Sangiorgi, T., Manfredi, C., Bruscaglioni, P.: Objective analysis of the singing voice as a

training aid. Logopedics Phoniatrics Vocology 30 (2005) 136–146
27. Sundberg, J., Thalén, M.: Respiratory and acoustical differences between belt and neutral

style of singing. Journal of Voice 29(4) (2015) 418–425
28. LeBorgne, W.D., Lee, L., Stemple, J.C., Bush, H.: Perceptual findings on the Broadway belt

voice. Journal of Voice 24(6) (2010) 678–689
29. Gaskill, C.S., Erickson, M.L.: The effect of a voiced lip trill on estimated glottal closed

quotient. Journal of Voice 22(6) (2008) 634–643
30. Vanhecke, F., Moerman, M., Desmet, F., Six, J., Daemers, K., Raes, G., Leman, M.: Acous-

tical properties in inhaling singing: A case-study. Physics in Medicine 3 (2017) 9–15
31. Proutskova, P., Rhodes, C., Crawford, T., Wiggins, G.: Breathy, resonant, pressed–automatic

detection of phonation mode from audio recordings of singing. Journal of New Music Re-
search 42(2) (2013) 171–186

32. Appleman, R., Bunch, M.: Application of vocal fry to the training of singers. Journal of
Singing 62(1) (2005) 53–9

33. Hoppe, D., Sadakata, M., Desain, P.: Development of real-time visual feedback assistance in
singing training: A review. Journal of Computer Assisted Learning 22(4) (2006) 308–316

34. Schleicher, A.: Educating learners for their future, not our past. ECNU Review of Education
1(1) (2018) 58–75
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Abstract. Singing technique conversion (STC) refers to the task of convert-
ing from one voice technique to another while leaving the original singer iden-
tity, melody, and linguistic components intact. Previous STC studies, as well as
singing voice conversion research in general, have utilized convolutional autoen-
coders (CAEs) for conversion, but how the bottleneck width of the CAE affects
the synthesis quality has not been thoroughly evaluated. To this end, we con-
structed a GAN-based multi-domain STC system which took advantage of the
WORLD vocoder representation and the CAE architecture. We varied the bot-
tleneck width of the CAE, and evaluated the conversion results subjectively. The
model was trained on a Mandarin dataset which features four singers and four
singing techniques: the chest voice, the falsetto, the raspy voice, and the whistle
voice. The results show that a wider bottleneck corresponds to better articulation
clarity but does not necessarily lead to higher likeness to the target technique.
Among the four techniques, we also found that the whistle voice is the easiest
target for conversion, while the other three techniques as a source produce more
convincing conversion results than the whistle.

Keywords: singing voice conversion, singing technique conversion, convolu-
tional autoencoder, generative adversarial networks

1 Introduction

Singing voice conversion (SVC) is a task of converting prosodic features while retaining
the linguistic content. The prosodic features to be converted can include singer identity,
emotions, and singing techniques. Unlike speech conversion, the pitch contour of the
singing voice is usually unchanged in SVC so that the melody of the original voice is
preserved.

In recent years, many deep learning based methods of voice conversion (VC) have
been shown to achieve state-of-the-art performance [1], and several methods have also

⋆ We thank the National Science and Technology Council of Taiwan for supporting this research
under Grant No. 109-2221-E-007-094-MY3
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been applied to SVC [2–8]. Compared to speech, singing is rich in terms of the voic-
ing techniques that singers can apply to enhance their expressiveness, such as to switch
between their chest voice, falsetto, whistle voice, and so on. Thus, one’s singing tech-
nique is a integral part of their singing performance [11], yet computer-based singing
technique conversion (STC) is a less researched field compared to other SVC tasks. Pre-
vious works have applied the autoencoder (AE) for STC [5, 6] as well as other VC tasks
[2–4]; however, how the architecture of the AE affects the synthesized voice quality has
not been thoroughly studied.

Therefore, in this study we focus on the bottleneck of convolution autoencoders
(CAEs) because it corresponds to the latent space representation of the features. Al-
though the conversion process is operating within the latent space whose dimension is
equal to the width of the bottleneck, the bottleneck architectures in existing SVC and
STC models seem to be arbitrarily designed. To the best of our knowledge, few stud-
ies [9] focused on the effects of bottleneck architecture, and no study on bottlenecks
was dedicated to STC or SVC in general, despite of AE’s prevalence in the field. To
gain about to STC and explore bottleneck architectures, we presently built a STC sys-
tem based on StarGAN [10], and experiments were conducted to compare the voice
synthesis quality of STC with different bottleneck sizes.

The rest of this paper is organized as follows. Section 2 describes our voice con-
version system and introduces StarGAN. Then, details of experiments and evaluation
methods are described in Sec. 3. Results are reported and discussed in Sec. 4, and con-
clusions are given in Sec. 5.

2 Voice Conversion System Overview

Fig. 1: The overall system block diagram for the present research

Figure 1 shows the overall system diagram of this research. We adopted the WORLD
vocoder [14] to represent the signal by three sets of features, namely the fundamental
frequency (F0), the aperiodic parameters (AP), and the spectral envelope (SP). The fea-
tures were extracted every 5 ms. We concatenated SP and AP into 56-dimension Mel
Cepstral Coefficients (MCC) for the SP plus 4 dimensions for the AP. Putting this 60
dimension feature into the StarGAN[10] model (illustrated in Fig. 2), we could then
convert the signal in the vocoder domain. Figure 1 also shows that F0 was directly
passed to the synthesizer in order to preserve the pitch of a singing voice.

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

443



The usage of the WORLD vocoder might limit the synthesized audio quality com-
pared to what could be achieved by neurovocoders, such as HiFi-GAN[15]. Neverthe-
less, we chose to work with WORLD for it enables us to separately consider F0 and
other acoustic features, which suits our purpose of transforming the singing technique
while maintaining the original F0.

StarGAN StarGAN[10] is a GAN-based model consisting of a generator and a dis-
criminator. The generator adopts a convolutional autoencoder architecture as shown in
Fig. 2, which could be divided into two stages. The first stage can be viewed as an en-
coding stage that downsamples features to the latent space; the second stage is a decod-
ing stage that upsamples the latent feature back to the original space. In this research,
the original space is the 60-dimensional WORLD vocoder output mentioned above. In
Fig. 2, the middle section between the last layer of the encoder and the first layer of the
decoder is referred to as the bottleneck.

The first layer before the downsampling layers uses a kernel of size 3x9 with a stride
of 1. The output of each of the four downsampling layers are 30x200, 15x100, 5x100,
and 1x100 respectively; their kernel sizes are 4x8, 4x8, 4x7, and 5x7 with corresponding
stride of (2, 2), (2, 2), (3, 1), and (1, 1) respectively. For experiments, the model with
only the first two, three, or four down/upsampling layers are used. The bottleneck size
is thus controlled by the last downsampling layer, which is the same as the encoder’s
output. Upsampling layers mirror the downsampling layers with the same number of
layers and their kernel size and stride. The last layer after the upsampling layers uses a
kernel of size 7x7 with a stride of 1.

In Fig. 2, the attribute vector encodes the singing technique of an audio file. Here,
we define domain as a set of audio files with the same attribute. Traditionally, a SVC
model is only capable of performing conversion from one domain to another. In con-
trast, StarGAN achieves conversion between multiple domains with one single network.
A key component of our proposed network is to represent the attribute by several chan-
nels with the same height and width as the bottleneck, in a similar fashion as one-hot
vectors1. The target singing technique was thus informed to the decoder of CAE via the
attribute channels.

The StarGAN is trained by minimizing the sum of three losses. The first is the ad-
versarial loss, which makes the discriminator and generator work in an antagonistic
fashion so that the generated features become more and more realistic. The second is
the classification loss. The discriminator learns to classify WORLD vocoder features
in the training set, while the generator aims to convert the features so that the classifier
would put them into the target category. The third is the reconstruction loss. It forces
the generator to reconstruct original features when given the original attribute vector.
A lower reconstruction loss indicates less information loss in the bottleneck. In STC,
lower reconstruction loss often indicates higher articulation clarity. Empirically, we ob-
served that the width of the bottleneck had a significant impact on the reconstruction
loss. This observation motivated us to conduct the experiments described next.

1 We specify one out of four possible target domains by setting one of four channels to be all 1.
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Fig. 2: The proposed convolutional autoencoder architecture for StarGAN. The figure
shows a version of the model with three down/upsampling layers. The three downsam-
pling layers have kernel sizes 4x8, 4x8, and 4x7, with strides of (2, 2), (2, 2), and (3, 1)
respectively; the upsampling layers’ settings mirror those of the downsampling layers.

3 Experiments

In this section, we describe the dataset, the network training strategies, the bottleneck
architecture that was varied, and the evaluation metrics for this study.

3.1 Dataset

While existing datasets, such as VocalSet [13], already featured diverse singing tech-
niques and were used in previous STC studies [5, 6], we decided to collect a new dataset
from scratch so as to focus on the singing techniques that are common in Chinese Man-
darin pop singing. Our dataset contains non-parallel singing voice of four singing tech-
niques, namely the chest voice, falsetto voice, whistle voice, and raspy voice. Two male
and two female singers were recruited. Each singer sang Chinese Mandarin pop songs
in their preferred techniques while they were instructed to maintain the same pitch range
across different techniques, except for the whistle voice. Since the techniques were con-
strained by the singers’ preferences, not all techniques were successfully recorded from
all singers. In the end, the chest voice was sung by all four singers for a total of 53
minutes, the falsetto voice was sung also by all four singers for a total of 51 minutes,
the whistle voice was sung by one female singer for 20 minutes, and the raspy voice
was sung by one male singer for 7 minutes.

The audio was recorded with a large diaphragm condenser microphone2 and sam-
pled at 48 kHz in a vocal booth to approximate the recording environments of pop
music vocals. The recordings were cut phrase by phrase afterwards, with each phrase
being between 5 to 12 seconds. The audio data were then re-sampled to 16 kHz for STC
experiments.

2 Sontronics STC-2, without the built-in high-pass filtering or -10dB passive attenuation
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3.2 Training configurations
For data augmentation, the model randomly selected 400 continuous frames (2 sec-
onds) from the training set each time. We used the Adam optimizer [16] for training
with β1 = 0.5 and β2 = 0.999 for all the models. Each model was trained for 250,000
iterations with 10−4 learning rate at the start and decays for the last 100,000 iterations.
To optimize training quality, we updated the discriminator once for every three genera-
tor updates.

3.3 Bottleneck configurations
Our experimental design aims to investigate the influence of bottleneck width on singing
voice technique conversion performance. Hence, we formulated three different bottle-
neck sizes, 15×256, 5×512, and 1×1024 (features x channels). To only changes bot-
tleneck sizes and not other CNN settings, downsampling/upsampling layers are added
or eliminated for different sizes; as illustrated in Fig. 2, these three configurations cor-
respond to encoders with two, three, and four downsampling layers, respectively.

3.4 Subjective Evaluation
The subjective evaluation test consisted of three listening tasks, and 27 participants were
recruited.

Bottleneck Comparison We compared the conversion performance and articulation
clarity of the synthesized voice produced by three different bottleneck widths across
four distinct source techniques. Eight listening comparison tests were created. In each
test, participants were provided with source and target audio samples beforehand for
familiarization purposes. Then, they were asked to rank the audio conversion results of
three different bottlenecks in terms of conversion performance and articulation clarity.
The ranking was then given a score from 1-3, with the best receiving 3 points, 2 points
for second-best, and 1 point for the worst.

Likeness to the target The performance of the multi-domain STC model was evaluated
in terms of likeness to the target technique after a subject listened to the transformed
audio. The model with 3 encoding layers was chosen for evaluation. Similar to the
bottleneck comparison experiment, we provided the participants with source and target
audio files for familiarization, but asked them to rate the transformed audio on a scale
of 1-5, where 5 means most similar to the timbre of the target file, and 0 means most
similar to that of the source file. For this part of the experiment, we performed pitch
shifting when the whistle voice was involved in the conversion so the target pitch range
sounded natural to the intended singing technique.

Sound Quality The final part of subjective evaluation aims to assess degradation in the
sound quality after STC. To achieve this, we selected four audio files (C, F, W, R) and
processed them by analysis-then-synthesis using the WORLD vocoder; the same audio
files were also subjected to STC (C2F, F2W, W2R, R2C) so their sound quality could
be evaluated.
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4 Results and Discussion

(a) Articulation clarity comparison test (b) Conversion performance comparison test

Fig. 3: For both comparison tests, each audio was scored on a scale of 1-3, with the
best receiving 3 points, 2 points for second-best, and 1 point for the worst. C = chest
voice, F = falsetto, W = whistle voice, and R = raspy voice. The error bar represents
one standard deviation.

Figure 3 shows the mean and standard deviation of the 3-point scores for 8 different
source-target combinations under three different widths of the CAE bottleneck. The re-
sults indicate that, in general, the widest bottleneck (which is 15 and corresponds to two
encoding layers) produced the most clearly articulated speech. This makes sense, since
a wide bottleneck encodes the input information into a higher-dimensional latent space
and thus preserves more complete information about the voice content. A narrower bot-
tleneck, in contrast, encodes information into a lower-dimensional latent space, making
it more difficult to reconstruct the audio.

However, better articulation clarity was not always accompanied with a better con-
version performance. Particularly, for conversion between raspy and falsetto voices (i.e.,
R2F and F2R), the results obtained with three downsampling layers in the encoder were
slightly superior to those obtained with two downsampling layers. Also, while the sys-
tem with four downsampling layers produced poor articulation clarity for the W2C
transformation, it slightly outperformed the system with three encoding layers in terms
of conversion performance. These findings suggest that the selection of an optimal bot-
tleneck size is critical for singing voice techniques conversion, and best setting might
depend on the intended source-target combination.

Figure 4 summarizes our evaluation of the system in terms of the timbral likeness
to the target technique after conversion. In (a), the average results of four source tech-
niques are shown, and (b), four target techniques; the average results of all source to
target pair are shown in (c). The results indicate that the conversion of whistle voice to
other techniques had limited success (with mean score < 3.0). However, the transfor-
mation from other techniques to whistle voice was effective, with a mean score of 3.63.
This can be attributed to the unique timbre and the high pitch range of whistle voice,
which were probably difficult to remove and easy for the listeners to recognize. The
conversion of falsetto voice as a source has yielded satisfactory results, but achieved
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(a) Likeness score of each source technique (b) Likeness score of each target technique

(c) Likeness score of each source-target combination

Fig. 4: For the likeness tests, 5 means most similar to the timbre of the target, and 0
means most similar to that of the source. C = chest voice, F = falsetto, W = whistle
voice, and R = raspy voice. The error bar represents one standard deviation.

significantly poorer score as a target. Chest and raspy voices produced comparable re-
sults, regardless of them being utilized as source or target technique.

The mean opinion score (MOS) on a five-point scale was 3.55± 1.04 for WORLD
vocoder round-trip, and 2.80 ± 1.30 after STC. Although the mean score decreased
reasonably by 0.75 due to STC, several limitations of WORLD vocoder were noted
in this research. First, we observed that WORLD encoding-decoding produced some
cracking or breaking sound when we tested on the raspy voice. We suspect that the
WORLD vocoder might have been optimized to handle monophonic sounds, whereas a
raspy voice can have multiple concurrent fundamental frequencies, causing the vocoder
to misinterpret the data. Additionally, we observed that the aspiration that was salient
in the whistle voice could cause errors in voiced/unvoiced classification and thus pose
a challenge for the vocoder-domain processing. To summarize, future fine-tuning of the
vocoder should be warranted for improving the quality of STC.

5 Conclusion

In this research, we created a singing voice technique dataset that includes chest voice,
falsetto, raspy voice, and whistle voice. The dataset was adopted to train a multi-domain
singing technique conversion model. We found that the size of CAE’s bottlenecks af-
fected the clarity of pronunciation and the likeness to the target technique after con-
version, and the optimal size might depend on the intended source-target combination.
Furthermore, we noted several audible defects when handling raspy or whistle voices
with the WORLD vocoder, which ultimately limited the audio quality of STC. In the
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future, we hope to continue improving the audio quality of STC and create different
ways of vocal music production for amateurs and professionals to use.
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Abstract. Large-scale quantitative investigations into the cultural evolution of
music have mostly focused on only a limited range of time periods and genres.
Here, we analyze more than 40 000 pieces of plainchant to better understand the
evolution of modes and pitch distributions in a period of five centuries that saw
the development of the Western modal practice. Specifically, we employ a hierar-
chical Markov mixture model to analyze the eight medieval modes and their sub-
structure represented as pitch distributions and observe their historical changes.
We found that the individual modes exhibit internal clusters, that the relative fre-
quencies of the eight modes remained remarkably stable over time, and that there
were comparatively large changes in the pitch distributions of individual modes.
We discuss our results on the background of musicological insights and point to
the need for further interdisciplinary work.

Keywords: computational musicology; cultural evolution; plainchant; statistical
modeling; mode classification.

1 Introduction

Quantitative analysis of music evolution has been gaining increasing attention in recent
years. Previous studies have observed trends and regularities in musical styles in sev-
eral cultural domains such as Western classical music [1–6] and popular music [7–10].
There are also several studies on evolution of folk and world music [11,12]. Such studies
inherently rely on the availability of large-scale music data that also include informa-
tion about the time of composition to be used for evolutionary analysis. Most studies
using quantitative methods in the Western classical context have focused on music from
? This work was in part supported by JSPS KAKENHI Grant Numbers 21K12187, 21K02846,

and 22H03661, and JST FOREST Program Grant Number JPMJPR226X.
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Number Name Type Final Reciting tone Range

1 Dorian authentic D A4 D4–D5
2 Hypodorian plagal D F4 A3–A4
3 Phrygian authentic E C5 E4–E5
4 Hypophrygian plagal E A4 B3–B4
5 Lydian authentic F C5 F4–F5
6 Hypolydian plagal F A4 C4–C5
7 Mixolydian authentic G D5 G4–G5
8 Hypomixolydian plagal G C5 D4–D5

Table 1: The eight medieval modes. The reciting tone and range are represented in the
standard pitch notation for clarity, but the pitches have only relative meanings here.

the Renaissance, Baroque, Classical, or Romantic periods, and thus covered both modal
and tonal practices [13]. However, this concentration on the period from approximately
the 16th to the 19th centuries ignores several preceding centuries in which the West-
ern modal practice developed. Here, we draw our attention to medieval monophony
and its manifestation in chants [14], in order to shed light on our understanding of the
development of pitch organization in Western music from its earliest beginnings.

Arguably, the most fundamental concept of medieval music theory for the catego-
rization of chants is that of a mode. In the liturgical practice since the eighth century, we
can find so-called tonaries: books that categorize chants into eight modes [15]. These
are then identified in later manuscripts with one of the finals D, E, F, and G, each com-
ing in two variants: authentic (the final is usually the lowest note) and plagal (the final is
usually the central note in terms of pitch height). The eight medieval modes are conven-
tionally labeled with a number or a Greek name (Table 1). It is, however, not entirely
clear whether the concept of mode was merely used as a classification system to or-
ganize existing musical material into distinct categories based on some set of shared
features (e.g. pitch-related or other), or whether mode was, in contrast, a concept exist-
ing prior to composition, that allowed music to be sung “in a certain mode.” It seems
likely that these two conceptualizations were never strictly separated but that they are
rather intricately entangled. Both the categorization and composition aspects probably
played a role to varying degrees, as mode is a complex concept influenced by ancient
music theory as well as medieval practice [16].

Commonly, the mode of a chant is determined on the basis of pitch-related features,
e.g. which pitches are used in which frequency, which pitches are initial or final to a
chant, etc. Consequently, modal characteristics should be reflected in pitch-distribution
statistics, although it is not clear whether a mode can be modeled as a simple pitch dis-
tribution or a distribution with substructure reflecting other features such as the function
of chant in liturgical use. These arguments indicate the importance of analyzing the evo-
lution of modes and related pitch distributions and the need for addressing two major
research questions: (i) How did the relative frequencies of modes change over time?
(ii) How did the pitch distributions of individual modes change over time?

Our contribution shares a research interest with two prior studies on medieval mode.
In their pioneering study on the pitch-class distributions of the eight modes, Huron and
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Veltman [17] found a ‘supra-modal group’ consisting of modes 3, 5, and 8 (sharing
reciting tone c), and another group consisting of modes 1, 4, and 6 (sharing reciting
tone A), and suggested that this polarization facilitated the major-minor bifurcation
in the 17th century. There has also been some musicological criticism on this work.
Specifically, Wiering [18] noted that the abstraction of a pitch class ignores the different
functions of octave-equivalent tones in medieval music. Moreover, the assumption of
chromatic transpositions contradicts the medieval practice (and virtually all musical
practice prior to the Romantic era). It was also noted that the melodic aspects were also
ignored in the pitch-class profile approach, which does not account for pitch transitions
and cannot represent subtle distinctions of modes based on melodic motions.

In a more recent study, Cornelissen et al. [19] examined mode classification in me-
dieval plainchant melodies using a distributional model that improved some of the short-
comings of the earlier study by including both pitch information (as opposed to pitch
classes) and n-gram models. Using the tf-idf vectors of chants, their model achieved
a classification F-score of 93–95% and maintained F-scores of 81–83% even without
absolute pitch information. The result suggested that plainchant contains ‘natural units’
that lie somewhere between the levels of individual notes and complete phrases.

To address our two research questions about mode in medieval plainchant, we an-
alyze a large corpus of monophonic melodies that were almost exclusively written for
liturgical use (see Sec. 2.1). We analyze the historical changes in pitch distributions in
the chants whose source manuscripts date back to the range between the 12th and the
16th centuries. To examine the substructure of modes, we go beyond the approaches in
previous research and apply an elaborated technique of machine learning to infer inter-
nal clusters of pitch distribution from data. We formulate a hierarchical Markov mixture
model for this purpose and study the inferred parameters in terms of mode classification
ability and the relationship with chant genres. We then analyze the historical changes in
the relative frequencies of these clusters to draw conclusions for our research questions.

2 Method

2.1 Data

Our data source is Cantus [20], a database for Latin ecclesiastical chant that was cre-
ated with the goal of digitizing and distributing indices of medieval chant manuscripts
and early printed books [21] (see Fig. 1a for an example). Developed by Steiner in the
1980s, the Cantus database continues to provide an essential resource for scholars and
researchers studying the history and evolution of Latin ecclesiastical chant. The central
focus of the Cantus database is the so-called liturgical office, which is, besides the eu-
charist (mass), an essential element of the liturgy in almost all Christian denominations.
It is a shared act of prayer, typically sung, that involves reciting the psalms and other
supplementary texts throughout the various times of day and days of the year (referred
to as the canonical hours) [22].

For the present study, we draw on a publicly available data resource that contains a
total of 63 628 chants from the Cantus database, including a rich set of metadata [19].
Three types of information are used in particular: melody, mode, and source date. We
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1---d--fG--g---gh--g--fh---hkkggfg

D4 F4 G4 G4 G4 A4 G4 F4 A4 A4 C5 C5 G4 G4 F4 G4

(a)

(b)

(c)

Fig. 1: Three different representations of a responsory chant incipit in mode 8 from the
Cantus database (https://cantus.uwaterloo.ca/chant/284929). (a) De-
tail of the manuscript scan with only one staff line indicating the position of pitch F.
(b) Volpiano encoding of the responsory assigning pitches to letters a to p, and modern
staff notation. (c) Pitches in standard notation (note name + octave).

thus excluded in the following analyses chants with less than ten notes, without an
annotated mode, or without source date information. Furthermore, we use the genre
metadata with labels such as antiphon, responsory, and responsory verse1. Melodies
are represented by a string in Volpiano encoding [23] (Fig. 1b). The alphabets repre-
sent pitches in the ascending order, and dashes indicate the hierarchical segmentation
into words, syllables, and neumes. Conversion from this format to the standard pitch
notation is straightforward (Fig. 1c).

A chant’s metadata often contains a mode attribute extracted from the containing
manuscript or assigned by experts. A majority of annotated modes are a single number
from 1 to 8 corresponding to the eight modes explained in Sec. 1; only chants classified
in these modes are used for analysis. Some of the other chants are transposed chants,
indicated with a T, or verses that are sung with a special melody, indicated with an S.
There are also chants whose mode is unknown or uncertain, indicated with a question
mark. The date of a source manuscript, if it is given, is represented as a year range (e.g.
1201–1300). We use the middle values of these ranges as the time stamps of contained
chants. After these data selection steps, we were left with 41 158 chants in total used
for the following analysis.

1 An antiphon is a short, mostly syllabic refrain that was commonly sung before and after a
psalm in the liturgical chant. A responsory typically follows a scripture reading and comprises
a verse sung by a soloist or small group, succeeded by a response from the choir or congre-
gation. Its melodic structure is often more intricate and melismatic than an antiphon, and its
content closely aligns with the theme of the reading it accompanies.
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2.2 Markov mixture model

We use a Markov model to parameterize the pitch distribution of a certain set of chants,
e.g. chants in one of the eight modes. To analyze the substructure of modes, we formu-
late a Markov mixture model to find internal clusters of chants according to their pitch
distributions. This model can also be used to represent the different pitch distributions
of the eight modes and to automatically estimate the mode of an unseen piece.

We represent a piece as a sequence of pitches x = (x`)
L
`=1. A Markov model

describes the generative probability of x` by the initial probabilityψini(q) = P (x1 = q)
and the transition probabilities ψ(q′, q) = P (x` = q|x`−1 = q′) as

P (x|ψ) = ψini(x1)
L∏

`=2

ψ(x`−1, x`). (1)

Given a set of pieces (xn)
N
n=1, the set of parameters ψ = {ψini(q), ψ(q′, q)} can be

optimized for maximizing the likelihood
∏N

n=1 P (xn|ψ). The parameters learned in
this way represent the pitch distribution in these pieces.

In a Markov mixture model, we consider a set of K Markov models parameter-
ized by ψk (k = 1, . . . ,K), each representing the pitch distribution of a class of data,
and a mixture probability πk representing the relative frequency of the k-th class. The
probability of a pitch sequence is given as

P (x) =
K∑

k=1

πkP (x|ψk). (2)

This model is not to be confused with a hidden Markov model, in which each latent
variable is introduced for each pitch. In the Markov mixture model, the latent variable
k is introduced for each sequence.

Supervised and unsupervised training methods can be derived for estimating the
parameters πk and ψk from data. In the supervised setup, we consider that we have
data divided into K classes. We can then estimate the mixture probability πk from the
relative frequencies of the individual classes and parameters ψk from the subset of data
in the k-th class. For example, using the mode label in the present data, we can train the
Markov mixture model with eight classes corresponding to the eight modes. In the unsu-
pervised setup, we can train a Markov mixture model from a dataset of pitch sequences
without class labels. In this case, the number K of classes is an adjustable hyperpa-
rameter that defines a resolution of the analysis. The EM algorithm can be applied to
estimate the parameters πk and ψk.

Given a Markov mixture model with trained parameters, we can estimate the poste-
rior probability of the class of an unseen piece by the following equation:

P (k|x) = P (x, k)

P (x)
∝ πkP (x|ψk). (3)

We can then take the class k̂ that maximizes the posterior probability as the estimated
class for the piece.
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In our analysis, we use the Markov mixture model in a hierarchical manner. We
train a Markov mixture model with Km classes from a subset of data in mode m, thus
obtaining parameters π(m)

k and ψ(m)
k . We combine the eight Markov mixture models to

obtain a hierarchical Markov mixture model represented as

P (x) =
8∑

m=1

Km∑
k=1

πmπ
(m)
k P (x|ψ(m)

k ). (4)

As in Eq. (3), we can use this model to estimate the posterior mode probability of a
piece x as

P (m|x) ∝
Km∑
k=1

πmπ
(m)
k P (x|ψ(m)

k ). (5)

The Markov mixture model and its hierarchical version can be used for address-
ing our two research questions. First, since the mode-level mixture probabilities πm
represent the relative frequencies of modes, the first research question can be exam-
ined by analyzing the temporal changes in their values over time. Next, the component
Markov models of the hierarchical Markov mixture model represent internal clusters
within individual modes and can thus be used for analyzing the modes’ substructure.
Specifically, the second research question can be examined by analyzing the temporal
changes in the relative frequencies of the internal clusters.

The set of pitches, or the state space of Markov models, was constructed from the
Cantus database. There were 22 pitches ranging from the lowest pitch F3 to the highest
pitch D6. To account for the specific statistical features of the last note of a piece, we
also introduce an additional state ‘end’ in the Markov models so that the statistics of
the last note is incorporated in the transition probabilities to the ‘end’ state. Therefore,
the number of states of the Markov models was 23.

3 Result

3.1 Internal clusters of modes

We trained the hierarchical Markov mixture model with Km = 3 for all modes m
(Fig. 2). The obtained internal clusters of a mode are ordered in the average time of
appearance weighted by the relative frequencies, from the earliest to the latest (see
Sec. 3.3). We can observe that the three internal clusters exhibit notable differences in
pitch-class transition probabilities in mode 1, 3, and 5, whereas the substructures are
less visible in the other modes.

The result of hierarchical clustering of mode-level pitch distributions is also shown
in Fig. 2. The same tree structure was obtained when the symmetric Kullback–Leibler
divergence and the squared distance were used as the distance measure. This result is
similar to the result of [17], which used a single source and a subset of the data we
used. Therefore, the structure with two supra-modal groups, one with mode 1, 4, and
6 and the other one with mode 3, 5, and 8 as core members, is shown to be a general
characteristic over the time period from the 12th century to the 16th century.
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Fig. 2: Visualization of pitch distributions of the eight modes and their internal clusters.
Here, the pitch bigram probabilities are reduced to pitch class bigram probabilities vi-
sualized as the band widths. The pitch classes are represented by different and arbitrary
colors and the colors of the bands indicate the pitch class from which the corresponding
pitch transitions occur. The dendrogram was obtained by complete-linkage hierarchical
clustering.

To quantitatively measure the effect of the internal clusters for mode classification,
we evaluated the accuracy of mode classification by the Markov mixture models with
and without internal clusters. In this analysis, we randomly split the data into train-
ing (70%) and test (30%) data and used the former data for unsupervised training of
the model and the latter data for evaluation. The accuracy was 84.0% without internal
clusters and 85.3% with internal clusters, showing the positive effect of more precisely
representing the distribution of pitch distributions using internal clusters. It was also
confirmed that the accuracy further increased with Km = 4 and 5, indicating the exis-
tence of finer-grained internal clusters. As a reference, a previous study [19] reported
an F-score of 88–90% by a classification method using the pitch profile (unigram dis-
tribution) and 91–92% using pitch bigram features, evaluated on a smaller subset of
data with a larger average piece length. We expect that the present Markov model with-
out internal clusters has an equivalent classification ability with these methods when
compared in the same setup since the pitch transition probabilities are generally more
informative than the pitch profile and essentially equivalent to the bigram probabilities.

Fig. 3 shows the confusion matrix of mode classification by the hierarchical Markov
mixture model (Km = 3). The result shows that the classification errors generally occur
within each of the two supra-modal groups, as expected. We can also find relatively high
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Mode

Fig. 3: Confusion matrix of mode classification rates (%) by the hierarchical Markov
mixture model.

error rates across these groups between pairs of modes sharing the final, that is, between
modes 3 and 4 (final E) and between modes 5 and 6 (final F).

3.2 Internal clusters and genres

To investigate the relationship between the internal clusters and the genres of chants,
we analyzed their correlations. We focus on the three main genres, antiphon, respon-
sory, and responsory verse, which cover 91% of the data, and analyzed the proportion of
genres P (g|k) in each internal cluster k. More specifically, we used the posterior prob-
ability P (k|n) of internal clusters k for piece n and its annotated genre gn to calculate
the genre probability P (g) ∝

∑
n δ(gn, g), the conditional internal cluster probability

P (k|g) ∝
∑

n δ(gn, g)P (k|n), and the proportion of genres P (g|k) ∝ P (k|g)P (g) in
internal cluster k.

The result in Fig. 4 shows that, for all modes, most of the pieces in genre ‘responsory
verse’ belong to the third internal cluster. Since the labels for the internal clusters only
indicate the order in the average time of appearance weighted by the relative frequen-
cies, such a relationship indicates the heterogeneous time distributions of the genres as
well as their distinctive features. The distinctive features of the genre ‘responsory verse’
are not surprising because its musical structure is fundamentally different from that of
antiphon or responsory. For example, a responsory verse follows a psalm formula [24]
and does not necessarily close with the mode’s final. Additionally, all the modes ex-
cept mode 6 have an internal cluster dominated by the genre ‘antiphon’ and another
one dominated the genre ‘responsory’. These results indicate that the three genres tend
to have pitch distributions with different characteristics in most modes, and at the same
time, that the internal clusters obtained by unsupervised learning do not perfectly match
the genres.
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Fig. 4: Proportion of genres in each internal cluster. Internal cluster k of mode m is
labeled as m-k.

3.3 Time evolution of mode frequency

The time evolution of the relative frequencies of modes and internal clusters is shown
in Fig. 5. To obtain this result, we first calculated the posterior probability P (k|n) of
internal clusters for each piece n using its mode annotation as a constraint, and used this
probability and the time stamp tn to calculate the relative frequency of internal clusters
in each century.

Some interesting observations can be made from the result. First, we find that the
changes in the mode frequencies are remarkably small throughout the analyzed time
period. The largest relative changes can be observed between the 12th and 13th cen-
turies and between the 13th and 14th centuries, but the relative changes of the mode
frequencies are less than 100%. The observed stability of relative frequencies of clus-
ters of musical styles is in stark contrast with the transitions of musical styles in Western
classical music since the 16th century [1, 2] and popular music [7, 9].

Second, compared to the overall mode frequencies, the internal cluster frequencies
have larger changes over time. For example, the frequency of cluster 3-3 increased by
more than 100% from the 12th century to the 15th century, whereas the frequency of
cluster 1-1 decreased by more than 50% in this period. With the result in Sec. 3.1, this
means that there is some amount of internal changes in the average pitch distribution
within each mode. We can also find some systematic tendencies across modes: the fre-
quencies of the first internal clusters tend to decrease and those of the third internal
clusters tend to increase. With the result in Sec. 3.2, we can relate these tendencies to
the overall decrease of the proportion of genre ‘responsory’ and the overall increase of
the proportion of genre ‘responsory verse’.

Finally, all internal clusters had a non-negligible frequency in the 11th century and
emergences of new clusters were not observed. This means that there is no significant
innovation in the pitch distribution in this data.
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Fig. 5: Relative frequencies of modes and internal clusters over time.

4 Discussion and conclusions

We here summarize and discuss our results. First, we found that the eight medieval
modes exhibit internal clusters of pitch distributions, which correlate with the three ma-
jor chant genres (antiphon, responsory, and responsory verse). Although we focused
on the case of three internal clusters per mode, the experimental result suggested the
existence of finer-grained internal clusters, which are also expectable from musicolog-
ical considerations. For example, there are different types of responsories, such as re-
sponsorium prolixum, responsorium breve, and responsorium graduale, that were sung
on different occasions or in distinct liturgical contexts and have different melodic fea-
tures [25]. Incorporating deeper musicological insights into specific genre forms and
their implications on mode is likely to shed further light on the substructure of the me-
dieval modes.

Second, we found that the mode frequencies remained remarkably stable over five
centuries. This can be explained by the fact that the responsories and antiphons were
seen as divine texts that should by all means be authentically preserved. Incidentally,
this was also a main driving force behind the development of music notation in the
West and the emergence of other genres such as sequences and tropes that granted
greater creative flexibility. It would be interesting to further study the Cantus database
to reveal how such stability was attained when chants were transmitted across different
geographical locations in relation to notational practice. It is also important to examine
possible reasons for the observed small variations in mode frequencies, such as chang-
ing preferences to write chants in certain modes, changes in categorization practices,
and artifacts/biases of sampling manuscripts in different time periods. Such a study will
be facilitated when more manuscripts will be digitized and made available for compu-
tational analyses.
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Third, we found considerable changes in the frequencies of internal clusters, which
are related to changes in the proportion of the chant genres in the data. Additionally, the
analysis conducted at the resolution of three internal clusters per mode revealed a lack
of substantial innovation in the pitch distribution. As a caveat, we note that the Cantus
database has a limited number of manuscript sources, and further study should also
inspect possible biases by employing strategies such as downsampling and generating
synthetic pieces to ensure a more balanced analysis.

Moreover, this study demonstrates how researchers can employ large datasets and
computational modeling for investigating music-theoretical concepts and their cultural
evolution. Finally, our work points to the necessity of increasing collaboration and ex-
change between researchers from the humanities and computer science. This pertains
not only to the interpretation of quantitative results post factum. Rather, it is important
to engage in interdisciplinary dialog early on in the research process, in particular when
constructing and evaluating computational models. We believe that the vibrant field of
cultural evolution provides an ideal forum for such exchanges to take place.
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Computational Analysis of Selection and Mutation
Probabilities in the Evolution of Chord Progressions
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Abstract. We build a model of cultural evolution and study the properties of
the process in which new chord progressions are repeatedly generated by refer-
encing and modifying past chord progressions. As an extension of the models
for biological molecular evolution, this model represents a stochastic process in
which references are selected from an accumulating pool of chord segments and
new chord segments are created by mutation including insertion, deletion, and
substitution of chord symbols. We used a dataset of Japanese popular music and
analyzed this evolutionary process by inferring the model parameters. A num-
ber of suggestive results regarding the evolution of the creative culture were ob-
tained, including a strong recency bias, large mutation rates and large dynamic
changes in mutation probabilities, and correlations between fluctuations and mu-
tation probabilities and between the diffusedness of mutant chord segments and
their mutation probabilities. Model-based predictions of new chord progressions
were also made.

Keywords: cultural evolution; evolutionary model; symbolic music processing;
chord progression; prediction of evolution; accumulating artifact pool

1 Introduction

Cultural development is a key aspect of human’s intelligence, and musical culture pro-
vides a fruitful venue for studying its creative role. Quantitative studies on music evolu-
tion have revealed some interesting macroscopic phenomena. These include directional
changes (trends) in average features continuing for decades [1–3] or centuries [4–6],
punctuational short time periods with rapid changes [1, 4, 7], concurrent and transient
cluster structure [1, 3, 4], and frequency-dependent selection bias [5, 8]. Since individ-
ual musical pieces are produced by creators who learn to create music from previous

? The author thanks Hitomi Kaneko and Daichi Kamakura for useful discussions. This work was
in part supported by JSPS KAKENHI Grant Numbers 21K12187, 21K02846, and 22H03661,
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creators or musical pieces, revealing the microscopic processes of knowledge transmis-
sion and modification is essential for understanding the mechanisms underlying these
phenomena [9].

Transmission processes of musical knowledge can be classified into two types, di-
rect and indirect. In direct transmission, a song or other musical data serves as a refer-
ence and is replicated for producing a new one. For example, folk songs are typically
transmitted in this way [10]. Some models of direct transmission of musical scale [11]
or music sampling [8] have been proposed for testing musicological hypotheses. Di-
rect transmission of music is also studied in laboratory experiments [12,13]. In indirect
transmission, on the other hand, knowledge for music creation is learned from a collec-
tion of past music or through teaching, and the acquired knowledge is used for creating
(rather than replicating) new musical pieces. A dominant part of art music and pop-
ular music is considered to be created by indirectly transmitted knowledge, and there
is some evidence from studies on automatic music composition showing the relevance
of statistical learning [14]. Cultural evolution models incorporating indirect knowledge
transmission have been studied to explain empirical laws found in music data [5, 15].

Here we focus on the evolution of chord progressions in popular music. Chord pro-
gressions outline how accompaniments are played and are of prime importance in the
composition process of tonal music. In popular music, they are usually notated together
with the melodies, forming a type of musical score called lead sheet. Unlike melodies,
chord progressions are very often reused with possible modifications, and there are
books [16] and websites [17] listing commonly used chord progressions, suggesting
that direct transmission is at work. It is commonly known and has been shown by a cor-
pus analysis [18] that patterns of chord progressions have changed significantly over the
last decades while new chord progressions have continuously been invented. Therefore,
chord progressions are scientifically and practically interesting objects to study how a
creative culture evolves by knowledge transmission and modification.

To reveal the basic characteristics of the transmission and modification processes
of chord progressions, we construct a stochastic model of evolution and analyze a
dataset of chord progressions in popular music songs. We view a chord progression
as a sequence of chord symbols and consider chord segments (L-grams) as the unit of
knowledge transmission. The process of creating a new chord segment by (i) choosing
a reference from the ‘artifact pool’ of previously created chord segments (i.e. selec-
tion) and (ii) possibly modifying it (i.e. mutation) is akin to that of biological molecular
evolution, where nucleotides or amino acids correspond to chord symbols.

We thus build a model similar to the models of molecular evolution [19, 20], with
extensions to incorporate essential factors of the cultural evolution. First, we formulate a
model where created artifacts (chord segments) are accumulated in the artifact pool un-
like individuals that are removed upon death from the population in biological models.
Second, we incorporate in the selection process the recency and frequency-dependent
biases, which are often relevant in cultural evolution [21, 22]. Third, we consider in the
mutation process insertions and deletions of chord symbols, which are often ignored
in molecular evolution models [20], as well as substitutions. These features also make
our model different from the one previously used for chord progression data [23], en-
abling us to harvest a number of suggestive results. Another study analyzed folk songs
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and estimated note-wise mutation probabilities using a dataset without time informa-
tion [10]. With the use of mathematical model and data with proper time information,
we here analyze more detailed properties of the evolutionary process such as dynamic
changes of mutation probabilities, correlations between evolutionary parameters, and
the characteristics of new chord segments that later become commonly used.

2 Method

2.1 Data representation

We consider a dataset of chord progressions represented in a standard popular mu-
sic notation, transposed to the natural key (C major or A minor), and labelled with
a year of creation. The set of distinct chords in the data is denoted by Ω (e.g. Ω =
{C,Am7,FM9, . . .}). From each progression, we extract L-grams (also called chord
segments), which are segments of L consecutive chords, where we remove repetitions
of chords. An L-gram so obtained is assigned a time stamp, which is the same as the
year of creation of its source progression. The collection of all L-grams obtained from
progressions created in year t is denoted by S(L)

t = {wi|ti = t} and its index set
by I(L)t = {i|ti = t}, where i is used as an index for L-grams and wi = (wi`)

L
`=1

(wi` ∈ Ω) denotes the corresponding L-gram. We also define S(L)
<t =

⋃t−1
s=1 S

(L)
s ,

where we take the starting time t = 1 as the earliest year of creation in the data. For
simplicity of notation, we define St = S

(L)
t , S<t = S

(L)
<t , S+

t = S
(L+1)
t , S−t = S

(L−1)
t ,

etc. For the result in Sec. 3, we consider the case L = 4.

2.2 Evolutionary model

We consider that each L-gram w ∈ St is stochastically generated by selecting a ref-
erence segment w′ from past data and possibly mutating it. Three mutation modes are
considered: substitution, deletion, and insertion. In the substitution mode, a reference
w′ is taken from the set S<t of L-grams and mutated by changing one or more com-
ponent chords, from w′` to w`, according to the symbol-wise substitution probability
πsub(w`|w′`). The substitution probability from L-gram w′ to w is defined as

Prep/sub(w|w′) =
L∏
`=1

πsub(w`|w′`), (1)

where we also include the pure replication case (w` = w′` for all `) in this probability.
In the deletion mode, a reference w′ is taken from the set S+

<t of (L + 1)-grams and
mutated by removing one of its components. Since a removal of the first or last chord
in w′ ∈ S+

<t produces an L-gram in S<t, we exclude such a case. Then, the deletion
probability can be defined as

Pdel(w|w′) =
1

L− 1

L∑
`=2

δ(w,w′1:(`−1)w
′
(`+1):(L+1)), (2)
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where w`:`′ = w`w`+1 · · ·w`′ , and δ(w1, w2) = 1 if w1 = w2 and 0 otherwise. In the
insertion mode, a reference w′ is taken from the set S−<t of (L− 1)-grams and mutated
by inserting a chord a after one of its chords w′` according to the symbol-wise insertion
probability πins(a|w′`). The insertion probability is defined as

Pins(w|w′) =
1

L− 1

L−1∑
`=1

πins(w`+1|w′`)δ(w,w′1:`w`+1w
′
(`+1):(L−1)). (3)

Note that the mutation probabilities considered here are among the simplest choices
and we can generalize them to more elaborated models. For example, while we as-
sumed that the symbol-wise substitution probabilities are context free, that is, the prob-
ability is independent of the preceding or succeeding chord symbols, it is possible to
include context dependence by extending the probability πsub(w`|w′`) to such forms as
πsub(w`|w′`−1, w′`) and πsub(w`|w′`−1, w′`, w′`+1). Similarly, we can extend the inser-
tion probability so that it also depends on the succeeding chord symbols. These refine-
ments generally increase the complexity (the number of parameters) of the model and
require a larger amount of data to reliably infer the parameters.

In the generative process, one of the mutation modes is first chosen according to
the mutation mode probability P (b) = λb where b ∈ {rep/sub, del, ins}. We again
note that the pure replication case is included in the mode b = rep/sub. Next, in this
case, a reference segment w is chosen from S<t according to the selection probability
Psel(w|S<t). We incorporate two biases in the selection probability to represent po-
tential tendencies of creators. The first is the recency bias [21], which represents the
creators’ tendency to more likely choose a reference that appears in a recently created
song. This bias can be represented by a weighting factor e−(t−ti)/τ for a segment i,
where the time constant τ represents the time scale for the bias. The second is the
frequency-dependent bias [22], which represents the creators’ tendency to more likely
choose a reference that is more (or less) frequently used in S<t. To formulate this bias,
let F (w; Is) = #{j ∈ Is|wj = w}/#Is denote the relative frequency of w in Ss. The
frequency bias can be incorporated in a factor [F (w; Is)]α in the selection probability,
where α > 1 (α < 1) represents a positive (negative) frequency-dependency bias.

The selection probability incorporating the two biases is then given as

Psel(w;S<t) ∝
t−1∑
s=1

e−(t−s)/τ [F (w; Is)]
α. (4)

We note that this formulation removes a potential bias arising from the unbalanced num-
bers of chord segments created in individual years. Similarly, we define Psel(w;S

+
<t)

and Psel(w;S
−
<t) for choosing a reference in the deletion and insertion modes, respec-

tively, where the same α and τ are used.
We can summarize the generative probability of w ∈ St as follows:

P (w;St) =
∑

b∈{rep/sub,del,ins}

λbPb(w;St), (5)

Prep/sub(w;St) =
∑

w′∈S<t

Prep/sub(w|w′)Psel(w
′;S<t), (6)

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

465



Pdel(w;St) =
∑

w′∈S+
<t

(7)

Pins(w;St) =
∑

w′∈S−<t

Pdel(w|w′)Psel(w
′; S+

<t),

(8)

We can also separately define the (pure) replication and substitution probabilities as

Prep(w;St) = Prep/sub(w|w)Psel(w;S<t), (9)

Psub(w;St) =
∑

w′∈S<t,w′ 6=w

Prep/sub(w|w′)Psel(w
′;S<t)

= Prep/sub(w;St)− Prep(w;St). (10)

2.3 Inference method

The parameters of the evolutionary model, λb, πsub(a|a′), πins(a|a′), τ , and α, can be
estimated from the data by the maximum likelihood method. To estimate the first three
sets of parameters, we apply the expectation-maximization (EM) algorithm by treating
the mutation mode b and reference w′ as latent variables for each observed w.

To estimate τ and α, we can apply a simple iterative grid search using the likelihood
as the objective function. Since the optimal values of these parameters depend on the
values of the other parameters and vice versa, we iterate the EM step and grid search
step alternately until a convergence of the likelihood value. To evaluate their estimation
variances, we can apply a Bayesian method based on Monte Carlo Markov Chain sam-
pling. Specifically, we used the Metropolis method with a flat prior distribution and a
log-normal distribution as the proposal distribution.

2.4 Posterior analysis

Given the set of model parameters estimated as in Sec. 2.3, we can apply the method of
posterior analysis for analyzing possible dynamic changes in the evolutionary param-
eters. First, given an L-gram w at time t, its posterior probability of mutation modes
λ̃b(w, t) = P (b|w, t) (b ∈ {rep, sub,del, ins}) can be obtained as

λ̃rep(w, t) = λrep/subPrep/sub(w|w)Psel(w;S<t)/P (w;St), (11)

λ̃del(w, t) = λdelPdel(w;St)/P (w;St), (12)

λ̃ins(w, t) = λinsPins(w;St)/P (w;St), (13)

λ̃sub(w, t) = 1− λ̃rep(w, t)− λ̃del(w, t)− λ̃ins(w, t), (14)

where the right-hand sides of these equations can be calculated using Eqs. (5) to (8)
and the replication and substitution probabilities are separately defined here. Then, the
mutation mode probabilities λ̃b(t) at time t can be estimated, for example, as

λ̃sub(t) =
1

#St

∑
w∈St

λ̃sub(w, t).

Pins(w|w′)Psel(w
′; S−<t).
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Fig. 1. A: The distribution of composition years in the dataset used. B: The yearly numbers of
4-grams (including duplications) and that of newly appeared 4-grams.

We can also calculate the posterior probability P (w′|w, t, b) of reference segments
w′ ∈ S<t ∪ S+

<t ∪ S−<t in a similar way. For example, in the insertion mode,

P (w′|w, t, b = ins) ∝ Pins(w|w′)Psel(w
′;S−<t).

The posterior probabilities obtained in this way can be used to estimate the mutation
probabilities π̃sub(a|a′; t) and π̃ins(a|a′; t) at time t.

3 Result

3.1 Dataset

We used a dataset of Japanese popular music songs. The dataset was constructed by the
author and comprised of 2419 songs. The songs were taken from top ranked songs in the
Oricon yearly charts and from a compiled collection of historical popular songs [24].
The composition years spanned the range [1927, 2019] and we applied the evolutionary
model for analysis in a range of years t ≥ 1960 (Fig. 1A).

Before extracting L-grams of chords from a song, we transposed the song into the
natural key, converted a consecutive repetition of the same chord into a single chord,
and converted a slash chord into a normal chord by removing the bass note. The tar-
get of the analysis was 4-grams (L = 4). The number of distinct chord symbols was
232, from which approximately 2.9× 109 distinct 4-grams can be created in principle.
The numbers of distinct 3-grams, 4-grams, and 5-grams appearing in the dataset were
12 258, 27 237, and 44 204, respectively. Fig. 1B shows the yearly numbers of 4-grams
and those of newly appeared 4-grams; the average rate of new 4-grams was 39%.

3.2 Selection biases

The inferred value of the time constant was τ = 2.61 ± 0.53. This means that the
probability of a chord segment being chosen as a reference reduces by a factor of 10 in
every 6.1 years, when other conditions are equal. The inferred value of the frequency-
dependence parameter was α = 1.16 ± 0.16. The mean value indicates a slightly pos-
itive frequency-dependent bias, i.e., more common chord segments tend to be more
frequently chosen as a reference than its frequency expected for random selection.
However, the deviation of α from unity is small and the result is consistent with the
frequency-independent bias within the range of statistical error.
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λrep λsub λdel λins

0.38 0.46 0.00 0.16

Table 1. Inferred values of mutation mode probabilities.
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Fig. 2. Dynamic changes of mutation mode probabilities.

3.3 Mutation modes

The inferred values of mutation mode probabilities are listed in Table 1. We found that
the probability of choosing the deletion mode tended to converge to zero. To understand
this result, we note that the probability of each mutation mode is of the same order,
O(K−L) for K = #Ω, if we suppose a uniform distribution over all chord symbols.
The result can then be explained by the fact that there are no tunable parameters for
the deletion operation whereas the substitution and insertion probabilities, πsub(a|a′)
and πins(a|a′), are trained so that the likelihoods of these modes will increase in the
course of statistical inference. Consequently, in our model, the main mutation modes
are substitution and insertion.

We see that the sum of mutation probabilities, which is equal to 1 − λrep, is 62%
and larger than the average rate (39%) of new segments. This value is substantially
larger than the mutation probabilities in typical biological evolution and leads to distinct
characteristics. For example, a significant proportion (38%) of reappeared segments are
estimated to be created through a mutation process according to the present model.

A posterior analysis over time showed that the substitution mode probability had
some variations across years and a general trend of increase from the 1960s to the
1990s (Fig. 2). Its temporal changes highly correlated with the the rate of new segments
(ρ = 0.86, p < 10−10). On the other hand, the insertion mode probability had small
fluctuation and no notable trend was observed.

3.4 Symbol-wise substitution and insertion probabilities

The most frequent modes of symbol-wise substitution and insertion are shown in Fig. 3
with their yearly relative frequencies obtained by the posterior analysis. For substitu-
tion probabilities (Fig. 3A), we see that there are signifiant changes over years and the
diversity of applied substitution modes considerably increased from the early period
to the late period. There is also a tendency that substitutions involving less frequent
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A B

Fig. 3. Dynamic changes of symbol-wise substitution (A) and insertion (B) probabilities. In each
panel, the relative frequencies of the 25 most frequent modes are shown, and a smoothing with a
window of 5-year width is applied.

chords such as FM7 and Gsus4 became more frequent in later periods. From the list
of substitution modes, we can find that most substitutions occur between chords with
the same harmonic function. These chords often share the root tone (e.g. E7 → Em,
Dm→ Dm7, F→ FM7, and G→ Gsus4) or share constituent pitches (e.g. Dm→ F,
C→ Em, and Em7→ C). A similar relation between the substitutability of chords and
the harmonic function was also found in an analysis using hidden Markov model [25].

Significant changes over years were also found in the insertion probabilities (Fig. 3B).
The list of insertion modes mostly consisted of common chord transitions (see also
Sec. 3.5). We see a tendency that chord transitions used in the minor key (e.g. Dm →
E7, E7 → Am, and Am → Dm) appear more frequently in the early period and those
used in the major key (e.g. F→ G, G→ C, and FM7→ G) in the late period.

3.5 Correlation between fluctuation and mutation probabilities

We analyzed the correlations between evolutionary parameters to examine several ex-
pectations from the evolutionary theory. On the one hand, if new chord segments are
stochastically generated by substitutions, we expect that the joint probability of differ-
ent chord symbols Pvar(a

′, a) in variants of segments related by a single substitution
correlates with the joint probability of substitution πsub(a′ → a) = P (a′)πsub(a|a′),
where P (a′) is the prior probability of chord symbols. On the other hand, if we consider
the implicit effect of social selection in the data, among potential creators who gener-
ate new segments with different substitution probabilities, successful creators would
be those with substitution probabilities that are similar to the fluctuation probabilities
of chord symbols in past data. This also suggests that the probability πsub(a′ → a)
correlates with the fluctuation represented by the probability Pvar(a

′, a) in past data.
To examine this expectation, we analyzed the correlation between the joint sub-

stitution probability πsub(a′ → a) in a time range [2010 : 2019] and the fluctuation
Pvar(a

′, a) observed in a time range [1927 : 2009]. The result in Fig. 4A supports the
expectation and shows a positive correlation (ρ = 0.18, p < 10−10). We also see a
significant amount of deviation: in particular, a high fluctuation probability does not
always indicate a high substitution probability.
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Similarly, we expect that the insertion probabilities are related to the corresponding
fluctuation probabilities. More specifically, we expect that the joint probability of inser-
tion πins(a′ → a) = P (a′)πins(a|a′) correlates with the bigram probability Pbi(a

′, a)
of chord symbols in past data. The result in Fig. 4B supports the expectation and shows
a high correlation (ρ = 0.64, p < 10−10).

3.6 Diffusion of mutants

Characterizing the conditions of new mutant chord segments that will diffuse and be-
come commonly used is important for understanding the macroscopic evolution of
chord progressions. For biological evolution, where mutations are rare, a similar prob-
lem of fixation has been studied, and the fitness of the mutant and the random sampling
in a finite population are studied as two major factors [26]. Our case of cultural evolu-
tion has two features that lead to an evolutionary process distinct from the typical case
of biological evolution. First, as we discussed in Sec. 3.3, the mutation rate is much
larger than in biological evolution so that the chance that mutants of the same form are
independently generated is not negligible. Second, the evolutionary process is an accu-
mulated process so that mutant segments will not be removed from the artifact pool.

Based on this consideration, we expect that the accumulation of independent mu-
tants is relevant for the diffusion of a new chord segment. As a measure of diffusion of
a segment w, we can use its probability of replication. More specifically, we define the
diffusedness D10yr(w, t?w) of a mutant segment w first appeared in year t?w as

D10yr(w, t?w) =
1

10

t=t?w+10∑
t=t?w+1

λrep/subPrep(w, t), (15)

where the replication probability Prep(w, t) is given in Eq. (9). Our hypothesis is that a
mutant with a larger mutation probability P (w;St?w) has a higher chance of repeatedly
introduced to the artifact pool and consequently has a higher diffusedness on average.

The relationship between the diffusedness and mutation probability analyzed for all
mutant segments that first appeared in years between 1960 and 2009 is shown in Fig. 5.
The observed high correlation (ρ = 0.57, p < 10−10) supports our hypothesis, and
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the linear relation is particularly clear for mutant segments with highest diffusedness
(marked in red circles in Fig. 5). The deviation from the linear relation in the small
mutation probability regime can be explained by the finite size effect. We can also see
that there is a variation of O(101–102) in the diffusedness for those samples with a
mutation probability ∼ 10−6, which indicates that the mutation probability cannot be
the only factor that determines the diffusedness.

3.7 Predictions

The present evolutionary model can be used for predicting new segments to appear in
the future. To examine its potential, we trained the model with a subset of the data of
segments created in 1999 or before and evaluated its predictive ability using as test data
the remaining data of segments created in years 2000–2019. We randomly generated
106 4-grams by the model and obtained approximately 2.6×105 segments after remov-
ing duplications and the samples already appearing in the training data. The generated
4-grams were sorted by the mutation probability in the decreasing order. We compared
the predicted data with the test data by measuring the precision, recall, and F-score.

The recall achieved 48% on the whole predicted data (Fig. 6A). The precision was
approximately 2%, which is much larger than the expectation value of 0.0004% by
random sampling. Examples of predicted segments with highest mutation probabilities
that were not included in the analyzed dataset are shown in Fig. 6B.
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4 Conclusion and discussion

In this paper, we have studied the evolution of chord progressions based on a stochas-
tic model of cultural evolution incorporating the selection and mutation processes. We
summarize the main findings and discuss implications. First, the inferred selection bi-
ases showed a strong recency effect with a time constant of 2.61 yrs. This indicates that
while chord segments are accumulated in the artifact pool, they will be effectively re-
moved from the pool after some decades in the sense that their chance of being chosen
as a reference will decrease significantly in that time interval. On the other hand, no
significant sign of frequency dependence was observed.

Second, the analysis revealed large mutation rates and large dynamic changes in the
substitution and insertion probabilities. The first feature reminds us of an interesting
phenomenon known as the survival-of-the-flattest effect [27], which suggests the pos-
sibility that a chord segment with a high probability of replication can be outcompeted
by segments that have lower probabilities of selection but are robust in usability against
mutations. The second feature also suggests a selective advantage of chord segments
that are robust in usability against mutations toward multiple directions. While the sig-
nificance of this effect depends on the mutation rate and other model configurations,
this observation may provide a new perspective on understanding why certain chord
segments are more popular than others.

Third, the correlations found between fluctuation and mutation probabilities and be-
tween diffusedness and mutation probabilities support expectations from the evolution-
ary theory and may be useful for predicting the features of the evolutionary process.
It is also important to seek for possible explanations for the observed deviations of
O(101–102) in the mutation probabilities for similar values of fluctuation probabilities.

We remark that although the present evolutionary model was build upon empiri-
cal knowledge on the process of music creation, the results of this study do not verify
that the assumed process is correct. We can think of other processes of creating chord
progressions, for example, a process involving data generation through statistical learn-
ing. To formulate a more realistic model, we should incorporate the multilevel structure
of music, consisting of chord segments, musical piece, composer, etc.; reference and
selection can occur at each of these levels. Japanese popular music is not a closed sys-
tem and some chord progressions should have been imported from Western musical
cultures; such migrations were treated as mutations in this study. Future work should
experimentally test the model with other possibilities and address the aforementioned
theoretical issues. The present evolutionary model can also be applied to analyzing the
origins and relationships of chord segments in a similar way as the stochastic models of
molecular evolution are applied to phylogenetic analysis.
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Abstract. I recently introduced the concept of dynamical score network to rep-
resent the harmonic progressions in any composition. Through a process of chord 
slicing, I obtain a representation of the score as a complex network, where every 
chord is a node and each progression (voice leading) links successive chords. In 
this paper, I use this representation to extract quantitative information about har-
monic complexity from the analysis of the topology of these networks using state 
of the art statistical mechanics techniques. Since complex networks support the 
communication of information by encoding the structure of allowed messages, 
we can quantify the information associated with locating specific addresses 
through the measure of the entropy of such network. In doing so I can then intro-
duce a measure of complexity that can be used to quantify harmonic evolution 
when applied to an extensive corpus of scores spanning 500 years of western 
classical music.  
 

Keywords: music complexity; computational music theory; music analysis; 
music composition; music information retrieval; music evolution; music inno-
vation  

1 Introduction 

In the article Topology of Networks in Generalized Musical Spaces, published on the 
Leonardo Music Journal, [1] I have introduced the concept of harmony as a network 
representation of the musical structures built out of all possible combinatorial pitch 
class sets in any arbitrary temperament. Inspired by a long tradition of network repre-
sentations of musical structures such as the circle of fifths [2], the Tonnentz [3], and 
recent works on the spiral array model of pitch space, [4] the geometry of musical 
chords [5] and generalized voice-leading spaces [6] [7], I interpret the harmonic struc-
ture of a composition as a large-scale complex network whose topological properties 
uncover its underlying organizational principles and demonstrates how classifications 
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or rule-based frameworks (such as common-practice harmony, for instance) can be in-
terpreted as emerging phenomena in a complex network system. Since the conclusions 
of that study serves as foundations for the present paper, let me review some of its 
principal results. 

Network analysis methods exploit the use of graphs or networks as convenient tools 
for modelling relations in large data sets. If the elements of a data set are thought of as 
“nodes”, then the emergence of pairwise relations between them, “edges”, yields a net-
work representation of the underlying set. Similarly to social networks, biological net-
works and other well-known real-world complex networks, entire dataset of musical 
structures can be treated as networks, where each individual musical entity (pitch class 
set (pcs), chord, rhythmic progression, etc.) is represented by a node, and a pair of nodes 
is connected by a link if the respective two objects exhibit a certain level of similarity 
according to a specified quantitative metric. Pairwise similarity relations between nodes 
are thus defined through the introduction of a measure of “distance” in the network: a 
“metric” [8]. As in more well-known social or biological networks, individual nodes 
are connected if they share a certain property or characteristic (i.e., in a social network 
people are connected according to their acquaintances, collaborations, common inter-
ests, etc.) Clearly, different properties of interest can determine whether a pair of nodes 
is connected; therefore, different networks connecting the same set of nodes can be 
generated. 

In this paper I construct networks where nodes are the individual chords that can be 
extracted from a score, and edges are built between successive chords in the progres-
sion: nodes are connected if they appear as neighbours in the sequence. Naturally, nodes 
are visited numerous times, and the score evolution implies a directionality of the links. 
The networks are thus “directed”, and each edge will have a weight (strength) propor-
tional to the times the link is visited.  

Given a network, we can perform many statistical operations that shed light on the 
internal structure of the data. In this work I will consider only two of such measures, 
degree centrality and modularity class. [9] The degree of a node is measured by the 
number of edges that depart from it. It is a local measure of the relative “importance” 
of a node in the network. Modularity is a measure of the strength of division of a net-
work into communities: high modularity (above 0.6 in a scale from 0 to 1) corresponds 
to networks that have a clearly visible community structure. [10]. Isolating communi-
ties through modularity measures provides a way to operate within regions of higher 
similarity.   

In a more recent work [11] I have proposed that this score network can be viewed 
both as a as a static graph that represents all the existing chord changes in a composi-
tion, or as a dynamical system, a time series of a non-stationary signal, and as such, it 
can be partitioned, as for community structures, using time series analysis and change 
point detection. This dual representation (static and dynamical) offers novel ways to 
quantify the harmonic complexity of a single score or a full corpus without relying on 
comparisons with pre-determined reference sets.  
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2 Methods 

2.1 Network models 

I will make use of two principal software libraries for computational music analysis, 
both written in the Python language: MUSICNTWRK (at www.musicntwrk.com) and 
music21 (at https://web.mit.edu/music21). MUSICNTWRK is an open source python 
library for pitch class set and rhythmic sequences classification and manipulation, the 
generation of networks in generalized music and sound spaces, deep learning algo-
rithms for timbre recognition, and the sonification of arbitrary data [11]. music21, de-
veloped at MIT [12], is an object-oriented toolkit  for  analysing,  searching,  and  trans-
forming  music  in  symbolic  (score-based) forms of great versatility, whose modularity 
allows a seamless integration with MUSICNTWRK and other applications.  

Scores are read in musicxml format by the readSCORE function of MUSCNTWRK, 
where their harmonic content (and other relevant information, like in which bar the 
chord is found) is extracted using the music21 parser and converter (using the “chor-
dify” method). With this we obtain easily the full sequence of pcs, chord by chord, 
where each change to a new pitch results in a new chord. Upon “chordification”, each 
pcs is reduced to its normal form. While such “quantization” of pcs is quite adequate 
for the analysis of pieces with a harmonic movement where each vertical pcs plays 
some functional values (for instance in the corpus of J.S. Bach’s chorales), for compo-
sitions where there is more contrapuntal development, the number of individual pcs in 
the sequence can become very large, without providing necessarily more detailed in-
formation, since many such chords are only modifications via passing notes or vagrant 
harmonies. To circumvent this problem and make the analysis more manageable with-
out losing any functional value, we have devised a “filtering” algorithm based on the 
cumulative measure of how many times an individual pcs appears in the sequence. All 
pcs with a frequency lower than a threshold are eliminated.  

Starting from digitalized scores (in musicxml or MIDI format) I then construct net-
works where nodes are the individual chords, and edges are built between successive 
chords in the progression: nodes are connected if they appear as neighbors in the se-
quence. Naturally, nodes are visited numerous times, and the score evolution implies a 
directionality of the links. The networks are thus directed, and each edge will have a 
weight (strength) proportional to the times the link is visited. In Figure 1 I show the 
network of one score from the L. van Beethoven’s corpus.  

I have analyzed an extensive corpus of scores by composers spanning five centuries 
of western classical music: Josquin des Prez (1450-1521), G.P. da Palestrina (1525-
1594), Claudio Monteverdi (1567-1643), J.S. Bach (1685-1750), J. Haydn (1732-
1809), W.A. Mozart (1756-1791), L. van Beethoven (1770-1827), J. Brahms (1833-
1897) and G. Mahler (1860-1911).  

2.2 Conditional Degree Matrix 

The local metrics usually used in networks theory fall short of capturing the richness of 
the vast majority of natural network topologies. At the same time, one of the most com-
monly used (local) characteristics is a node's degree. Based on this attribute, I propose 
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to use what has been named ``conditional degree matrix" 𝐷 [13] to characterize the 
topology of the harmonic networks. 

This matrix captures the classical node distribution and shows the existing architec-
ture between the network nodes taking into account their different degrees. Each ele-
ment of the matrix, D!,# is defined as the number of nodes of degree 𝑖 connected to 
nodes of degree 𝑗, 𝑁$,%, divided (normalized) by the number of total nodes, 𝑁& , that is: 

𝐷$,% =
𝑁$,%
𝑁&
. 

This definition produces a symmetric matrix and ensures that 𝐷 is properly normal-
ized. More generally, directed and weighted networks would result in non-symmetric 
matrices. 

The structure of the 𝐷 matrix allows to estimate the complexity of a given network 
and provides more information than the classical degree distribution:  
𝐷 effectively acts as a probability matrix and can be the input for the evaluation of other 
metrics such as entropy, divergence, and complexity among others.  

One of the essential properties of this matrix is that it allows to explore the charac-
teristics of the degree of connections of each node with its environment (its close neigh-
borhood) in a direct way. Its importance can be understood in terms of information 
diffusion: the rows 𝑖 of this matrix show the probability that nodes of degree 𝑖 are con-
nected with nodes of another degree 𝑗. Their frequency will finally be reflected in each 
of its elements 𝐷$,%. 

2.3 Kullback-Leibler divergence 

To extract quantitative information from the network topology I use the the Kullback-
Leibler (KL) divergence as metric. In both information theory and probability theory, 
the Kullback-Leibler divergence is used as a measure indicating the difference between 
two probability functions. In general terms, KL measures the expected number of extra 
bits or excess surprise from using 𝑄 as a model when the data distribution is 𝑃. 

The Kullback-Leibler divergence for the conditional degree matrix is defined as: 

𝐾𝐿 =-𝐷$,%𝑙𝑜𝑔1𝐷$,%/𝑄$,%3
$,%

 

where 𝐷 is our CDM, and the reference matrix 𝑄 is defined as the mean of all the 𝐷 for 
the whole corpus:  

𝑄𝑖, 𝑗 =
1
𝑁-𝐷$,%'

'

, 

and 𝑁 is the total number of score networks. 
Since the KL divergence quantifies how much the topology of any individual net-

work "diverges" from the average of the reference corpus, it provides a way to quantify 
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the difference in the distribution of observed degrees and in particular, the way in which 
the occurrence and distribution of hubs (as chords that are more important in the har-
monic progression of a piece) characterizes the harmonic structure of the composition. 

2.4 Diffusion Entropy Analysis 

Diffusion Entropy Analysis (DEA) is a time-series analysis method for detecting 
temporal complexity in a dataset; such as heartbeat rhythm [14] [15] [16] a seismograph 
[17], or financial markets [18]. DEA uses a moving window method to convert the 
time-series into a diffusion trajectory, then uses the deviation of this diffusion from that 
of ordinary brownian motion as a measure of the temporal complexity in the data. It is 
thus appropriate to analyze the score time series and derive quantitative estimates of 
complexity. 

Diffusion Entropy Analysis was first introduced by Scafetta and Grigolini [19] as a 
method of statistical analysis of time-series based on the Shannon entropy of the diffu-
sion process to determine the scaling exponent of a complex dynamic system. It was 
later refined with the introduction of ``stripes'' (MDEA) by Culbreth 𝑒𝑡	𝑎𝑙. [20] in the 
context of detecting crucial events. While the reader should refer to the publications 
above for a full treatment of DEA, here I use the realization that the scaling of the 
diffusion coefficient δ obtained in DEA provides a measure of complexity of the time-
series, measured through the statistics of occurrences of crucial events. Here, δ ranges 
between 0.5 and 1.0: for a completely non-complex process, such as a random walk, 
MDEA yields δ = 0.5. For a process at criticality, MDEA yields δ = 1. Therefore, δ 
represents a measure of the ``strength'' of the complexity present in the process: the 
closer δ is to 1 the closer the process is to criticality. 

In Fig. 2, we show a MDEA analysis of the first movement of Beethoven's string 
quartet Op. 127 n. 12, that was extensively discussed in [21]: δ ≈ 0.7 indicates a "me-
dium" level of complexity as observed in other composition of the same period as it 
will be discussed extensively below. 

MDEA analysis has been carried out using the module DEA implemented in the 
MUSICNTWRK library [11]. 

3 Results and discussion 

I have applied the above metrics to our selected corpus of composition and the results 
are summarized in Fig. 3 and 4.  
 In Fig. 3 I show the KL divergence calculated for the full corpus of compositions. 
Here the values are referenced to the average of the corpus, that is, I am capturing how 
much the topology of a given piece deviates from the cumulative average. The results 
point to a clear distinction between earlier polyphony (des Prez, Bach) and later chro-
maticism (Mahler). There is a marked transition starting in the XIX century and culmi-
nating with the works of Brahms and Mahler. It is important to note that this metric 
provides a somewhat indirect measure of complexity as a relative difference between 
compositions. Of course, more work is needed to understand this metric further: alt-
hough large, the corpora I have analyzed are still small in statistical terms, and more 
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analysis should be done by extending the corpora to a larger repertoire and/or using 
simulated data as toy models of the musical practice of selected composers. 

For a more direct evaluation of complexity, we turn now to the MDEA results. By 
applying the procedure outlined in Fig. 2 to the full corpus, I have extracted the values 
of δ for each piece and collected the results in Fig. 4. 

Although the data points show a wide distribution around the averages for each com-
poser, the results point to an increase of harmonic complexity over time, a result that 
agrees broadly with other analysis based on different metrics. These results allow us to 
discriminate further among composers and different time periods. We can, in principle 
divide this graph in three regions. The first region corresponds to the Renaissance and 
Early Baroque composers, where δ is consistently lower. Since this musical period is 
characterized by a modal approach to harmony, we can easily infer that modal harmony 
is characterized by a lower complexity, as observed in the scarcity of functional chords 
(functional chords are hubs in tonal harmony networks [21], a more homogeneous dis-
tribution of node degrees, and a lack of multiple tonal centers.1 

The second section corresponds to the Common Practice period, that shows an av-
erage complexity measure of ≈ 0.7. This is when tonal harmony has matured into an 
established musical language. Once again in the third section, corresponding to XIX 
and early XX century, harmonic complexity increases to an average of 0.8. Once more, 
enhanced criticality and complexity correspond to a fragmentation of the tonal harmony 
language towards increase chromaticism, as it was observed in the CDM data above. 

Finally, I have superimposed measures of complexity for pieces of the pop/rock rep-
ertoire as a suggestion for further analysis and discussion beyond the realm of classical 
music genres.  

4 Conclusions 

In conclusion, with this study I have built on the concept of network representation of 
musical spaces, introduced the idea of a composition as a dynamical score network, and 
discussed two complementary measures of music complexity. Although the results 
point unequivocally to an increase of harmonic complexity in western classical music, 
the present study is just an initial exploration of this fascinating topic. One of the chal-
lenges is the availability of large score corpora that would make the analysis of a single 
composer's production more coherent. I am currently working to expand the availability 
of corpora and I hope to extend this work in the future. Notwithstanding its limitations, 
this study demonstrates that combining the abstraction of a score as network with es-
tablished mathematical and statistical techniques is a powerful tool for a quantitative 
analysis of music production that is independent of prior musicological or music 

1 It is important to note that here complexity must be interpreted as a statistical measure on the 
network topology associated to a dynamical system behavior, and not as a measure of how 
sophisticated a piece is or is perceived by a listener: a Palestina's Mass can be more challeng-
ing and sophisticated than a Bach's chorale, although their measured complexities might sug-
gest otherwise. 
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theoretic information and opens the way to a novel interpretation of music as a dynam-
ical process. 

5 Acknowledgements 

This paper is based on an earlier study published as: M. Buongiorno Nardelli, G. 
Culbreth and M. Fuentes, “Evolution of harmonic complexity in western classical 
music”, Advances in Complex Systems, vol. 25, No. 05n06, 2022. 

Fig. 1. Network structure of the third movement of Ludwig van Beethoven’s string quartet Op. 
127 n. 12. Node size is proportional to degree, colors indicate the network community structure 
(the tonal region central to that particular section) and links correspond to voice leading (the 
transition from one chord to the next). 
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Fig. 2. Diffusion Entropy Analysis applied to the third movement of Beethoven's string quartet 
Op. 127 n. 12, whose network is shown in Fig. 1. 

Fig. 3. Kullback-Leibler divergence. Horizontal lines are the average values of KL across the 
corpus of each composer; shaded areas indicate standard deviations. 
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Fig. 4. Complexity for different composers as measured from the diffusion entropy analysis. 
Horizontal lines are the average values of δ across the corpus of each composer; shaded areas 
indicate standard deviations. 

References 

[1] M. Buongiorno Nardelli, "Topology of Networks in Generalized Musical 
Spaces," Leonardo Music Journal, vol. 30, pp. 38-43, 2020.

[2] J. D. Heinichen, "Der General-Bass in der Composition," 1969.
[3] L. Euler, Tentamen novae theoriae musicae ex certissismis harmoniae 

principiis dilucide expositae, Saint Petersburg Academy, 1739, p. 147.
[4] E. Chew, Mathematical and Computational Modeling of Tonality, Springer 

US , 2014.
[5] D. Tymoczko, "The Geometry of Musical Chords," Science, vol. 313, pp. 

72-75, 2006.
[6] C. Callender, I. Quinn and D. Tymoczko, "Generalized Voice-Leading 

Spaces," Science, vol. 320, p. 346, 2008.
[7] D. Tymoczko, "The Generalized Tonnetz," Journal of Music Theory, vol. 

56, no. 1, pp. 1-52, 2012.
[8] R. Albert and A. Barabási, "Statistical mechanics of complex networks," 

Reviews of Modern Physics, vol. 74, no. 1, p. 47–97, 2002.

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

482



[9] A.-L. Barabasi and M. Posfai, Network Science, Cambridge: Cambridge 
University Press, 2016.

[10] D. Zinoviev, Complex Network Analysis in Python: Recognize - Construct 
- Visualize - Analyze – Interpret, Pragmatic Bookshelf, 2018.

[11] M. Buongiorno Nardelli, "MUSICNTWRK: data tools for music theory, 
analysis and composition,," Springer Lecture Notes in Computer Science, vol. 
12631, p. 190, 2021.

[12] M. S. a. A. C. Cuthbert, " "Music21: A Toolkit for Computer-Aided 
Musicology and Symbolic Music Data," in International Society for Music 
Information Retrieval, 2010.

[13] J. C. Cardenas, G. Olivares, G. Vidal, C. Urbina and M. Fuentes, "The 
structure of online information behind social crises," Frontiers in Physics, vol. 
9, p. 116, 2021.

[14] G. Bohara, D. Lambert, B. J. West and P. Grigolini, "Crucial events, 
randomness, and multifractality in heartbeats," Physical Review E, vol. 96, no. 
6, p. 062216, 2017.

[15] R. Tuladhar, G. Bohara, P. Grigolini and B. J. West, "Meditation-induced 
coherence and crucial events," Frontiers in physiology, vol. 9, p. 626, 2018.

[16] H. F. Jelinek, R. Tuladhar, G. Culbreth, G. Bohara, D. Cornforth, B. J. West 
and P. Grigolini, "Diffusion entropy vs. multiscale and r ́enyi entropy to detect 
progression of autonomic neuropathy," Frontiers in Physiology, vol. 11, 2020. 

[17] M. S. Mega, P. Allegrini, P. Grigolini, V. Latora, L. Palatella, A. Rapisarda 
and S. Vinciguerra, "Power-law time distribution of large earthquakes.," 
Physical Review Letters, vol. 90, no. 18, p. 188501, 2003.

[18] S.-M. Cai, P.-L. Zhuo, H.-J. Yang, C.-X. Yang, B.-H. Wang and T. Zhou, 
"Diffusion entropy analysis on the scaling behavior of financial markets.," 
Physica A: Statistical Mechanics and its Applications,, vol. 367, pp. 337-344, 
2006.

[19] N. Scafetta and P. Grigolini, "Scaling detection in time series: Diffusion 
entropy analysis," Phys. Rev. E, vol. 66, p. 036130, 2002.

[20] G. Culbreth, B. J. West and P. Grigolini, "Entropic approach to the 
detection of crucial events," Entropy, vol. 21, no. 2, 2019.

[21] M. Buongiorno Nardelli, "Tonal harmony and the topology of dynamical 
score networks," Journal of Mathematics and Music, vol. 
https://doi.org/10.1080/17459737.2021.1969599.

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

483



On the Analysis of Voicing Novelty in Classical Piano
Music

Halla Kim1 and Juyong Park1

Graduate School of Culture Technology, KAIST
kimhalla@kaist.ac.kr juyongp@kaist.ac.kr

Abstract. Musical composition can be viewed as an act of conditional problem
solving, the realization of musical ideas by arranging notes spatially and tempo-
rally. The resulting creations may constitute the unique style of the composer. In
this paper we focus on how chord voicing – the expression of chords by choosing
and stacking musical notes – has evolved in western classial piano music using
large-scale music data sets. Our results shows that the level and variety of voic-
ing novelty have increased throughout history. We also find that some composers
exhibit a high level of voicing novelty due to the utilization of innovative pitch
class sets, while others actually have pushed the boundaries of voicing with tradi-
tional pitch class sets. This study helps us to probe the emergence of expression
of musical style on note level and to understand the evolutionary pattern of note
arrangements.

Keywords: Musical style, Voicing, Evolution, Novelty

1 Introduction

Musical composition can be viewed as a process of conditional problem solving: Com-
posers’ creations reflect their musical ideas by way of the selection and arrangements
of such musical elements as melody, rhythm, harmony, and structure, which results the
creations manifesting their particular musical styles [1]. In this paper we investigate in
particular chord voicing – how musical notes are vertically arranged to express a given
harmonic scheme – which is the core element of harmonic progression often called the
the fundamental task in Western musical composition [2]. For example, a fundemantal
voice-leading rules in classical music of dominant to tonic chord is realized in different
ways: A Pitch Class set (hereafter PC-set) movement from {G,B,D} to {C,E} can be
written either as (G3, D4, B4) followed by (C3, E4, C5) or as (B2, G3, D5) followed
by (C3, E3, C5) chosen by the composer.

By uncovering the historical compositional patterns of voicing, here we inspect how
they developed over time. Previous works on musical novelty showed the stylistic evo-
lution or the sweetspot in terms of success, including Park et al. [3] who showed that
musical periods can be characterized by the novelty and influence of composers of

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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each era. Similarly, the predictability of subsequent chords is measured by exploring
chord transition probability [4], whereas the time of musical revolutions can be traced
where novelty of harmonic and timbre properties change drastically [5]. Other sym-
bolic features such as melodic intervals [6] or triads [7] are also shown to be effective
for identifying styles and distinguishing musical eras. Weiß et al. [8] observed that the
frequency of tritones and tonal complexity have steadily increased over the history of
Western classical music. Nakamura and Kaneko [9] developed a statistical evolutionary
model that fits the frequency data of tritones and that of non-diatonic motions where the
creators and the evaluators coevolve through a function of novelty and typicality in a
process of social selection. Finally, O’Toole and Horvát [10] used audio features to eval-
uate novelty and asserted that optimal level of differentiation is needed to become the
most popular song. Few, however, have explicitly examined chord voicing (the vertical
placement of pc-sets), with Harrison and Pearce [2] being an exception who introduced
a computational framework of voicing. They suggested a mathematical model to cal-
culate the probability of choosing the next voicing given current voicing according to
pre-defined perceptual rules of chord voicing. In this paper, we try to investigate the
very fundamental aspect of voicing; We hypothesize that novel ways of placing notes
have been developed that characterize the style of composer and musical era.

2 Methodology

2.1 Dataset

The data used in our analysis were collected mainly from three online sources1, and
consist of 1 017 piano compositions by 40 historically prominent composers in MIDI
format. We follow the common convention of dividing the history of classical music into
the following five periods: Baroque, Classical, Romantic, Post-romantic, and Modern,
and specifically use All Music Guide 2 to tag the year of compositions and the era to
which the composers belong.

2.2 Key Normalization

The objective of key normalization is to treat the notes equally that serve identical har-
monic functions, irrespective of their absolute pitch, to promote consistency. For exam-
ple, the harmonic role of the chord C = {C,E,G} in C major is identical to that of the
chord F = {F,A,C} in F major. The key of each composition in the dataset was esti-
mated using a the Krumhansl-Schmuckler key detection algorithm [11]. This algorithm
compares the pitch class distribution of a given piece of music with the key profiles
obtained from music-cognitive experiments [12], and selects the key with the highest
Pearson correlation among the 24 possible key. If the highest Pearson correlation coef-
ficient value refers to an outlier among the values for the whole song, key normalization
was not performed since the algorithm’s key estimation is unreliable. Any number that
falls outside of the first quartile (Q1) or above the third quartile (Q3) by more than

1 http://www.piano-midi.de, https://www.classicalarchives.com, http://www.kunstderfuge.com
2 http://www.allmusic.com
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1.5 times the interquartile range (IQR=Q3-Q1) was considered an outlier. After each
composition’s key was estimated, all non-outlier major compositions were transposed
to C major, and minor compositions to A minor (Fig. 1). It is clear from Fig. 1 that the
comparatively high non-diatonic frequency is a result of outlier songs that would have
chromatic scales or key modulation.

Fig. 1. Pitch Class distribution of the compositions before (left) and after (right) key normaliza-
tion.

2.3 Encoding of Voicing

Voicing refers to the simultaneous vertical placement of notes in relation to each other
[13] or assigning pitch heights to pitch classes [2] 3. To conduct voicing analysis, we
first encode each musical composition as a series of group of notes played simultane-
ously (which we call codewords) [14]. Next, we focus on the voicing of each codeword
to calculate the novelty of voicing used by composers. While there is an issue of not
being able to clearly distinguish between voicing and harmonic skeleton [2], here we
model a composer as choosing the pc-set first then subsequently determining the voic-
ing as an elaboration or an embellishment.

Voicing Encoding Given a PC-set Regarding the voicing as an implementation of
pc-set, we can express the probability of choosing a voicing vi given a pc-set si as

P (vi|si) =
z(si → vi) + α(si → vi)∑

v∈V (si)
z(si → v) + α(si → v)

, vi ∈ V (si), (1)

where V (si) is the set of all possible voicings for a pc-set si, z(si → vi) the number
of occurrences of voicings vi that have a pc-set si, and α is a constant representing
an uninformed prior, a type of additive Laplace smoothing. Setting α = 1 means that
every conceivable voicing element in V (si) has a finite chance of being chosen [3]. Let

3 Another definition of voicing, a placement of notes among various instruments, does not fit to
our analysis since we only address musical pieces for piano solo.
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us take an example of a pc-set si = {C,E,G}. This pc-set’s possible voicings V (si)
includes vi = (C4, E4, G4), (E4, G4, C5), (C3, E3, G3) etc. The total number of all
possible voicings is equal to the number of piano key combinations available in a given
pc-set. Note that the two voicings (C4, E4, G4) and (C3, E3, G3) differ by an octave.
To discard octave position and only handle the relative spacing between notes, we use
the voicing notation as the pitch interval between adjacent notes starting from bass note
(Fig. 2).

Fig. 2. Example of voicing and pc-set notation

2.4 Calculating Voicing Novelty

To see how the voicing style has evolved, we first measure the novelty of voicing. Rep-
resenting a composition as a sequence of codewords (configuration of voicings) ζ =
{v1, v2, . . . , vm}, we can write the generation probability of ζ as first-order Markov
chain

Π(ζ) = P (v1|s1)P (v2|s2) . . . P (vm|sm). (2)

Its log inverse is the magnitude of surprise in information theory. We can thus quan-
tify the novelty in voicing as an average unexpectedness of all voicings in a composition
normalized by the length of a composition m:

Novelty(ζ) =
1

m
log

1

Π(ζ)
=

1

m

[
m∑

k=1

log
1

P (vk|sk)

]
(3)

2.5 Calculating PC-set Novelty

Here we discuss the pc-set and compare it with voicing novelty. pc-set novelty mea-
sures how novel the current codeword’s pc-set is when the preceding codeword’s pc-
set is given. Representing a composition as a sequence of codewords’ pc-set, ζ =
{s1, s2, . . . , sm}, the probability of choosing a pc-set si+1 after a pc-set si is written
as,
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P (si+1|si) =
z(si → si+1) + α(si → si+1)∑

k∈S z(si → k) + α(si → k)
, si ∈ S, (4)

where S is the set of all possible pc-sets, z(si → si+1) the number of occurrences of
pc-set transition from si to si+1. Then the pc-set novelty can be acquired by plugging
Eq. 5 into Eq. 6.

Π(ζ) = P (s1)P (s2|s1) . . . P (sm|sm−1) (5)

Novelty(ζ) =
1

m
log

1

Π(ζ)
=

1

m

[
log

1

P (s1)
+

m−1∑
k=1

log
1

P (sk+1|sk)

]
(6)

3 Results

By examining the usage patterns of both the pc-set and the voicing of codewords, we
investigate the composing style of Western classical composers. In the data set the total
number of codewords is 1 230 441, and its unique number of pc-set and voicing set were
4 071 and 209 439, respectively. Note that we only include the codewords that consist of
at least two notes. PC-set distribution is significantly skewed, which suggests that only
a tiny portion of pc-set are employed for composition while the majority is rarely used
(Fig. 3). The distribution of voicing is less skewed than that of the pc-set; the maximum
frequency of voicing usage is less than 102 whereas the highest frequency of the pc-set
is much more than 104. We decide to display the voicings of both {0,4,7} and {0,4,9}
since they are the tonic chords of the normalized key and are included in the top five
most often used pc-sets (Table. 1). The second column shows the top five voicings of
pc-set {0,4,7} (i.e. {C,E,G}) and the third column shows the top five voicings of pc-set
{0,4,9}, i.e. {C,E,A}.

Table 1. Top five frequently used pc-sets and voicings of two representative pc-sets.

Rank PC-set Voicing of {0,4,7} Voicing of {0,4,9}
1 {0,4,7} (4,3,5) (0,4,5)
2 {0,4} (0,4,3) (9,3,4)
3 {0,4,9} (7,5,4) (4,5,3)
4 {0,7} (0,7,9) (9,3,4,5)
5 {4,7} (0,4,3,5) (9,7,8)

The heterogeneity in the use of pc-sets provides clues for interpreting the two nov-
elties that we ultimately seek to analyze. Fig. 4 displays pc-set novelty and voicing
novelty for composers, arranged chronologically based on the average years of birth
and death. Composers like Couperin and Handel showed a high level of pc-set novelty
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Fig. 3. The cumulative distribution on a log-log scale of the occurrences of pc-sets, voicing of
{0,4,7}, and voicing of {0,4,9}. The frequency of pc-sets or voicing is represented on the hori-
zontal axis, while the cumulative probability is represented on the vertical axis.

in their works due to the advantages of their time, and this remained consistent until
later composers such as Elgar, Berg, Schoenberg, and Messiaen introduced new pc-
sets, leading to greater variation. This figure agrees with Figure 1 (a) of Nakamura and
Kaneko [9] which depicts the steadily increasing mean and standard deviation of tritone
frequency, as tritone is one of the examples of historically important pc-sets. Similarly,
increasing voicing novelty in later generations is a noticeable trend, with some promi-
nent composers exemplifying it. When several new pc-sets are employed, the voicing
novelty can rise only by virtue of the pc-set itself, or it can also increase if unique verti-
cal arrangements are made using traditional pc-sets. These are the two scenarios where
voicing novelty can be high. In order to identify the driving cause behind high voicing
novelty, we computed the new pc-set ratio and new voicing ratio for each song. New
pc-set ratio is the unique number of new pc-sets that were not used in the previous songs
divided by the total unique number of pc-sets in a given song. It refers to the ratio of in-
novative pc-sets that the composer has chosen. New voicing ratio is the unique number
of voicings for which the pc-set has already been used in previous songs but the present
voicing is used for the first time in a given song, divided by the total unique number
of voicings in a given song. The new voicing ratio serves as a metric to gauge the
extent of reconfiguration undergone by existing pc-sets, as it specifically signifies the
proportion of instances involving entirely novel voicings. According to Figure 4, while
Handel exhibited the highest degree of pc-set novelty among all composers, benefiting
from an early temporal advantage, Bach, despite sharing a similar advantage, displayed
significantly lower pc-set novelty. This observation highlights Bach’s propensity for
predominantly composing using existing pc-sets. Composers such as Elgar, Berg, and
Schoenberg, despite being situated in subsequent eras, stand out as instances where
both the new pc-set ratio and new voicing ratio are elevated, resulting in pronounced
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levels of pc-set novelty and voicing novelty. With the exception of a few later composers
who introduced a significant number of new pc-sets, the majority enhanced the novelty
of chordal expressions by creatively reconfiguring existing pc-set tones. Brahms com-
pared to Beethoven serve as an example. Despite using a smaller percentage of new
pc-set than Beethoven, Brahms had a greater new voicing ratio than Beethoven, which
resulted in a higher level of voicing novelty (Figure 4). In this way, through the compar-
ison of the ratios and novelty values of new pc-sets and voicings in each composition,
it becomes possible to explore how the chordal expression in Western classical piano
music has evolved uniquely for each composer.

Fig. 4. Voicing and pc-set novelties in comparison to the new voicing ratio and new pc-set ratio.

4 Conclusion

In this paper, we studied the compositional style of Western classical piano pieces, with
a particular focus on chord voicing – the vertical arrangement of notes within a set of
pitch classes. Despite using the same set of pitch classes, altering the octave’s location,
the arrangement’s sequence, or the distance between notes might result in a significantly
different sound. We first encoded the voicing for each codeword, computed the voic-
ing novelty, and then looked at the historical evolution of voicings to understand how
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composers chose and arranged notes. In Western classical piano music, voicing novelty
exhibited a consistent upward trend over time, accompanied by an increasing diver-
gence among composers. Early composers introduced a number of popular pc-sets that
were widely used by later composers. Later composers mainly increased the novelty
of the song by vertically arranging the pre-existing pc-set, with the exception of Elgar,
Berg, and Schoenberg who used a sizable portion of novel pc-sets. Our examination
of compositional trends among different composers reveals distinct patterns of novelty
in their approach to chordal expression in Western classical piano music. As our study
continues, we plan to explore the historical evolution of compositional style and how
composers create their unique styles through influence scores of voicing, contributing
to the understanding of musical styles at the note level using symbolic music data.
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Abstract. In this study we present a network analysis of the communities of
artists based on sampling. We construct a bipartite network between the artists
who perform the sampling and the samples, then detect communities of the artists
and the samples. We find that sample-based music has a clear community struc-
ture where each community features artists (nodes) with high centralities, allow-
ing us to determine its musical style. We also define and visualize the similarities
between communities representing distinct generations to observe how sample-
based musical styles have evolved or been “handed off” to the posterity. This
study not only enhances our understanding of sampling-based music, but also
presents a novel application of network community structure to a creative enter-
prise such as music.

Keywords: Sample-based music; Bipartite network analysis; Community detec-
tion; Music style evolution

1 Introduction

Musical sampling is a technique used in popular music where one borrows some parts
of existing recordings and incorporates them into new musical creations. Sampling can
involve using any portion of a song, including the melody, drum parts, and vocals.
While experimental music first began using sampling in the mid-20th century [1], it
has since become extensively used in hip-hop, electronic, and pop music, particularly
since the 1980s. The identity of sample-based music is profoundly related to the songs
that were sampled. For instance, G-Funk, the dominant subgenre in West Coast hip-
hop during the 90s, created its own rhythm by sampling George Clinton and other funk
musicians [2]. Electronic music subgenres such as Jungle and Drum‘n’Bass are built
on the foundation of one of the most sampled songs in the world, “Amen, Brother.” [3]
As such, the sampling practice of an artist reflects the characteristics of the subgenre
or the music community to which the artist belongs. Therefore, analyzing sampling

⋆ corresponding author
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relationships can help us comprehend the different musical styles in the in sample-based
musical scene.

Music sampling data is a form of metadata about music that represents the sampling
relationships between songs. It is relational data that can be analyzed using network
analysis. Many studies have used network analysis to quantitatively analyze musical
metadata. Notably, Bryan and Wang [4] created a musical influence network of songs
based on sampling relationships and analyzed the network to identify the most influ-
ential songs in sample-based music. In another study that analyzed musical sampling
using network methodology, Youngblood [5] utilized a network diffusion model to ver-
ify the hypothesis that the diffusion of drum breaks, which play a significant role as key
samples in sample-based music, occurred through collaborative networks. Unlike this
study that focused on drum breaks, our study considers the relationships of all samples
with artists, analyzing the community structure of sample-based music that goes further
beyond the influence between individual pairs of songs.

Community detection is one of the most standard methods of network analysis. It
can also be applied to an influence network based on sampling relationships to discover
groups within sample-based music. To do this, we take a cue from studies on citation
networks. Musical sampling and academic citation are comparable in that they credit
past works for the production of current works [6]. The concept of Author Bibliographic
Coupling (ABC) exists in citation analysis [7], a measure of similarity between two
authors who cite the same paper. When the author is replaced with an artist and the
paper with a song, the similarity between two artists who sampled the same song can
be defined in the same fashion.

In this study, we analyze the community structure of sample-based music by con-
structing an artist-sample bipartite network. The community detected in this network
can be understood as reflecting a style in the sample-based musical scene. Furthermore,
we define similarities between generations of communities to investigate the stylistic
evolution of sample-based music, which we then visualize.

2 Materials and Methods

2.1 Data and network construction

Our data set consists of a total of 333 090 sampling cases between 1980 and 2019 pro-
cured from WhoSampled.com. Each case consists of the sampling relationship between
song pairs and its metadata (artist, genre, year of release). The total number of songs
included in the dataset is 296 456. Each artist’s genre is set to be the most common
one among the artist’s songs in the data set. Since there are can be many styles within
a genre, it impossible to specify an artist’s musical style by the genre tag alone. To
overcome this we collected the style tags shown on the on the artist’ pages on Allmu-
sic.com. Of the 42 969 sampling artists included in the sampling data, 14 124 style tags
were collected. This low coverage is due to many of the artists who are relative obscure
not having been tagged.

In this study, the 40-year period from 1980 to 2019 was divided into five-year in-
tervals, yielding a total of eight generations. The songs in the data set were assigned
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a generation by the year they were created. Then we constructed artist-sample bipar-
tite networks inside each generation. The bipartite networks comprise two distinct node
groups (artists and songs) with edges exclusively linking nodes between the opposing
groups. Since an artist may sample a song multiple times, the network is weighted.

2.2 Community detection

When dealing with bipartite networks, community detection is often performed on the
one-mode projection of the bipartite network into a unipartite network [8]. Alterna-
tively, community detection can be performed without such projection, preventing the
loss of data but is not as widely used. Various modifications of ‘modularity’ have been
proposed for bipartite networks, where modularity maximization is a popular method
for community detection in unipartite networks. Modularity is an index that quantifies
how many more connections are inside the community compared to random expecta-
tion. Here we utilized Barber’s bimodularity [9], allowing both artist and sample nodes
to be members of the same community, given as

Q =
1

w

∑
i

∑
j

(
Bij −

d1,id2,j
w

)
δc1,i,c2,j , (1)

where B is the biadjacency matrix of the network, and w is the sum of the weights of
all edges in the network. d1,i, d2,j each denotes degree of node i of type 1, and j of type
2. And δc1,i,c2,j is 1 when node i of type 1 and j of type 2 are in the same community,
and 0 otherwise.

To maximize Barber’s bimodularity, we used the Bilouvain algorithm [10], a bi-
partite variant of the Louvain algorithm. The Louvain algorithm is a heuristic algorithm
applicable to weighted networks and is computationally efficient. In this study, the com-
munities can contain both artists and samples in them.

2.3 Defining similarities between communities in different generations

The identity of the community can be determined from its samples; Artists resample
previously sampled songs to acquire sounds similar to previous works or to demonstrate
respect for senior artists. Consequently, if two communities from distinct generations
share samples, it is likely that the two communities show a similar style. The similarity
between two communities of distinct generations can be comuted based on this idea.

A community is a bipartite network consisting of artist nodes, sample nodes, and
the edges connecting them. A network centrality can be utilized to determine the im-
portance of the samples. The degree centrality is the most fundamental centrality, but
it only takes into account the local network information and has trouble differentiat-
ing nodes with the same degree due to being an integer value. The HITS (Hypertext
Induced Topic Selection) score [?] is a centrality that incorporates nonlocal network
information, and in this study, we employ the bipartite version of the HITS algorithm.
HITS is a scoring algorithm for directed unipartite networks consisting of the ‘hub’
score and the ‘authority’ score. The hub score is the sum of the authority scores of
nodes that the corresponding node points to, while the authority score is the sum of the
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hub scores of nodes that point to the corresponding node. This can be extended to the
bipartite networks [11] where the score for each node can be defined as the sum of the
scores of the nodes it is connected to. This can be expressed using the formula below
given as

pj =

|U |∑
j=1

Bijui;ui =

|P |∑
i=1

Bijpj , (2)

where B is the biadjacency matrix of the network, and U and P are separate node sets.
The final scores are normalized to 1.

To determine the similarity between two communities, we first identify the shared
samples. Then we merge the two communities into a single network and calculate their
HITS scores. Then we compute similarity between the two communities as the sum of
the HITS scores of the shared samples:

HITS Sim(C1, C2) =
∑

s∈S1∩S2

HITS∪C(s), (3)

where C1 = {A1 ∪S1, E1} and C2 = {A2 ∪S2, E2}. A1 and A2 are sets of artists and
S1 and S2 are sets of samples. ∪C is a union of communities C1 and C2.

3 Results

Table 1. Network information and community detection results for each generation.

Generation # of artists # of samples # of edges # of communities bimodularity
1980-1984 1060 2362 3460 465 0.884
1985-1989 3108 5614 19975 511 0.481
1990-1994 7871 14034 53916 966 0.491
1995-1999 9964 19196 46215 1761 0.667
2000-2004 8603 20874 36254 2521 0.784
2005-2009 9691 24147 41635 2785 0.777
2010-2014 14680 34469 63569 3805 0.757
2015-2019 15185 31002 53140 4369 0.827

Table 1 shows the information on the networks belong to the different five years-
long generation. While the numbers of nodes in each group exhibit an upward trend
over time, the number of edges exhibits a greater degree of variation. Detection results
indicate that the number of identified communities increases over time. Bimodularity,
quantifying the strength of the community structure, is comparatively low during the
generations of 1985–1989 and 1990–1994 but increases subsequently.

The communities we derive from this study consist of artists and samples. Thus
a community is not simply a group of artists but can be considered as representing
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sample-based musical styles. We also identified artists and samples that played a signif-
icant role in the community (style) by calculating degree centrality, as the community
evolved into another bipartite network. To better comprehend the musical styles of each
community, we compiled the Allmusic style tags of each community’s artists and des-
ignated the five most common tags as the community’s main subgenres.

To investigate the evolution of sample-based music styles, we created a network of
similarity between communities from successive generations. First, we see that the pri-
mary communities of each generation consist of more than 1% of the network’s total
nodes. The similarity between the primary communities of successive generations was
then computed using the similarity index defined earlier. Finally, we constructed a net-
work consisting of the the primary communities of each generation as nodes and their
similarity as edge weights. We set a threshold for the edge weights to visualize only con-
nections above a certain level of similarity. Figure 1 depicts the network visualization
resulting from a threshold value of 0.2. In terms of node labeling, for instance, ‘2 9599’
represents the 2nd community of the 1995-1999 generation. The main subgenres of the
primary communities visualized in Figure 1 are presented in Table 2.

Fig. 1. Similarity network of primary communities in each generation. Edges exceeding threshold
0.2 were excluded from visualization. The node size is proportional to the number of artists be-
longing to each community, and the thickness of the edge is proportional to the inter-community
similarity. The color of nodes signifies the generation to which they belong. In terms of node
labeling, for instance, ‘2 9599’ represents the 2nd community of the 1995-1999 generation.

In Figure 1, a significant path is observed from 0 9094 to 2 1519 (top of the figure).
These communities represent Jungle and Drum‘n’Bass, which are breakbeat-based sub-
genres of electronic music [3].(‘Jungle/Drum‘n’Bass’) Since these communities repre-
sent the largest electronic music samples of each generation, we can intuitively see
that breakbeat-based music dominates sample-based electronic music. Breakbeat uses
drum breaks included in funk, jazz, and R&B music, and the most famous drum break
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Table 2. Main subgenres the visualized primary communities in Figure 1. The main subgenre of
each community is determined by counting the style tags of artists belonging to the community.

comm. main subgenre
0 8084 Dancehall, Roots Reggae, Ragga, Contemporary Reggae, Lovers Rock
2 8084 Golden Age, Old-School Rap, Electro, Alternative Pop/Rock, French
0 8589 Golden Age, Old-School Rap, Hardcore Rap, East Coast Rap, Club/Dance
1 8589 Club/Dance, House, Acid House, Dance-Pop, Techno
2 8589 Pop-Rap, Golden Age, East Coast Rap, Party Rap, Hardcore Rap
3 8589 Party Rap, Club/Dance, Bass Music, Quiet Storm, Modern Electric Blues

14 8589 Dancehall, Ragga, Roots Reggae, Contemporary Reggae, Lovers Rock
0 9094 Club/Dance, Jungle/Drum‘n’Bass, Techno, House, Rave
2 9094 Gangsta Rap, Hardcore Rap, West Coast Rap, G-Funk, East Coast Rap
3 9094 Hardcore Rap, Pop-Rap, Golden Age, Contemporary R&B, East Coast Rap
4 9094 Club/Dance, House, Dance-Pop, Acid House, Euro-Dance
5 9094 Club/Dance, Party Rap, Bass Music, Southern Rap, Pop-Rap

11 9094 Dancehall, Ragga, Contemporary Reggae, Reggae-Pop, Club/Dance
12 9094 Hardcore Rap, Gangsta Rap, Southern Rap, Underground Rap, Dirty South
0 9599 Gangsta Rap, Hardcore Rap, West Coast Rap, G-Funk, Pop-Rap
1 9599 Club/Dance, Turntablism, Underground Rap, Hardcore Rap, East Coast Rap
2 9599 Club/Dance, Jungle/Drum‘n’Bass, Techno, Hardcore Techno, Electronica
8 9599 Hardcore Rap, Gangsta Rap, Dirty South, Southern Rap, Adult Contemporary

14 9599 Dancehall, Contemporary Reggae, Ragga, Alternative Pop/Rock, Roots Reggae
0 0004 Alternative Rap, Hardcore Rap, Underground Rap, East Coast Rap, Turntablism
1 0004 Hardcore Rap, East Coast Rap, Gangsta Rap, Pop-Rap, West Coast Rap
2 0004 Jungle/Drum‘n’Bass, Club/Dance, Techno, Electronica, IDM

16 0004 Contemporary R&B, Club/Dance, House, French House, Pop
1 0509 Jungle/Drum‘n’Bass, Club/Dance, Garage, Breakcore, Dubstep
2 0509 Hardcore Rap, Alternative Rap, Alternative/Indie Rock, Underground Rap, French Rap
4 0509 Hardcore Rap, East Coast Rap, Alternative Rap, Trip-Hop, Club/Dance

22 0509 Pop, Dance-Pop, Adult Contemporary, Teen Pop, Contemporary R&B
0 1014 Southern Rap, Hardcore Rap, Pop-Rap, Gangsta Rap, East Coast Rap
1 1014 Pop, Alternative/Indie Rock, Club/Dance, Indie Electronic, EDM
3 1014 Hardcore Rap, East Coast Rap, Political Rap, Golden Age, Heavy Metal
4 1014 Club/Dance, Jungle/Drum‘n’Bass, Dubstep, Garage, House

12 1014 Midwest Rap, Hardcore Rap, Left-Field Rap, Alternative Rap, French Rap
23 1014 Club/Dance, House, EDM, Dubstep, Pop-Rap
1 1519 Pop, Dance-Pop, Alternative Rap, Left-Field Rap, Acappella
2 1519 Club/Dance, Jungle/Drum‘n’Bass, Dubstep, House, Garage
5 1519 Polish, Hardcore Rap, Central European Traditions, East Coast Rap, Political Rap

10 1519 West Coast Rap, Contemporary R&B, Left-Field Rap, Pop-Rap, Gangsta Rap
11 1519 Club/Dance, EDM, Pop, House, Downtempo
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is “Amen, Brother” released by The Winstons. This song has been sampled the most
across all communities on path. Other prominent drum breaks, such as those from Lyn
Collins’ “Think (About It),” Bobby Byrd’s “Hot Pants,” and Incredible Bongo Band’s
“Apache,” are commonly found on each community’s list of the top samples. Thus, the
drum break, utilized primarily in breakbeat-based music, is fixed and can be seen to
have been utilized throughout time.

Community 1 9599 is notable as well. The predecessors of Community 1 9599
refer to those that represent the old-school hip-hop style, including samples such as
Beside’s “Change the Beat (Female Version)” and James Brown’s “Funky Drummer”.
Specifically, “Change the Beat (Female Version)” is the most sampled song in the world
and can be considered an iconic old-school hip-hop sample utilized in DJ scratch per-
formances [13]. Community 1 9599 represents Turntablism and underground hip-hop
styles focused on famous hip-hop DJs (‘Turntablism’, ‘Underground Rap’) and illus-
trates the success of Turntablism music in the late 1990s [12]. The successors of 1 9599
can be considered to be the genres that retain the essence of classic hip-hop. Therefore,
it is notable that the path following Community 2 0509 is dominated by Polish hip-hop
artists [14]. This suggests that in recent years, artists who inherit the old-school hip-hop
style have emerged more frequently in European countries such as Poland than in the
United States, the birthplace of hip-hop.

Also identified is a path connecting 0 8084 → 14 8589 → 11 9094 → 14 9599
(bottom left of the figure). These communities are synonymous with reggae music.
Reggae is also a sampling-based music genre, like hip-hop and electronic music, pri-
marily sampling prior reggae music [15]. Before 1980 when hip-hop was born, reggae
was the major music type. Reggae songs such as “Funaany” by Admiral Bailey, “Full
Up”, “Drum Song” by Jackie Mittoo, and “Real Rock” by Sound Dimension were fre-
quently sampled in each community. The fact that this path was cut off in the 1995-1999
generation suggests that the sampling reggae became much less popular in the 00’s.

4 Conclusions

In this study we investigated the community structure of sample-based music post-
1980 using bipartite network analysis. We constructed the sampling networks for each
of the eight five year-long generations and then conducted community detection. The
communities established in this manner were shown to be representing a style.

Our analysis focused on two significant ample-based music genres, electronic music
and hip-hop. Jungle and Drum‘n’Bass are the subgenres of electronic music that use a
style that incorporates breakbeats. Since there are only a few types of breakbeats, we
showed that the Jungle / Drum‘n’Bass communities in each generation have strong ties.
We also observed that the Old-school hip-hop style, which has persisted since the 1980s,
is diverging into multiple branches and that non-European artists, such as those from
Poland, continue to use this style into the 2000s.

In the future we intend to increase our understanding of sample-based music styles
by conducting a more comprehensive analysis of the artists and genre information of
the derived communities. We may also vary the time unit used to divide generations in
order to conduct analyses on a different scale. Moreover, by varying the edge weight
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threshold when visualizing the similarity network of consecutive primary communities,
we may observe the evolution of sample-based music genres in more detail. Lastly,
we could investigate generation-skipping transmission of musical styles by analyzing
the similarity between two communities separated by more than one generation, which
could show how the phenomenon of “revival” of musical styles occurs.
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Abstract. Though synthesis algorithms frequently use parameters to change the
produced sound, it is not always the case that these parameters have a direct (or
intuitive) correlation to the change made to the perceptual attributes—the more
meaningful sound descriptors for the listener and/or musician. In this work we
explore two strategies by which a perceptual descriptor, roughness, can be param-
eterized directly on a scale, much like how interactive sound allows for control
of pitch and/or loudness. Here, roughness (often tied to dissonance) is controlled
by changing either the frequency or amplitude of partials that lie within a critical
band. Audio examples are provided to demonstrate use in audio mixing, sound
(re)synthesis and audio effects, with two implementations made available: one
for offline use and another for real-time interactive synthesis using Max/MSP.

Keywords: auditory roughness, additive synthesis, assistive audio production

1 Introduction

This work presents two algorithms for controlling the roughness of sound by adjusting
the frequency or amplitude of individual partials or harmonics of the sound. Auditory
roughness is a perceptual feature of sound that is often linked with an experience of dis-
sonance, making it a particularly salient sonic parameter that a composer may want to
manipulate. Roughness has historically been studied in relation to musical consonance
with regards to interval choice and tuning. Consequently, previous approaches that ma-
nipulate the roughness of sound often utilize pitch shifting. The approaches described
here avoid pitch shifting, favoring subtle changes to the spectrum to control rough-
ness while maintaining as much of the original timbre as possible. A brief history of
roughness and musical applications is presented in Section 2. Algorithms for roughness
control are described generally in Section 3. Finally, implementations for audio files
and additive synthesis are presented in Section 4. Implementations of the algorithms
and audio examples are available online.

⋆ Special thanks to Miller Puckette and Tamara Smyth for advising portions of this project.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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2 Auditory roughness, musical consonance and tuning

Auditory roughness is a psychoacoustic and physical phenomena that occurs when si-
nusoidal components of sound fall within the critical band of the ear. Sinusoidal compo-
nents that are very close in frequency (i.e. separated by less than 10 Hz), are heard as a
single partial with slow beating, a special case of amplitude modulation where the mod-
ulating sinusoid (the sound’s amplitude envelope) is sufficiently low in frequency that
the sound is brought in and out of prominence on a perceptible time scale. While such
sounds are generally considered to be consonant, increasing the modulation frequency
or, equivalently, the frequency difference between the two components, increases the
rate of beating, eventually leading to the listener being no longer able to track the beats;
the tone takes on a more steady amplitude but with a distinct quality known as rough-
ness, an attribute often associated with dissonance. Increasing the modulation frequency
still, so that the frequency separation approaches the critical bandwidth, the listener be-
gins to recognize the sound as separate tones, at which point discomfort decreases and
eventually disappears. Below, we briefly present the history of the study of auditory
roughness, its relation to musical consonance and its use in music systems.

2.1 Psychoacoustic models of roughness

Auditory roughness relates the experience of dissonance to the presence of sound par-
tials that fall within a critical band of the human ear. Theories relating musical conso-
nance and distance between sound partials date at least as far back as Helmholtz, who
credited consonance to the lack of beating partials when harmonic instruments play
intervals related by integer ratios [1].

Plomp and Levelt tested the perception of dissonance and proposed a general model
of dissonance of sinusoidal tones based on critical bandwidth [2]. The resulting data
informed a model by Sethares [6] who calculates the dissonance between two partials
with frequencies f1 and f2 having amplitudes a1 and a2, respectively, as

r(f1, a1, f2, a2) = a1a2 · [e−b1sx − e−b2sx] , (1)

where b1 = 3.5 and b2 = 5.75 are chosen by fitting sx to Plomp and Levelt’s model.
In (1), x = f2 − f1 (where f1 < f2) is the frequency difference between the

two partials and s scales the frequency difference to fit Plomp and Levelt’s standard
curve, which was originally plotted with respect to critical bandwidth. The frequency
difference is scaled by

s =
d∗

s1f1 + s2
, (2)

where d∗ = 0.24 is the position of maximum dissonance and s1 = 0.021 and s2 = 19
are obtained using a least-squares fit. Equation 1 accounts for partials having different
amplitudes, so softer components contribute less to dissonance. Figure 1 demonstrates
how (1) varies across the frequency domain. We will later use (1) to calculate the rough-
ness of sound partials and choose new frequencies to reduce roughness.

Kameoka and Kuriyagawa extended Plomp and Levelt’s experiments and investi-
gated the role of masking [3]. The perception of dissonance when two partials have dif-
ferent amplitudes was found to differ from the pattern found in masking curves. While
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Fig. 1. Left: the roughness of two partials with equal amplitude by their frequency ratio (1).
Right: a plot of (3), a simple model for estimating the masking curve of a tone given its frequency
and sound pressure level in dB. Tones on or below the sloped lines are masked by the original.

a louder sinusoid will more easily mask a quieter sinusoid of higher frequency, pairs
of sinusoids were found to be more dissonant when the tone with lower frequency was
louder than the tone of higher frequency. Nevertheless, perceived dissonance dropped
when one was completely masked by the other, suggesting that masking plays a role
in perceived dissonance. A simple model for estimating the masking curve of a partial
based on difference in Barks [8] can be computed as

mask(x|f, dB) =

{
dB − 10− 27 [BHz(f)−BHz(x)] , if x < f
dB − 10− 15 [BHz(x)−BHz(f)] , if x ≥ f

}
, (3)

which we will later use to computationally control roughness by amplitude changes
informed by masking. BHz converts from Hz to Bark using Traunmüller’s model [4].
A plot of this masking curve is shown on the right side of Figure 1.

Concepts of consonance and dissonance have many definitions in the context of
music. The sensation caused by beating partials in a critical band, which can also be de-
scribed as the presence of amplitude modulation within a critical band, is now referred
to as roughness in psychoacoustics to disambiguate it from compositional definitions.
Based on the work of Plomp and Levelt, more sophisticated models of roughness have
been developed. Sethares’s model of Plomp and Levelt accounts for the amplitude of
partials (see (1)). Vassilakis [14] additionally accounted for the role of amplitude mod-
ulation in an extension to (1) 1. The roughness of a signal is usually defined as the sum
of roughness between all pairs of partials.

2.2 Applications to tuning, mixing and synthesis

While roughness can be measured outside the context of musical applications, it has
been supposed to be related to musical consonance [1] and has been used as a metric
in tuning, mixing and composition. Sethares developed the Adaptive Tuning algorithm,
which adjusts the fundamental frequencies of notes based on their spectra to minimize

1 Vassilakis’s model more thoroughly accounts for the role of loudness and amplitude modu-
lation to roughness. However, this equation is more complex and was not found to improve
synthesis in this study, so the simpler model from Sethares is used.
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the expected roughness of the sound. Sethares’s algorithm can be approximated in real-
time on spectra that are known ahead of time [9] or computed exactly on mixtures of
spectra in the full implementation [10]. Adaptive Tuning is based on minimizing (1)
with respect to fundamental frequency (as opposed to individual partial frequency) and
has been used in other musical contexts (for example, to control the pitch of a Theremin
implementation in real-time using Pure Data [13]).

The roughness of an audio mix can be a useful metric to measure and control for
in sound engineering. Vassilakis used an extension of (1) to analyze and annotate the
roughness of sound files [14]. Real-time roughness estimators have been implemented
in Pure Data [15][16], each of which use sinusoidal modeling to estimate partials of
an incoming mix to determine the roughness. While the ability to analyze roughness
in real-time can be helpful, these algorithms crucially will have difficulty detecting
sinusoidal peaks that are nearby (i.e., less than 20 Hz difference) using solely FFT-
based analyses. Vassilakis’s software, on the other hand, uses frequency reassignment
methods to obtain finer resolution of nearby partials.

The roughness of a sound can be used as a parameter to be increased or reduced in
some synthesis or resynthesis methods. Molina et al. modeled audio signals of chords
using sinusoid-plus-residual analysis [5] and reduced beating partials in resynthesis by
forcing partial frequencies be an integer multiple of one of the fundamental frequencies
of the chord [18]. Roughness was found to be the most impactful feature when pitch
shifting one track to be consonant with another in the context of DJing [19][20]. When
synthesizing impact sounds using additive synthesis, roughness has been used as a pa-
rameter to create convincing sound examples [17]. Finally, Park et al. created software
to manipulate psychoacoustic features such as spectral slope or inharmonicity when
composing using sound material [12]; auditory roughness control was not implemented
in the software but may be another candidate for compositional control.

3 Roughness control by individual partial adjustment

Previous approaches to roughness control have focused on changing fundamental fre-
quencies (and therefore all partials) of notes [9], pitch shifting audio tracks [20], or
quantizing partial frequencies to strict integer harmonics [18]. An unexplored approach
is the selective adjustment of partials independent of tuning to control roughness while
leaving the majority of the signal intact. Such an approach gives the composer options
for reducing or increasing roughness in subtle ways that preserve the essence of the orig-
inal material as much as possible. The methods developed here explore this approach
in both a real-time and offline process. Real-time methods change either the frequency
or amplitude of additive synthesis parameters in the Max/MSP computer music envi-
ronment, while offline approaches selectively filter and resynthesize certain partials in
audio files while preserving the remaining portions of audio, which may produce higher
fidelity output than methods that use sinusoidal resynthesis [18]. Section 3.1 presents an
algorithm for frequency adjustment and Section 3.2 presents an algorithm for amplitude
adjustment. Offline and online implementations are described in Section 4.
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3.1 Changing roughness by partial tuning

Here we define frequency bashing, a greedy algorithm for reducing or increasing rough-
ness by changing the frequency of partials that lie within a critical band. Pairs of partials
that overlap in time and cause roughness are selected and iteratively changed to adjust
roughness. A partial may contribute to roughness in more than one pair of nearby par-
tials, so as the algorithm iterates, partials that have already been adjusted are skipped.

In the algorithm, partials pairs are analyzed for their contribution to the overall
roughness of the sound using (1), with the most rough partial pairs processed first. The
quieter partial has its frequency changed to be the frequency that either minimizes or
maximizes roughness with respect to the louder partial within a predefined distance.
We restrict movement to a specified range in Barks due to the the shape of (1), which
would otherwise cause partials to always move to an identical frequency when bashing
for minimized roughness; we also aim to keep partials within their original critical band
to avoid drastically altering the nature of the original sound. Based on the maximum
dissonance of (1), distance in Barks is typically set to between 0.05 and 0.4 in our
experiments, but the distance is exposed as a user parameter.

Frequency bashing for consonance is computed mathematically as

f∗
2 = argmin

fmin≤f∗≤fmax

r(f1, a1, f
∗, a2) (4)

with constraints defined as

fmin, fmax = HzB(BHz(f1) +BL), HzB(BHz(f1) +BH) . (5)

HzB and BHz convert from Bark to Hz and vice versa [4], and BL and BH define the
allowable distance in Barks. In (4) and (5), f1 is the louder partial whose frequency
remains constant, while frequency f2 is the quieter partial whose frequency will be
bashed to a new value. When increasing roughness instead of decreasing, the argmin
operation in (4) is replaced by argmax. Equation 5 assumes f1 < f2; when f1 > f2 the
Bark range is defined below f1 instead of above.

Figure 2 shows potential adjustments for sinusoid pairs. Note that for partials with
identical differences in frequency, their position along the roughness curve and solu-
tions for maximum consonance and dissonance will change depending on their location
in the frequency domain. The partial pairs depicted (440 Hz and 470 Hz versus 880
Hz and 910 Hz) have unequal differences in their maximally consonant and dissonant
solutions, even though they begin with the same difference of 30 Hz per pair.

Another option is hard-bashing, where the quieter partial is adjusted to be a speci-
fied difference in Hz from the unchanged partial. An advantage of hard-bashing is that
when multiple partials are adjusted within a sound, they will have identical frequency
difference from their neighboring partial, creating a slow-beating (tremolo) effect but
only in certain frequency ranges of the signal. However, consonance and dissonance as
defined by roughness models are disregarded. In Figure 2, hard-bashing partials to have
a difference of 3 Hz maintains the equal difference between partial pairs after bashing
and both new frequencies result in lower roughness. However, they now fall on different
positions along the roughness curve due to their different critical bandwidths.
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Fig. 2. Frequency bashing two pairs of partials with frequencies (440 Hz, 470 Hz) on the left and
(880 Hz, 910 Hz) on the right. The partials with higher frequencies are adjusted. The original
frequency of the higher partial is depicted in the long-dashed red line, the most consonant in the
specified allowable range of movement in Barks is shown in the short-dashed yellow line and the
most dissonant in the dash-dotted green line. Hard-bashing the partial to a difference of 3 Hz is
shown in the dotted purple line. Hard-bashing ignores the roughness curve and allowable range.

Frequency bashing is implemented as described for offline processing of audio files,
with further modifications described in Section 4.1. Simplifications made to this algo-
rithm for real-time implementation are described in Section 4.2.

3.2 Changing roughness by amplitude adjustment

Another approach to roughness control is changing the amplitude of partials, as the
absolute and relative loudness of partials contributes to roughness. A simple technique
would be to lower the amplitude of the quieter partial in a pair that contributes roughness
to the sound. However, lowering the amplitude of a partial will reduce the power of the
signal. Instead, the quieter partial must have its amplitude decreased while the louder
partial’s amplitude is increased to maintain the original signal power. This seesaw effect
of amplitude adjustments may remind the reader of the children’s arcade game “whack-
a-mole,” and is therefore named amplitude whacking.

Whacking can be performed on a scale between 0.0 (no change) and 1.0 (maximum
amplitude change). The algorithm maximally adjusts amplitudes so that the quieter par-
tial is fully masked by the louder partial, as masking plays a role in perceived roughness
[3]. When adjusting the amplitudes of a pair of partials to reduce roughness, the result-
ing difference in dB (∆dB) should be the whacking percentage of the masking threshold
specified by (3); additionally, the power of the signal should be retained. If a1 is the am-
plitude of the louder partial and a2 the amplitude of the quieter partial, these constraints
are specified as

20 log10(a
∗
1)− 20 log10(a

∗
2) = ∆dB , (a1)

2 + (a2)
2 = (a∗1)

2 + (a∗2)
2 (6)

respectively, where a∗1 and a∗2 are the new amplitudes of the partials. Solving the system
of equations algebraically leads to the solutions:

a∗2 =

√
(a1)2 + (a2)2

1 + 10
∆dB
10

, a∗1 =
√

(a1)2 + (a2)2 − (a∗2)
2 . (7)
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Fig. 3. Amplitude whacking pairs of partials with frequencies (440 Hz, 470 Hz) on the left and
(880 Hz, 910 Hz) on the right. Original amplitudes are shown as red solid lines, with whacked
amplitudes depicted as black X’s. Despite each pair being equidistant in Hz, the example on the
right requires more attenuation of the quieter partial due to the asymmetry of the masking curve.

Amplitude whacking proceeds identically to frequency bashing, with pairs of par-
tials that contribute the most roughness processed first and partials that have already
been adjusted skipped in later iterations. Figure 3 shows potential adjustments for am-
plitudes of partial pairs to reduce the roughness of a sound. Offline and real-time imple-
mentations of the algorithm are further described in Sections 4.1 and 4.2, respectively.

4 Algorithm Implementations

The algorithms for frequency bashing and amplitude whacking can be performed offline
on mixes of audio files or in real-time in additive synthesis. Each approach requires
certain tweaks and optimizations. The implementations are described below, followed
by a discussion of potential applications with accompanying examples available online.

4.1 Offline implementations on audio files

Auditory roughness occurs most when partials fall very close to each other (i.e., on the
order of 20-40 Hz difference). Finding partials with such resolution in a single audio
file is difficult using only FFT-based methods [14], and isolating one partial in a digi-
tal filter without affecting the nearby partial also presents issues. Taking these limita-
tions into account, and following previous application of roughness to combinations of
sounds [9][18][19], we use the algorithms defined in Section 3 to control the roughness
of audio files that are to be combined in a mix.

Given a collection of audio files, each file is analyzed using sinusoidal modeling [5]
to find the top N partials of each frame of audio. N can be a small number (i.e., on
the order of 10) because the sinusoidal tracks will not be used for resynthesis and are
instead used to identify the most prominent partials at a given time. When a partial
from signal xi and a partial from signal xj overlap in time and cause roughness, the
partials are collected as candidates for frequency bashing or amplitude whacking with
new frequencies or amplitudes determined using (4) and (7).
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Parameter Shift

Parameter Shift

Fig. 4. Partials of a signal x are adjusted by removing them using notch filters, and in parallel,
isolating them from x using amplitude-complimentary peaking bandpass filters. Complimentary
filters share the same center frequency fck and quality factor Qk. The output of the peaking filters
are processed to adjust either the frequency or the amplitude by some amount ∆k.

To adjust partials of a signal x, the offending partials are removed from x and in
parallel isolated, altered, and added back in. The mean frequency and frequency range
of a partial are used to set the center frequency fc and quality factor Q of an amplitude-
complimentary pair of HN , a notch filter, and HP , a peaking bandpass filter, such that

HN (fc, Q) ·X +HP (fc, Q) ·X = X . (8)

If a signal has k partials to be adjusted, the output signal x′ will be computed as

X ′ = X ·
k∏

i=1

HNi
(fci , Qi) +

k∑
i=1

∆i(HPi
(fci , Qi) ·X) , (9)

where ∆i changes either the amplitude or frequency of the partial isolated in the
peaking filter. HN and HP are standard second-order IIR filters defined in [7] and
implemented as the iirnotch and iirpeak functions in MATLAB and scipy.

Figure 4 depicts the audio processing of partials. Forward and backward filtering
is used for zero-phase filtering. When frequency bashing, the output of a peaking filter
is frequency shifted using single sideband modulation; when amplitude whacking, gain
is applied to the output so that the mean amplitude matches the intended value. The
processed signals are then added to the output of the series of notch filters. Additionally,
cross-fades are applied so that filtered signals with adjusted partials are only heard
during the lifetime of the partial. When partials that cause roughness are not present,
the original sound files are used unaltered.

4.2 Real-time implementations for additive synthesis parameters

Frequency bashing and amplitude whacking can be performed more straightforwardly
on additive synthesis parameters, as no audio analysis is inherently required. In additive
synthesis, frequency and amplitude pairs are used to control an oscillator bank, with
each oscillator receiving one frequency and amplitude per synthesis step. Roughness
control on additive synthesis parameters can be more easily performed in real-time
unlike the previous methods for audio processing, although some simplifications to the
algorithms are required to reduce computational load.
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Two externals for the Max/MSP computer music environment were created to con-
trol roughness of additive synthesis parameters. The externals are control rate objects
that take as input a list of frequency/amplitude pairs and output one list of frequen-
cies and one list of amplitudes. In the basher object, frequencies are adjusted using (4)
while amplitudes are passed through unchanged, while amplitudes are adjusted by the
whacker object using (7) with the frequencies unchanged. The outputs can be connected
to multichannel Max objects for additive synthesis (see the associated code for exam-
ples). The input list of sinusoidal parameters can come from an analysis-resynthesis
system for sinusoidal modeling [5][11], but composers are free to use any method for
generating sinusoidal parameters. Other algorithmic parameters include the Bark range
of search and adjustment (see Equation 5), a toggle to change from decreasing rough-
ness to increasing roughness, and the percent of movement from the original sinusoidal
parameters to the adjusted parameters. These parameters can be fixed or adjusted by the
user algorithmically or manually on-the-fly as a musical effect.

Equation 1 is expensive to compute in real-time for every potential pair-wise com-
bination for every frame. When searching for potential candidates for parameter ad-
justment in the Max objects, partial pairs are sorted by frequency instead of by overall
roughness to reduce computational load. Pairs are processed in ascending order of fre-
quency, short-cutting whenever pairs start to fall outside of the defined Bark range. In
many cases there will not be many partials lying within a fraction of a critical band of
each other, but in general results may differ from the offline implementation.

When changing amplitudes in Max, the user parameter for whacking amount max-
imally transfers all power from the quietest partial to the loudest partial to avoid com-
puting (3) at every frame. As a result, the audible effect of the parameter will stop
before reaching the maximum value once quieter partials are fully masked. This issue
could be avoided by precomputing and quantizing masking curves. Finally, while of-
fline methods change the parameters of partials across time, sinusoidal parameters here
are adjusted at every frame in a memoryless fashion. This change reduces computation
and computer memory necessary to track previous changes, but makes the objects more
susceptible to rapid fluctuation in the case where two nearby partials are nearly the same
amplitude and fluctuate between which one is louder.

4.3 Audio examples and observations

Examples of frequency bashing and amplitude whacking on audio files and additive
synthesis parameters are available on the associated supplemental website. 2 The basic
algorithms are demonstrated on the sinusoid examples in Figures 2 and 3 where the
effect of each algorithm and parameter choice is most obvious. More complex examples
showcase various use cases of the algorithms in more realistic musical contexts.

The effects of frequency bashing and amplitude whacking on synthesized notes
is shown in Figure 5. Each algorithm is applied to an equal tempered major triad of
sawtooth waves with 10 partials. The original spectrum is shown on the left side of
the figure, alongside the adjusted partials in each algorithm in a zoomed region of the
spectrum. Three pairs of partials are found to be nearby in a critical band and contribute

2 https://jeremyhyrkas.com/cmmr2023
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Zoomed Region

Fig. 5. Left: the spectrum of a major triad of sawtooth waveforms in equal temperament tuning.
Center: zoomed region of the spectrum after frequency bashing. Three partials have been moved.
Right: the same zoomed region of the spectrum after amplitude whacking. Three pairs of nearby
partials (six partials total) have had their amplitudes adjusted.

to roughness. Although the algorithms only adjusts a handful of partials, there is a
noticeable difference in beating between the original and processed examples while
the characteristic of the sound is largely intact. In contrast, an accompanying audio
example demonstrates the chord in just intonation, which an algorithm such as Adaptive
Tuning [9] may offer as a solution. The retuned example also contains less roughness
than the original but sounds fundamentally different. This example demonstrates the
difference in philosophy between our methods for roughness control versus tuning-
based approaches, as the goal of our algorithms is to only change the perceived auditory
roughness while maintaining as much of the original signal as possible.

More examples of roughness reduction include frequency bashing a slightly detuned
major chord and amplitude whacking a horn line. The horn line is depicted in Figure
6, with a spectrogram of the original on the left and a spectrogram of the difference
signal after amplitude whacking on the right. This example again demonstrates the very
subtle changes made to the signal, as well as the preservation of the original signal
during periods of time where no roughness is present. Another example demonstrates
the effect of filtering a partial that contributes to roughness without resynthesizing it
back in with a different frequency or amplitude. This approach will reduce the power of
the signal and can cause the sound to feel hollow when too many partials are removed,
but can be effective on audio examples where very few partials contribute to roughness.
These examples demonstrate a potential use case of reducing roughness when mixing a
track without the use of retuning or manually intensive EQing.

Two examples are presented where frequency bashing is used to introduce more
roughness into a sound mix than was originally present. A sawtooth major seventh chord
is used, as is a recording of a choir singing a chorale. This use case shows frequency
bashing as an audio effect that may be useful for a composer who wishes to introduce
dissonance without detuning or modulating the entire signal. Finally, an example is
presented using hard-bashing where pairs that contribute roughness are moved to be
exactly 3 Hz apart from one another. The effect is similar to a tremolo audio effect, but
the modulation is only heard when roughness is present and only in some parts of the
frequency domain. All examples described can be found on the accompanying website.
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Fig. 6. Left: a spectrogram of a dynamic horn line featuring audio of three players performing.
Right: the spectral difference of an amplitude whacked version of the horn line and the original.
Amplitudes of partials are only adjusted in areas of roughness, after which point the original
signals are faded back in. This example is time-varying and demonstrates subtle changes that
achieve a reduction in roughness without retuning any notes.

The Max externals described in Section 4.2 are demonstrated in videos using har-
monic and inharmonic drones, as well as a dynamic sinusoidal reconstruction of the
horn line described previously. The reconstruction requires playback of an offline anal-
ysis using the SPEAR modeling software [11]. Preliminary versions of these Max ex-
ternals that control the amplitude, frequency and spatial panning of partials to increase
or reduce auditory roughness were used by the author to create a composition that mu-
sically investigates roughness, tuning and listening tests. 3

5 Conclusion and Future Work

We present two algorithms for controlling auditory roughness by targeted sound par-
tial adjustment. Frequency bashing modifies the frequencies of neighboring partials,
while amplitude whacking modifies their amplitude. Considerations are made based on
previous work modeling listener perception of roughness, auditory masking, and previ-
ous approaches to roughness reduction. Offline implementations of both algorithms are
provided for audio files intended to be mixed in time4, and control-rate objects for ad-
ditive synthesis are provided for the Max/MSP environment5. The accompanying audio
examples demonstrate potential use cases in mixing and composition.

The algorithms reduce roughness as calculated by the roughness models by their
definition, but listening tests would be beneficial to confirm the intended effect on lis-
teners, as the perception of consonance and dissonance is affected by context in ways
not accounted for in these models. Additionally, a VST implementation of the audio

3 The piece described here was submitted for consideration to CMMR 2023.
4 https://github.com/jhyrkas/sms-tools-audio-bashing
5 https://github.com/jhyrkas/basher_max
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processing algorithms would assist sound engineers in incorporating them into their
workflow. While these algorithms do not currently work on incoming audio streams, a
plug-in implementation may be beneficial for use on processed tracks before final mix-
ing and mastering. Finally, simplifying certain portions of the audio implementations
may make them viable for use in real-time applications.
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Abstract. Deep-learning beat-tracking algorithms have made significant advance-
ments in recent years. However, despite these advancements, challenges persist
when processing complex musical examples, which are often under-represented
in training corpora. Expanding on our prior work, this paper delves into our user-
centric beat tracking approach by subjecting it to highly challenging musical
pieces. We probe the adaptability and resilience of our methodology, illustrat-
ing its ease of integration with state-of-the-art techniques through minimal user
annotations.
The chosen samples, namely, Uruguayan Candombe, Colombian Bambuco, and
Steve Reich’s Piano Phase, not only demonstrate our method’s efficacy but also ex-
emplify challenging rhythmic dissonance effects such as polyrhythms, polymetres,
and polytempi. Thereby, we demonstrate the applicability of our human-in-the-
loop strategy in the domain of Computational Ethnomusicology, confronting the
prevalent Music Information Retrieval (MIR) constraints found in non-Western
musical scenarios. Our approach enables notable improvements in terms of the
F-measure, ranging from 2 to 5 times the current state-of-the-art performance. In
terms of the annotation workflow, these results translate into a minimum reduction
of 50% in the number of manual operations required to correct the beat-tracking
estimates.
Beyond beat tracking and computational rhythm analysis, this user-driven adapta-
tion suggests wider implications for various MIR technologies, particularly when
music signal ambiguity and human subjectivity challenge conventional algorithms.

Keywords: User-Centred, Transfer Learning, Beat Tracking, Computational Eth-
nomusicology

1 Introduction

Rhythm is a fundamental aspect of music, making computational rhythm analysis a
critical topic within Music Information Retrieval (MIR). This area involves tasks such
as tempo determination, rhythmic pattern recognition, and metre determination [9].
Algorithmic beat tracking, the automatic detection of a musical signal’s pulse, plays an

This work is licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0).
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essential role in various MIR applications that require the parsing of musical time, i.e., the
beat. In the past decade, beat tracking has seen significant progress, with the current state-
of-the-art achieving accuracy levels over 90% on benchmark datasets [5, 2]. However,
even these advanced methods can face challenges with complex rhythms, especially
if they differ from the features of their training data. These challenges are amplified
in specialised areas like Computational Ethnomusicology (CE) [20]. In this domain,
the availability of annotated datasets is limited, and the need for specalised cultural
knowledge to annotate unique rhythmic examples is crucial. Due to these limitations,
many musical traditions remain under-represented in MIR research. This gap highlights
a known issue in MIR systems: a primary focus on Western (or Eurogenetic) music at
the expense of diverse global genres and expressions [4, 8].

To overcome these obstacles, adaptive methods have been proposed for tasks like beat
tracking [7] and metre determination [19]. While genre-aware knowledge models might
provide solutions, they lack scalability. Fiocchi et al. [6] explored how beat tracking
knowledge transfers from mainstream Western to Greek music, but their approach,
besides being computationally intensive, did not perform as well as training on the same
dataset from scratch and yielded less than satisfactory results on the established SMC
dataset [10], designed with a focus on challenging musical audio examples.

In light of these shortcomings, we shifted towards a more streamlined solution.
Our approach harnesses minimal user annotations to optimise a state-of-the-art beat
tracker. In earlier works [16, 15], we introduced this user-centric method, aiming for
very high accuracy on specific music pieces. Designed for computational efficiency
and compatibility with personal computing devices, our methodology has outperformed
established methods across various datasets, most notably on the demanding SMC
dataset [14].

In this study, we expand the scope of our approach beyond Western music. We eval-
uate our beat-tracking method using challenging datasets such as the Uruguayan Can-
dombe and the Colombian Bambuco, both distinguished by their respective polyrhythm
and polymetre features. These musical traditions, with their intricate rhythmic structures,
serve as a rigorous test bed to assess the adaptability and robustness of our method. More-
over, we apply our technique to Steve Reich’s Piano Phase, a composition renowned
for its innovative use of concurrent tempi. The choice to analyse this piece subjects our
method to a formidable challenge: to our knowledge, it is the first reported attempt at
beat tracking a polytempo composition. Our findings indicate that our method effec-
tively manages diverse rhythmic intricacies, allowing for the streamlined adaptation of a
leading beat-tracker across a spectrum of musical styles and genres.

2 Rhythmic Dissonance Challenges

Rhythm serves as a foundational scaffold for many musical traditions. Particularly, within
African heritage cultures, there is a notable use of complex rhythmic techniques such
as polyrhythms, polymetres, and to a lesser extent, polytempi [1]. While these rhythmic
intricacies contribute to the distinctiveness of these traditions, they introduce unique
challenges in Music Information Retrieval (MIR). In this section, we briefly address the
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concept of rhythmic dissonance, emphasizing its manifestations in the datasets selected
for our study.

Fig. 1: Left: Interaction of the main Candombe patterns and the resulting metric structure
levels (adapted from [13]). Right: Colombian Bambuco pattern showing a) downbeat in
a rest; b) caudal syncopation; and c) guitar pattern suggesting 6/8 at the top voice and
3/4 at the bass voice (adapted from [3]).

Polyrhythm in Uruguayan Candombe: Candombe is an African-origin rhythm
prominent in Uruguay and, to a lesser extent, in other South American countries [18].
Musically, as illustrated in Fig. 1, it is characterised by the interplay of three percussion
instruments: the chico, the repique, and the piano, with an additional time-line pattern
called clave, shared by the three drums [11]. This combination produces a typical
rhythmic structure consisting of a four-beat measure evenly divided into 16 tatums,
typically played at a tempo of about 110–150 bpm. Candombe distinguishes itself from
other rhythms through two features that connect it to Afro-Atlantic music traditions [13]:
a) the pulse pattern emphasises the second tatum rather than the one on the beat, and
b) the clave divides the 16-tatum cycle irregularly (3+3+4+2+4), with only two of its
five strokes synchronised with the beat. This interplay creates an overall polyrhitmic
texture. Moreover, in actual performances, the primary pattern of repique leans towards
a triplet feeling, and although the chico drum establishes the metrical foundation, its
pattern exhibits a contraction of inter-onset intervals (IOIs). These unique characteristics
of Candombe present challenges for both untrained listeners and standard beat-tracking
algorithms, making it a challenging test case for evaluating our user-driven approach.

Polymetre in Colombian Bambuco: Bambuco is a Colombian traditional music
genre known for its rhythmic complexity, characterised by heavy syncopation, odd
accents, and a certain degree of rhythmic freedom, including tempo variations and
micro-timing [3]. Its most distinctive aspect is the polymetric nature, resulting from the
superposition or alternation of musical elements in two metres: a simple metre (3/4)
and a compound one (6/8), as illustrated on the right part of Fig. 1. This phenomenon,
commonly known as “hemiola” or the equivalent Latin term “sesquialtera”, is relatively
common in other South American musical genres [18] but poses a challenge for compu-
tational metre and beat-tracking analysis of Bambuco. As illustrated by the guitar voice,
depending on the simple or compound metre interpretation, the beats’ locations do not
align, except for the downbeat. This indicates a close relationship between the tasks of
metre analysis and beat tracking. Essentially, it implies that we can deduce the metric
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interpretation from the placement of the beats. These properties make Bambuco an ideal
test case. More specifically, while our approach primarily targets beat tracking, it also
informs metre analysis due to the interconnected nature of these rhythmical facets.

Polytempo in Steve Reich Piano Phase: Steve Reich’s Piano Phase stands out as an
interesting example of polytempo, a phenomenon mostly absent from mainstream music
genres and unrepresented in datasets used to train deep-learning beat-tracking models.
This rhythmic dissonance effect presents a significant challenge for general-purpose beat-
trackers, as it involves concurrent and isochronous pulses within the same music piece.
This compositional technique is primarily found in avant-garde Western music, with
Charles Ives’s Symphony no. 4 being considered the earliest formalised work featuring
polytempo. Later, composers such as Conlon Nancarrow or György Ligeti explored
this approach. Steve Reich’s phasing is a unique manifestation of polytempo, where
identical phrases are played simultaneously at slightly different tempi, creating a gradual
phase shift. Piano Phase brings Reich’s technique to live performance (a rendition of
the original score is shown in Fig. 2), complete with a detailed set of instructions for
performance, which we briefly summarise:

1. One performer starts, the other fades in unison (bars 1–2), and both continue play-
ing the pattern over and over again;

2. The first performer keeps a constant tempo. The other performer gradually increases
his tempo, until he is one note ahead of the first performer (bar 3);

3. After playing in synchronisation for a while, the second performer again begins
increasing his tempo, and the phase shifting process starts again (bars 3-4);

4. In the first part of the piece, this procedure is repeated twelve times.

(x 4 - 8) (x 12 - 18) (x 4 - 16) (x 4 - 16)

(x 4 - 16) (x 4 - 16) (x 4 - 16)

(x 16 - 24)

(x 16 - 24) (x 16 - 24) (x 16 - 24)

holdtempo1

accelvery slightly

(tempo1)

(tempo1)(tempo1)(tempo1)(tempo1)

a.v.s. a.v.s. a.v.s.

hold tempo1

hold tempo1 hold tempo1 hold tempo1

Fig. 2: Piano Phase: Partial Reproduction of the Original Score.
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3 Methodology

Building on our earlier contributions [14, 15], our approach integrates user knowledge
with a state-of-the-art beat tracker [2], enabling direct, content-specific adaptation.
Through minimal manual annotation, we tailor this system to the unique characteristics
of a musical piece and the user’s own subjective musical judgement.

Retraining and Inference: To ensure this paper stands as a self-contained resource,
we provide a concise overview of our fine-tuning parameterisation process. For an in-
depth understanding and further details on the fine-tuning process, readers are directed
to consult [15].

Fine-tuning is allowed for all layers of the baseline network. Given the present task
is beat-tracking, the losses for tempo and downbeat tasks on the underlying multitask
network [2] are masked. Common practice in transfer learning is followed, thus reducing
the learning rate to one fifth of the rate used in the base training. To control network
adaptation, we divide the fine-tuning segment into two adjacent, disjoint regions for
(re)training and validation, setting a maximum of 50 epochs, and employing learning rate
reduction and early stopping strategies. To account for the limited data in the fine-tuning
region, target widening and data augmentation are employed. The user-annotated region
also serves to parameterise the post-processing Dynamic Bayesian Network (DBN),
which extracts beat positions from the Temporal Convolutional Network’s likelihood
output. For DBN parameterisation, we employ two strategies: 1) adjusting the transition-
λ parameter for the adaptive processor type (pt), and 2) setting a tempo tolerance
window using user annotations as the tempo guide (tg). While fine-tuning (ft) and
data augmentation (da) are general user-driven techniques, strategies like the adaptive
processor type and tempo guide are specific to networks employing DBN.

Lastly, the length and characteristics of the annotated region, determined by end-
users in real-world situations, play a pivotal role in affecting the final performance. In
the current experiment, we opted for a relative length, specifically a quarter of the total
file length, to standardise the influence of the fine-tuning region length on the evaluation
results.

User Context

Tempo Guide?
tg

e_tempo = 60/median(diff(user_anns))
min_bpm = max(e_tempo -20, 25)
max_bpm = min(e_tempo+20, 330)

Processor Type? 
pt

min_bpm
 max_bpm
transition_

transition_  = 75
user_anns

Fig. 3: DBN parameterisation (defaults to min bpm:50, max bpm:215, transition λ:100).

Scope of Evaluation: In this study, we report results with (fullRes) and without
(testRes) the fine-tuned part of the input signal for evaluation purposes, and consider
the main combinations of user-driven techniques: fine-tuning (ft), data augmentation
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(da), and DBN customisations (tg and pt). To minimise variability, we adapt the data
augmentation procedure from [14] to a deterministic sampling approach based on a
linear distribution with a ±30% deviation from the local tempo, calculated using the
median inter-beat interval across the annotated region. Results are averaged over three
iterations, except for the Piano Phase analysis, which results include a single run.
While there are 11 combinations of user-driven beat-tracking configurations, this report
centres on the primary configurations: ft+da, ft+da+pt, ft+da+tg, and ft+da+tg+pt.
These are compared with the state-of-the-art, denoted as baseline (bsl). Occasionally, we
reference results from configurations that highlight the standalone application of specific
techniques, namely ft, pt, and tg.

Evaluation Metrics: In the present study, we employ both the standard F-measure
and a previously proposed annotation efficiency (Ae) metric [17] for beat tracking evalu-
ation. The Ae conceptualises beat tracking evaluation from a user workflow perspective,
framing it in terms of the effort necessary to modify a series of detected beats to align
with the ground-truth annotations. It provides a more intuitive understanding of the eval-
uation process and aligns better with practical annotation workflows. This is quantified
by counting the number of edit operations, specifically insertions and deletions, but also
- contrarily to the F-measure -, including the shifting of poorly localised individual beats,
a very common operation in annotation workflows. This dual evaluation framework,
combining both traditional and user-centric metrics, offers a more comprehensive insight
into beat tracking performance.

Datasets: We utilise two external datasets and a custom-developed dataset with a
simplified version of Piano Phase. The Candombe dataset has 35 full-length songs with
variable durations that accumulate to almost 2.5 hours [11]. The Bambuco dataset features
two sets of ground-truth annotations corresponding to the predominant meters [12]: 3/4
and 6/8, referred to as Bambuco (simple) and Bambuco (compound) respectively.

Piano A

Piano B

Fig. 4: Musical score of the simplified version of Piano Phase.

To address the significant challenges Piano Phase presents for human annotators
attempting to accurately annotate the beat “by ear”, we created a simplified version (as
depicted in Fig. 4) of the composition using a PureData patch. This patch produced two
streams of 12 MIDI notes played at slightly different tempi, and the audio was obtained
using a piano synthesizer. Ground-truth beat annotations were generated for each stream,
assuming a 6/8 time signature (thus adopting the dotted quarter note ( ˇ “‰ ) as the beat,
as inferred from the original score). The score of this simplified rendition is shown in
Fig. 2. Our primary experimental objective is to assess the ability of our beat-tracker to
synchronise with each of the tempi present in the music. To achieve this, the custom
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dataset is composed of two files, pianophaseM A and pianophaseM B, representing the
mixed audio (M:A+B) and ground-truth annotations for streams A and B.

4 Results

Beat Tracking in Uruguayan Candombe: Fig. 5 provides a summary of the overall
results. A clear improvement in accuracy scores is observed across all fine-tuning
configurations when compared to the baseline (bsl). Exceptions arise with configurations
exclusively utilising DBN-parameterisation techniques (pt and tg), which yield scores
similar to the baseline. Quantitatively, the best-performing configuration (ft) elevates
the mean F-measure score from 0.280 to 0.952 when excluding the fine-tuned region
(testRes), and from 0.334 to 0.956 when considering the entire file extent (fullRes).

testRes fullRes

Fig. 5: Distribution of F-measure scores by configuration for the Candombe dataset.

When examining the annotation-correction workflow detailed in Table 1, it is ob-
served that the Annotation Gain (Ag) improvements are marginally less than those of
the F-measure. This indicates that the shift operation plays a minor role in this dataset’s
annotation workflow. However, the results demonstrate that our method significantly
enhances efficiency. The number of operations (#ops) required to correct beat detections
drops from 12,912 in the baseline to just 1,904 with the ft configuration. Given that
there are 19,136 total beat annotations in the Candombe dataset, this means that the ft

configuration requires only about 10% of the total beats to be corrected, achieving a
reduction of approximately 85% from the baseline. Even accounting for the required
user annotations for fine-tuning (which amount to 4,757 in the current experimental
scenario), the results demonstrate a compelling decrease in manual annotation effort.

Table 1: Mean of the Ae score and sum of the #det, #ins, #del, #shf, and #ops scores
across the Candombe dataset for the main configurations. (fullRes)

Dataset Model Ae #det #ins #del #shf #ops

Candombe

bsl 0.319 6,316 2,901 92 9,919 12,912
ft+da 0.919 16,688 1,885 181 561 2,632
ft+da+pt 0.915 16,575 1,997 178 563 2,739
ft+da+tg 0.922 16,892 1,504 190 739 2,437
ft+da+tg+pt 0.923 16,903 1,504 188 726 2,421
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Beat Tracking in Colombian Bambuco: As summarised in Fig. 6, all primary fine-
tuning configurations outperform the baseline (bsl). Results are consistent across both
settings (testRes and fullRes), revealing notable F-measure improvements: around 25
percentage points ( p.p.) for the simple metre and close to 30 p.p. for the compound
metre datasets. The ft+da+tg configuration emerges as the standout performer in both
scenarios. Although each of the techniques (ft, pt, and tg) yields different contributions
individually, their combined implementation is what truly augments performance.

testRes testRes

fullRes fullRes

Fig. 6: Distribution of F-measure scores by configuration for the Bambuco datasets.

Table 2 shows Ae gains slightly outpacing F-measure, illustrating a greater relevance
of the shift operation in this setting. Compared to the baseline, the ft+da+tg setup in
simple metre trims beat estimate correction operations (#ops) by two-thirds (455 vs
1,610). For the compound subset, correct detections (#det) almost double in the optimal
setting (from 899 to 1,665), underscoring our method’s enhancement over the state of
the art.

Table 2: Mean of the Ae score and sum of the #det, #ins, #del, #shf, and #ops scores
across the Bambuco datasets for the main configurations. (fullRes)

Dataset Model Ae #det #ins #del #shf #ops

Bambuco (simple)

bsl 0.556 1,756 1,110 60 440 1,610
ft+da 0.726 2,439 602 91 265 957
ft+da+pt 0.718 2,428 588 94 291 972
ft+da+tg 0.869 2,990 12 138 306 455
ft+da+tg+pt 0.866 2,978 12 137 316 465

Bambuco (compound)

bsl 0.338 899 424 410 947 1,781
ft+da 0.509 1,319 285 340 665 1,292
ft+da+pt 0.513 1,322 285 332 663 1,282
ft+da+tg 0.685 1,665 63 62 541 667
ft+da+tg+pt 0.671 1,640 73 61 557 691
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Beat Tracking in Steve Reich Piano Phase: The primary experimental objective
is to evaluate the capability of our beat-tracking method in synchronising with distinct
tempi present in this musical piece. When referencing stream A or B, we are essentially
assessing the beat tracker’s ability to tune into each stream’s tempo. This task, which is
already immensely challenging for most humans, i.e., allowing themselves to align with
one tempo while ignoring conflicting ones, presents an even more formidable test for an
automatic beat tracker. Given this complexity, any advancement in performance, even if
slight, can be considered significant. With this perspective, we now delve into the results
obtained from our experiments.

From Fig. 7, results indicate improvements across all fine-tuning configurations
when compared to the baseline for both streams (A and B). The F-measure score rises
from approximately 0.2 to 0.7 across the main configurations. The role of fine-tuning
(ft) is prominent, emerging as a key factor in performance enhancement. However, a
more constrained adaptation to stream B is also apparent, an aspect we currently lack
comprehensive data to fully elucidate. Another aspect worth further investigation is
the observed efficiency of the adaptive processor type (pt) over the tempo guide (tg).
This observation is somewhat counterintuitive, given that the primary goal of this beat
tracking method aims to synchronise with conflicting, yet stable, tempi.

bsl ft+da ft+da+pt ft+da+tg ft+da+tg+pt
0.0

0.2

0.4

0.6

0.8

1.0

F-
m

ea
su

re

ft pt tg

Model

Fig. 7: F-measure vs model for Piano Phase (left:pianophaseM A; right:pianophaseM B).

As represented in Fig. 8, a closer examination of specific musical segments for
stream A is provided. This figure offers a comparative perspective between the baseline
approach and our best-performing configuration (ft+da). The superiority of the fine-
tuned configuration over the baseline is evident across most parts of the musical segment.
Notably, the beat estimates are accurate up to nearly bar 6 (or up to 68 seconds to be
precise). However, around bar 6, signs of desynchronisation emerge, with the imprecise
predictions persisting until bar 8. In this specific range, the baseline method manages to
hold a slight edge over our approach by correctly identifying certain beats. In terms of
the annotation-correction workflow, we see that the state-of-the-art correctly estimates
40 beats, while our fine-tuned configuration improves this count significantly, estimating
105 correctly. Even considering the required 19 user annotations for the fine-tuning
segment, this is a notable improvement with such challenging material.

However, it is important to place the results obtained in the appropriate context.
When comparing our method with non-adaptive beat trackers, including the current
state-of-the-art, we recognize that this is not an even comparison. Most traditional beat
trackers are designed for music that adheres to a single tempo, and data-driven methods
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have not been exposed to similar training examples, as polytempo is absent from standard
datasets. Despite these differences, it remains logical to use a baseline for performance
assessment. Our focus is in demonstrating that with minimal user input, our approach can
leverage the model’s general knowledge and adapt to music with rhythmic dissonance.
This showcases the versatility of our approach and its applicability in diverse musical
scenarios.
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0.5

1.0 Fm: 0.219 Em: 0.190  #det: 40  #ins:  0  #del: 66  #shf:105  #ops:171
Output (bsl)

2 3 4 5 6 7 8Bar 

0 20 40 60 80 100 120
time (seconds)
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Output (ft+da)
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prediction annotations validation fine− tune test

Shifts Deletions Detections InsertionsShifts Deletions Detections Insertions

Fig. 8: Detailed analysis for pianophaseM A (Mixed audio and annotations for stream A
tempo).

5 Conclusions

In this study, we presented a user-centric approach to beat tracking designed specifi-
cally for challenging music signals. By leveraging concise user-annotated regions, our
method significantly enhanced the performance of current state-of-the-art beat tracking,
especially in environments dominated by complex rhythms. The rhythmic intricacies of
Colombian Bambuco, Uruguayan Candombe, and Steve Reich’s Piano Phase were put
under scrutiny. These music forms represent, in order, the phenomena of polyrhythm,
polymetre, and polytempo.

Among the notable results, for Candombe, our approach achieved an excess of 3-
fold improvement over existing techniques. In the case of Bambuco, the performance
was enhanced by approximately 25 p.p. for the simple metre and neared 30 p.p. for the
compound metre datasets. With Reich’s Piano Phase, even though the F-measure score
escalated 50 p.p., our primary objective was to underscore our method’s capability in
handling the extreme challenges posed by polytempo. To the best of our knowledge,

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

521



this study is the first to attempt beat tracking of a musical composition with such
compositional technique.

While these results are promising, it is essential to interpret accuracy variations
carefully and circumscribe them to the scope of our investigation. Looking forward
to future research directions, the exploration of extended musical segments, enriched
with a diverse set of fine-tuning parameters, could provide more profound insights into
polytempo adaptability. Though this study’s scope was restricted, it introduces promising
methodologies for situations where traditional techniques might not be as effective.

In summary, our research demonstrated the potential of transfer learning and user-
driven adaptation for beat tracking in rhythmically complex musical contexts. Using
minimal user feedback, we enhanced the state-of-the-art model, enabling its adaptability
to challenging musical scenarios and underscoring its utility for specific applications,
notably musicological analysis. Our research reach extends past beat tracking, touching
upon rhythm-focused tasks such as metre determination and downbeat tracking. Yet,
our user-centred approach suggests even wider application across various MIR tasks,
beyond computational rhythm analysis. Given the inherent ambiguity in music signals,
integrating a user-centric viewpoint is pivotal in integrating subjectivity and accurate
analysis.

While our findings represent an encouraging step forward, there remains much to
explore in this domain. We hope this study serves as a starting point for future endeavours,
aiming to refine adaptive strategies and the human-in-the-loop paradigm. Ultimately, our
goal is to promote the development of MIR tools capable of effectively handling a wider
range of musical traditions, fostering inclusivity and a deeper appreciation of the world’s
rich musical heritage.
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Abstract. Many parents often have problems with getting their children to sleep.
A publishing company planned to produce a promotional video consisting of pic-
tures from their published book and a new lullaby with a sleep-inducing effect.
They requested that the new lullaby would be created through a collaboration of
an automatic composition system and a musician. In our previous work, a melody
generation method has been proposed to support the creative activities of a musi-
cian. However, this method requires too much intervention by a musician to meet
the publisher’s requirements. In this paper, we propose an automatic composition
system that generates a new piece with a chord progression only by specifying
some existing pieces. A case study is presented in which a professional musician
completed a lullaby based on the piece generated by the proposed system.

Keywords: Lullaby, Music Composition, Symbiotic Evolution

1 Introduction

In a survey of 550 mothers of under-three-year-olds conducted by Interspace Co., Ltd.
and Hakuhodo Inc., 66.4 % of the respondents reported having problems with their
children’s sleep. In addition, 71.3 % answered that they were stressed about getting
their children to sleep, and 64.3 % answered that they were troubled about it. The top
3 methods the mothers used to get their children to sleep were pretending to sleep next
to them, lying down with and watching over them, and sleeping with them. Although
singing to children not only soothes them, but also activates maternal love, increases
parental motivation, and improves the quality of parental behavior [3], only 21.5 % and
20.4 % said they read picture books and sang songs, respectively, a behavior that is
often criticized in todays’ parents. However, according to Takamatsu’s [12] survey of
337 parents of 18-month-olds, 87.0 % of the respondents reported having sung songs to
put their children to sleep.
⋆ We would like to express our deepest gratitude to all the children and their parents for their

cooperation in confirming the sleep-inducing effects, Tokyo City University Futako Kinder-
garten, Toho Co., Ltd., and Crimzon Technology, Inc.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

524



A sleep-inducing book written in 2015 by Carl-Johan Ehrlin, a psychologist, titled
The Rabbit Who Wants To Fall Asleep, has become a global hot topic. It has been re-
ported that when parents read this book aloud to their children at bedtime, the children
fall asleep more easily. In Japan, a picture book written in 2020 by NOBU titled Dream
Rescue, which features tapirs who help children with bad dreams, was published. Prior
to the book’s release, the publishing company planned to produce a promotional video
consisting of pictures from the book and a new lullaby with a sleep-inducing effect in
an effort to assist children with sleep and reduce parents’ burden. According to the pub-
lisher’s request, the new lullaby would be created through an AI-human collaboration;
the music would be generated using an AI-based automatic composition system while
humans would be responsible for writing lyrics, playing, and singing.

In our previous work[7], a melody generation method has been proposed to support
the creative activities of musicians while satisfying the clients’ requirements using a
music composition system. The method is based on a constructive adaptive user inter-
face (CAUI) [6, 4], whose goal is to compose music that arouses a particular sensibility
in the listener. In order to reflect a musician’s creativity and intention in the overall
atmosphere of the music, the musician selects some existing pieces and uses them as
training data to induce sensibility models. In addition, the musician specifies a chord
progression, the pitch extent, and the length of a new piece, and then a melody is gener-
ated based on the specified contents and the sensibility models. The steps of generating
a short melody are repeated until the musician is satisfied. The musician selects suitable
chord progressions and melodies, arranges them, writes the lyrics, and finally obtains
a complete piece. The effectiveness of this method has been evaluated by subjective
experiments and two case studies involving collaborative work with professional musi-
cians. However, this approach requires too much intervention by the musician to meet
the publisher’s requirements described in the previous paragraph.

In this paper, we propose an automatic music composition system that generates
a new piece with a chord progression only by specifying some existing pieces, that
follows basically our previous work [7]. Using the proposed system, we aim to create a
new sleep-inducing lullaby that meets the publisher’s requirements and assists parents
put their children to sleep. We also present a case study in which a professional musician
completed a lullaby based on the piece generated by the proposed system.

2 Music Composition Flow

The music composition flow of the proposed system is illustrated in Fig. 1. Some exist-
ing pieces are needed as the training dataset. The pieces included in the training dataset
and the pieces generated by the system consists of a chord progression and a melody
with a 4/4 time signature. The basic duration of a note or rest in a melody is defined as
the duration of a sixteenth note. The basic duration of a chord in a chord progression is
defined as the duration of a quarter note. A motif, which is the minimum unit of a piece,
is set to two bars, and a piece is represented as a sequence of multiple motifs.

First, existing pieces are specified as the training dataset according to the user’s
sensibilities, aims, and/or the purpose of the intended composition. Beats per minute
(BPM) is set to a value randomly selected from a ±0.5σ range of all the pieces’ BPM
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Fig. 1. Music composition flow

distributions in the training dataset. Sensibility models for the chord progression and
the melody are obtained based on the training dataset. The next step is to generate a
chord progression and a melody template that adapts to the sensibility models and the
basic music theory. A melody template indicates the time at which each sound in the
melody is played, the length of time each sound is played in succession, and the up-and-
down stream of the melody line. In other words, a melody template is a melody without
the pitch of each note. Subsequently, the pitch of each note in a melody is determined
using the melody template and chord progression. Finally, the chord progression and
the melody are combined and output in the form of a MIDI file.

Bainbridge [1] has shown that adult listeners accurately identify unfamiliar lulla-
bies as infant-directed based on their musical features alone, and that infants relax more
to unfamiliar foreign lullabies than to non-lullaby foreign songs. They suggested that
infants might be predisposed to respond to common features of lullabies. Therefore, to
generate a new lullaby using the proposed system, the characteristics of existing lulla-
bies are regarded and used as sensibility models and some traditional lullabies are used
as the training data. The generated output piece is then handed over to the musician,
who modifies the melody, writes the lyrics, and completes the lullaby.

3 Sensibility Models

A sensibility model comprises a partial music structure that affects the user’s particular
sensibility or reflects their intentions and is represented by a set of patterns that are
common to the pieces in the training dataset. In the proposed system, four sensibility
models are induced: one each for the rhythm of the chord progression, chord name of
the chord progression, rhythm of the melody, and up-and-down stream of the melody.

3.1 Training Dataset

To induce frequent patterns in existing pieces, the rhythms and chord names of the
chord progressions, and the rhythms and up-and-down streams of the melodies in the
training dataset, are represented as element sequences or chunk sequences.
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The rhythm of the chord progression is represented as a sequence of two types of
elements, “beat” and “-,” for each motif. Each element represents the state of a note for
one beat. The “beat” and “-” elements respectively indicate that a chord is played and
the duration of the previous note is extended. The chord name of the chord progression
is represented as a chunk sequence. Each chunk indicates one chord and consists of
three elements: a degree-notated root note and type pair, tension, and degree-notated
on-chord. If there is no tension and no on-chord, the element is “+.”

The rhythm of the melody is represented as a sequence of chunks for each motif.
Each chunk indicates one beat rhythm, and consists of four elements. Each element
represents the state of a note for 1/4 beat, and can be one of “beat,” “-,” and “null.”
The elements “beat,” “-,” and “null’ respectively indicate that a sound is played, the
duration of the previous note or rest is extended, and no sound is played. The up-and-
down stream of the melody is represented as a sequence of elements in which each
note other than the first is replaced by an “up,” “down,” or “flat” profile for each motif.
Each element indicates the change in pitch from the previous note: “up” means higher,
“down” means lower, and “flat” means the same pitch.

An example of element sequences and chunk sequences is shown in Fig. 2. Chunks
are enclosed in parentheses. For the rhythm of the chord progression and the up-and-
down stream of the melody, two element sequences are generated from the score, re-
spectively. One chunk sequence for the chord name of the chord progression and two
chunk sequences for the rhythm of the melody are generated from the score.

                           CDm7/G GC/E Dm7F


♢Rhythm of the chord progression
1: beat,-,-,beat,beat,-,-,-
2: beat,-,beat,-,beat,-,-,-
♢Chord name of the chord progression
(IV,+,+),(I,+,III),(IIm7,+,+),(IIm7,+,V),(V,+,+),(I,+,+)
♢Rhythm of the melody
1: (beat,-,-,-),(beat,-,beat,-),(beat,-,-,-),(beat,beat,beat,beat),(beat,beat,beat,beat),(beat,-,beat,-),

(beat,null,beat,-),(beat,-,beat,beat)
2: (beat,-,-,-),(-,-,-,beat),(beat,-,beat,-),(beat,beat,beat,beat),(-,-,-,-),(-,-,-,-),(-,-,-,-),(-,-,-,-)
♢Up-and-down stream of the melody
1: flat,up,down,flat,up,down,down,down,flat,flat,up,up,down,flat,down,down,up,flat
2: flat,flat,flat,up,down,down,flat,flat

Fig. 2. Examples of element sequences and chunk sequences

3.2 Induction of Sensibility Models

A “don’t-care” element “*” that is considered equal to any element is introduced in
obtaining a sensibility model for the rhythm of the chord progression. For any element
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sequence si with i elements in an element sequence in the training dataset replaced by
“*” (0 ≤ i ≤ Dmax), the set of element sequences in the training dataset contains more
than Fmin element sequences in which all elements are equal except for “*” Fmin or
more, then si is defined as a frequent pattern. Frequent patterns are extracted for all
element sequences and used as sensibility models for the rhythm of the chord progres-
sion . In a chunk sequence of the chord names of the chord progression, a sequence of
any consecutive chunks is called a chunk subsequence. Of all the chunk subsequences
in the training dataset, those with a length of Lmin or more and occurrence of more
than Fmin times in the training dataset are extracted as the sensibility models for the
chord names of the chord progression. In addition, to replace the on-code with “+” in
all chunk sequences and replace tension and on-code with “+,” the chunk subsequences
with a length of Lmin or more and occurrence of more than Fmin times are also ex-
tracted as the sensibility models for the chord name of the chord progression.

In a chunk sequence of the rhythm of the melody, a sequence of any consecutive
chunks is called a chunk subsequence. Of all the chunk subsequences in the training
dataset, those with a length of Lmin or more and occurrence of more than Fmin times in
the training dataset are extracted as the sensibility models for the rhythm of the melody.

In an element sequence of the up-and-down stream of the melody, a sequence of any
consecutive elements is called an element subsequence. Of all the element subsequences
in the training dataset, those with a length of Lmin or more and occurrence of more than
Fmin times in the training dataset are extracted as the sensibility models for the up-and-
down stream of the melody.

To shorten the processing time, the PrefixSpan approach [10] is adopted to induce
the sensibility models.

4 Chord Progression and Melody

Symbiotic evolution is applied to generate a chord progression and melody template.
This section describes the characteristics of symbiotic evolution and how it is applied
to generate a chord progression and melody template.

4.1 Symbiotic Evolution

Symbiotic evolution is an evolutionary computation algorithm that was proposed for
forming neural networks [5]. This algorithm results in a fast, efficient search and pre-
vents convergence to suboptimal solutions. It is characterized by maintaining two sepa-
rate populations: a partial solution population, the individuals of which represent partial
solutions, and a whole solution population, the individuals of which are combinations
of individuals in the partial solution population and represent whole solutions. In the
former population, partial solutions that may be components of the optimal whole so-
lution are generated. In the latter population, combinations of the partial solutions that
may be the optimal solution are generated.

A piece of music can be considered a combination of motifs; it is essential to find
motifs that may be contained in a suitable piece of music as well as a suitable combi-
nation of motifs. As symbiotic evolution is appropriate for generating a piece of music
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owing to its suitable characteristics, a chord progression and a melody template are
generated based on symbiotic evolution in the proposed system. Each motif in a chord
progression or melody template is expressed as an individual in the partial solution
population, and a whole chord progression or a whole melody template is expressed as
an individual in the whole solution population. When generating a piece of 2N bars, a
chromosome of the whole solution individual is expressed as a pointer sequence to the
N partial solution individuals.

Individuals of both whole and partial solution populations in the next generation are
generated using the GA operators: two-point crossover and mutation. The partial solu-
tion population is evolved with the strategy described in [5]. The minimal generation
gap model [11], which is an effective evolution strategy for avoiding early convergence,
is applied to the whole solution population.

After generating the partial and whole solution populations of the initial generation,
alternation in all the partial and whole solution populations and evaluation of all the
whole and partial solution individuals are repeated a specified number of times. Finally,
the sequence of the genes of the partial solution individuals pointed out by the best
whole solution individual is generated as the output.

4.2 Generation of Chord Progression

Chord progression is generated to adapt to the sensibility models for the rhythm and the
chord name of the chord progression using chords contained in the training dataset.

When there are R types of degree-notated root notes and type pairs in the training
dataset, each pair is called rt1− rtR. The set of tensions of chords whose root note and
type pair is rti is called Ti, and the set of on-chords is called Oi. A chromosome of a
partial solution individual has 24 genes that include 8 root-type genes, 8 tension genes,
and 8 on-chord genes. The first root-type gene is a natural number less than or equal to
R. The second and subsequent root-type genes are natural numbers less than or equal
to R or 0, with 0 representing “-” and a non-zero value i representing rti. The tension
genes and on-chord genes are 0 or 1 to represent the presence or absence of tension and
on-code, respectively. When the root-type gene is a non-zero value i and the tension
gene or on-chord gene is 1, the tension and on-chord of the chord are selected from Ti

and Oi, respectively, according to their frequency of occurrence in the training dataset.
After the tail of a piece represented by a whole solution individual is converted to

the perfect cadence regardless of the gene value, the fitness value fcw(Wc) of a whole
solution individual Wc is calculated using (1).

fcw(Wc) =
∑

Wc→Pc

{fcr(Pc) + fct(Pc)}+ fcn(Wc) + fct(Wc) . (1)

where Wc → Pc means that a partial solution individual Pc is pointed out by a whole
solution individual Wc. The function fct(Pc) indicates the degree of adaptability of a
partial solution individual Pc to the music theory, and the function fct(Wc) indicates
the degree of adaptability of a whole solution individual Wc to the music theory. The
function fcr(Pc) indicates the degree of adaptability of a partial solution individual Pc to
the sensibility model for the rhythm of the chord progression, while fcn(Wc) indicates
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the degree of adaptability of a whole solution individual Wc to the sensibility model
for the chord name of the chord progression. The two are calculated using (2) and (3),
respectively.

fcr(Pc) =
∑

e∈Scr(Pc)

{bn(e, Pc) · fqe(e)} . (2)

fcn(Wc) =
∑

c∈Scn(Wc)

{lnc(c) · fqc(c)} . (3)

where Scr(Pc) is the set of element sequences that were extracted as the sensibility
model for the rhythm of the chord progression and contained in Pc. Scn(Wc) is the set
of chunk sequences that were extracted as the sensibility model for the chord name of
the chord progression and contained in Wc. bn(e, Pc) is the number of beats other than
the “don’t-care” ones that an element sequence e covers in Pc, fqe(e) is the frequency
with which e appears in the training dataset, lnc(c) is the length of a chunk sequence c,
and fqc(c) is the frequency with which a chunk c appears in the training dataset.

A partial solution individual is evaluated using whole solution individuals that point
to the partial solution individual. The fitness value fcp(Pc) of Pc is the largest fitness
value of these whole solution individuals, as given by (4). The partial solution individual
receives a higher evaluation when it is pointed to by a better whole solution individual.

fcp(Pc) =
1

N
max

Wc→Pc

fcw(Wc) + fcr(Pc) + fct(Pc) . (4)

4.3 Generation of Melody Template

A melody template is generated to adapt to the sensibility models for the rhythm and
up-and-down stream of a melody. A chromosome of a partial solution individual has 32
genes. Each gene is −1, 0, 1, 2, or 3, which mean “rest,” “extend,” “beat + down,” “beat
+ flat,” and “beat + up” respectively.

The fitness value fmw(Wm) of a whole solution individual Wm is defined by (5).

fmw(Wm) =
∑

Wm→Pm

fmm(Pm)× αk(Wm) . (5)

where Wm → Pm means that a partial solution individual Pm is pointed by a whole
solution individual Wm. α is a parameter greater than 1 that promotes a longer phonetic
value of the last note in the melody. Let k′(Wm) be the number of genes 0 following
the end of the whole solution individual Wm, then k(Wm) is calculated by (6).

k(Wm) =

{
k′(Wm) (k′(Wm) ≤ 3)
4 (otherwise) . (6)

The function fmm(Pm) indicates the degree of adaptability of a partial solution
individual Pm to the sensibility models, and is calculated using (7).

fmm(Pm) = fmr(Pm) +
1

4
fmu(Pm) . (7)
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The functions fmr(Pm) and fmu(Pm) indicate the degree of adaptability to the
sensibility model for the rhythm and up-and-down stream of the melody, respectively,
and are calculated using (8) and (9).

fmr(Pm) =
∑

c∈Smr(Pm)

[
{lnc(c)}2 · fqc(c)

]
. (8)

fmu(Pm) =
∑

e∈Smu(Pm)

{lne(e) · bn(e, Pm) · fqe(e)} . (9)

where Smr(Pm) is the set of chunk sequences that were extracted as the sensibility
model for the rhythm of the melody and contained in Pm. Smu(Pm) is the set of element
sequences that were extracted as the sensibility model for the up-and-down stream of
the melody and contained in Pm. lnc(c) is the length of a chunk sequence c, fqc(c) is
the frequency with which a chunk c appears in the training dataset, and bn(e, Pm) is the
number of beats that an element sequence e covers in Pm.

The fitness value fmp(Pm) of a partial solution individual Pm is the largest fitness
value of these whole solution individuals, as given by (10).

fmp(Pm) =
1

N
max

Wm→Pm

fmw(Wm) + fmm(Pm) . (10)

4.4 Determination of Pitch of Notes in the Melody

In the score of the generated melody, notes are placed at the position where the melody
template value is 1 to 3, that is, “beat + down,” “beat + flat,” and “beat + up.” The pitch
of each note in the melody is determined based on the generated melody template. First,
a pitch candidate set is prepared according to the scale of the tonality and pitch extent.
In determining the pitch of a note that is played at the same time as a chord, discords of
the chord are deleted from the pitch candidate set.

The pitch of each note is an element of the pitch candidate set. The pitch of the
first note in a motif is chosen at random from the pitch candidate set. The pitch of a
“beat + flat” note is set to be the same as that of the previous note. The pitch of a “beat
+ up” note is set to the lowest pitch among the pitches of the pitch candidate set that
are higher than that of the previous note. The pitch of a “beat + down” note is set to
the highest pitch among the pitches of the pitch candidate set that are lower than that
of the previous note. If the target pitch is not contained in the pitch candidate set, the
nearest pitch in the pitch candidate set is chosen. In addition, the pitch of the last note
in the piece is set to the lowest key pitch among pitches that are higher than that of the
previous note for “beat + up,” and the highest key pitch among pitches that are lower
than that of the previous note for “beat + flat” or “beat + down.”

5 Case Study

5.1 Creation of a New Lullaby

A new lullaby was created according to the procedure described in Section 2 with the
help of a professional musician who is a member of a Japanese pop duo . The 60 tradi-
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tional lullabies collected for the training data were classified according to the four cri-
teria listed below. There were 48 categories in total, 22 of which at least one traditional
lullaby was classified to. Possible values for each criterion are given in parentheses.
“Structure” refers to whether the lullaby is constructed as a one-part or two-part song
divided by the rehearsal mark.

– Tonality (Major / minor)
– Structure (one-part / two-part)
– Tempo (slow / medium / fast)
– Rhythm pattern (bounce / four on the floor / eight beat / sixteen beat)

In total 22 pieces were created, with one piece in each category using the lullabies
classified to that category. For one-part structure category, a piece with eight bars was
generated. For two-part structure category, the first part of the piece was generated using
the first part of the lullabies classified to that category. In the same way, the second part
was generated using the second part of the lullabies classified to that category. Then
the first and second parts were joined to form a piece of sixteen bars. The members of
the publisher selected one of pieces: a two-part minor with a slow tempo, and bounce
rhythm pattern, and commissioned it to the musician. The musician changed the piece
as follows.

1. The first and second bars were moved to the seventh and eighth bars.
2. The third and fourth bars were moved to the first and second bars.
3. The seventh and eighth bars were moved to the third and fourth bars.
4. The pitch of the second and third notes in the first bar were raised by one tone.

The musician wrote the lyrics to this melody and sang the song with the partner of
the duo. A promotional video with this song was created and published on the picture
book’s website. 3 A warning “Do not play while driving” is attached to the video.

5.2 Effect on Falling Asleep

Parents with children under the age of six were asked to play the new lullaby while
putting their children to sleep and to report the children’s sleeping behavior and their
observations each time they did this. The 58 participants’ usual average time to fall
asleep by age, the need to put the child to sleep, and the method of putting the child
to sleep, which were obtained in the preliminary survey, are shown in Fig. 3, 4, and 5,
respectively. Multiple answers were allowed for the latter two measures.

According to the results, 67.2 % of children, regardless of age, took more than 16
minutes to fall asleep. In fact, of the 58, only two three-year-olds, one at four-year-old,
seven five-year-olds, and three six-year-olds could fall asleep by themselves; assistance
from their parents or other adults was not needed. These results indicate the importance
of reassuring the children by snuggling with them. They also reveal that 17.2 % of
participants use music to put their children to sleep.

3 https://yume-rescue.com/
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Fig. 3. Usual average time to fall asleep by age寝かしつけの必要性
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Fig. 4. The need to put the child to sleep
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Fig. 5. Method of putting the child to sleep
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Each participant used the lullaby 1-9 times to put their children to sleep, producing
a total of 126 responses. The children’s sleeping behaviors while using the new lullaby
are shown in Fig. 6. Although the lullaby was not effective for all of the children, it was
effective for the majority of them.

Out of the 126 responses collected, 94 included free descriptions regarding the chil-
dren’s sleeping behavior, such as “Although there was no change in bedtime, a change
in being able to go to bed alone without needing to be rocked to sleep continued.”
These responses were then analyzed using SCAT (Steps for Coding and Theorization)
[8, 9]. SCAT is a qualitative data analysis method that weaves themes and constituent
concepts that emerge from four steps of coding into a story line and theory. In qualita-
tive research, coding refers to the task of assigning “codes” to text data and codes are
concepts that make up the text. The four steps of coding in SCAT are as follows.

1. Identify key phrases in the data
2. Substitute those phrases with phrases outside of the data
3. Provide explanations for those phrases using concepts outside of the text data
4. Identify and conceptualize the themes that have surfaced during the steps 1-3

As a result, it was found that this lullaby has a relaxing effect, but the support of a
person the child trusts may be necessary to ensure this effect, and there may be differ-
ences in how the length of the song is felt depending on the time it takes to fall asleep.
There may also be differences in the sleep-inducing effect depending on the growth
stage of the child. If the lullaby could cause the children to fall asleep by conditioned
reflex when it is played, then it can be expected that the relaxing effect has improved
and that nightmares could possibly be avoided.

Fell asleep listening to it 56
Listened, turned it off, and fell asleep 20
Could not fall asleep 29
Wanted to listen to something else 11
Refused to listen to it 10

Fell asleep listening to it, 56

Listened, turned it off, 
and fell asleep, 20

Could not fall asleep, 29

Wanted to listen to 
something else, 11

Refused to listen to it, 10

Fig. 6. Sleeping behavior while using the new lullaby

6 Conclusion

In this study, we proposed a new automatic music composition system. This system is
not specific to any particular genre, but rather generates music that is based on a per-
sonal sensibility. As it can generate melodies and chord progressions simply by spec-
ifying some existing pieces of music as the training dataset, it is suited for providing
musicians with a basis for their creative activities. In addition, by setting music pieces

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

534



of a specific genre or existing music pieces that have characteristics that one wants to in-
corporate in a new piece as the training dataset, it is possible to generate genre-specific
or various purpose pieces. A sensibility model that shows characteristics common to
training data is not a black box, but it is made explicit, which also helps to identify
characteristics.

Here, the proposed system was used to generate a new lullaby. The musicians
were able to complete the lullaby without significantly modifying the system-generated
piece, and a trial study with under-six-year-old children showed that the lullaby was
effective in putting children to sleep to some extent.

In the future works, the target pieces, both inputted into the system and generated
by the system, will be expanded to include elements, such as time signatures and the
basic durations of notes. In addition, it is important to confirm the effectiveness of the
system when applied to various musical genres.
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Abstract. Music phrase is an ambiguous notion since it often depends on the
performer’s subjective view. Thus far, we have employed Director Musices (DM)
for automatic expressive performance, however, segmentation of phrases has only
been given manually. In order to identify phrases from an objective viewpoint, we
propose to obtain them from the trees acquired by the Generative Theory of Tonal
Music (GTTM). We select the usable subtrees and regard the scope of the subtrees
as phrases. We introduce a test tool to generate an expressive performance, given
original music data to DM together with GTTM trees, to facilitate the phrasing
steps.

Keywords: Automatic Expressive Performance, Generative Theory of Tonal Mu-
sic, Director Musices

1 Introduction

Automatic expressive performance is an attractive challenge in music information pro-
cessing, and competition such as RENCON [7] has been held for us to obtain more
natural, smooth, and comfortable performance by computers [9]. The key issues in ex-
pressive performance concern dynamique (loudness of each tone) and tempo (speed).

Director Musices™ (DM), one of the distinguished generators of expressive per-
formance, also gives variation in dynamique and tempo upon a phrase, with a specific
rule called phrase arch. However, a phrase is not given in DM but needs to be given by
human hands. Here, since a phrase is a subjective notion dependent on each performer,
such a phrase arch also needs to be given by experienced human hands, and thus DM is
not user-friendly, especially for those musically untrained users.

We consider giving phrase information automatically, independent of such subjec-
tive views, to DM. In this research, we propose to acquire phrases from the Generative
Theory of Tonal Music (GTTM) [10]. From the theory, we can acquire syntactic tree
⋆ This research was supported by JSPS Kaken 20H04302 and 21H03572. We thank Gilles

Baroin for discussions on effects of composed phrases.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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structures on a given music score, regarding each note as a linguistic morpheme, as is
explained in the later section. Since such trees may include extraneous information for
DM, we need to consider how we can retrieve usable phrases from them.

In this research, we have implemented a user-friendly interface to facilitate the auto-
matic phrasing process, where we show how GTTM analyses are combined with music
data, and report examples of expressive performance.

2 Phrase Arches in Director Musices

Director Musices (DM) [2] is a computer system that generates expressive performance
based on given performance rules [1]. Input to DM is restricted either to MIDI or to its
proper mus type file. DM, together with a rule palette of pal file in which performance
rules are written, renders expressive articulation, and saves its MIDI.

Each performance rule accompanies a parameter called k-value, which specifies a
grade of the intended effect of the rule upon music pieces. Among these rules, phrase
arch that acts on a phrase, plays an important role, as it controls loudness (tone vol-
ume) and duration of each note. In the concrete, the beginning part of a phrase receives
accelerando (gradually faster in tempo), and the ending part does ritardand (gradu-
ally slower); the loudness in accelerando grows larger while in ritardando smaller. This
effect is illustrated in Fig. 1 though here the penult to the final note receives an ac-
celerando.

Fig. 1. DM phrasing application

For example, Fig. 2 is a screenshot of DM system. Here appear three layers of phrase
arches above the score; since each of which can be given a different k-value, each layer
is arranged in a different grade. While MIDI input is automatically converted to mus
type, phrase arch itself must be edited manually; otherwise, the target music remains
insipid and tasteless.
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Fig. 2. Example of phrase arch: Jupiter of The Planet Op.32, Gustav Holst

3 Phrases obtained from GTTM

In order to avoid subjectivity in identifying phrases, we would like to rely on an external
method to obtain them. In this section, we introduce a Generative Theory of Tonal
Music (GTTM) and show how we can retrieve phrases from its analysis.

3.1 Generative Theory of Tonal Music

At the end of the 19th century, Heinrich Schenker proposed the reduction principle;
that is, we can reduce the number of notes appearing on the score surface (Vorgrund),
disregarding decorative notes, and can reach the fundamental structure (Hintergrund)
or the basic melody line (Urlinie), consisting only of intrinsic notes to form cadences.

In order to embody the process from Vorgrund to Hintergrund in music, GTTM
[10] invented a method to build a hierarchical tree in a bottom-up way, at each node
of which two adjacent notes are compared and the more structurally important note
goes upward, absorbing the less important one. Therefore, each of its nodes becomes
either left-branching or right-branching. We call such importance among notes salience,
according to [10]. Hereafter, we call the salient branch the prime branch, and the other
the secondary branch.

GTTM consists of well-formedness rules that constrain rigid syntax, and other pref-
erence rules. In the process of building a tree, multiple preference rules may be appli-
cable, and thus, the process necessarily becomes ambiguous. Hamanaka et al. [6] then
assigned weighted parameters to all those applicable rules of GTTM, gave an algorithm
to choose the most adequate rule in generating a tree, and realized a semi-deterministic
procedure as a computer process.

GTTM consists of four sub-theories of grouping analysis, metrical analysis, time-
span analysis, and prolongational analysis. The first three theories contribute to the
construction of the time-span tree, and the prolongational analysis, together with the
time-span tree, results in the prolongational tree. We summarize these trees as follows.

Time-span tree The grouping analysis finds boundaries in a sequence of musical notes,
based on strength, duration, register, accent, and so on. Then, the metrical analysis
identifies those notes with strong/weak beats in meters.
Here, we consider the note of group boundary (the beginning or the end of a group)
with a stronger beat to be more salient than the neighboring note. Since the group-
ing structure is hierarchical, that is, smaller groups are merged into a larger group
recursively, the comparison of salience also becomes hierarchical. Therefore, notes
compose a knockout tournament in regard to structural salience.
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We illustrate a time-span tree of Jupiter of Holst which we have employed in Fig. 2,
in the left figure of Fig. 3.

Prolongational tree The time-span tree does not reflect the harmonic structure of the
music piece. In order to represent the dependency of chords, and to organize ca-
dences, we rearrange the branchings of the time-span tree to construct the prolon-
gational tree.
Actually, the fundamental structure that Schenker originally intended was such ca-
dences that are I (tonic) –V (dominant) – I (tonic), I – IV (subdominant) – V –
I, I – IV – I, and so on. As a result, the left-hand side of the binary tree repre-
sents a progression of chords to cause tension while the right-hand side represents
relaxation.
We show a prolongational tree of Jupiter in the right figure of Fig. 3.

Fig. 3. Time-span (left) and Prolongational (right) trees of Jupiter [5]

3.2 Extraction of Phrases

From the two tree structures obtained from GTTM analyses, we can naturally consider
that the scope of one subtree becomes a candidate of a phrase. In this research, we
assign a phrase to each of hierarchical subtrees, as is shown in Fig. 4.

According to this, phrases become hierarchical; two adjacent phrases compose a
larger phrase recursively in a higher hierarchy. Here, we can also naturally abandon
smaller phrases, that are near to leaves (notes) in a tree, for the following two reasons.

– Even though we give expressive phrasing in a short phrase, the human auditory
sense cannot catch it.

– Useless multiple layers of phrases blur each effect of expressiveness; overlapping
of expressive effects may cancel each other, or may unnecessarily be augmented.

In order to avoid the above issues, we exclude those deep nodes counting from the top
(root) node. Note that the top node represents the whole piece, and thus, the whole piece
itself could be a phrase; however, in this research we do not regard the whole piece as a
target to give expressiveness, since we pay attention to local phrasings.

Now, let root(t) be a root node of tree t. Since root(t) can possess two immediate
branches, one of the two is more salient than the other; we name the prime (more salient)
one prm(v) and the second one snd(v). Also, we provide the following notions.
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Fig. 4. Subtree as a phrase

w

γw (1− γ)w

P (w, p, n, bt, br)

Fig. 5. Weight distribution

– #Nt(v): the number of notes below v (except for slurred notes).
– #Bt(v): the number of beats in terms of meters below v.
– #Br(v): the number of bars below v.

We define a recursive function phGen(v, w, p) for tree node v, weight w, and phrase-
level p; when predicate

P (w, p,#Nt(v),#Bt(v),#Br(v))

holds, a phrase is recognized and we assign the total weight of w which would be
distributed to her sub-branches under v, with the ratio of γ : 1 − γ (0 ≤ γ ≤ 1),
between prm(v) and snd(v), respectively. The validity of P is adjustable dependent on
w so that we can restrict the number of layers of phrases.

The phrase detection algorithm is summarized as follows.

Input : a tree t, an initial weight w0, a distribution ratio γ, and a predicate P .
Output : layer of phrases, produced by phGen(root(t), w0, 1).
Procedure phGen(v, w, p) :

1. Regard the scope of t as a phrase with level p
if P (w, p,#Nt(v),#Bt(v),#Br(v)) holds.

2. Call both phGen(prm(v), γw, p + 1) and phGen(snd(v), (1 − γ)w, p + 1)
recursively and return.

The final step is shown in Fig. 5.

3.3 Adjustable Parameters

In the algorithm in the previous section, phrase arches are constructed depending on a
tree t, an initial weight w0, a distribution rate γ, and a predicate P . Therefore, for a
given tree we can adjust these parameters to obtain plausible results.

To fine-tune these parameters through machine learning, we require the appropriate
phrase information in DM format though, unfortunately, it is currently not available. As
a result, we have opted for a less sophisticated approach as our initial step. We observe
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w0 γ P (w, p, n, bt , br)

Alg.0 23 1/2 w > 1 and bt ≥ 2
Alg.1 b0 2/3 w ≥ 4 and n ≥ 2
Alg.2 (b0)

2/n0 1/2 w ≥ 3.75 and n ≥ 2
Alg.3 (b0)

2/n0 3/5 w ≥ 5.9 and n ≥ 2
Alg.4 unused unused bt/n ≥ 0.6, bt > 4,

n ≥ 2, and p < 4 ∨ n ≤ 4
Alg.5 b0 1/2 w ≥ 0.5, n ≥ 2,

and br ≤ 10/p

b0 : #Bt(root(t)), n0 : #Nt(root(t))

Table 1. Proposed set of parameters

Alg.0 Alg.1
Le Cygne 8 5

Salut d’amour 9 4
sum 17 9

Table 2. Preliminary Experiments

the behavior of the algorithm in multiple preliminary experiments with Alg.0 and Alg.1,
and propose three different assignments of parameters Alg.2, Alg.3, Alg.4, and Alg.5
in Table 1.

Each preliminary experiment is based on the following consideration. First, Alg.0
simply restricts the number of layers to three; then, Alg.1 revises Alg.0 as follows: (i) a
long piece needs more minute segmentation and needs to increase the number of layers,
and (ii) the primary branch may need the larger number of layers than the secondary
branch.

In order to compare the efficacy of Alg.1 with that of Alg.0, we have experimented
on Le Cygne (The Swan) of Camille Saint-Saëns, and on Salut d’amour (Love’s greet-
ings) of Edward Elgar. Table 2 shows that Alg.1 is unpopular; it is said that its tempo
shift sounds unnatural. This result seems to be caused by the distribution ratio of γ =
2/3, which is too unbalanced and may generate too different numbers of layers.

Revising Alg.0 and Alg.1, we propose Alg.2 and Alg.3, the policy of which is com-
monly the following.

– We revise the distribution ratio to be flatter, as 1/2 < γ < 2/3.
– Those pieces with a smaller number of notes, as opposed to the length of the piece,

require more expressiveness. We augment the number of layers if #Nt/#Bt is
smaller.

In the process of weight passing from upper layers to lower ones, when the num-
ber of notes is unbalanced, the number of layers may not be even. To avoid unnatural
expressive performance, we further propose Alg.4 based on the following two policies.

– We take #Nt and #Bt into account when we decide if a phrase is producible.
– When #Nt/#Bt is large, we should avoid minute expressive performance, and

avoid also small phrases.

4 System Implementation

We have implemented the algorithm proposed in Section 3.2, and have publicized this
system.
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4.1 Environmental Notes

We have developed an environment [11] that eases testing phrase-creation strategies,
where we can compare performances generated from different phrases/palettes for DM
on-the-fly. Prior to that, we needed to extend the file converter kern2dm in Humdrum
Toolkit [8], to translate a kern music file into a mus DM-specific music file without
phrase information. Thus, we revised kern2dm to accept a tree structure in xml as
well as kern file [3]. In addition, we offer the following facilities.

Data downloader accesses GTTM database, and patches their musicXML scores on
information such as tempo, title, and composer name if necessary. It generates pdf
scores by using MuseScore™.

Phrase identifier generates scores with phrase information for DM by applying the
extended kern2dm.

Performance arranger executes DM to create performances in midi formats, and trans-
forms them into wav/mp3 formats.

Screen interface prepares html files to present them on the screen, to compare the
performances. Fig. 6 is a part of the index list of detailed pages like Fig. 7 for
pieces GTTM music database.4

The biggest feature of this system is that it recalculates only the parts affected by the
changed files by adopting the make system for program development. As a result, the
waiting time required for recalculation after changing parameters can be greatly re-
duced.

Fig. 6. A Screen Shot of Sample Pieces Fig. 7. A detailed page

4.2 Examples

We have conducted experimental analyses. We have applied Alg.2 and Alg.3 to the
time-span and the prolongational trees for four pieces in [5], which showed conspicuous

4 See sample page:
https://www.trs.css.i.nagoya-u.ac.jp/projects/expressive-performace/ExprPerf/html/
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effects both in good and bad meanings; that are, Holst: Jupiter of The Planet, J. S. Bach:
Jesu, Joy of Man’s Desiring, Tchaikovsky: Waltz from Swan Lake, and Ravel: Pavane
pour une infante défunte. We show all the phrases obtained by our method and rule
palette employed in artificial expressive performance in Appendix A.

In comparison between the time-span tree and the prolongational tree, we found that
there were no big differences. However, as to Jesu, Joy of Man’s Desiring of J. S. Bach,
this result could not be applied because the time-span tree of the piece is extremely
deformed to be left-recursive branching. Since we cannot know if this is the adequate
result of time-span analysis, we should doubt the reliability of the process of GTTM.
In other words, if the original tree is not reliable, the resultant phrase structure also
becomes unreliable.

Fig. 8. An effect of composed phrases

Uncomfortable expressions are
sometimes observed when a short
phrase is located at the end of a
long phrase. This situation is illus-
trated in Fig. 8, where each blue and
green phrase affects the correspond-
ing colored duration differences, and
the red line denotes their additive ef-
fect. In this occasion, the conflict oc-
curs between the deceleration due to
the short phrase and the acceleration
due to the long phrase in the first part
of the short phrase.

In order to confirm the effects of
these analyses, we have conducted a questionnaire of 17 examinees, including both of
musically trained/ untrained listeners. In comparison between Alg.2 and Alg.3, Alg.2
had a good reputation in both trees (see Table 3); as for the time-span tree 19 vs 14 and
for the prolongation tree 26 vs 9, and in sum 45 vs 23 that is 66% vs 34%. Even for each
piece, Alg.2 is felt better than Alg.3. Thus, we can say the number of layers should be
even.

Table 3. Questionnaire result (pr: prolongational tree and ts: time-span tree)

Alg.2 pr ts pr+ts
pr ts Alg.2 Alg.3 Alg.2 Alg.3 Alg.2 Alg.3

Jupiter of The Planet 5 12 4 1 9 3 13 4
Jesu, Joy of Man’s Desiring 15 2 10 5 1 1 11 6

Waltz of Swan Lake 6 11 6 0 5 6 11 6
Pavane pour une infante défunte 9 8 6 3 4 4 10 7

sum 35 33 26 9 19 14 45 23
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5 Conclusion and future works

In this research, to avoid the arbitrary choice of phrases in expressive performance, we
proposed to give phrases by subtrees obtained from GTTM analysis. We have expanded
a file converter to include trees as input besides symbolic music data, implemented an
environment for performance comparison, and have experimented to give expressive-
ness for selected pieces in GTTM database.

We have offered multiple parameters concerning the ratio between the number of
notes and that of beats, the weight distribution between two branches at a tree node,
and so on. As a result, effects upon time-span trees were found to be more natural than
those upon prolongational trees, supposedly because of the balanced length of phrases.

In order to aim at better expressive performance, we need to consider the genre and
age of target music when we adjust parameters. In general, baroque music is performed
stably in tempo and only cadences should be played in ritardand as is provided in
DM as FINAL RITARD [1], while in the romanticist age the tempo fluctuates rather
freely dependent on performers. Thus, the phrase arch effect should be expressed more
conspicuous in romanticist music.

As for the overlaid phrase arches, we need further improvement to avoid mutual
cancellation/ augmentation of effects given by each phrase. In order to do this, we need
to analyze the innate algorithms inside of DM and to revise them so as to include the
interaction between phrase effects; this task remains a future work.

Machine learning is promising for accurately adjusting these parameters. For that
purpose, creating a corpus consisting of musical scores with phrases extracted from
actual performances by humans is necessary. Therefore, extracting phrases from actual
performances is an essential issue for the future.
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A Example Analyses

We show phrases employed for phrase arches for four selected pieces, from Fig. 10 to
Fig. 13, with a palette of Fig. 9. We also provide supplemental sound data, at [4].

(in-package "DM")
(set-dm-var ’all-rules ’(
(DURATION-CONTRAST 1.0

:amp 1 :dur 1)
(DOUBLE-DURATION 1.0 )
(PHRASE-ARCH 1.4 :phlevel 1

:turn 0.5 :last 0.2 :amp 2)
(PHRASE-ARCH 1.4 :phlevel 2

:turn 0.5 :last 0.2 :amp 5)
(PHRASE-ARCH 1.4 :phlevel 3

:turn 0.5 :last 0.2 :amp 3)
(PHRASE-ARCH 1.4 :phlevel 4

:turn 0.5 :last 0.2 :amp 2)
))
(set-dm-var ’sync-rule-list
’((NO-SYNC NIL)

(MELODIC-SYNC T)))

Fig. 9. Rule Palette of DM

prolongational tree, Alg.2

prolongational tree, Alg.3

time-span tree, Alg.2

time-span tree, Alg.3

Fig. 10. Jupiter (GTTM DB No.49, #Bt = 24)

prolongational tree, Alg.2

prolongational tree, Alg.3

time-span tree, Alg.2

time-span tree, Alg.3

Fig. 11. Jesu, Joy of Man’s Desiring, (GTTM DB No.70, #Bt = 36)
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prolongational tree, Alg.2

prolongational tree, Alg.3

time-span tree, Alg.2

time-span tree, Alg.3

Fig. 12. Waltz of Swan Lake, (GTTM DB No.33, #Bt = 32)

prolongational tree, Alg.2

prolongational tree, Alg.3

time-span tree, Alg.2

time-span tree, Alg.3

Fig. 13. Pavane pour une infante défunte, (GTTM DB No.73, #Bt = 28)
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Abstract. This paper describes a dataset of flute sounds with appropriate and
inappropriate blowing styles. The flute is known as a difficult instrument to learn.
We, therefore, have been developing a support system that automatically iden-
tifies the appropriateness of blowing in flute performances. To develop such a
system, we need a dataset that consists of various sounds with various blowing
styles, including both appropriate and inappropriate ways, but there are no such
datasets. In this paper, we present the dataset that we have been developing. This
dataset consists of sounds played by various players with various blowing styles,
and also it has annotations of each sound’s subjective evaluation.

Keywords: Flute, Dataset, Subjective evaluation

1 Introduction

The flute is an instrument whose sound changes greatly when the breath’s direction and
the mouth’s size are changed. Therefore, it is necessary to carefully control the size of
the mouth and the direction and strength of the breath to play the flute with appropriate
tone quality. However, although many books on the market instruct how to play the
flute, only a few clearly describe these points. Therefore, even if one reads a detailed
book, it is not easy for a beginner to listen to their sound and judge how to improve it
by themselves.

To facilitate beginners’ practice of the flute, we have been developing a system
that analyzes users’ flute sounds and feeds back on how inappropriate their sounds are
and/or why they are inappropriate. To achieve such technologies, we need a lot of flute
sounds played by various players with different skill levels.

Several studies have been conducted on flute performance support systems. Yoon-
chang[1] created a system to judge whether the player was playing appropriate sounds
by evaluating the head-tube relationship, air pressure, and fingering from the sounds.
Kuroda et al.[2] created a dataset that includes sounds played by a robot and human
⋆ This work was supported by JSPS Kakenhi Nos. JP22H03711 and JP21H03572.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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players to control the blow’s strength and direction strictly. After creating their dataset
called Good Sounds, Romani et al.[3] created a system to analyze the acoustic charac-
teristics of flute sounds.

Datasets of flute sounds have also been developed recently. Brum[4] created a
dataset commprising performances of four pieces with different directions. Cantos[5]
created a dataset of flute sounds to research automatic music transcription; it contains
monophonic and polyphonic flute sounds, their MIDI transcriptions, and objective eval-
uations of the transcription accuracy. Goto et al.[6] created a dataset of sounds of var-
ious instrument by different performers with different intensities. In addition, multiple
datasets of sounds other than flute performances have been developed [7–10]. However,
a dataset has not been developed that includes various sounds played with both appro-
priate and inappropriate blowing styles with annotations of their subjective evaluation.

In this paper, we describe a dataset we have created for a flute performance support
system. This dataset is a combination of flute-playing sounds and their ratings.

2 Dataset

Because this dataset aims to develop a support system of flute practice, the dataset has to
include various sounds ranging from novice-level to advanced ones. In addition, each
sound should have an annotation representing how it sounds well. Therefore, we can
summarize the issues in designing the dataset as follows:

– The skill level of players
Various players ranging from novices to experts should participate in our recording.
In particular, asking novice players to participate is essential because such players
may hesitate to record their flute sounds, even though it is crucial to analyze sounds
played by such players.

– Playing styles
The dataset should include sounds played in inappropriate styles, such as too large
mouth, too small mouth, too upward breath, and too downward breath. In particular,
it would be adequate to ask skillful players to play in such styles intentionally.

– The number of sounds to be collected
The dataset should include as many sounds as possible. It is helpful to collect
sounds on the Web because participants record their sounds without restrictions
on the place and time. It was also significant because our lifestyle was strongly
influenced by COVID-19 when we made the dataset.

– Annotations of subjective evaluation
To evaluate the appropriateness of flute sounds played by various players on a com-
puter, we need an annotation of the subjective evaluation of each sound. We have
to ask sufficiently advanced players to do subjective evaluations to keep the evalu-
ations reliable.

This strategy has some limitations. One is a lack of uniformity in the recording
quality. Because participants record their sounds and send them to us via the Web, they
are assumed to be recorded via their own devices (such as smartphones). Also, the
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Fig. 1. Note performed by participants

(a) Average of temporal variation in
amplitude (dv)

(b) Average of temporal variation in F0 (df )

Fig. 2. Acoustic features of the collected flute sounds. Horizontal: sound ID (from left to right:
[Normal], [Large mouth], [Small mouth], [Breath upward], [Breath downward]), Vertical: stan-
dardized feature values

recording environment (e.g., the distance between the microphone to the flute) cannot
be unified. The lack of uniformity may have negative influences on sound analysis.

Another is that we cannot check if participants follow our instructions. Even if they
are asked to play in the ”too large mouth” style, no one can check if they are genuinely
opening their large mouth.

Even though it has such limitations, we made a dataset based on this strategy. Below,
we mention the details of the dataset. The dataset is available at the following URL:

https://github.com/5418010saiohshita/dataset

2.1 Audio recordings

We collected flute sounds played in various blowing styles, including both appropriate
and inappropriate ones. As inappropriate ways, we focused on mouth size and breath
direction. Due to COVID-19, we asked performers to record their performances them-
selves and collected them on a crowdsourcing site. The performers were asked to play
the score shown in Figure 1 without vibrato. To reduce the burden on individual per-
formers, we asked either of the following two patterns:

1 [Normal] [Large mouth] [Small mouth] [Breath upward]
2 [Normal] [Breath downward]

The details of the performers and the number of collected sounds are listed in Tables 1
and 2, respectively. To compensate for the fact that the sound volume varies depending
on the recording conditions, we corrected the amplitudes so that the temporal mean
values of the amplitudes are equal.

Figure 3 shows acoustic features of the collected flute sounds: the averages of tem-
poral variations in amplitude and fundamental frequency (F0). Regarding both the am-
plitude and F0, sounds played in non-normal blowing styles tend to have more consid-
errable temporal variations.
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Table 1. Details of musical experience etc. of performers

Per- Age Exp.* Gap in Non-flute experience Max non-flute Self-determined
formers [yrs.] exp. [yrs.] exp. [yrs.] flute level

P01 46 2 5 Trumpet 9 Beginner
P02 34 10 3 piano, Guitar 5 Intermediate near beginner
P03 55 2 0 Piano 7 Beginner
P04 29 3 0 Piano 5 Intermediate near beginner
P05 33 2 1 Tenor sax, soprano sax, alto sax 12 Beginner
P06 51 0.8 2 Piano, alto sax, clarinet, bass clarinet 11 Almost no experience
P07 21 3 10 Intermediate near beginner
P08 21 0.1 Intermediate near beginner
P09 46 5 10 Piano 12 Beginner
P10 16 8 Intermediate near advanced
P11 24 10 2 Intermediate near beginner
P12 30 10 5 Piano 16 Intermediate near advanced
P13
P14

Exp.: experience
Empty cells mean unanswered.
*Some performers may have answered years of experience excluding the gap.

Fig. 3. Distribution of subjective evaluation 1 (overall quality) of collected sound. Horizontal:
sound ID (from left to right: [Normal], [Large mouth], [Small mouth], [Breath upward], [Breath
downward]), Vertical: ratings

2.2 Subjective evaluation

To each sound collected above, we annotated its blowing appropriateness. To obtain
such annotations, we conducted subjective evaluations of the collected sounds using
a web-based crowdsourcing service. Participants were limited to current or former stu-
dents of flute majors in music colleges or high school music departments and those who
have played the flute for at least 12 months. As a result, six participants listed in Table
3 participated. The number of participations is different among the participants because
we allowed them to participate several times as they would like.

When each participant opened the designated web page, 20 randomly selected sounds
were displayed. They listened to them individually and entered their answers to the
questions in Table 4. The choices for choice-type questions are listed in Tables 5 and 6.

Figure 3 shows the distribution of subjective evaluation 1 (overall quality) for the
collected sounds. In general, sounds played in the normal-blowing style were given
higher ratings than those in the non-normal-blowing style.
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Table 2. Number of Experiments for flute sound collection

Blowing styles
Performers Normal Larger Smaller Upward Downward Total

P01 1 1 1 1 0 4
P02 2 1 1 1 1 6
P03 10 5 5 5 5 30
P04 1 0 0 0 1 2
P05 1 1 1 1 0 4
P06 10 5 5 5 5 30
P07 2 1 1 1 1 6
P08 7 4 4 4 4 23
P09 7 7 7 7 6 34
P10 3 3 3 3 3 15
P11 2 1 1 1 1 6
P12 1 1 1 1 0 4
P13 1 0 0 0 1 2
P14 1 0 0 0 1 2
Total 49 30 30 30 29 168

Table 3. Participants (evaluators) for subjective sound evaluation

Participant # of participation Flute experience [yrs.] Non-flute experience
S01 1 3 Sax, piano
S02 10 5 Piano, harp
S03 1 6 Electric organ, percussion, etc.
S04 1 22 Piano, percussion, piccolo, etc.
S05 1 28 Piano
S06 1 28 Piano

Table 4. Questions used in the subjective evaluation

1 Overall quality Response type 1
2 Clearness of the tone Response type 1
3 Stability of the intensity Response type 1
4 Stability of the pitch Response type 1
5 Smallness of the breathy noise Response type 1
6 Which in the blowing problems apply? (one or more) Response type 2
7 Write anything else you noticed Description

Table 5. Response type 1 for subjective evaluation
1 Below beginner level. Seen as just starting level.
2 Beginner level. There are some areas that need improve-

ment.
3 Intermediate level. Some improvement is needed. In

general, the student’s performance is satisfactory.
4 Intermediate to advanced level. There are some points

to be improved, but the performance is acceptable for
an amateur concert.

5 Advanced level. There is nothing to be improved at all.

Table 6. Response type 2
for subjective evaluation
1 Breathing too strong
2 Breathing too weak
3 Mouth size too large
4 Mouth too small
5 Breath too upward
6 Breath too downward
7 No problem
8 I don’t know
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Table 7. Acoustic features extracted from flute sounds
Feature Feature description
dv Average of time variation of amplitude
df Average of time variation of fundamental frequency
rv Amplitude range
rf Fundamental frequency range
os Number of harmonic components (including fundamental frequency components) at the

beginning of blowing
fs Percentage of overtones (non-fundamental components) in all harmonics at the begin-

ning of blowing
ns Percentage of overtones in the entire spectrum at the beginning of blowing
oc Number of overtones (calculated from the middle interval)
fc Percentage of non-fundamental frequency components in all overtones (calculated from

the middle interval)
nc Percentage of overtone components in the whole spectrum (calculated from the middle

interval)

3 Examples of the use of this dataset

In this section, we present examples using the dataset we created 1.

3.1 Predicting subjective evaluation from acoustic features

We conducted the prediction of subjective evaluation from acoustic features. This would
help develop support system for flute practice. Here, we used linear regression. From
each audio signal included in the dataset, 10 acoustic features listed in Table 7 are
extracted. Then, these features are applied to linear regression. In linear regression,
the objective variable is subjective evaluation 1 (overall quality), while the explanatory
variables are those features. Half data were assigned to the training data and the rest to
the test data.

Figure 4 compares the subjective evaluation’s predicted and actual values. The fig-
ure shows that even though the actual value of the highest subjective evaluation is 4.75,
and its predicted value is 2.38. When the outliers are removed, the sounds where the
actual subjective evaluation is greater than 3 have lower predicted values than the actual
evaluation. The root mean square error (RMSE) of the prediction is 0.670. When the
outliers are removed, the RMSE is 0.642.

We also attempted the same prediction with decision trees (DTs) after the subjective
evaluation was discretized into two or three classes (that is, we conducted it as two-
class or three-class classification). The objective feature and explanatory features are
the same as above. Table 8 lists the classification accuracy and the depth of the trees
acquired. An example of the trees is shown in Figure 5.

3.2 Predicting blowing styles from acoustic features

When the performers recorded a sound, they were asked the blowing style from [Nor-
mal], [Large mouth], [Small mouth], [Breath upward], and [Breath downward]. We

1 These have been presented in our previous paper [11].
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(a) Outliers included (b) Outliers removed

Fig. 4. Actual subjective evaluation (horizontal) and its prediction (vertical) with linear regression

Table 8. Accuracy of predicting subjective evaluation with DT (in parentheses: outliers removed)

Classification Maximum(Depth 2) Maximum
Two-class (Lower than 2 / 2 or higher) 0.93 (0.94) 0.93 (0.94)

Three-class (Lower than 2 / 2 to 3 / 3 or higher) 0.83 (0.84) 0.86 (0.84)

attempted the prediction of this blowing style from the acoustic features. We conducted
different classification tasks with DTs: two-class [Normal / Other], three-class [Normal
/ Mouth-size-related / Breath-direction-related], and five-class: each style. Table 9 lists
the classification accuracy. An example of the acquired trees is shown in Figure 6.

4 Conclusion

We presented a flute sound database consisting of sounds played in appropriate and in-
appropriate blowing styles. This dataset is intended to be used for developing a support
system of flute practice by analyzing how inappropriate the user’s sounds are and why.
To help such analysis, we annotated the subjective evaluation to each sound.

In addition, we presented examples of flute sound analysis using our dataset. Even
though the prediction of subjective evaluation using linear regression and DTs showed
promising results to some extent, the accuracy for predicting blowing styles was low.
One possible reason could be that the performer could not strictly control the mouth
size and breath direction.

In the future, we would like to improve how to collect sounds. For example, we will
ask advanced players to control their mouth size and breath direction strictly and will
check them via video recordings. Through this, we would like to develop technologies
that help novice flute players improve their skills.
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Melody Blending: A Review and an Experiment

Stefano Kalonaris1 and Omer Gold2⋆
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2 Blavatnik School of Computer Science, Tel Aviv University, Israel

Abstract. The blending of two melodies into a third is a creative process useful
for exploring a search space and can be employed in compositional or improvi-
sational tasks. Two melodic blend tropes are considered: hybridization (recom-
bination of features) and morphing (generation of intermediate feature values).
After reviewing the approaches that have been used to this end, a bespoke im-
plementation of common methods for both tropes is undertaken, and excerpts
demonstrating some use case scenarios are provided. A set of evaluation met-
rics is then put forward and selected blending modes are tested accordingly in a
melodic blending task, for comparison.

1 Introduction

In this paper, the task of obtaining a melody C by blending two melodies A and B is
considered. The goal is to produce C so to retain perceptual properties of both input
melodies, to different degrees and according to different methods. This procedure re-
lates to conceptual blending [1] whereby two input spaces are integrated into a third by
cross-mapping and projection. Conceptual blending has been hailed as a useful tool for
creative exploration, and has been used in music with applications relating to harmo-
nization [2] or emotion [3], among others. While there are precedents [4] of conceptual
blending applied to melody generation, this paper narrows the scope by inheriting the
distinction between hybridization and morphing originally proposed in [5] and port-
ing it from the raw audio domain to symbolic representation. In hybridization, each
attribute of C is inherited by A or B. Thus, each constituent part of C is obtained by
recombining the respective parts of the input melodies. In morphing, instead, the result-
ing melody C is an “in between”, intermediate melody which typically maintains the
shared properties of melodies A and B (if they exist), and can be closer to A or to B,
proportionally to a morphing coefficient λ. Hereinafter, the terms source, target, and
blendoid will be used interchangeably with A, B, and C, respectively.

Different approaches (ranging from simple recombination [6], to music theory [7],
or even number theory [8]) have been used to implement melodic blending, each with
its own advantages and limitations. The most notable of these are reviewed in Section 2,

⋆ Part of the work on this paper was done while the second author was visiting RIKEN, Japan.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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revealing frequent misnaming and ambiguity (according to the hybridization/morphing
dichotomy), as well as much diversity regarding evaluation procedures and metrics.
With focus on their creative potential for music generation and computer aided compo-
sition, some of the blending methods reviewed are reimplemented ad hoc in Section 3,
use case scenarios are illustrated in Section 4, and a set of metrics derived from [5] is
applied for the evaluation of blended melodies, in Section 5.

2 Related Work

Following is an overview of some key approaches developed so far in the context of
melodic blending.

2.1 Music Theory

Hamanaka et al. [9, 10] proposed melody blending methods based on the Generative
Theory of Tonal Music [11] (GTTM) whereby, after computing the intersection between
the time-span trees3 for melodies A and B, an intermediate melody is generated by
combining segments of the two melodic divisional reductions going from each melody
to the intersection. Because of the difficulty in applying the (often ambiguous) GTTM
preference rules, this method has suffered from a lack of automatization, and requires
human expertise (i.e., manual annotation of GTTM tree structures). This method also
assumes that the two reference melodies are in the same key and with an non-empty
intersection set. According to [9] the melodies generated using this method satisfy the
condition that A & C and B & C are more similar than A & B. The measure of similar-
ity is reportedly calculated as the intersections of notes A ∩ B scaled by the reciprocal
of max(lengthA, lengthB) and thus does not account for the interpolation of notes.
Furthermore, the literature on the GTTM-based blending method only provides exam-
ples where melodies A and B are related to each other. Arguably, said examples are
more akin to what in music is known as the “theme and variations” practice, rather than
blending of two independent melodies. For these reasons, it is unclear whether GTTM-
based melodic blending can be fully classed as a morphing method, falling somewhat
in between the two blending categories.

2.2 Probability

The probabilistic approach proposed by Wooller & Brown [12] is also difficult to class
(although its authors use the term morphing). According to it, the input melodies are
subdivided into segments of equal duration (in quarter note length). Starting from a
source segment and based on a probability value p (which determines whether to sam-
ple from either the source or target) and the order of the Markov process (how many
steps to look back within the pitch and duration sequences), the algorithm generates the
next segment, sampling from the chosen Markov chain. This repeats as many times as

3 one of the four hierarchical structures used in the GTTM, the other three being: grouping
structure, metrical structure and prolongational reduction.
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desired. This method dissociates “musical segments with their original temporal loca-
tion” [12] and ignores concerns about the alignment between the source and the target.
Nevertheless, it is suitable as a creative tool for generating melodic blends and trans-
formations. Wooller & Brown’s method was evaluated through the responses and com-
mentaries of eleven volunteers who compared transitions (both short and long) between
tracks performed by a DJ with those obtained by the Markov-based blending. While
the focus was on qualitative metrics and the perceived musicality of the blending tran-
sitions, the results of this evaluation are difficult to generalize, given the size of the
study.

2.3 Geometry

DMorph [13] is Oppenheim’s proprietary system which allows the blending of two
or more melodies based on Dynamic Time Warping [14] or time syncing algorithms.
DMorph affords different methods but, while Oppenheim defines morphing as “the sen-
sation of a natural transformation from one theme into another” [13, p.5], some of
these (e.g., recombination, interleaving, weighted selection) might class as hybridiza-
tion, while others (i.e., interpolation) abide by the formal definition of morphing found
in [5]. DMorph is suitable for pairing sections of the source to sections of the target
beyond arbitrary length sampling. It is a fully automatic method and does not depend
on corpora or domain expert knowledge. Unfortunately, DMorph is not open source and
a working version of the software is nowhere to be found. To the authors’ knowledge,
DMorph lacks a formal evaluation.

2.4 Neural Nets

MusicVAE [15] is a variational autoencoder model which addresses long-term structure
by using the embeddings of the input musical subsequences to generate output subse-
quences independently. To train and generate accordingly, MusicVAE requires mono-
phonic melodies or drum patterns of a specified length. The quantization is done in six-
teenth notes based on the assumption that all training points are in a 4/4 meter. For the
evaluation of MusicVAE, both quantitative and qualitative methods were used. The for-
mer included assessing the accuracy of the MusicVAE in reconstructing melodies and
comparing the interpolations of two types of MusicVAE against a baseline obtained by
weighted selection. The latter, instead, asked participants to indicate on a Likert scale
whether they deemed the model’s or real compositions more musical.

A more recent work [16] uses VAE to connect smoothly two musical sequences,
where smoothness relates to pitch and duration transition (i.e., a few consecutive notes
around the connection boundary are used to compute Markov transition matrices of
each statistics as states).

3 Melody Blending

Some of the techniques discussed so far are here reimplemented with in view to, in the
future, developing an integrated toolbox for melody blending. This section describes
the main technical details, to this end.
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3.1 Alignment

To blend two melodies, an appropriate alignment between them must be established
first. Here, priority for the alignment is given to the time dimension, and two approaches
are explored: time-sync and time-warp.

Time-sync In the authors implementation of time-sync alignment, it is assumed that
source and target are reasonably similar in quarter length duration. If needed, the
melodies are zero-padded (by lengthening the shortest melody with a rest of duration
equal to the sequence difference) so that their length match and divide by a quarter note
duration. Then, the melodies are partitioned into disjoint segments as follows. The first
segment starts at the beginning of each melody and ends once an event (note/pause) in
which the cumulative sum of the onset values of the source and target melodies equals
to t times quarter note duration is reached, where t is an integer (it is assumed that
such a t always exists after the zero-padding). The next segment starts after the end
of the previous segment, and so on, until the end of the melodies. An example of this
procedure is given in Figure 1.

Fig. 1. An example of time-sync alignment between melodic extracts from L.v. Beethoven’s 6
Variations in D major, op.76 (melody A, top) and S. Foster’s Beautiful Dreamer (melody B,
bottom), using quarter-note syncing.

Time-warp Dynamic time warping (DTW) [14], instead, is a geometrical approach
which can be used also when the source and target melodies are considerably dif-
ferent in length. Recall the definition of DTW between two point-sequences. Let
A = (p1, . . . , pn) and B = (q1, . . . , qm) be two sequences of points in some met-
ric space (X,dist). A DTW-coupling C = (c1, . . . , ck) between A and B is an ordered
sequence of distinct pairs of points from A×B, such that c1 = (p1, q1), ck = (pn, qm),
and cr = (pi, qj) ⇒ cr+1 ∈

{
(pi+1, qj), (pi, qj+1), (pi+1, qj+1)

}
, for r < k (note

that max{n,m} ≤ k ≤ n+m). The DTW-distance between A and B is

dtw(A,B) = min
C: coupling

{ ∑
(pi,qj)∈C

dist(pi, qj)
}
. (1)
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Fig. 2. Example of a time-warp alignment between the onset series of the same melodies given in
Figure 1.

A coupling C for which the above sum is minimized is called an optimal coupling4.
Here, the two point-sequences A and B represent melodies, where each point ai ∈ A
and each point bi ∈ B is a vector with entries corresponding to musical features (e.g.,
pitch, duration, velocity, etc.). The distance metric dist can be chosen among common
measures. In this case, the Euclidean distance was used.

Using different feature vectors for the calculation of an optimal coupling (in the
fashion of Conklin’s viewpoint sequences [17]) might produce different results. How-
ever, in an effort to achieve better rhythmic coupling, onset series were used as the new
point-sequences, to this end. The typical optimal coupling format is a sequence of tu-
ples of indices for matching events in A and B. For example, the optimal coupling in
Figure 2 would be:

C = (0, 0), (1, 1), (2, 2), (3, 3), (4, 3), (5, 3), (6, 4), (7, 4), (8, 5), (9, 5), . . . (2)

3.2 Blend Methods

Based on the precedents seen in Section 2, several methods for melodic transformation
were implemented or adapted.

Interleaving In this blend method, one simply alternates between source and target,
using the matched events obtained either by time-sync or time-warp alignment (as spec-
ified by the user). In the example used thus far, matched events are clearly delineated
using polygon contours (see Figures 1 and 2). Despite its simplicity, the interleaving
method can produce some interesting blends (see Section 4 for an example).

Weighted Selection This blend method operates similarly to interleaving, but considers
a blend coefficient between 0 and 1 as the probability p of selecting, for a given match,
from either the source or the target. Weighted selection affords the ability to steer the
output closer to the source or the target.

4 It is possible that there is more than one optimal coupling.

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

559



Markov Chain Similarly to the previous method, for each match, either the source
or the target is selected stochastically using the blend coefficient. Accordingly, the
first event is used as the seed to generate a sequence of notes/rests based on the cor-
responding transition matrix (source or target), using a specified Markov order, and for
as long as the duration sum of the generated events (in quarter length) does not ex-
ceed that of the original events in the match. As an example, consider the subsequence
(3, 3), (4, 3), (5, 3) of the optimal coupling (2). Suppose that according to the blending
coefficient the source is selected: then, the event with index 3 in the source (i.e., an F#
eight note) will be the seed for generating notes/rests based on the source’s transition
matrix, for as long as their duration sum does not exceed a dotted quarter note, which
is the duration sum for events with indices (3, 4, 5) in the source. This process repeats
until the exhaustion of matched events in the alignment.

Interpolation This blend procedure uses pitch and duration value interpolation over
a time-warp optimal coupling. Let A = (a1, . . . , an) and B = (b1, . . . , bm) be two
melodies, where each point ai ∈ A and bj ∈ B is a vector with entries corresponding
to musical features (e.g., pitch, duration, velocity, etc.). Let C = (c1, . . . , ck) be an
optimal coupling obtained by the DTW algorithm. For each pair c = (ai, bj) ∈ C,
the musical features are interpolated so that, for each pair of points in the coupling, a
new point that is “in-between” them is obtained. Although there are many interpolation
techniques (piecewise constant, spline, etc.), in the authors’ system, the morphed feature
mi,j for a pair c = (ai, bj) ∈ C is generated by applying linear interpolation using a
blend coefficient to yield intermediate values closer to either the source or the target, as
desired.

4 Use Cases

Different blending methods may be more or less appropriate depending on the musical
task at hand.

4.1 Style Blend

For example, if one wanted to blend styles in a given musical genre, pure interpolation
methods could prove problematic for idiomatic dependencies that might be expected in
a scenario of this kind. Conversely, weighted selection or Markov-based methods might
be better candidates. Figure 3 shows II-V-I5 licks6 by C. Parker’s solo on Au Privave
and from M. Brecker’s solo on Take a Walk, and the blendoid obtained using weighted
selection with a 0.3 blend coefficient.

Source and target are indicative of how the jazz idiom developed over the years,
from the enclosure approach [18] common in the be bop era to the polychordal su-
perimposition employed by more recent players, and the blendoid is an example of
successful hybridization of the two.

5 A standard chord progression serving as building block for larger harmonic structures.
6 Idiomatic melodic patterns.
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Fig. 3. Blending styles over a II-V-I chord progression using weighted selection with time-sync
and a blend coefficient of 0.3.

4.2 Theme & Variations

Another task where time-sync is suitable could be the generation of variations, as com-
monly done in the classical tradition. Figure 4 shows a possible variation in the context
of W. A. Mozart’s 7 Variations on “Willem von Nassau”, K.25, obtained by blending
the original theme with the 3rd variation.

Fig. 4. A blendoid (bottom stave) generated by interleaving the theme (top stave) and the 3rd

variation (middle stave) of 7 Variations on “Willem von Nassau”, K.25 by W.A. Mozart.

4.3 Heterogeneous Blend

A case where time-warp interpolation methods would prove interesting is the blending
of melodies from heterogeneous genres, or with different metrical structures, length,
etc. As an example, Figure 5 shows an interpolation blend of Le Cygne by C. Saint-
Saëns and Salut d’amour by E. Elgar, using a 0.3 coefficient.
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Fig. 5. A blendoid (bottom block) generated by interpolating (λ = 0.3) excerpts of Le Cygne by
C. Saint-Saëns (top block) and Salut d’amour by E. Elgar (middle block).

5 Evaluation

As seen in Section 2, there is no standardized procedure for evaluating melodic blends.
Given the combination of available blending methods and time alignments, a universal
and exhaustive evaluation protocol might be beyond the scope of this paper. In fact,
important criteria in the evaluation of morphing methods might not have a clear cor-
respondence for hybridization techniques and viceversa, thus making the development
of consistent evaluation metrics difficult. Notwithstanding, and deferring a more com-
prehensive evaluation framework to include qualitative metrics to future endeavors, a
minimal set of objective metrics is tested. These include similarity and two of the three
independent criteria proposed in [5]: intermediateness and smoothness. It must be noted
that the latter were originally developed for raw audio and are here interpreted and
implemented to reflect the different representation (symbolic) of the musical surface.
Correspondence, originally also part of the set in [5], is not contemplated here, as one
assumes it is guaranteed by virtue of the feature matching in the representation of the
melodies. Only blending methods allowing a blend coefficient were considered in this
study: weighted selection, Markov chain, and interpolation. These are evaluated over
complete blends, going from 0.0 to 1.0 with 0.1 increments, as described below.

Similarity Many melodic similarity measures have been proposed and argued, the main
approaches being mathematical [19–29], cognition-based [30–32], and musicological
[33–35]. To account for true in-between pitch values, this study focuses on melodic
contours and employs two measures. One is obtained as in [35], albeit substituting the
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original n-gram similarity over the extended Implication-Realization (IR) symbols at
character level with the complement of the n-gram Jaccard similarity at token level.
The other similarity measure is obtained using the normalized Euclidean DTW dis-
tance between melodic contour (smoothed) series. For either of these similarity mea-
sures sim(·, ·), the indicator function in Equation 3 determines whether a blendoid b is
appropriately more similar to the source s or the target t with respect to the blend co-
efficient λ. The weighted sum over a complete blend is taken as the final measure and
indicated as SimIR or SimDTW, depending on which similarity metric was used for the
indicator function.

I(s, t, b) :=


1 if (1− λ) · sim(s,b) ≥ λ · sim(t,b), for λ ≤ 0.5
0 if (1− λ) · sim(s,b) < λ · sim(t,b), for λ ≤ 0.5
1 if λ · sim(t,b) ≥ (1− λ) · sim(s, b), for λ > 0.5
0 if λ · sim(t,b) < (1− λ) · sim(s, b), for λ > 0.5

(3)

Intermediateness For intermediateness, a problem posed by the symbolic music do-
main is the limited choice of discrete steps for in-between notes. Another issue to bear
in mind is that linear interpolation of the parametric space does not necessarily result
in perceptually intermediate blends. Notwithstanding, the following procedure is pro-
posed: first, the melodic piecewise contours for source s, target t, and blendoid b, are
calculated and resampled to n points proportionally to the blending coefficient. Then,
for each point i in this range, the following is checked: min(si, ti) ≤ bi ≤ max(si, ti).
The weighted sum of all the True values is taken as the intermediateness index for that
blendoid.

Smoothness In [36], a melody is defined smooth simply if the intervals between con-
secutive notes are within a fifth (i.e., seven semitones). In the context of this experiment,
however, a different definition is needed to compare melodies and to quantify whether
the blending from source to target is gradual and, thus, successful. In this paper, au-
tocorrelation (lag-one), roughness, and mean squared jerk (MSJ) are employed. Auto-
correlation with scores near 1 might imply a smoothly varying series whereas if there
isn’t an overall linear relationship between consecutive data points one might expect
values closer to 0. Roughness in this context is considered as the smoothness penalty
as defined in the cubic spline, albeit with a normalization factor that accounts for the
length of the input series. The mean squared jerk measure is defined as in [37], and
here adapted to the music domain (it is normally employed in movement analysis to
measure how much the acceleration of a movement contour changes over time). For all
three smoothness measures, the melodic contour (smoothed) series of each blendoid in
a complete blend is used as input (like in the DTW-based similarity described earlier).

Using the above metrics and the same two melodic excerpts of Section 3.1, yielded
the results shown in Table 1. Note that the values (mean and standard deviation) reported
refer to a run of 10 instances of complete blends since all methods but interpolation are
stochastic and might generate different blendoids for the same blend coefficient. For the
Markov-based method, an order of n = 3 was used.
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Table 1. Comparing different blending methods based on the proposed evaluation metrics, over
10 full blends. Abbreviations for the methods are: WS (weighted selection), MC (Markov chain),
and Lerp (linear interpolation), with ts and tw indicating time-sync and time-warp, respectively.
Abbreviations for the evaluation metrics are: Intrm (intermediateness), Acorr (autocorrelation),
Rghns (roughness), and MSJ (mean squared jerk).

SimIR SimDTW Intrm Acorr Rghns MSJ

WS (ts) 0.9 0.833 0.405 0.988 2.185 2.889
± 0.3 ± 0.373 ± 0.045 ± 0.005 ± 1.412 ± 2.045

WS (tw) 0.878 0.722 0.43 0.986 3.95 4.118
± 0.328 ± 0.448 ± 0.13 ± 0.007 ± 3.006 ± 2.912

MC (ts) 0.911 0.689 0.372 0.99 2.3 3.071
± 0.285 ± 0.463 ± 0.069 ± 0.004 ± 1.943 ± 3.054

MC (tw) 0.878 0.822 0.359 0.99 2.295 2.654
± 0.328 ± 0.382 ± 0.06 ± 0.002 ± 1.528 ± 2.189

Lerp 0.778 0.444 0.402 0.994 0.527 0.507
± 0.416 ± 0.497 ± 0.041 ± 0.001 ± 0.352 ± 0.413

6 Conclusion

This paper offered a brief review of melodic blending approaches, presented an orig-
inal appropriation for some of these, and proposed objective metrics, in an effort to
move towards a more standardized evaluation procedure. The blending operations im-
plemented by the authors are prototypical, and much remains to be improved upon. The
morphing methods, particularly, do not handle diatonic perceptual imperatives, and, in
cases with a strong “tonal” or “idiomatic” expectation, linear interpolation of features
is likely to violate it. Additional features (e.g., dynamics, articulation), could also be
included to enhance the blended melody’s musical quality. It is also important to note
that, while this experiment dealt with standard symbolic representation, there are other
approaches, such as the Tonal Interval Space [38], which merit consideration in future
implementations, as they might yield different and more nuanced intermediate values
for interpolation. Despite the system’s current limitations, this experiment’s results sug-
gest that a toolbox packaging of the blending functionality described in this paper could
be a useful addition to one’s creative workflow, either as a module in a larger generative
music system or, conditioned upon further development, as a standalone application.
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Abstract. Recent developments in generative AI have posed a challenge for de-
velopers who attempt to maintain an effective balance between the system’s gen-
erative input and user’s sense of creativity and control. In this paper, we present a
longitudinal study of a web/mobile application we developed, Mixboard, which
allows novice music lovers to create and share personalized musical mashups in
a co-creative manner. Different balances between the role of system automation
and user creative input have been developed and studied over a period of two
years. Findings from users studies indicate that while novices appreciate the sys-
tem’s AI driven automation and suggestion, they seek to expand their level of
control and creative input into the final product over time. Future developments
may therefore include a personalized level of control balance based on continuous
assessment of user behaviour.

Keywords: Co-creativity, Musical AI, Longitudinal User Studies, Mobile Ap-
plications, Novices

1 Introduction

Systems that use Artificial Intelligence (AI) to aid in creative processes have recently in-
creased in popularity, partly driven by OpenAI’s suite of Generative Pre-Trained Trans-
former (GPT) releases starting in 2018 [13]. One of the main challenges facing devel-
opers of co-creative systems is how to provide automation and content in a manner that
would maintain a sense of creative control and agency for the user. User satisfaction
may be negatively impacted if the system prompts the user to contribute too much or
too little to the creative outcome. This also comes at a time where music production and

⋆ Thanks to Hardik Goel for his developmental work.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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consumption is, or at least appears to be to novices, more widely accessible. Popular so-
cial media, like TikTok or Instagram, empower users to select and edit music and sounds
to go along with their planned content. As Jenkins et al. describe, these technologies and
new forms of consumption ”signals a movement toward a more participatory model of
culture one which sees the public not as simply consumers of pre-constructed messages,
but as people who are shaping, sharing, reframing and remixing media content in ways
which might not have been previously imagined” [8].

We developed Mixboard [15] to allow music lovers to ”shape and remix” any set
of songs into high-quality musical mashups, assisted by AI. A mashup, in this context,
can be defined as a blend of elements from 2+ songs. Aimed at novices, the applica-
tion acts as a co-creative agent that contributes to the musical decision making, rather
than giving the user full control over the final outcome. The AI handles both low-level
computational tasks such as source separation, segmentation, tempo and key detection,
stretching, and transposition, as well as high-level artistic decisions such as selecting
appropriate musical segments and suggesting compositional structures. A previous set
of comprehensive user studies with the app identified a clear desire for further user con-
trol. This motivated our team to rewrite the system’s software infrastructure to provide
a more effective balance between user control and system automation. In this paper, we
provide a short summary of the original system, describe the new features developed to
address the control balance, and present newly conducted research studies that indicate
a higher level of user satisfaction and productivity while working with the app.

2 Related Works

Recent generative audio systems rely on artificial intelligence and machine learning for
creation and manipulation of sound data. Certain products depend on Digital Audio
Workstations (DAW), such as Avid Pro Tools [11] or iZoTope’s mixing product suite
[7] to support professional musicians who are familiar with advanced musical concepts.
Such systems require layered knowledge and experience with waveform editing, ren-
dering the musical outcome to be fully dependent on the user’s abilities and talent.
Conversely, applications designed for novices such as Splash Music [6], Amper [2],
OpenAI’s MuseNet [14] or Jukebox [5], allow little creative input for the users in con-
structing the musical outcome. With these kinds of systems, the user only provides high
level input such as mood, length, or style, while the AI generates the music without
supporting ongoing creative input for the users. Santo et al. [16] identified that users
would like a co-creative to provide some control over the output. As Tanaka et al. [17]
found with their co-creative musical systems, ”The ability of the listener to distinguish
his own contribution within the total resulting music is a crucial element in granting
musical agency to individual users.”

For mashup applications, too, recent efforts tend to simplify the interaction design,
which limits the creative expression and control of the user. MixMash [10], for exam-
ple, presents users with a song proximity map but does not provide an interface for
users to creatively generate full songs. Other systems such as AutoMashUpper [3] and
PopMash [19] pose creative constraints, whether it is limiting the songs a user can work
with or limiting the user’s creative potential by providing a overly technical user inter-
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face. These systems also do not allow users to choose any song of their liking, which
limits personalization and engagement. DropMix [12], on the other hand, does provide
commercial songs for users to mashup. However, DropMix’s song library is limited and
the system does not allow the user to engage creatively in constructing the final prod-
uct. Mixboard was designed to address these challenges, providing users with ongoing
AI-driven creative input during the construction of their songs.

3 Web Application Overview

The first implementation of Mixboard was designed for the Web [15]. The application
allows users to select any four songs from Spotify and organize them over a visual
canvas. The users can drag song album art onto the canvas, positioning them over four
lanes: Vocals, Instruments, Bass, and Drums. These stems have been source separated
using Demucs [4]. Users can then edit the length and location of each segment by drag-
ging and dropping segments over the canvas. The system selects the optimal key and
tempo for the mashup, and stretches and transposes all songs segments to the optimal
tempo and key using Elastique by Zplane [20]. It also makes high level creative sugges-
tions such as providing templates for songs and selecting the particular audio segments
for each placed segment on the canvas. In a set of comprehensive user studies [15], we
found that the majority of users asked for more control over their creations. Addition-
ally, we found that while users may have started their mashup process by leaning on
the AI-powered features to select random songs with (Choose for Me) or determine the
placement of their songs with (Surprise Me), no user exclusively used the AI features;
this indicates that even novice users were capable and willing to explore more nuanced
AI-powered features, but they still wanted to exert their own creative goals themselves.

4 iOS Application Overview

To address our initial evaluation findings, we developed a new iOS version of the app.
The iOS app interface can be seen in Figure 1. A video demonstration of the application
can be viewed here: http://bit.ly/mixboard. Three main features were added
to the application in an effort to provide more control to the users, while still providing
meaningful AI input. To allow users to better decipher between the components of the
mashup, Mute and Solo functionalities were added to each lane. To provide users with
more control over which audio segment is chosen by the AI for each section, we added
a Shuffle function:

Mute: Turning on Mute for a lane will silence corresponding sound pulled from
songs placed in that lane. This lets the user silence lanes while listening to live playback,
enabling the user to zero in on sounds they want to highlight or remove.

Solo: Turning on Solo will only play sound generated from that corresponding lane.
Shuffle: After clicking a placed segment, a Shuffle button appears next to the Delete

button. When Shuffle is clicked, the system will sort through all available relevant seg-
ments to pull another segment that matches the length of the placed segment. Given the
high volume of requests for users to select specific segments from songs, the Shuffle
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function is designed to grant the user more control choosing the segment, while still
allowing the AI to make an informed decision on which audio segment would fit well.

In addition to these changes, the iOS version also prompts users to log in with
their Spotify accounts, which leads to their most recently played songs to display in
the Spotify window of the song selection window. This allows for easier and faster
personalization, which was requested by many users. The iOS version also removed the
Generate button, and replaced it with Play/Pause to reduce wait time in listening to a
mashup.

Fig. 1. The iOS version of Mixboard, rendered on an iPad 2 in Dark mode

5 Evaluation

We conducted one study on the iOS version of Mixboard using a tablet to maximize
screen size. We recruited 20 participants, 16 of which participated in research of the
web version. The participants ranged from 22 - 27 years of age, and no one held more
than a year of professional or recreational music mixing experience. Participants were
given up to 30 minutes to interact with the system; the audio and visual content of
the device was recorded throughout the experiment. After the experimentation phase
ended, subjects participated in a semi-structured interview and survey. The interview
included questions that explicitly asked about how the participant liked and used the
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three new control-granting features. The survey asked users about their experience us-
ing 20 Likert-scale questions, some of which were adapted from previous musical AI
experiments [9]. Two survey questions asked participants to rank potential features in
terms of how interested they were in trying the feature and how effective they per-
ceived the features could be in helping them create better mashups. The 27 features
included in this section all came from previous participants’ desires or misconceptions
of Mixboard; these ideas both further expanded existing functionality, e.g. lane labels to
set expecations on what to hear, and generated functionality, e.g. a song recommenda-
tion system based on the selected songs’ tempo or key. The survey data was aggregated
to generalize findings quantitatively by assessing the measures of central tendency of
this study against previous studies conducted.

6 Results

Results from the 20 Likert-scale measures are shown in Figure 2. Two major sys-
tem bugs were identified during research, one of which broke Shuffle and the other
frequently broke the Play/Pause button. The team was able to identify these issues
and fix them after the 8th study. As such, survey means were calculated across all
studies (labeled as ”Study 3 Mean”), as well as specifically for participants 9-20 (la-
beled as ”Study 3 Post-Fix Mean”). ANOVA tests were conducted on all 20 mea-
sures across these three groups, and each measure was proven to be statistically sig-
nifcant between groups. After these fixes, the iOS version of Mixboard proved to be
more consistent ( mean(µ) = 1.62 (decrease of 0.63 from previous research), stan-
dard deviation (σ) = 0.8), well-integrated (µ = 4.31,+.30, σ = 0.74), and eas-
ier to use (µ = 4.69,+0.27, σ = 0.5) than the web version. The iOS version also
scored better in the control (µ = 3.69,+0.60, σ = 1.15) and need for more learning
(µ = 2.23,−0.35, σ = 1.02) measures than the previous version of the system. Inter-
estingly, the average for automation (µ = 2.85,+0.47, σ = 1.18) moved closer to 3,
meaning more participants ”neither agreed nor disagreed” with the statement, ”The sys-
tem should automate more of the composition process for me.” There was minimal dif-
ference in the creative expression, trust, learnability, and user confidence measures,
which demonstrated that the new version’s changes were not noticeably detrimental to
the well-favored user experience of the system.

Technical errors impacted 9 screen recordings. The team decided to only analyze
recordings that captured the full experimentation period, so 11 screen recordings were
analyzed. Mute was the most commonly used feature, with only 2 of the 11 users ob-
served choosing not to interact with the feature at least once during production. It is
possible that returning participants were more drawn to interact with the feature given
its newness; some returning participants requested this feature previously, which could
have further motivated its use. In the features aspect of the survey, only 7 features re-
ceived strictly positive remarks, meaning no participant stated they were ”Not inter-
ested” in trying the feature, and no one believed the feature worsen the experience.
Each of these features would grant the user more control and improve the quality of the
final product. All 20 participants chose to use the full 30 minutes to experiment with
the system, and each participant stated they would want more time with the system.
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Fig. 2. Longitudinal Comparison of Mixboard

7 Observation and Discussion

7.1 Version Comparison

We asked participants ”Do you think the system provides you too much, too little, or just
enough control over your creations?” 8 participants stated ”Just enough”, and another
10 qualified their ”Just enough” responses by saying they would want more control as
time went on. This data paired with the improved control measure score indicate that
this version achieves a more desirable balance between automation and user control;
however, there is more to be desired. One returning participant shared, ”I like that I can
now change it (using Shuffle), but I think it’d be more of a unique experience if I could
choose which part of the song. Whenever I think of a song I want, I have a specific
part I want to add, not just the entire song” (P17.7). Furthermore, participants generally
used Choose for Me and Surprise Me, two AI-driven features, less frequently than in
the web version, which could be due to returning participants having a clearer vision
of what they want to create or because their pre-existing system knowledge meant they
had less to explore. Nearly all returning participants supported the transition from web
to tablet, yet 7 of the 16 participants stated they felt less precise without using a mouse
or bigger screen. One of these 7 participants stated she felt she had less control over her
mashups in this version compared to the web, making her the only returning participant
who said they lost control in a negative sense. Participants often stated Solo and Mute
made it easier to identify sounds they wanted to accentuate or eliminate, which granted
more control. Shuffle likely should remain, even if more data should be gathered around
the feature when it works.
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7.2 Achieving Long-Term Co-Creativity
The juxtaposition captured by our results demonstrates how difficult it is to provide a
universal co-creativity balance that would be appreciated by all users in longitudinal
studies. One participant stated throughout the study that his expectations had changed
due to capabilities and limitations experienced in the previous study, ”I can’t necessarily
choose the exact seconds of a track, so knowing that means I have to be very open
with the vision going into this...if the system’s already going to choose the parts of the
track for me, then I feel like trying to put specific tracks down is in conflict with that.”
This reflects gradual user trust can also prepare the user for more advanced features.
13 of the 20 participants requested Mixboard’s AI to expand to influence their work
further; participants most commonly requested suggesting songs or placement based on
what they already had selected (10 participant requests) and more information about
the AI’s decision making process (8 participant requests). It is worth noting that the
latter request did not emerge in the first iteration of research studies, again showing
how user expectations can evolve. Users were more likely to request these advanced
features when they had previously participated in our studies, reaffirming Turchet et
al.’s [18]finding that ”personalization mechanisms (should be) based on the expertise
level of the user.” More control could allow these users to evolve their abilities over
time, which increases the likelihood of creating works they are happy to claim as their
own.

7.3 Ethical Standards
This project was developed by Georgia Tech students for academic purposes. The hu-
man subjects research was approved by the Georgia Tech Institutional Review Board.
Informed consent was collected verbally and in writing at the beginning of each research
study. No compensation was offered to participants. Anonymized data was stored in a
secure drive only accessible to the researchers included on the IRB protocol.

The ethics of remixing and redistributing musical works will be addressed in future
work of this system. Since Mixboard is not publicly available, there is minimal risk
regarding copyright infringement or improper compensation for the artists. Mixboard
could greatly increase the number of works that could be used to generate revenue out-
side of proper royalty structures, namely if a user were to use a mashup on sponsored
social media content or to sell to other social media users. Furthermore, since partic-
ipating in streaming music slightly increases the likelihood to participate with music
piracy [1], we must be especially careful that our users understand the consequences of
illegal usage of copyrighted music.

8 Conclusions and Future Work

Mixboard will continue to evolve to address the wealth of user feedback we have col-
lected. The team plans to evaluate whether the system should intentionally scaffold
learning via unlockable features or advanced tutorials. While it is clear that different
users will have different expectations and different preferences, we will explore vari-
ation that would personalize the level of control based on assessing users interaction
with the system.
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Abstract. Time-span trees in A Generative Theory of Tonal Music (GTTM) have
global and local relationships. However, no analysis based on global relationships
has been done, and higher-order mechanisms have not been clarified. Therefore,
in this research, we will clarify this mechanism by masking the time-span tree
as it is and using it as a fill-in-the-blank task. To experiment with the fill-in-the-
blank task, we vectorized and embedded the tree structure. We also extended the
data by changing the pitch and masking. As a result of experiments, it is possible
to predict higher layers when masking a small maximum time-span.

Keywords: Generative theory of tonal music (GTTM), time-span tree, LSTM,
Seq2Seq, blockview, skip-thought

1 Introduction

In cognitive science, how humans listen to music is an important factor. When listen-
ing to music, people do actively listen while predicting the next melody, harmony, and
rhythm. Emotional arousal during listening to music is said to be related to betrayal of
the listener’s conscious and unconscious predictions[1]. It has been reported that when
an unpredictable change in pitch occurs while listening to a melody, people react psy-
chologically and physiologically[2]. It has also been found that the memorability of a
melody is related to the predictability [3]. For these reasons, we find that human percep-
tion of music is simultaneously analyzing and predicting. Therefore, music analyzers
are required to be able to perform multiple analysis and prediction.

In addition, music theory shows that there are not only local relations but also global
relations. A Generative Theory of Tonal Music (GTTM) [4], which is a cognitive mu-
sic theory, describes local and global relationships, and is implemented on computers.
In particular, GTTM’s time-span tree implementation has been attempted [5, 6]. So far,
however, there has been little research about how to implement higher-order mecha-
nisms. Specifically, the current algorithm inputs scores in specific batches and analyzes
the time-span tree based on local relationships. However, when humans listen to music,
they analyze and make predictions at some point. We never listen to the whole music

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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and analyze it in batches. In fact, referring to Fig. 1, the subtree of C C and the subtree
of G G are composed one subtree, so they have a local relationship. Similarly, there is
a global relationship between C C and A A. On the other hand, the subtree of G G and
the subtree of A A have not local relationship and global relationships. However, the
subtree of C C, G G, and A A can be seen as three consecutive syllables of the same
two sounds. Therefore, there is also a relationship between G G and A A as syllables.
However, due to the reduced subtrees of the GTTM rules, it is difficult to find hidden
global relations for subtrees of such syllables and phrases.

Fig. 1. Local and global relations in time-span tree

In this paper, we consider local and global analyzes of time-span trees. In detail,
this paper reproduces the analysis and prediction of human music listening by taking
missing time-span trees as inputs and complemented time-span trees as outputs. It en-
ables local and global analysis and prediction using Sequence to Sequence (Seq2Seq)
models and fill-in-the-blank tasks. The Seq2Seq model uses LSTM, and the recursive
processing of LSTM enables analysis and prediction at the same time. Also, the input
must be a tree structure. However, although previous research has discussed the analy-
sis of tree structures[7, 8], using the tree structure itself as data has not been previously
considered. In this research, based on the representation proposed in ON-LSTM, a tree
structure input is realized by factoring in the hierarchical direction and horizontal direc-
tions. It predicts complemented time-span trees from missing time-span trees. In con-
clusion, this paper proposes local and global time-span tree filling tasks for analyzing
time-span trees based on human music perception.

This paper is divided into five sections as follows. First, the definition of the time-
span tree used is explained. Section 2 reviews previous studies using time-span tree
and deep learning models for tree-structured data. Section 3 details the dataset and
data augmentation and embedding used in this paper. Section 4 introduces the Seq2Seq
model used for the fill-in-the-blank task in this paper. Section 5 presents results from
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experiments to predict subtrees from subtrees. Section 6 presents a discussion of the
results. Section 7 describes conclusions and future prospects.

2 Prerequisites and Related Work

Hamanaka et al. [5] analyzed time-span tree obtained by GTTM using deep learning. At
low-level boundaries, the accuracy is 0.03 points higher than the conventional method,
and the metrical structure has almost the same performance as the conventional method.
However, this method is analyzed based on the theory of GTTM, and it shows that it
cannot be analyzed without analyzer of GTTM. Hamanaka et al. [6] realized time-span
analysis and melody morphing using deep learning. The research makes it possible to
analyze time-span trees by learning the order of melody reduction. However, it does not
take a tree structure as input, and also requires a melody input.

Ordered Neurons LSTM (ON-LSTM) [7] showed a function called Cumax. This
function allows deep learning to learn the composition of the hierarchical structure.
Then, the paper demonstrated that the function is effective in unsupervised learning. It
shows that it is similar to analyzing a tree structure by a person who does not know
the rules. However, it is not extended from tree structure to learning tree structure.
Pyraformer [8] investigated whether hierarchical attention mechanisms are effective
for long-term dependencies on time-series data. In addition, Pyraformer reduced the
amount of calculation compared to the conventional method. However, it requires a
large amount of data, well exceeding the number of pieces of music that a human being
can listen to in a lifetime.

In conclusion, there is no model that predicts a tree structure from another tree
structure, and either rules are used, or a large amount of data is required to acquire the
hierarchical structure. Therefore, it is necessary to research a model that predicts and
analyzes tree structure with a small amount of data without knowing the theory, similar
to people listening to music.

3 Create the Experimental Dataset

The size of the tree structure varies greatly both vertically and horizontally. This ten-
dency is particularly strong in the case of binary trees. There are two cases of extreme
tree structures. One is when every possible reduction always occurs at each layer. In this
case, since there are many tones, the sequence length is long, but the number of layers
is relatively small. On the other hand, there are cases where the reduction is done only
once at each Layer. In this case, even if the number of tones is small and the sequence
length is short, the number of layers increases in proportion to the number of tones.
As a result, when a tree structure is used as input, the size of the data differs greatly.
Therefore, by using different learning methods for the vertical and horizontal directions,
the effects of each are reduced and, with the implementation of deep learning, learns
rules related to time-span trees. In the following, four procedures for solving the subtree
filling problem of a time-span tree with Seq2Seq.
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3.1 Data Collection

A dataset analyzing time-span trees of 300 songs has been published [9]. The time-
span tree of the dataset is 8 bars long. Time-span trees are excluded that are ambiguous
and subject to multiple analyzes due to preference rules. Furthermore, excluding the
time-span tree whose sequence is long and sparse, the number of songs analyzed in this
research is 279. The number of minimum layers is 5 and the maximum is 10. Also, the
number of minimum notes is 10 and the maximum is 80.

3.2 Splitting the Dataset and Data Augmentation with Transposition

279 songs are divided into 8 to 2, and divided into 223 songs as learning data and
56 songs as test data. After that, the learning data is split 8 to 2 into training data
and validation data, resulting in 178 songs in training data and 45 songs in validation
data. Additionally, as a data augmentation, the training and validation data pitches are
changed +2, +4, +5, +7, +9, +11. This multiplies the original data by 7.

3.3 Vectorization of Time-span Tree

The tree structure is constructed so that it is easy for humans to understand. However,
it is a format that is difficult to handle for Artificial Intelligence such as deep learning.
Therefore, blockview was proposed by ON-LSTM [7] as a vector representation of the
tree structure. This research extended blokview, which normally analyzes in parse trees,
to time-span trees. This research extends time-span trees to blockview. Also, smaller
parts are zero-padded. In detail, vectorization is performed so that the maximum lengths
in the vertical and horizontal directions can be obtained.

In the original time-span tree, the duration becomes the total value as it is simplified.
But in this research, it is not the total value in order to avoid the prediction becoming
deterministic due to the duration. In addition, when using the total value, it is possible
that the accuracy of the prediction will be greatly affected. The reason is that all dura-
tions that appear must be labeled, and with the current number of data, the data will be
sparse. For these two reason, duration is not a total value in this research.

Fig. 2 shows the original time-span tree and the time-span tree vectorized by the
blockview. Note id 1 wins the most, so only notes with note id are vectorized in fourth
layer. Originally, the simplification of note id 4 and 5 is ambiguous whether it is the
second layer or the first layer. But for the sake of simplification, it is the first layer that
can be considered. For note id 1, the duration is 0.75, 1.5, 3, but as We said earlier, we
can’t consider all combinations of numbers, so we consider it only as 0.75.

3.4 Vertical Embedding

To predict the tree structure, the tree structure needs to be embedded into the latent
space. Time-span trees vectorized by blockview are split vertically. This split vector is
called a timestep. Timesteps have more similarity in elements as they go up in the layer.
To take advantage of this feature, we use skip-thought [10]. Skip-thought captures a
latent space from some sentence that predicts the sentences before and after it. Fig. 3
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Fig. 2. The original time-span tree and corresponding blockview

shows the skip-thoght architecture for embedding timestep vectors. In addition, it is a
Seq2Seq model that outputs a timestep vector with the latent space by skip-thogfht as
input. Therefore, information above the maximum time-span must also be masked for
a complete gap-filling task.
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Fig. 3. Embedding x2 timestep by skip-thought
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3.5 Data Augmentation and Create Fill-in-the-blank Tasks by Masking
Blockview

By creating the experimental dataset, the training data is 1246 songs and the training
data is 315 songs. Also, the test data is 56 songs. However, if one mask is applied to
one song, the data is insufficient for deep learning.Therefore, we create all possible
masked time-span trees. For example, if a time-span tree has n notes, n-1 time-span
trees are obtained as masked time-span trees by subtracting the head of the time-span
tree. Using Fig. 2 as an example, mask all but the maximum time-span with note id=1.
Two examples are shown below.

If the note id is 2 in Fig. 4, the maximum time-span is only the first layer, so only
the time step with note id 2 is masked. On the other hand, if the note id is 4 in Fig. 4, the
maximum time-span is the second layer, so the timestep with note id 4 and the timestep
with note id 5 that is reduced to 4 will be masked. In addition, in this research, since the
latent space by skip-thought is input and the time step vector is output, it is necessary
to mask the information above the maximum time-span tree in order to complete the
blank filling task.

By masking, we obtained 43253 training data, 10780 validation data, and 1833 test
data. For training and validation data, we obtained 34 times as many as original ones,
and for test data, 32 times as many as original one.
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Fig. 4. (left) Masking the maximum time-span with note id 2, (right) Masking the maximum
time-span with note id 4.

4 Overview of the Seq2Seq model

The purpose of this paper is to clarify the local and global relationships of time-span
trees as a high-level analysis. To realize the implementation of this relationship, it is
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necessary to do analysis and prediction at the same time. To analyze and predict at the
same time, we propose a Seq2Seq model with LSTM. The Seq2Seq model realizes anal-
ysis and prediction at the same time by recursive processing of LSTM. In addition, it
learns local and global relationships through a time-span tree fill-in task. Also, by using
single-head attention, learn the relationship between local and global. Specifically, the
decoder in the Seq2Seq model adds attention and computes the relationship between
the masked time-span tree and the hole-filled time-span tree.

The Seq2Seq model used in this experiment takes skip-thought embedding as input
and outputs a timestep vector as output. At this research, by solving the fill-in-the-blank
task, it learns the global tree structure relationships. The LSTM used for the Seq2Seq
model is bidirectional in the encoder and unidirectional in the decoder. Also, decoder
use attention to help them learn global relationships. Fig. 5 shows the outline of the
Seq2Seq model when attention is used.
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Seq2Seq encoder Seq2Seq decoder

1 2 3 4 5note id

Fig. 5. Outline of Seq2Seq model using attention

Conventionally, attention takes all correspondences, but since fill-in-the-blank task,
it does not calculate the masked timesteps. Fig. 6 shows the attention calculation in this
research. This avoids the state where the correct answer data paired with the masked
timesteps are visible due to attention. Self-correspondence is not used because the same
problem can occur and affect the prediction of other masked time-span trees.

Also, this research, each note is a multi-hot vector by combining a one-hot vector for
duration, a one-hot vector for octave, a one-hot vector for note name, a label indicating
padding, and a label indicating mask. In addition, when outputting, padding labels are
combined with duration, octave, and note name, and softmax is calculated as a one-hot
vector. After that, the loss is calculated using the categorical cross-entropy as the loss
function. Details of each category are shown in Table 1. The masked parts are note id
2 and 3 in Fig. 5, backpropagation is performed to reduce the loss of note id 2 and 3.
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Fig. 6. Calculating the attention of the timestep vector in Fig. 5

Table 1. multi-hot vector ravel

category contents of label number
mask mask or not 1
padding BOS, EOS, padding for sequences, padding for layers 4

duration
0.125, 0.1667, 0.25, 0.3333, 0.375, 0.5, 0.625, 0.6667, 0.75, 0.875,

1.0, 1.167, 1.25, 1.333, 1.5, 1.625, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0,
3.5, 3.75, 4.0, 4.5, 5.0, 6.0

28

octave 4, 5, 6, 7, 8 5
note name C, C♯, D, E♭, E, F, F♯, G, G♯, A,B♭, B 12
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5 Experiment Results

Using the data set prepared in section 3, we show the results of training with the model
in section 4. To see if attention is valid for local and global information, we compare it
with a normal Seq2Seq model without attention.

5.1 Parameter tuning of Seq2Seq model

Deep learning requires learning with optimal parameters, but learning with all data
requires a huge amount of computation for skip-thought and learning with Seq2Seq
models. Therefore, we decided to find the optimal parameters for 178 training data and
45 validation data before data augmentation, and use those parameters when learning
with all data.

To determine the parameters of the Seq2Seq model, the parameters were tested four
dimensions: 200, 300, 400, 500, in the latent space of skip-thought and the hidden layer
of the Seq2Seq model. Also, the seq2seq parameter tried three learning rates: 0.001,
0.0001, 0.00001. We trained Seq2Seq over 50 epochs and compared the loss function
with the validation data. As a result, the loss value was lowest at 2.697 with a skip-
thought dimension of 300, a hidden layer dimension of 200, a learning rate of 0.0001,
and a batch size of 64. The top 10 losses are shown in Table 2. 6 of the top 10 losses
no longer had a loss update within 10 epochs. Also, the loss was not updated when the
learning rate was high, and the loss value was large when the learning rate was low.

Table 2. Validation loss value

thought dim hidden layer learning rate batch size epoch validation loss
300 200 0.001 32 5 2.730

0.0001 32 39 2.732
64 29 2.697

400 400 0.0001 32 17 2.748
500 0.001 32 3 2.765

500 200 0.0001 32 43 2.759
300 0.0001 64 8 2.742
500 0.001 32 2 2.760

64 2 2.7576
0.0001 64 7 2.761

As a result, for the fill-in-the-blank task, the best parameter skip-thought dimension
was 300, the hidden layer was 200, and the learning rate was 0.0001. The batch size
was 256, that it will be multiplied by 7.

5.2 Fill-in-the-blank task results

First, since the timestep was masked as a fill-in-the-blank task, we calculated the ac-
curacy rate for the test data for each masking rate of the timestep including padding.
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In other words, in a time-span tree with a maximum layer of 5, the remaining 5 layers
are padding. The mask rate is calculated by dividing the masked timestep by the total
timestep. Fig. 7 four accuracy for each mask rate. As a result, the prediction for the
pitch name had the lowest accuracy without exact matchs. The duration was the worst
when the mask rate was 0.43, the accuracy was 0.1208 with attention, and the accuracy
was 0.3208 with the normal model.

Next, we show the result of whether the prediction was correct as a layer. Fig. 8
shows the four accuracy for each n th layer. In the graph, padding has been removed to
show how well the predicted timesteps restore the original time-span tree. Therefore,
the total number of predictions made decreases with each layer. As a result, we were
able to confirm the pure accuracy for each layer. In all four results from first to fifth
layer, Seq2Seq with atteniton is equal to or better than normal Seq2Seq. For sixth layer,
Seq2Seq with attention gave better results for octaves and note names. However, normal
Seq2Seq performed better in all results from seventh to tenth layer. For ninth layer, the
duration was 0.4036 for Seq2Seq with attention and 0.6539 for normal Seq2Seq. The
result was 0.3677 lower with attention and 0.1515 lower with normal, than eighth layer.
In particular, Seq2Seq with attention, the accuracy was the lowest for all layers. Octaves
were not predictable at all for tenth layer. Along with that, the exact matches was also
completely unpredictable in the case of tenth layer.

6 Discussion

Let us discuss the following four issues.

– The parameter tuning of the Seq2Seq model : The top 10 losses were presented, and
6 of them completed training within 10 epochs. The learning has not converged
from the general case of deep learning. It is necessary to devise more evaluation
functions.

– The treatment of duration : In GTTM rules, simplification is performed using the
total value of duraiton. Due to the number of labels, this study did not use total
values. However, this method is not to learn the higher the hierarchy. To discuss
this issue, we implement a loss function that recursively predicts the duraiton and
compares the lengths.

– The data size is small : In fact, the most predicted factor was octave, and the next
was duration. This is thought to be due to data augmentation for the pitch during
learning. It is necessary to increase the total number of time-span trees and learn
the data with a suitable distribution. In addition to the number of data, it is also
necessary to discuss for labeling. This time, the note names are simply labels, but
we should also consider the difference in how many notes are separated from each
other.

– Using attention : The reason why there was no difference between Seq2Seq with
attention and normal Seq2Seq is that attention was single-headed. Single-headed
attention takes only one relationship. On the other hand, multi-head attention takes
multiple relationships. Therefore, multi-head attention may improve subtree-to-
subtree prediction.
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7 Conclusion

We proposed learning a global tree structure by a fill-in-the-blank task of a time-span
tree. As a result, Small subtrees within a time-span tree can now be predicted based on
local and global relationships. However, the larger the subtree, the lower the accuracy.
In addition, it is now possible to make predictions about the upper layers. However,
the lower the layer, the more difficult the prediction, and the first layer could hardly be
restored. Also, using attention did not show any significant improvement in accuracy.

The points to be improved in the future are as follows. Since the blockview is di-
vided vertically as a timestep and the skip-thought is used as an embedded expression, it
is possible that the constraints before and after are not completely predicted. This could
be improved by changing the Seq2Seq decoder activation function to Cumax, which is
used in ON-LSTM. Also, by taking the relationship between attentions like pyraformer,
it may be possible to take the relationship in units of subtrees.
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Abstract. Emotion is an important component of music investigated in music
psychology. In recent years, the use of computational methods to assess the link
between music and emotions has been promoted by advances in music emotion
recognition. However, one of the main limitations of applying data-driven ap-
proaches to understand such a link is the scarce knowledge of how perceived
music emotions might be inferred from automatically retrieved features. Through
statistical analysis we investigate the relationship between perceived music emo-
tions (rated by 41 listeners in terms of categories and dimensions) and multi-
modal acoustic and symbolic features (automatically extracted from the audio
and MIDI files of 24 pieces) in piano repertoire. We also assess the suitability
of the identified features for music emotion recognition. Our results highlight the
potential of assessing perception and data-driven methods in a unified framework.

Keywords: Music emotion recognition, multi-modal features, perception

1 Introduction
Following decades of research about music emotions in psychology [1], an increas-
ing interest in investigating music emotions through computational methods has been
driven by advances in music emotion recognition (MER) [2]. However, despite mu-
sic being a multifaceted channel characterised by a variety of communication modal-
ities, such as acoustic cues, music syntax, or lyrics, multi-modal MER is still under-
investigated, in part due to the scarcity of corpora [3, 4]. In addition, since emotions are
subjective concepts for which a ground truth does not exist, emotion recognition sys-
tems rely on a gold standard, i. e., labels based on some consensus annotation [5]. Still,
the validity of MER labels is often questioned due to the limited number of annotators
[6]. Note that, throughout the article, we will refer to gold standard, a standardised term
in affective computing [7], which is more appropriate than ground truth [8].

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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To assess how perceived music emotions can be mapped onto machine-readable fea-
tures, we present a perceptual and data-driven study based on 24 classical piano pieces.
Through statistical analysis, we identify the acoustic and symbolic features most suited
to infer a categorical and dimensional gold standard, based on ratings by 41 listeners.
Finally, to evaluate the generalisability of our results, we assess the machine learning
(ML) performance obtained with different feature sets on EMOPIA [4], a multi-modal
pop piano music corpus for MER. In sum, we assess two research questions (RQs):
RQ1: Which are the most appropriate multi-modal features to automatically identify
emotions perceived in piano music?
RQ2: Can the suitability of these features be generalised to other dataset?

2 Materials and Methods
2.1 Musical data and emotion models

We concentrate on classical western compositions for piano solo, by that minimising the
influence of genre and scoring diversity. As we aim to assess both acoustic and symbolic
features, the dataset introduced by Poliner and Ellis [9], containing both recordings and
MIDI files, was considered for the perception study and the feature assessment. Al-
though developed for automatic music transcription, this dataset was chosen due to its
suitable repertoire and considering the limited multi-modal corpora for MER. From the
29 files available, 24 with a homogeneous musical discourse, i. e., without contrast-
ing sections that may lead to several perceived emotions, were selected. Although we
perform the feature evaluation on a reduced data-set of classical piano compositions—
which was needed in order to perform a reliable user study, the generalisability of our
results will be assessed in RQ2 on EMOPIA, a well-stablished piano dataset for MER.
EMOPIA contains 1 087 clips from 387 songs and is annotated at clip-level according
to the 4 quadrants derived from the circumplex model of emotions [10].

We employ the two models predominantly used in research on music and emotion
[6]: the dimensional and the categorical one. For dimensions, we employ the circumplex
model [10] representing emotions in a 2-dimensional space delimited by arousal (inten-
sity) and valence (hedonic value), generally used in MER [4, 3]. Although research on
MER often refers to basic categories, such as those described by Ekman [11], arguments
in favour of moving beyond the Basic Emotion paradigm when working with musical
emotions have been presented [12]. Thus, for categories, we use the Geneva Emotion
Music Scale (GEMS) [13], a domain-specific categorical model specially developed to
investigate music emotions, already used for MER in western classical music [14]. As
we investigate perceived emotions, the 10-factorial version of GEMS6, used in Study 2
in [13] to assess perceived emotions, was preferred to the original GEMS (developed to
assess felt emotions). Note that GEMS has proven to be as suitable to evaluate percep-
tion as felt emotions (see Study 2 [13] as well as [14]). In addition, as typical in MER
[4, 3] and in order to assess RQ2, the four quadrants derived from the intersection of
the two emotional dimensions will be considered as target categories for the ML exper-
iments. The quadrants are defined as in [15]: Q1 (high arousal, positive valence); Q2

6 The 10-factors (i. e., emotional categories) are: Activation, Amazement, Dysphoria, Joy,
Power, Tenderness, Tranquility, Transcendence, Sadness, and Sensuality.
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Fig. 1: Emotional categories distributed according to the 4 quadrants. The dots indicate
the gold standard, i. e., the mean valence/arousal coordinate across samples per emotion.

(high arousal, negative valence); Q3 (low arousal, negative valence); Q4 (low arousal,
positive valence); cf. Figure 1 (positions of categories are explained in Section 2.2).

2.2 Annotation process

41 male students participated in the listening experiment as a requirement of a course.7

The musical samples, each with a duration of 59 seconds, were presented in randomised
order over headphones; the responses were given in a forced-choice format through a
web-based interface. For each musical sample, the participants had to choose one of the
10 emotional categories, a level of arousal (from 0 to 4), and a level of valence (from
−2 to 2). Note that valence (unlike arousal) can have negative values; thus the scale is
not the same but more adequate. We used static annotations instead of continuous, i. e.,
each annotation was given at sample level. Despite the length of the samples, this was
considered the best choice in order to be consistent with the annotations from EMOPIA,
the dataset used to validate our results. As already mentioned, to prevent annotation
ambiguity due to samples’ length, those with a homogeneous musical discourse were
selected. Finally, since liking and familiarity have played a role in previous works [16,
17], participants were also requested to indicate in binary form (yes/no) whether they
were familiar with the evaluated repertoire and whether they liked it.

To create a gold standard for valence and arousal, we computed the mean across rat-
ings per sample and dimension, as typical in MER [6]. In addition, we also computed the
Evaluator Weighted Estimator (EWE), an standard method to compute a gold standard
in affective computing [18] that takes into account an individual evaluator-dependent
weight for each annotator. The evaluator-dependent weights are the normalised corre-
lation coefficients obtained between each listener’s responses and the average ratings
across all listeners [18]. As both Spearman and Pearson correlations between mean and
EWE are at 99%, we use the mean in the following. To create the categorical gold
standard, the emotional factor showing the highest agreement was considered as tar-
get category, as typical in MER [6]. In Figure 1, the categories chosen most frequently

7 Although considering only males’ ratings might affect the results, responses by the only three
females who took part in the experiment had to be discarded to preserve a coherent cohort.
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(a) Arousal ratings (b) Valence ratings

Fig. 2: Distribution of the 984 ratings (41 listeners × 24 samples) for each dimension.

across samples are shown within the quadrants. The mean arousal and valence ratings
across all samples identified with the given categories are shown. For the distribution
of all the listeners’ ratings across factors and dimensions, see Figure 2.

2.3 Feature extraction and processing

Symbolic and acoustic features were extracted from the MIDI and audio files and sub-
sequently concatenated in a feature vector. Concerning the symbolic data, we extracted
the features of jSymbolic 2.2 [19], which include a variety of statistical descriptors
related to pitch, rhythm, melody, chords, texture, and dynamics (related to MIDI veloc-
ity), i. e., musical properties suitable to automatically capture emotional content from
MIDI [15]. Since we aim to evaluate the features in relationship to the perceptual re-
sults, we choose jSymbolic, whose features are highly interpretable in musical terms.
As acoustic representation, we considered the openEAR emobase feature set extracted
with the default parameters of openSMILE [20], which is tailored to model emotions in
audio and has been used in the context of MIR as well [21]. OpenEAR emobase contains
statistical descriptors related to intensity, loudness, pitch, envelope, and spectrum.

After excluding irrelevant features, e. g., those related to the Music Encoding Initi-
tative format for the symbolic and the delta coefficients for the acoustic modelling, 188
symbolic and 494 acoustic features were retained for analysis and subsequently z-score
normalised. In order to prevent collinearity [22], redundant features, i. e., those show-
ing a pair-wise correlation of r ≥ 0.7, were automatically identified; the one showing
the largest mean absolute correlation was subsequently removed. For this, the correla-
tions were recomputed at each step with the R function findCorrelation. This yielded a
total of 91 features—68 symbolic and 23 acoustic. From now on, these constitute the
91-dimensional feature vector representing each sample.

2.4 Statistical methods

To explore which features might be suitable to predict perceived arousal and valence,
Pearson correlation was computed between each feature and the gold standard for each
dimension. Since features might also be suitable in combination, two multiple regres-
sion models were fitted separately for each dimension. In addition, to assess individual
ratings instead of the gold standard, all raw responses were directly taken as outcome
variable for these models. Note that, as every listener co-occurs in the design with every
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song, the variables user-ID and song-ID were considered crossed random effects. The
need of applying a multi-level analysis was confirmed by the decreased Akaike’s infor-
mation criterion (AIC) of the intercept model with crossed random effects w. r. t. those
with only one random effect: for both dimensions, p < .001. Suitable predictors were
automatically recognised through a Genetic Algorithm (GA), implemented in R with
default parameters and 100 iterations. Subsequently, forward selection was applied in
order to evaluate if additional predictors might yield a lower AIC. Given the inherent
problems of p-values [23], in particular for linear mixed models [24], we will interpret
the role of the fixed effects according to the regression coefficients.

After identifying suitable features through correlation and multiple regression, in
order to visually interpret the suitability of such a features in mirroring the listeners’ rat-
ings, we compare perception and classification results. For this, we used Non-Metrical
Multi-Dimensional Scaling (NMDS) solutions [25], which aim at representing the op-
timal distances between items. To find the optimally scaled data, NMDS is initialised
with a random configuration of data points and subsequently finds the optimal mono-
tonic transformation of the proximities. This search for a new configuration is per-
formed iteratively until Kruskal’s normalised stress1 criterion or its gradient is below
a threshold of 10−4. Since our goal is not to achieve the best possible result through
fine-tuning, but to compare classification performance across feature sets while keeping
hyperparameters constant, for this experiment, the classification framework (described
in Section 2.5) was implemented with default parameters and without optimisation.

2.5 Machine learning models and optimisation

Four classifiers, Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), Ran-
dom Forest (RF), and k-Nearest Neighbour (k-NN), were implemented. To leverage the
advantages of all models, we created a hybrid classifier using late-fusion of results via
majority voting, i. e., the class most frequently chosen by the four models was taken as
final prediction. We do not concentrate on pushing the approaches towards their limits,
but aim at baseline results with ‘standard’ settings, by this encouraging generalisation
of the outcomes. As evaluation metric, we use Unweighted Average Recall (UAR) [7].

The data were randomly split into train, validation, and test. We targeted a similar
distribution between classes across quadrants; samples from the same song did not oc-
cur in different sets. To increase validity, five different splittings were generated; we
report the average results across experiments. The models were built on the scikit-learn
python library [26] with the default hyperparameters, except for the following set-up:
For the SVM, we use linear kernel and evaluate five different complexities [0.0001,
0.001, 0.01, 0.1, 1.0]. For the MLP, we use batch size 8, two hidden layers, and evalu-
ated the same number (N) of neurons per layer from the following five N [25, 50, 100,
175, 300]. For the RF, we evaluate five different N of estimators [10, 50, 100, 150, 200].
For the k-NN, we evaluate five different N of neighbours [3, 5, 7, 9, 11]. All hyperpa-
rameters were optimised independently for each of the five splits via grid search.

3 Gold Standard Assessment
As first step to create the gold standard, we evaluated the role of familiarity and pref-
erence. For this, multiple regression was performed considering both variables as cat-
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egorical predictors and the perceived valence and arousal individually as dependent
variables. Our results show that neither preference nor familiarity play a role in the
model, neither for arousal, nor for valence (p ≥ .084). This is also confirmed for within
song evaluation: the models yielded p ≥ .286 for arousal, p ≥ .353 for valence.8 Thus,
in the following, all listeners’ responses will be taken into account for our experiments.

The gold standard computed from listeners’ responses shows that joy is mainly
associated with Q1 (5 songs) and to some extent with Q4 (1 song); activation with Q1 (5
songs) and to some extent with Q2 (2 song); dysphoria with Q2 and Q3 (2 songs each);
sadness is clearly associated with Q3 (2 songs); tenderness with Q4 (1 song); tranquility
with Q3 and Q4 (2 songs each). This distribution of emotional categories across the bi-
dimensional space (cf. Figure 1) is consistent with the one described in previous works
(cf. [10] and [1, p. 113]), where joy/dysphoria are associated with positive/negative
valence; activation/tranquility are associated with high/low arousal; tenderness/sadness
are related to low arousal and to positive/negative valence. This is displayed by the
distribution of the dimensional ratings. For sadness, in particular, the ratings are mostly
distributed across the lowest and intermediate arousal (cf. 0 to 2 in Figure 2a), and
almost all display negative valence (cf. −2 and −1 in Figure 2b).

To gain more insights on the perceptual results, we investigated the relationship
between both dimensions. For this, each of them was considered as outcome and pre-
dictor, respectively, in a linear model, disregarding the categorical ratings. The positive
slope indicates that there is a direct relationship between both variables: F = 83.56,
β = 0.30, r = 0.28, p < .001. In other words, as perceived ratings increase in one unit
for a given dimension, the model predicts that the perception for the other one will also
increase in 0.30 units. Still, the correlation of r = 0.28 indicates only a weak tendency.

Subsequently, to evaluate if the relationship between valence and arousal might be
associated with categorical perception, for each emotion, an individual linear model was
fitted with the corresponding dimensional ratings. The results show that the positive
relationship between both dimensions is only marked for some emotions: the linear
regression yields p ≤ .046 for amazement, joy, sensuality, and tranquility, i. e., those
generally associated with a more positive valence, cf. Figure 2b; for the others, p ≥
.346. Indeed, fitting again the model with the dimensional ratings of only these emotions
increased the correlation coefficient (r = 0.48), which confirms the positive association
between valence and arousal but only within the positive half of the dimensional space,
i. e., Q1 and Q4. To reproduce the gold standard and results, please visit our repository.9

4 Results
RQ1: Which are the most appropriate multi-modal features to automatically identify
emotions perceived in piano music?
CORRELATION ANALYSIS: To investigate the relationship between the automatically
extracted features and the perceived emotional dimensions, correlation analysis was
performed. In Table 1, only the top ranked features (|r ≥ 0.4| in at least one dimension),
i. e., those showing a moderate correlation, are displayed. Since a relationship between

8 Bonferroni correction was applied for multiple testing throughout the results.
9 https://github.com/SEILSdataset/FeatureEval_MER/
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Table 1: Top ranked correlation with the mean (µ) perceived arousal and valence.
Arousal Valence

Feature µ Feature µ

Common Rhythm −.65 m/M Triad Rat. −.54

ZCR Skewness −.57 F0 Quartile3 .53

Note Density .54 Intensity abs. min. −.48

Mel. Large Int. −.49 m/M Mel. 3rd Rat. −.46

N. Strong Pulses −.48 Arousal .46

Standard Triads −.46 F0 Skewness −.44

Valence .46 Similar Motion −.43

Rat. Strong Pulses −.42 Rat. Strong Pulses −.41

BPM .42 Dynamic Range −.40

Prev. Dotted Notes −.41 Dim. Aug. Triads −.40

both dimensions was shown in the gold standard assessment, these are also included
in the correlation analysis. In the following, the correlation results will be interpreted
according to [1, p. 113], which summarises the outcomes from music psychology.

Arousal. The experimental results are consistent with the general believe that slow and
fast mean tempo correspond to music expressing low and high arousal, respectively.
This is shown by the positive correlation of arousal with Beat Per Minute (BPM, r =
.42) as well as by the negative one with common rhythm and prevalence of dotted
notes (−.41 ≤ r ≤ −.65), indicating that music characterised by a fast tempo and a
prominent use of short (not dotted) notes is associated with higher arousal. Similarly,
the use of accents on unstable notes (typically used to express highly aroused music)
is shown by the negative correlation of arousal with number and ratio of strong pulses
(−42 ≤ r ≤ −48): As perceived arousal increases, the amount of strong beat peaks
decreases and is diversified towards non-beat ones.

High arousal is also associated with a high sound level, which is confirmed by the
positive correlation of arousal with note density (r = .54) and the negative one with
Zero-Crossing Rate (ZCR) skewness (r = −.57). While note density is implicitly re-
lated to sound level, a low ZCR skewness can be interpreted as a ‘constant’ (not skewed)
distribution of frequency density over time: ZCR = 0 indicates no sound. Besides being
consistent with outcomes from music psychology [1, p. 113], our experimental results
for arousal also show that an increase in this dimension goes along with a decrease in the
use of standard triads w. r. t. other vertical intervals (r = −.46). This can be interpreted
as an association of high arousal with a more ‘empty’ (without third) sonority.

Valence. The small sound level variability typically associated with positive valence is
shown by the negative correlation of this dimension with dynamic range (r = −.40).
Our results are also consistent with the believe that minor/Major music expresses neg-
ative/positive emotions [27], as shown by the negative correlation of valence with m/M
triad and melodic third ratio (−.46 ≤ r ≤ −.54). Similarly, positive valence goes along
with a detriment in augmented and diminished triads (r = −.40), which indicates that
negative valence is associated with a higher use of dissonant chords. Our results sug-
gest that positive valence is linked to the use of a lower variety of pitches concentrated
around high pitch, something that can be related to the common association of joy with
bright timbre. This is shown by the positive correlation of valence with the Fundamen-
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(a) Model fitted with arousal ratings

(b) Model fitted with valence ratings

Fig. 3: Fixed effects’ regression coefficients (blue dot) and confidence intervals (blue
line) for the two models: one for arousal, the other for valence.

tal frequency (F0) quartile 3 (r = .53) and by the negative one with the F0 skewness
(r = −.44): Low F0 skewness indicates a similar distribution of frequencies over time.

Arousal and valence are positively correlated (r = .46). Still, the low sound level
typically used to express emotions with positive valence and low arousal is also shown
by the negative correlation of valence with absolute minimum intensity and dynamic
range (−.40 ≤ r ≤ −.48). This indicates that, despite the positive correlation between
both dimensions in the investigated samples, the extracted features are also suitable to
identify emotions with a positive valence and low arousal.

MULTIPLE REGRESSION: To investigate the interplay between the automatically ex-
tracted features and the categorical as well as dimensional ratings, the best fitting mod-
els, separately identified for each dimension, were also fitted with the subset of di-
mensional ratings corresponding to each emotional category (cf. Section 2.4). Using
the general models tailored to each dimension was preferred to retrieving an individ-
ual model per category, to enable comparability. Due to space limitations, in Figure 3,
only results for joy and activation, i. e., the two categories with the highest number of
observations—joy 168, activation 191, thus showing most robust results—are shown.

The features of the model tailored to recognise arousal include three symbolic, re-
lated to rhythm, and three acoustic ones, related to F0 and ZCR. Indeed, both note
duration, related to rhythm, as well as intonation and spectral noise, related to F0 and
ZCR, are relevant properties for the expression of arousal in music [1, p. 113]. In par-
ticular, the higher positive slope of ZCR standard deviation for joy indicates that unlike
for activation, an increase in arousal goes along with a higher variability of silent and
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Fig. 4: NMDS for the perception and classification (High Correlation, Multiple Regres-
sion, and Union features) of JOY, ACTivation, DYSphoria, SADness, and TRAnquility.
Kruskal’s stress: Perception (.097); High Cor. (.093); Mul. Reg. (.024), Union (.006).

dense frames over time. Again, as shown in the correlation analysis, the m/M triad ratio
is relevant to predict valence, as clearly displayed for joy. Interestingly, BPM and stac-
cato are meaningful features for the valence model but not for the arousal one. The fact
that these features show a relatively marked positive slope—for activation both, for joy
only BPM—might again be an indicator of the positive relationship between both di-
mensions, as shown by the listeners’ association of these two factors with high arousal
and positive valence (cf. Q1 in Figure 1).

PERCEPTION VS CLASSIFICATION: To further explore the suitability of the identified
features for discriminating between the perceived emotions, we compare classification
performance with the perceptual results (cf. Figure 4). As there is a relationship between
the emotional factors and specific regions of the bi-dimensional space (cf. Figure 1),
the features tailored to arousal and valence are both considered for the classification of
emotional categories. Three feature sets are assessed: the features with top correlation
(High Corr., 17 features), shown in Table 1; the ones used for the Multiple Regression
(Mult. Reg., 11), shown in Figure 3; and the union of both (Union, 21). As some features
are part of both High Corr. and Mult. Reg., Union contains less features than the sum
of these sets. For a description of the features see Table 2. More details are given in the
official documentation of jSymbolic2.2 and openSMILE.Tenderness (cf. Figure 1) is
not considered, as attributed to only one sample.

The Union feature set, showing the best fit (Kruskal’s stress .006), is the one best
mirroring the Perception NMDS: Joy and activation are shown towards Q1; dysphoria
towards Q2; sadness and tranquility are close to each other. Although for perception,
sadness is more clearly displayed in Q3 than for the Union feature set, this set, combin-
ing High Corr. and Mult. Reg., is a less condensed version of the Perception results; cf.
Union in Figure 4. Thus, from now on, the Union feature set will be used.
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Table 2: Description of the symbolic and acoustic features of the Union set.
Symbolic Features
Common Rhythm Most common rhythm in quarter note units Similar Motion Fraction of similar movements, e. g., parallel
N. Strong Pulses N. of beat peaks with magnitudes over 0.1 Staccato Fraction of notes shorter than 0.1 seconds
Rat. Strong Pulses Ratio of the two highest beat magnitudes Note Density Average number of notes per second
Rhythm Offset Median absolute duration offset Acoustic Features
m/M Mel. 3rd Rat. Ratio of the minor/Major melodic thirds Intensity abs. min. Frame-based absolute minimum intensity
m/M Triad Rat. Ratio of the minor/Major vertical triads BPM Beat per minute
Standard Triads Fraction of minor or Major triads ZCR stdev Standard deviation of the zero-crossing rate
Mel. Large Int. Fraction of melodic intervals > octave ZCR Skewness Skewness of the zero-crossing rate
Dynamic Range Highest loudness value minus the lowest F0 Skewness Fundamental freq. (F0) contour’s skewness
Prev. Dotted Notes Fraction of dotted notes F0 linregerrQ Quadratic error of the F0 contour
Dim. Aug. Triads Fraction of diminished or augmented triads F0 Quartile3 Third quartile of the F0 contour

RQ2: Can the suitability of the identified features be generalised?
To assess the generalisability of the identified features, we performed the classifica-

tion experiments (optimising the models as described in Section 2.5) on the EMOPIA
dataset. To interpret confusion patterns across the dimensional quadrants, i. e., the tar-
get categories in EMOPIA, besides the Union dataset (used to assess the RQ1), we
now investigate the performance of the Union features tailored to recognise each di-
mension individually as well. In addition, since the size of EMOPIA enables to carry
out a real evaluation of the results beyond NMDS interpretation, the ML models were
also trained with all the features (i. e., the 91 described in Section 2.3). Thus, the ex-
periments on EMOPIA were performed with four feature sets: all features (91), Union
features tailored to arousal and valence (12 each), and the Union feature set (21).

The results on EMOPIA indicate that training the models with all the features shows
a clear differentiation of the arousal dimension: Q1 and Q2 (both with high arousal) are
clearly distinct from Q3 and Q4 (both with low arousal) while confused with each other
(Q1 with Q2, Q3 with Q4); cf. All features in Table 3. As expected, this pattern is
enhanced for the features tailored to arousal, which do not contain features tailored to
recognise valence information and display a much more pronounced confusion between
quadrants of the same arousal level (cf. dark cells of Arousal selection in Table 3). In
contrast, besides a relatively high recall for Q4 and its confusion towards Q1 (both with
positive valence), no clear distinction/confusion pattern is shown for the features tai-
lored to recognise valence; cf. Valence selection in Table 3. This feature set yields the
worst UAR (39.2%), and the recall for Q1 and Q4 does not outperform the one achieved
by the other feature sets either, which suggests its low capability in capturing informa-
tion relevant to the target dimension. Finally, the Union features (without dimension
selection, i. e., A + V) slightly outperform the Arousal selection (UAR = 52.5% vs
UAR = 50.7%), but without reaching the performance of All features (UAR = 64.1%).
Again, a differentiation in terms of arousal is displayed.

The experimental results suggest that the arousal dimension is more prominent in
the evaluated data, something also observed in emotional speech, where arousal is better
represented by acoustic cues than by linguistic ones [28]. The lower efficiency of the
features tailored to model valence might be interpreted, to some extent, according to
previous works which had shown the difficulties, from a listeners’ point of view, of
assessing valence, even in music expressing sadness [29], a basic emotion which is,
however, clearly associated to negative valence. The classification results achieved with
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Table 3: EMOPIA: confusion matrices averaged across splits. Columns show ‘classified
as’. UAR for each feature set: All (64.1%); Arousal (50.7%); Valence (39.2%); Union
(52.5%), i. e., Arousal and Valence (A + V).

%
All features Arousal selection Valence selection Union (A + V)

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Q1 81.2 14.1 1.7 3.0 67.1 23.5 3.8 5.6 51.7 27.8 6.8 13.7 65.4 24.8 3.0 6.8

Q2 34.2 55.8 3.8 6.2 33.8 51.2 7.7 7.3 39.2 37.7 8.8 14.2 37.7 50.0 3.5 8.8

Q3 7.6 8.6 61.1 22.7 14.1 8.6 43.4 33.8 29.3 26.8 20.7 23.2 13.1 7.1 48.0 31.8

Q4 12.8 7.8 21.0 58.4 15.5 11.4 32.0 41.1 25.1 19.6 13.2 42.0 14.2 10.5 30.1 42.2

all the features yielded the highest UAR, suggesting that the usability of the Union set
for MER might be limited. Still, the identified features show reasonable results with a
much lower dimensionality, something that might be beneficial for some MER systems.

5 Conclusion and Future Work

Besides confirming some of the outcomes presented in music psychology literature, our
data-driven approach shows that automatically extracted multi-modal features might be
suitable to infer perceived musical emotions. For instance, the statistical analysis sug-
gests that in the evaluated repertoire, empty sonorities might be an indicator of per-
ceived high arousal, while high pitch is related to positive valence. The machine learn-
ing experiments show that the features identified to model arousal lead to competitive
classification results concerning the quadrants related to the target dimension. In con-
trast, those identified to model valence are considerably less efficient, which might be
explained by the lower characterisation of this emotional dimension in music. Finally,
the importance of a multi-modal approach becomes clear when evaluating the feature
sets, which despite being selected in a fully automatic manner, encompass both sym-
bolic and acoustic features. In future work, besides investigating a larger dataset from
a more varied repertoire, we also plan to assess music with lyrics, by this assessing the
suitability of linguistics in the identification of the valence dimension.
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Abstract. Research on listeners’ perceived emotions in music draws on human 
and synthetic stimuli. Although research has shown that realistic synthetic audio 
can convey emotions, studies that compare listeners’ experience of synthetic 
audio and human performances are limited. Using short musical excerpts, we 
investigate the effect of performance (human vs. synthetic) and instrumentation 
(piano vs. string quartet) as well as the influence of twelve musical features on 
participants’ ratings of five emotional dimensions (mood, energy, movement, 
dissonance, and tension). Findings show a small main effect of performance and 
a large main effect of instrumentation. Synthetic audio was perceived as more 
positive in mood and less tense than human performances. Piano excerpts were 
also perceived as more positive and as conveying less tension and energy than 
synthetic excerpts. Several rhythmic and pitch measures were reliably predictive 
of participants’ perceived emotions, supporting the need for considering finer-
grain structural features when using naturalistic stimuli. 

Keywords: empirical aesthetics, perceived emotion, computational musicology, 
music performance, synthetic audio generation 

1 Introduction 

Research on perceived emotion in music generally relies on listeners’ judgments of 
aesthetic qualities based on audio excerpts of varying lengths. Such stimuli may involve 
pre-recorded human performances or synthetic audio generated by a computer 
following a set of instructions. Eerola and Vuoskoski (2013) report that a majority 
(75%) of studies in music and emotion research used human performances [1]. 
Although performance medium and source are usually reported along with the results, 
it is not clear whether the methods used to produce musical excerpts have an effect on 
listeners’ experience. One disadvantage of using human performances as compared 
with synthetic audio generation is the lack of experimental control on the stimuli, which 
may limit researchers’ ability to manipulate source materials and generalize findings. 

1.1 Perceived Emotion in Human Performances versus Synthetic Audio 

Research related to audio generation in terms of performance medium tends to focus 
on two aspects: timbral differences and expressive differences. Studies on timbral 

         This work is licensed under a Creative Commons Attribution 4.0 International License 
(CC BY 4.0).  
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differences typically ask participants to identify and categorize single-note stimuli in 
terms of instrument type as well as perceptual dimensions such as “nasality,” 
“brilliance,” and “naturalness” [2]. Other studies investigate the effect of timbre on 
emotion by comparing excerpts played on different instruments (e.g., electronic 
synthesizer vs. human performances on piano, violin, and trumpet), with observed 
effects on listeners’ perceived emotions interpreted as being related to acoustical factors 
[3], rather than performance medium. 

 Studies on expressive differences investigate expressive performance actions 
(micro-differences in terms of tempo, dynamics, articulation, intonation, and vibrato) 
applied in a human performance [4]. Most of the research in this area focuses on 
observed differences between the notated score and a human performance [5], or 
between different human performances of the same notated score [6]. Some studies 
have explored the effects of such differences on listeners’ experience by manipulating 
human performances. For example, listeners have been shown to be able to distinguish 
between original and tempo-transformed versions of the same human performance [7]. 
Synthetic stimuli with different levels of timing manipulations have also been used to 
explore perceived “expressiveness” and “liveliness” [8], and the addition of other 
human-like expressive performance actions to synthetic audio, such as expressive 
dynamics, has been shown to result in higher ratings of “likeability” and “emotional 
expressiveness” [9]. Still, very few studies have explored listeners’ ratings of emotional 
expression in synthetic audio as compared to human performances. On one hand, 
listeners have been found to have a negative bias in their ratings of expressive qualities 
of human performances presented as synthetic (i.e., “pseudo-synthetic” performances) 
[8]. On the other hand, synthetic versions of short melodies with human-like expressive 
differences in tempo, sound level, spectrum, articulation, attack, vibrato, and timing 
has been shown to convey discrete emotions such as happiness, sadness, anger, fear, 
and tenderness as effectively as human performances of the same melodies [10]. 
Nevertheless, direct comparisons of listeners’ perceived emotion in human and 
synthetic performances of multi-part music are still needed.  

In this study, we use rhythmically complex musical excerpts characterized by 
concurrent rhythmic patterns that cannot readily be mapped onto a single metric grid 
(i.e., “polyrhythm”). These materials were selected because they provide a naturalistic 
and rich environment within which listeners’ perceived emotions can be tackled. To-
date, very little research has looked into how rhythmically complex music is 
aesthetically evaluated by listeners. When real music is used (as opposed to controlled 
“lab” stimuli), attention is devoted to global aspects of the musical compositions, such 
as tempo, loudness, timbre, and mode, among other factors. However, most studies do 
not offer sufficient fine-grained information on the rhythmic structure of the selected 
music to allow for generalization over a wider range of music. 

1.2 Aims 

The goal of the present study is twofold. First, we aim to determine whether 
performance (human vs. synthetic) has an effect on listeners’ judgment of five 
emotional dimensions (mood, energy, movement, dissonance, and tension) for two 
different instrumentation types (piano and string quartet). Second, because we used 
excerpts from musical compositions that feature complex rhythmic and harmonic 
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structures, we also aim to explore the effect of features specific to the musical style on 
listeners’ perceived emotions. To that end, we used a set of computational measures of 
rhythmic structure (duration, density, alignment, contrast, and regularity) as well as 
pitch organization (pitch range, pitch mean, register, and sonority dissonance).  

We assumed a null hypothesis for the influence of performance, but predicted a 
main effect of instrumentation. With regard to musical features, we expected event 
density to be positively correlated with mood, energy, and tension [11, 12, 13], pitch 
range to be positively correlated with mood and energy, and pitch mean to be negatively 
correlated with energy [14]. We also expected sonority dissonance to be predictive of 
perceived dissonance and tension. 

2 Methods 

2.1 Participants 

Participants were recruited using an online survey implemented in Qualtrics. The 
survey was approved by the Ethics Review Board of the University of British 
Columbia, and shared through social media postings, email notifications to institutional 
and professional listservs, and the UBC Psychology SONA platform. 162 participants 
with normal hearing completed the study; two datasets were excluded from analysis 
due to reported difficulty with English in everyday life. Gender distribution was 
uneven, with a large proportion of participants self-identifying as women (76%) as 
compared to men (21%); two participants self-identified as non-binary persons and 
three participants selected “prefer not to answer.” Participants’ age ranged from 18 to 
59 years old (M = 23.3; SD = 7.3), and self-reported years of formal musical training 
ranged from 0 to 20 years (M = 5.9; SD = 5.1). A greater proportion of participants 
reported familiarity with the musical style represented by the excerpts (43%, as 
compared with 23% and 34% for no familiarity and “not sure”), but much fewer 
participants reported familiarity through listening or performance of a specific excerpt 
(23%, as compared with 61% and 17% for no familiarity and “not sure”). Finally, most 
participants listened to the excerpts using built-in speakers (41%), followed by standard 
and noise-canceling headphones or earbuds (26% and 25%); a small proportion of 
participants reported using external speakers (8%), while only one participant reported 
using a phone speaker. 

2.2 Materials 

Sixteen musical excerpts from 12 different composers were selected from the Suter 
(1980) Corpus [15], ranging from 1893 to 1965 in terms of composition year (see Table 
1).1 Based on the availability of realistic audio synthesis and for contrast in timbre, we 

1 A full list of examples from the Suter (1980) Corpus and associated metadata is available at: 
https://polyrhythm.humdrum.org. The examples used in this experiment are available in kern 
format at: https://github.com/polyrhythm-project/rds-scores/tree/master/experiment-lmf1. 
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selected an equal number of short piano and string quartet examples with a duration of 
5 to 9 s (M = 7.2; SD = 1.1). 

Table 1. Source musical compositions for experimental stimuli listed alphabetically by 
composer’s last name. There are eight examples for each instrumentation type.

Composer Work Title Instrumentation Year 
Bartók, Béla Romanian Folk Dances Piano 1915 

Piano Sonata Piano 1926 
String Quartet No. 3 String Quartet 1927 

Berg, Alban Lyric Suite String Quartet 1926 
Britten, Benjamin String Quartet No. 2, op. 36 String Quartet 1945 
Debussy, Claude String Quartet, op. 10 String Quartet 1893 
Falla, Manuel de “Jota”, from Seven Spanish Songs Piano 1914 
Gershwin, George Rhapsody in Blue Piano 1924 
Hindemith, Paul String Quartet, op. 10 String Quartet 1918 
Ives, Charles String Quartet No. 1 String Quartet 1909 
Martin, Frank Prelude No. 8 Piano 1948 

Esquisse Piano 1965 
Martinů, Bohuslav String Quartet No. 7 String Quartet 1947 
Prokofiev, Sergei Piano Sonata No. 7, op. 83 Piano 1942 

Piano Sonata No. 9, op. 103 Piano 1947 
Ravel, Maurice String Quartet String Quartet 1903 

Two audio versions of each example were prepared: a human performance extracted 
from a commercial recording randomly selected from available recordings in the Naxos 
Music Library, and a high-quality musical instrument digital interface (MIDI) 
rendering using the EastWest sound library. Audio files extracted from recorded 
examples were trimmed using Audacity to allow excerpts’ duration to be more 
precisely measured. Synthetic examples were fine-tuned in terms of MIDI note velocity 
(i.e., volume of each note) and articulations (legato vs. staccato for piano, but a wide 
variety of options for strings) to match the human performances as closely as possible. 
The precise timing of raising and lowering the sustain pedal was also fine-tuned for 
piano excerpts. The tempo of synthetic examples was set to match the average tempo 
of the human recorded performances, but without rubato or expressive microtiming 
(i.e., the timing of individual note onsets or releases). To match the acoustics of the 
human recordings as closely as possible, reverb was added to the piano examples using 
Logic’s Space Designer; it was not deemed necessary to add reverb to the string quartet 
examples, which fairly closely matched the acoustics of the human performances. A 
0.2 s fade-out was applied to the end of each example to reduce the abruptness of the 
ending, and both audio file versions were then amplified or attenuated to a peak volume 
of -1 dB. 

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

602



2.3 Procedure 

The experiment was conducted online using Qualtrics, with participants instructed to 
complete the tasks in one sitting, focusing only on doing the experiment, and in a quiet 
location or wearing noise-canceling earphones. The order of the experimental trials was 
randomized across musical excerpts so that each participant heard one performance 
version (human or synthetic) of each of the sixteen excerpts. To avoid bias, participants 
were not informed of the type of performance they would hear. Participants were 
instructed to listen to the excerpt in its entirety at least once, and then rate the excerpt 
using five seven-point Likert scales. Participants rated the perceived mood (negative–
positive), energy (low–high), movement (very little–very much), dissonance (low–
high), and tension (low–high), with “movement” referring to how much the participant 
felt that they could move along to the music. 

First, participants provided consent, and read the survey instructions. Participants 
completed a pre-experiment questionnaire on which they reported their age, gender, 
formal musical training, and English-language fluency. Prior to listening to the 
experimental stimuli, participants heard a short audio file during which they were 
instructed to adjust their volume to a comfortable level, and then completed two 
practice trials (one of each instrumentation type). At the end of the survey, participants 
were asked to report what listening device was used to complete the survey, and 
whether they were familiar with the musical style of the excerpts or with the excerpts 
themselves through listening or performance. Lastly, participants were given the 
opportunity to provide feedback and read a debriefing document. 

2.4 Measures 

In addition to participants’ ratings of the five dependent variables using seven-point 
Likert scales, we selected several measures derived from rhythmic and pitch structures 
to explore the relationship between musical features and participants’ perceived 
emotions. Rhythmic features required visualization and analysis of each excerpt and 
assessment of the differences between concurrent rhythmic patterns. Instrumental parts 
were divided into two contrasting rhythmic groups (A and B) based on rhythmic 
similarity within the group and dissimilarity across groups, with the lowest part on the 
score assigned to Group A by default. The experimental excerpts include up to four 
instrumental parts; note that although piano excerpts are notated on two staves, each 
staff could include more than one part. Because the rhythmic design of a given 
instrumental part may vary over time, group attribution was performed at the measure 
level. To allow for comparison between examples with a different number of 
instrumental parts, we use composite rhythms, i.e., the sequential presentation of event 
onsets across parts. Figure 1 illustrates the visual analytic markup for a sample used in 
the experiment. Group A notes are colored in red, while Group B notes are in blue. The 
top two staves are the original score and underneath are the extracted rhythmic patterns 
and number of event onsets for Group A only, Group B only, Groups A and B combined 
(“composite”), and the intersection of Groups A and B (“coincidence”). The analytic 
markup shown in the musical example is automatically generated by the composite 
filter in Verovio Humdrum Viewer [16]; full documentation for the composite filter is 
available at: https://doc.verovio.humdrum.org/filter/composite. 
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Fig. 1. Visual analytic markup for Gershwin, Rhapsody in Blue (1924), mm. 91–94. 

Table 2 presents the six features used to characterize rhythmic structure. Four additional 
pitch features were also used. Pitch mean (average pitch) and pitch range (interval 
between lowest and highest pitch) are calculated using MIDI note values. Register 
corresponds to the proportion of events in each of three ranges: low (below C3), middle 
(C3 to C5), and high (above C5). To measure sonority dissonance, each sonority was 
assigned a score based on its most dissonant interval (octave/unison = 0; P4/P5 = 1; 
M/m 3/6 = 2; M2/m7/M9 = 3; A4/d5/m9 = 4; m2 = 5); these values were then averaged 
and weighed by duration. 

Table 2. Calculation and interpretation of rhythmic features 

Feature Calculation Interpretation 
Duration Total duration of audio file in seconds N/A 

Composite 
event density 

Total number of composite events 
divided by audio file duration 

Rate of presentation of events in 
time (global information load) 

Event density 
ratio 

Number of events in smaller group 
divided by number of events in larger 
group 

Potential for metric ambiguity or 
conflict across groups 

nPVI group 
difference2 

Absolute difference between the nPVI 
scores of the two rhythmic groups 

Contrast in note-to-note regularity 
across rhythmic groups 

Nested ratio Total number of coinciding event 
onsets across rhythmic groups divided 
by total number of composite events 

Potential for integrated percept of 
two rhythmic groups  

Polarity ratio Absolute difference between number 
of events in rhythmic groups divided 
by total number of composite events 

Relative activity within rhythmic 
groups (salience) 

2 This measure is an extension of the normalized pairwise variability index, a measure of the 
average durational variation between successive pairs of events. 
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2.5 Analysis 

We conducted statistical analysis in RStudio, with R version 4.1.1 and used the 
rstatix package for summary statistics and the broom package for summarizing 
linear models.3 Although piano and string quartet examples were different in terms of 
musical materials, they belong to the same historical period. The relative stylistic 
homogeneity of these musical excerpts was supported by a series of t tests: there was 
no statistically significant difference between piano and string quartet for each of the 
twelve musical features. To test the effect of performance and instrumentation on 
participant ratings, we conducted a two-way Multivariate Analysis of Variance 
(MANOVA) on the combined five dependent variables with performance and 
instrumentation as the independent variables. Point biserial correlations were used to 
explore the linearity between the five dependent variables and the two independent 
variables of performance and instrumentation. To explore the effects of our twelve 
musical features on participants’ ratings, we performed multiple regression analyses. A 
linear model was constructed between each dependent variable and the twelve musical 
features. Because participants’ ratings were done on a seven-point Likert scale, 
dependent variables were log-transformed using log(1+x). 

3 Results 

Participants rated 16 excerpts on five Likert scales (N = 2,560). The average rating for 
energy was the highest (M = 4.8; SD = 1.5), while those for dissonance (M = 3.5; SD = 
1.7) and movement (M = 3.7; SD = 1.8) were the lowest. The average ratings for mood 
and tension were in the 4–5 range (M = 4.3 and 4.0; SD = 1.5 and 1.7). 

3.1 Performance and Instrumentation 

The main effect of performance was statistically significant, but small, F(1, 2556) = 
2.89, p = .013, while the main effect of instrumentation was statistically significant and 
large, F(1, 2556) = 15.97, p < .001. There was also a significant, although relatively 
small, interaction between performance and instrumentation, F(1, 2556) = 3.32, p = 
.005. 

Point biserial correlations were calculated between each dependent variable and 
performance (Human = 1; Synthetic = 2) as well as instrumentation (Piano = 1; String 
Quartet = 2). Performance was positively correlated with mood, rpb(2558) = .05, p = 
.01, but negatively correlated with tension, rpb(2558) = -.06, p = .002. Instrumentation 
was negatively correlated with mood, rpb(2558) = -.09, p < .0001, but positively 
correlated with energy and tension, rpb(2558) = .12, p < .0001, and rpb(2558) = .13, p < 
.0001. In other words, participants perceived synthetic excerpts as more positive in 
mood and as conveying less tension than human performances. Piano excerpts were 
also perceived as more positive in mood as well as lower in energy and tension than 
string quartet excerpts. 

3 RStudio, rstatix, and broom are available at: https://www.R-project.org/, https://CRAN.R-
project.org/package=rstatix, and  https://CRAN.R-project.org/package=broom. 
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3.2 Effects of Musical Features 

A summary of the parameter estimates for each of the five dependent variables and the 
twelve musical features is presented in Table 3 (rhythmic features) and Table 4 (pitch 
features). All twelve musical features were predictive of participants’ ratings for one or 
more emotional dimensions, with the best model accounting for more than a third of 
the variance in participants’ ratings of energy (R2 = .398).  

Rhythmic Features. Event density ratio, nested ratio, and polarity ratio were the most 
reliable predictors for four of the five emotional dimensions with significance levels of 
p < .001. Event density ratio and polarity ratio were negatively correlated with mood 
and movement, and positively correlated with tension. Excerpts with a higher potential 
for metric ambiguity or conflict and greater contrast in the number of events within 
each rhythmic group were perceived as less positive in mood, less likely to induce 
movement, and as conveying more tension. On the other hand, although both factors 
were also predictive of participants’ ratings of dissonance, higher event density ratio 
was predictive of higher perceived dissonance, while higher polarity ratio was 
predictive of lower perceived dissonance. In contrast, nested ratio was positively 
correlated with mood, movement, and dissonance, but negatively correlated with 
tension. Excerpts that featured more coinciding events were perceived as more positive, 
more likely to induce movement, more dissonant, but less tense. nPVI group difference 
was predictive of participants’ ratings for three of the five emotional dimensions. A 
greater contrast between groups in note-to-note rhythmic regularity was correlated with 
a more positive mood, higher energy, and lower perceived tension. On the other hand, 
duration and composite density had a relatively limited effect on participants' ratings. 
Excerpts’ duration was negatively correlated with mood and positively correlated with 
tension. Longer excerpts were perceived as less positive in mood and as conveying 
more tension. Composite event density was predictive of participants’ ratings for 
energy, with higher composite density predictive of higher energy ratings.  

Pitch Features. The influence of pitch-related features on participants’ ratings of 
perceived emotions was small, but not negligible. Pitch mean was negatively correlated 
with energy and dissonance, with higher pitch mean being predictive of lower perceived 
energy and dissonance. Pitch range was also reliably predictive of participants’ ratings 
for mood, energy, and movement with significance levels of p < .001. Larger range was 
correlated with a more positive mood, higher energy level, and a greater impulse to 
move along with the music. Register (low, middle, and high) was predictive of 
participants’ ratings of mood, energy, and tension with significance levels of p < .001. 
A larger proportion of events in any one of the three registers was positively correlated 
with mood, but negatively correlated with energy and tension. In other words, the 
concentration of events in one register, rather than a specific register or a more balanced 
dispersion of pitch activity, was perceived as more positive in mood, but as conveying 
lower energy and less tension. As expected, sonority dissonance was positively 
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correlated with perceived dissonance, but the correlation with tension was small and 
not significant. 

Table 3. Parameter estimates for rhythmic features and each dependent variable. Significance 
levels are as follows: ‘***’ p < .001; ‘**’ p < .01; ‘*’ p < .05. 

Dependent Variable Parameter Estimate Std. Error t value Pr(>|t|) 
Mood (Intercept) -417.70 39.85 -10.48 <  .001***
(R2 = 0.282) Duration -0.14 0.01 -9.72 <  .001***

Composite event density 0.01 0.00 1.67 .10 
Event density ratio -5.62 0.61 -9.17 <  .001***
nPVI group difference 0.01 0.00 5.03 <  .001*** 
Nested ratio 1.32 0.14 9.59 <  .001*** 
Polarity ratio -5.09 0.54 -9.48 <  .001***

Energy (Intercept) 212.80 34.97 6.09 <  .001*** 
(R2 = .398) Duration -0.01 0.01 -0.53 .60

Composite event density 0.03 0.00 7.08 <  .001*** 
Event density ratio 0.71 0.54 1.32 .19 
nPVI group difference 0.00 0.00 -3.23 .001**
Nested ratio -0.06 0.12 -0.49 .62
Polarity ratio 0.50 0.47 1.07 .29

Movement (Intercept) -107.50 59.39 -1.81 .07
(R2 = .107) Duration -0.04 0.02 -1.94 .05

Composite event density 0.00 0.01 0.47 .64 
Event density ratio -4.16 0.91 -4.55 < .001***
nPVI group difference 0.00 0.00 0.47 .64 
Nested ratio 1.24 0.20 6.07 < .001*** 
Polarity ratio -4.19 0.80 -5.24 < .001***

Dissonance (Intercept) 105.50 55.96 1.89 .06 
(R2 = .113) Duration 0.04 0.02 1.68 .09 

Composite event density 0.00 0.01 -0.15 .88
Event density ratio 4.22 0.86 4.90 <  .001*** 
nPVI group difference 0.00 0.00 -0.19 .85
Nested ratio -1.32 0.19 -6.87 <  .001***
Polarity ratio 4.14 0.75 5.49 <  .001***

Tension (Intercept) 557.70 49.97 11.16 <  .001*** 
(R2 = .260) Duration 0.14 0.02 7.28 <  .001*** 

Composite event density 0.00 0.01 0.59 .56 
Event density ratio 5.00 0.77 6.51 <  .001*** 
nPVI group difference -0.01 0.00 -4.47 <  .001***
Nested ratio -1.35 0.17 -7.84 <  .001***
Polarity ratio 4.40 0.67 6.54 <  .001***
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Table 4. Parameter estimates for pitch features and each dependent variable. Significance 
levels are as follows: ‘***’ p < .001; ‘**’ p < .01; ‘*’ p < .05; intercept and R2 values are the 

same as in Table 3. 

Dependent Variable Parameter Estimate Std. Error t value Pr(>|t|) 
Mood (Intercept) -417.70 39.85 -10.48 <  .001***
(R2 = .282) Pitch mean 0.00 0.01 -0.34 .73

Pitch range 0.01 0.00 8.30 <  .001*** 
Register low 423.90 40.05 10.58 <  .001*** 
Register middle 424.90 40.14 10.59 <  .001*** 
Register high 424.60 40.22 10.56 <  .001*** 
Sonority dissonance 0.00 0.02 -0.01 .99

Energy (Intercept) 212.80 34.97 6.09 <  .001*** 
(R2 = .398) Pitch mean -0.03 0.00 -5.87 <  .001***

Pitch range 0.01 0.00 11.64 <  .001*** 
Register low -211.00 35.14 -6.00 <  .001***
Register middle -210.20 35.22 -5.97 <  .001***
Register high -210.60 35.29 -5.97 <  .001***
Sonority dissonance -0.04 0.02 -1.79 .07

Movement (Intercept) -107.50 59.39 -1.81 .07
(R2 = .107) Pitch mean -0.01 0.01 -1.36 .18

Pitch range 0.01 0.00 7.55 <  .001*** 
Register low 112.70 59.69 1.89 .06 
Register middle 113.70 59.81 1.90 .06 
Register high 112.80 59.94 1.88 .06 
Sonority dissonance -0.12 0.04 -3.38 <  .001***

Dissonance (Intercept) 105.50 55.96 1.89 .06 
(R2 = .113) Pitch mean -0.02 0.01 -2.32 .02*

Pitch range 0.00 0.00 -1.52 .13
Register low -107.50 56.24 -1.91 .06
Register middle -107.30 56.36 -1.90 .06
Register high -106.50 56.47 -1.89 .06
Sonority dissonance 0.15 0.03 4.20 <  .001*** 

Tension (Intercept) 557.70 49.97 11.16 <  .001*** 
(R2 = .260) Pitch mean 0.00 0.01 -0.02 .98

Pitch range 0.00 0.00 -1.23 .22
Register low -560.30 50.23 -11.15 <  .001***
Register middle -561.00 50.33 -11.15 <  .001***
Register high -561.50 50.44 -11.13 <  .001***
Sonority dissonance -0.01 0.03 -0.46 .65

4 Discussion 

The first goal of our study was to investigate more directly the influence of synthetic 
generation, as compared to, human performance on listeners’ perceived emotions in 
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rhythmically complex music excerpts that contrasted in acoustics (piano and string 
quartet). Performance medium was found to have a small but significant effect, with 
synthetic performances being perceived as more positive in mood and as conveying 
less tension. This finding extends previous research that showed that synthetic 
generation of short melodies can convey discrete emotions effectively [10], and further 
qualifies the effect of synthetic audio on listeners’ perceived emotions.  As expected, 
instrumentation also had a significant and large effect, with piano excerpts giving rise 
to higher valence and arousal judgments as well as lower ratings for tension. The main 
effect of instrumentation is consistent with research on the influence of timbre and the 
influence of acoustical factors on listeners’ perceived emotions [3]. While musical 
excerpts varied across piano and string quartet, they were very similar in terms of the 
specific musical features considered. Nonetheless, the presence of some hidden factor 
related to musical excerpts cannot be fully discounted and should be taken into 
consideration in future experiments (i.e., using musical examples that afford both piano 
and string quartet performances). 

Our second goal was to explore the influence of a number of rhythmic and pitch 
features on listeners’ perceived emotions. Many of our findings are novel and open 
avenues of investigation on the role of rhythmic structure on perceived emotion. Most 
notably, event density ratio, a measure of the probability of metric ambiguity or conflict 
between parts, and polarity ratio, a measure of the contrast in the number of events 
across rhythmic groups, were predictive of perceived mood, movement, and tension. 
Similarly, the degree of coinciding event onsets between rhythmic layers (i.e., nested 
ratio) had reliable, but contrasting effects on participants’ ratings of mood, movement, 
dissonance, and tension. Taken together, these results suggest that rhythmically more 
integrated musical parts are perceived as more positive and are more likely to induce 
movement. This is consistent with findings that higher levels of rhythmic complexity 
have a negative effect on entrainment, which may result in reduced enjoyment [13]. 
Our results also point to an interaction between rhythmic structure and perceived 
dissonance by which a lower degree of integration of concurrent rhythmic streams may 
reduce listener’s sensitivity to sonority dissonance between parts. To our knowledge, 
this is a yet unexplored area that warrants further investigation. 

Pitch features had a smaller, but not negligible effect on listeners' ratings. In 
addition to the expected links between pitch range and higher mood and energy as well 
as between pitch mean and lower arousal, a wider pitch range was found to be correlated 
with induced movement. Also of note is the observed relationship between the 
concentration of pitch in one register, rather than one specific register, being predictive 
of a more positive mood as well as lower levels of perceived energy and dissonance. 
Both of these findings warrant further study using a wider selection of music and more 
controlled stimuli. 

Several of our findings show that the interaction of rhythmic patterns in multi-part 
music plays a significant role in listeners’ emotional experience, which calls into 
question the ecological validity of studies that focus on relatively simple musical 
sequences to study perceived emotion. Overall, findings based on rhythmic and pitch 
features suggest that more attention should be devoted to finer-grain musical features 
and their potential effect on listeners’ emotional experience.  
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Abstract. This paper describes our development of a deep learning based time-
span tree analyzer of the Generative Theory of Tonal Music (GTTM). Construc-
tion of a time-span tree analyzer has been attempted several times, but most pre-
vious analyzers performed very poorly, while those that performed relatively well
required parameters to be manually adjusted. We previously proposed stepwise
reduction for a time-span tree, which reduces the branches of the tree one by one,
and confirmed that it can be learned by using the Transformer model. However,
stepwise reduction could not obtain a time-span tree because it does not know to
which notes the reduced notes were absorbed. Therefore, we improved the en-
coding for learning stepwise reduction and specified which notes are absorbed by
which notes. We also propose a time-span tree acquisition algorithm that iterates
stepwise reduction by representing the time-span tree as a matrix. As a result of
experiments with 30 pieces, correct time-span trees were obtained for 29 pieces.

Keywords: Generative theory of tonal music (GTTM), time-span tree, melody
reduction, Transformer model0

1 Introduction

We have developed a time-span tree analyzer that is based on the Generative Theory of
Tonal Music (GTTM) by using deep learning called deepGTTM-IV. The GTTM was
proposed by Leardahl and Jackendoff in 1983, and the time-span tree is a binary tree
with each branch connected to each note [1].

Many time-span tree analyzers have been proposed, but most have many analytical
errors [2–6]. The time-span tree analyzer that had the highest analytical performance
required parameters to be manually adjusted [7].

The reason previous time-span tree analyzers performed insufficiently is that they
analyzed in a bottom-up manner using only local information. [2–7]. Therefore, we
considered learning the raw data of the entire piece by deep learning. Our deepGTTM-
IV has four features.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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Stepwise reduction: The Ground Truth data of a time-span tree is insufficient to di-
rectly learn the relationship between a piece and its time-span tree. To enable learn-
ing, we set the learning target as the process of reducing one note.

Branch priority: To make possible the stepwise reduction, the priority order of branches
needs to be defined. The maximum time span is used as the branch priority.

Encoding: By encoding the score into text, stepwise reduction can be learned in the
framework of automatic translation. This makes it possible to reduce notes at des-
ignated positions in a piece as if words are omitted in a sentence.

Time-span-tree matrix: The time-span tree has been handled in XML and Json for-
mats, making coding difficult [8]. We made coding easier by expressing the in-
formation necessary for reduction (i.e., pitch, duration, time-span-tree shape, and
branch priority) in a matrix.

We performed an experiment in which 270 items from a GTTM analysis corpus
consisting of 300 pieces and their time-span trees were used to learn the Transformer
model with the remaining 30 used for evaluation and found that our analyzer was able
to obtain correct time-span trees for 29 out of 30 pieces. The remainder of the paper is
as follows. Section 2 presents problems of time-span tree analysis based on deep learn-
ing, Section 3 describes the data for learning and evaluation, and Section 4 describes
the implementation of the analyzer. Section 5 describes the experimental results, and
Section 6 gives a summary and mentions future plans.

2 Problems of Time-span Tree Analysis based on Deep Learning

In GTTM analysis, the relationship between structurally important notes and other notes
in a score is expressed by a binary tree called a time-span tree. The time-span tree in
Fig. 1 is the result of analyzing Melody A on the basis of GTTM. Reduced melodies
can be extracted by cutting this time-span tree with a horizontal line and omitting the
notes connected below the line. In melody reduction with GTTM, decorative notes are
absorbed by structurally important notes.

There are the following three problems in the deep learning of time-span tree anal-
ysis.

Fig. 1. Time-span tree
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2.1 Low Number of Ground Truth Data

As ground truth data of the time-span tree, 300 classical melodies and their time-span
trees are published in the GTTM database [8, ?]. However, the number of datasets (300)
is extremely small for learning deep neural networks (DNNs) [10]. In the case of a small
number of pieces of learning data, over-fitting is inevitable, and an appropriate value
cannot be output when unknown data is input.

In the time-span analysis by musicologists, the entire time-span tree cannot be ac-
quired at once but is gradually analyzed from the bottom up. Therefore, the minimum
process of analysis is set as one dataset, and then the number of datasets is increased.
For example, if the DNN directly learns the relationship between a four-note melody
and its time-span tree, the number of datasets is only one. On the other hand, if we
consider the process of reducing one note to one dataset, the number of datasets will be
three, as shown in Fig. 2(a).

The trained DNN estimates the melody consisting of n− 1 notes that is reduced to
one note when a melody consisting of n notes is input. A time-span tree for a melody
consisting of four notes can be constructed by estimating four to three notes, three to
two notes, and two notes to one note, and combining the results (Fig. 2(b)).

q q q q DNN q q h
Dataset 1

q q DNN h
Dataset 2

DNN

Dataset 3

h h

hh w

Learning

Learning

Learning

q q q q DNN q q h

q q DNN h

DNN

h h

hh w

Estimating

Estimating

Estimating

q

q

h

Reduced

Reduced

Reduced

(a) Leaning stepwise reduction (b) Estimating the time-span tree

Fig. 2. Stepwise reduction

2.2 Ambiguity of Reduction Process

Time-span reduction removes decorative notes by pruning from the leaves at the tip
of the tree, leaving only structurally important notes in the melody. To implement the
stepwise reduction, the priority of branches must be obtained in a total order.

However, when it comes to GTTM itself, there are only a few examples of reduction
using the time-span tree, and there is no detailed explanation on the reduction procedure
[1]. For example, in Fig. 1, we can see two levels of reduction results, but it is not clear
how many levels are actually necessary.
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Marsden et al. [11] suggested a way to determine the salience of two note events
(a and b), neither of which are descendants of the other. They proposed defining the
salience of an event as the duration of the maximum of the time spans of the two chil-
dren at the branching point when the event is generated, or where it is reduced.

In contrast, in this study, the DNN needs to learn the relationship before and after the
reduction than it is to reduce the order of the notes to close to that of human cognition.
We use a time-span tree leveled by the duration of the time span for a simple reduction
order that it is easy for the DNN to learn [12].

2.3 Long Note Sequence

The previous time-span tree analyzers performed poorly because they analyzed in a
bottom-up manner using only local information [2, 5–7]. In contrast, we propose using
the entire note sequence before and after stepwise reduction for learning the DNN.

When a recurrent neural network (RNN) [13] or long short-term memory (LSTM)
[14] is used as the DNN, the DNN can learn using note sequence, but when a long note
sequence is input, the DNN forgets the beginning of it, and then the DNN cannot make
use of the whole information of the note sequence.

The Transformer model [15] can learn and predict using the information of the entire
note sequence. Moreover, the Transformer model has an additional layer of position
information independently and uses the absolute position.

3 Data for deepGTTM-IV

This section describes the data for training the Transformer model. The Transformer
model, which is an automatic translation tool, uses text for both input and output. Also,
the Transformer model can learn the task of adding two values [16]. The duration of a
note after reduction is the sum of the durations of the two notes before reduction, and
we thought that this task could also be done with Transformer.

3.1 Learning and Evaluation Data

The preparation of the dataset for stepwise reduction is as follows. First, the priority
of each branch of the time-span tree is evaluated on the basis of the duration of the
maximum time span [12]. We refer to the longest temporal interval when a given pitch
event becomes most salient as the maximum time span for the event. Next, stepwise
reduction is applied to the least important note. A learning dataset of stepwise reduction
is then created using the data before stepwise reduction as input data and the data after
reduction as output data.

3.2 Encoding

Learning data are created from MusicXML and time-spanXML in the GTTM database.
Since all melodies in the GTTM database are monophonic, the reduction method is
limited to monophony. The notes in the melodies are made into a one-character string
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with the pitch and duration concatenated. The pitch is represented as 12 types without
distinguishing between different octaves. By multiplying by 4, the duration of most
notes becomes an integer, but since there are melodies containing only a few triplets,
quintuplets, sextuplets, and septuplets, the duration is rounded up to an integer. The
placeholders ”l” or ”r” are inserted at positions where notes disappeared due to the
reduction. The ”l” (left) is inserted when the reduction is absorbed into the left note, and
”r” (right) is inserted when it is absorbed into the right note. In our previous work, we
were unable to reconstruct the time-span tree because we did not distinguish between
”l” and ”r” [12]. Figure 3 is an example of learning data.

Before reduction. → After reduction.

c14 c16 d30 c14 c12 c16 d20 c16 . → c14 c16 d30 c26 l c16 d20 c16.
c14 c16 d30 c26 c16 d20 c16 . → c14 c16 d30 c26 r d36 c16. 
c14 c16 d30 c26 d36 c16 . → c14 c16 d30 r d62 c16. 
c14 c16 d30 d62 c16 . → c30 l d30 R2 d62 c16. 
c30 d30 d62 c16 . → c60 l d62 c16. 
c60 d62 c16. → c62 r c78. 
c60 c78. → r c138.

Fig. 3. Learning data for melody reduction

As a result of preparing the datasets, 7362 stepwise reduction training datasets are
generated from 270 music pieces from the GTTM database consisting of 300 pieces and
849 stepwise reduction evaluation datasets are generated from the remaining 30 pieces
for evaluation.

3.3 Data Augmentation

The 7362 training datasets are not enough to train the Transformer model, so we carry
out data augmentation. Each note is shifted 11 times by a semitone and the amount
of training data is augmented by 12 times. The durations of notes are 2-16 times and
rounded up to the nearest integer, then the amount of data is augmented by 16 times.
Finally, we prepare 1,432,704 (= 7362 x 12 x 16) learning datasets.

4 Implementation of deepGTTM-IV

A time-span tree is obtained by iterating stepwise reduction. We expressed time-span
trees in XML or Json, but they were difficult to handle with programs because of
their deep hierarchical tree structure. Representing a time-span tree as a matrix makes
melody reduction easier to implement in a program.

4.1 Matrix Representation of Time-span Tree

In Fig 4(a), the first row of the matrix is the encoded pitch and duration and the second
row is the connected parent branch number. The root branch has no parent branch to
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which to connect, so the parent branch number is set to 0. Both the 2nd and 4th branches
are connected to the 1st branch, but the branches of the time-span tree do not cross [1],
indicating that the 4th is connected to the 1st at a position closer to the root. Notes that
are missing due to reduction have blank pitches and durations on the matrix.

The 3rd row of the matrix is the branch priority. Since the branch priority is obtained
from the time-span tree and the note duration, it is redundant information, but it is
differentiated in this paper for clearer explanation.

4.2 Generation of Stepwise Reduction Data

Stepwise reduction data is generated by performing stepwise reduction in the order
from the lowest priority branch. Applying a step-wise reduction to Fig. 4(a) reduces
the notes in the 3rd branch, which has the lowest priority, to the 4th branch. The input
of the Transformer model is ”d8 e8 e8 f8.” The output is ”d8 e8 r f16.” because the
third note is absorbed on the right side. Next, when stepwise reduction is applied to
Fig. 4(b), the note on 2nd branch with the second lowest priority is reduced to the note
on 1st branch, and the input and output of the Transformer model are ”d8 e8 f16 -¿d16
l f16.”. Stepwise reduction data is created by repeating stepwise reduction until there is
only one note left.

(c)

hh q
Reduction

(a)

w h
Reduction

(b)

q q hq
Reduction

q q q q
(d) 

d32 − − −
0 1 4 1
1 3 4 2

d16 − − f16
0 1 4 1
1 3 4 2

d8 e8 − f16
0 1 4 1
1 3 4 2

d8 e8 e8 f8
0 1 4 1
1 3 4 2

1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4

d8 e8 e8 f8. → d8 e8 r f16. d8 e8 f16. → d16 l f16. d16 f16. → d32 l.

Fig. 4. Generation of stepwise reduction data

4.3 deepGTTM-IV: Reduction System

Figure 5 shows an overview of the reduction system. First, the input melody is con-
verted into Matrix Representation of the time-span tree. In the initial state, no branches
are connected, so the matrix has all 0 in the second row (Fig. 5(a)). Then the note se-
quence in the first row is sent to the Transformer model (Fig. 5(b)). The output of the
Transformer model is reflected in the matrix in which the 3rd note is absorbed in the
4th note (Fig. 5(c)). Then (a) to (c) are iterated until there are no notes for reduction
(Fig. 5(d)). Finally, a time-span tree is output (Fig. 5(e)).

The Transformer model may produce unexpected outputs from untrained inputs. In
such a case, it may be difficult to proceed with the reduction process and our method
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Fig. 5. Overview of reduction system

multiplies the initial duration of one note by a randomly chosen value between 2 and
16 and restarts the reduction process.

5 Experimental Results

We trained the Transformer model using 1,432,704 (= 7362 x 12 x 16) learning datasets
created by data augmentation of 7362 stepwise reductions made from 270 pieces out
of 300 pieces in the GTTM database. Accuracy was 0.99 when evaluated with 849
Stepwise reductions made from the remaining 30 pieces. Learning was carried out using
Nvidia Quadro RTX5000 for laptops [17], and the learning time was seven hours.

We tried to acquire time-span trees for the remaining 30 pieces with deepGTTM-
IV using the trained Transformer model, and we were able to acquire time-span trees
for 29 pieces. The one remaining piece contained quintuplets and the output of the
Transformer model was unexpected, so the notes could not be reduced.

6 Conclusion

Previous time-span analyzers could hardly obtain time-span trees without analysis er-
rors, but we dramatically improved the analysis performance by learning step-wise re-
duction with the Transformer model. At the time of encoding the training data, by spec-
ifying which note to be reduced to the left or right will be absorbed, decoding becomes
possible and a time-span tree can be obtained. As a result of experiments with 30 pieces,
all time-span trees were obtained except one piece that contained quintuplets. We plan
to conduct evaluation experiments with more pieces. In the case of quintuplets, septu-
plets, and higher multituplets, there is little data in the GTTM database and it is difficult
to learn by the Transformer model, so we plan to increase the data of multituplets by
data augmentation to improve performance.

Acknowledgements This work was supported by JSPS KAKENHI Grant number
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Music and Logic: a connection between two worlds
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Abstract. Music and mathematics have a long-standing relationship, but what
about music and logic? Only recently have some authors started to explore the
relationship between logic and music analysis, thanks to developments in both
fields. The aim of this paper is to analyze this relationship, by developing a sys-
tem capable of analyzing chord sequences using a logical presentation as well
as create new harmonic structures. The logical presentation draws heavily from
proof theory and its dual, i.e. tableuax. Also if music is not a proof, its adaptabil-
ity makes it effective for this purpose. The attempt here proposed will try to apply
proof theory to a brief, but important part of music: chord sequence analysis.

Keywords: Music Analysis; Logic; Proof theory; Chords Analysis

1 Introduction

Logic is primarily used in mathematics to formalize human reasoning, and the study
of the relationship between mathematics and music has a long-standing tradition. This
work aims to explore the connection between logic and music, which has not been stud-
ied extensively. Specifically, the idea arose from my personal interest in proof theory
and its ability to simplify complex sentences into simpler propositions. The objective of
this paper is to make a preliminary attempt in this direction, by exploring the possibility
of applying proof theory techniques to chord analysis.

The method presented in this paper it’s inspired by Neo-Riemannian and Tonfeld
theories, which are systematic approaches to the musical structures’ analysis, albeit not
in a formal logical sense. The main goal of this paper is to introduce a rule-based logic
method for chord analysis, which shares some similarities with structural proof theory
(e.g., Troelstra’s Basic Proof Theory [11]) in its logical foundations.

Something similar to this method has been presented in various articles, such as
Rohrmeier: extended harmony [9], Granroth-Wilding, Mark and Steedman, Mark: Sta-
tistical Parsing for Harmonic Analysis of Jazz Chord Sequences [3] and Satoshi: modal
⋆ I would like to express my sincere gratitude to Professors Satoshi Tojo, Mario Piazza, and

Fabio De Sanctis De Benedictis for their invaluable assistance in writing and developing this
essay. Additionally, I extend my appreciation to the two reviewers for their insightful sugges-
tions, which greatly contributed to the enhancement of both the method and the overall paper.
Their recommendations on potential research directions have also been immensely valuable.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
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logic music [10], but this contribution takes a different approach. Instead of decom-
posing a chord progression through grammar syntax, it presents a set of rules that can
reduce the total number of chords, making the analysis simpler.

The method is as follows:

– we begin with a given chord progression;
– we apply rules that can reduct a certain set of chords into a smaller one;
– repeat the process until no further reductions are possible.

The corresponding method in proof theory is the decomposition of a proposition
into a set of simpler ones to understand easier if the proposition is a tautology or not.
But in the case of music analysis the final set of chords, that can’t be simplified, will be
called the core set and it will be associated with a particular type of chord set according
to Tonfeld theory. The rules, once explained, can be analyzed both bottom-up and top-
down, revealing the application of each rule at each level of the decomposition. The
invertibility of each rule can also be used to compose new chord progressions, providing
a mechanical method for choosing between different chords.

The paper is organized as follows: in the second section, we provide a description
of Tonfeld and the Circle of Fifths; in the third section, we present our motivations for
choosing structural proof theory and a very brief presentation of it is given; in the fourth
section, we present the method for analysis in detail; in the fifth section, we outline the
inverse process of composition using the rule-based method. Throughout the paper, we
provide examples to help illustrate the motivations and the methods being discussed.

2 Tonfeld and circle of fiths

The Tonfeld theory [7] provides a visual depiction of the relationships between chords
in tonal harmony using an infinite plane graph where each node represents a unique
pitch class. Notes are understood as points in the graph, and chords are depicted by their
relationships. The theory identifies three fundamental types of relationships: octatonic,
hexatonic, and stacks of fifths, which are cyclic and sufficient to describe all other cyclic
groups.

Instead of explicitly defining the octatonic and hexatonic sets for each note (see for
example [8]), it is possible to specify only three octatonic and four hexatonic sets, be-
cause the others are permutations of these, thanks to the limited transposition modes
([6]). This allows for a more efficient and compact representation of the harmonic rela-
tions within the Tonfeld theory:

Oct0 = {C,DZ, EZ, E^, GZ, G^, A,BZ} (1)

Oct1 = {DZ, D,E^, F,G,AZ, BZ, C Z} (2)

Oct2 = {C,D,EZ, F,GZ, AZ, A^, B} (3)

Hex 0 = {C,EZ, E,G,AZ, B} (4)

Hex 1 = {C \, E, F,G\, A,C} (5)
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Fig. 1. A part of the Tonfeld. The lines outside the figure outline the relation between the same
chords throughout the plane.

Hex 2 = {D,F, F \, A,BZ, C \} (6)

Hex 3 = {EZ, F \, G,BZ, B^, D} (7)

The stack of fifths is not a mode of limited transposition, so it is necessary to enu-
merate them for each note and for each expansion. This means that all possible stacks
of fifths need to be explicitly listed, unlike the octatonic and hexatonic sets which can
be represented with a little number of sets due to the limited transposition modes.

FifC,1 = {C,G} (8)

FifC,2 = {C,G,D} (9)

...

This enumeration of every component, as is well-known, can be easily deduced
thanks to the circle of fifths. Furthermore, this system simplifies the work with the
proof-theoretic platform that will be presented later.

3 Why structural proof theory?

Proof theory is a branch of mathematical logic that studies the nature of mathematical
proofs and their properties. The central questions in proof theory concern the nature
of proof, the relationship between syntax and semantics, and the role of proofs in the
development of mathematics. It is a fundamental component of mathematical logic,
and has important applications in computer science, philosophy, and other fields. Proof
theory aims to understand the nature of formal systems and develop techniques for
analyzing and manipulating them; there are several approaches to proof theory, but the
one we want to emphasize here is structural proof theory.
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The origins of structural proof theory [11] can be traced back to the early 1930s
when Gerhard Gentzen (1909-1945) introduced the concept in his doctoral thesis titled
“Untersuchungen über das logische Schließen” [4]. in 1933. In this thesis, Gentzen
presented two primary systems of logical rules: natural deduction and sequent calculus.
The former system aimed to closely align with the way theorems are typically proven in
practice, while the latter system provided the framework through which Gentzen arrived
at his main finding, often referred to as Gentzen’s “Hauptsatz”. This theorem states that
any proof in classical logic can be transformed into a specific ”cut-free” form, which
means that the proof can be obtained without detours. Additionally, the cut-free proof
has the subformula property, which states that all the premises used in the proof are
contained in the conclusions. From this, general conclusions about proofs can be drawn,
such as the consistency of the system of rules. The method has the following structure:
the top formulas, also called leaves, represent the starting point of the proof (q ⊢ q and
p ⊢ p), while on the bottom we find the proven formula (i.e., ⊢ (p ∧ q) → (q ∧ p)).

q ⊢ q p ⊢ p
(∧R,I )

q, p ⊢ q ∧ p
(ex.)

p, q ⊢ q ∧ p
(∧L,I )

p ∧ q ⊢ q ∧ p
(→R,I )

⊢ (p ∧ q) → (q ∧ p)

In this context, R and L denote the side of the rule to be applied; I represents the
introduction of a rule; ex. represents the exchange rule, which enables swapping of the
terms in the proof. The symbol ∧ represents conjunction, which can be interpreted in
English as and, and → represents implication, interpreted as if... then...

We believe that this system’s clarity and duality make it an effective way to represent
not only propositions but also chords. In proof theory, it is possible to use not only
trees like the one presented earlier but also trees constructed from the bottom known
as tableaux. These trees are constructed from the proposition to be proved, as shown
below:

⊢ (p ∧ q) → (q ∧ p)

p ∧ q ⊢ q ∧ p

p, q ⊢ q ∧ p

p, q ⊢ q p, q ⊢ p

The dual approach of the system, allowing for progression from the axioms or the
propositions, will be useful in presenting the two-fold perspective we aim to convey
in this article: analyzing chords from one direction and creating new harmonic struc-
tures from the other.
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4 Rule based presentation

In proof theory, specifically in the style developed by Gentzen [11], a set of rules is
used to introduce and eliminate certain logical connectives (∧,∨,→,¬) in order to
determine whether the topmost nodes of a proof correspond to axioms, i.e., whether
p ⊢ p (p proves p). The purpose of this section is to provide a more systematic account
of the application of certain harmonic rules, using the rules of harmony, the Tonfeld
theory, and a proof-theoretic framework.

While music is not a proof, a set of fundamental rules can still be outlined and
adapted by adding or removing rules. This article focuses on jazz tonal harmony and
presents a construction using a limited set of rules, but it can be hopefully expanded.
Our attempt is to find a way to combine the generative theory of tonal music (GTTM)
[9] with the ability of proof theory to explicitly indicate when and where a certain rule
must or can be applied. This aims to provide a more systematic and logical approach
to understanding and analyzing harmony in tonal music. It must be stressed that this
attempt will not adhere to all of the structural rules typically found in proof theory. In
fact, the only structural rule that we will use is the Contraction Rule, which will play a
crucial role.

⊢ p, p
(Contraction)

⊢ p

but there is no place for weakening, because we don’t want that new chords can appear
spontaneously:

⊢ p
(Weakening)

⊢ p, q

and exchange, because we don’t want that chords change position:

⊢ p, q
(Exchange)

⊢ q, p

4.1 The first rules

In a Gentzen’s style presentation a rule has the following form:

⊢ p ⊢ q
(∧I )

⊢ p ∧ q

where the letter I, indicates the introduction rule. The reason for erasing a chord in the
presented version of the rule is to identify the essential components of the harmonic
sequence during harmonic analysis. Therefore, the objective is to isolate the core set of
harmonies. In fact here the presentation is as follows:

Authentic Cadence:
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V7 IMA7
(FifI,1)

IMA7

This kind of cadence can be expanded with the stack of fifths:

IIm7 V7 IMA7
(FifI,2)

IMA7

VIm7 IIm7 V7 IMA7
(FifI,3)

IMA7

...

Another rule is the Plagal Cadence, which is extensively used in ancient as well as
modern pop music. Plagal Cadence is a type of cadence that goes from the fourth scale
degree to the first one. It can be schematized in three main ways, to also explicitly show
the movement from the fourth minor scale degree to the first one. It can be interpreted
as a particular case of the circle of fifths: from the last instances to the first one.

Plagal cadence :

IVMA7 IMA7
P.C.

IMA7

IVm7 IMA7
P.C.

IMA7
IVMA7 IVm7 IMA7

P.C.
IMA7

To explicitly explain the other types of cadences, like the Deceptive Cadence, it must be
noted that the tonic and the submediant have a lot of notes in common, which allows for
their mutual substitution. For example, an authentic cadence can be transformed into a
deceptive one by substituting the tonic with the submediant. Something similar occurs
between the tonic and the mediant.

Inversions:

VI
(i.)

I
III

(i.)
I

I
(i.)

III
I

(i.)
VI

In jazz and classical music, another rule is deduced: the tritone substitution. This rule
allows for the substitution of a dominant chord with its relative tritone. This is particu-
larly useful in the context of jazz improvisation and the creation of complex harmonic
progressions in classical music. The tritone substitution adds more dissonance to the
progression, and is one of the most important feature of jazz harmony. It can be used
to create tension and dissonance and it is an essential tool to understand the harmonic
language of jazz.

V
(tr)

I\
From the Authentic Cadence and its inversions, it is possible to also obtain the De-

ceptive Cadence and the Authentic Cadence with the subdominant scale degree instead
of the supertonic:
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– Deceptive Cadence: V-VI;
– Authentic Cadence with subdominant: IV-I;

These variations help to create a more rich and complex harmonic language and can
be used to create a different emotional or stylistic effect in the music.

V7
VIm7

(i)
IMA7

(FifI,2)
IMA7

(IVMA7)
(i.)

IIm7 V7 IMA7
(FifI,2)

IMA7

4.2 Examples

Example 1. The following example is taken from “But not for me” by George Gersh-
win. The structure is divided into sections, because the tree was too long.

F7 BZ7 EZMA7
Fif

EZ,3
EZMA7

Gm7
(i.)

EZMA7

F7 BZ7 EZMA7
Fif

EZ,3
EZMA7

EZMA7

BZm7 EZ7 AZMA7
Fif

AZ,3
AZMA7

DZ7
(tr.)

Gm7
(i.)

EZMA7 EZMA7
P.C.

EZ,3
E ZMA7

Fm7 BZ7 Fif
BZ,2BZ7

EZMA7 BZ7

BZm7 EZ7 AZMA7
Fif

AZ,3
AZMA7

DZ7
(tr.)

Gm7
(i.)

EZMA7 EZMA7
P.C.

EZ,3
E ZMA7

Fm7 BZ7 EZMA7
Fif

EZ,3
EZMA7

EZMA7

As we can see the main chord is EZMA7, that is always the main chord.

5 Composition of new musical structures through a rule based
presentation

This method uses invertible rules to create novel harmonic tonal structures. The process
is straightforward and involves selecting a fundamental node, determining the desired
length of the structure, and applying the rules to expand the system until the required
number of chords is reached. By using this systematic and logical approach based on
the invertibility of the rules, it’s possible to compose original harmonies.
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5.1 Tableux

The inversion of the rules made in section 4.1 can be inverted thanks to the dual of proof
theory: tableux.

Generation of the Authentic Cadence:

I

V

VV

. . . VV

V

V

I

I

I

Fif

Fif

Fif

Generation of the Plagal Cadence:

I

IV

IVIV

. . . IVIV

IV

IV

I

I

I

P.C.

P.C.

P.C.

The inversions:

I

VI
i.

I

III
i.

VI

I
i.

III

I
i.

Triton substitution:

V

I\
tr.

Example 2. Firstly, we’ll form a basic arrangement of three notes taken from the initial
Octatonic set. Then, we’ll establish a preferred duration for the arrangement, say 8
measures. We’ll utilize various techniques, such as stack of fifths, plagal cadence, and
tritone substitution, to extend the pattern following certain guidelines until we attain the
desired number of chords. Consequently, we’ll obtain 11 distinctive chords, resulting in
an 8-measure arrangement with increased intricacy and musical appeal.
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Oct1

DZMA7

AZ7

Em7 AZ7

DZMA7

DZMA7

F MA7

C7

F\7Z5

F MA7

F MA7

BZMA7

F7

Cm7 G7

BZMA7

BZMA7

Fif

Fif

Fif

Tr

Fif

Fif

This way of composition can be automatized to create new and different harmonic
structures, always remaining into a tonal configuration, but what if we want to create a
non-tonal structure?

5.2 New rules

One of the interesting thing about our system is that it is possible to add new rules
giving flexibility to the system. Music and harmony, in fact, can change between ages
and the rule-based system can be expanded with new rules if they are considered useful
for a certain kind of analysis or a certain kind of composition. Suppose that the analyzed
piece is taken from the baroque period and so it is important to explicit the picardy third.
Then it is easy to add a rule that could be something like:

Im V I
P.T.

Im I

This could seem redundant in respect of the rule of the stack of fifths, but the attempt
here is to create something general that could be useful also in specific cases. In the
baroque chorals, for example, understand when there is an authentic minor cadence or
a picardy third could be useful, because a picardy third indicates the end of a phrase or
of the piece.

Example 3. Let’s consider, for example, J.S. Bach’s Jesu, meine Freude (figure 2), this
is an example of picardy third.

To analyze these bars it is possible to use the new rule:

Em Am Em
P.C.

Em
F\7 B7 E

P.T.
E

Em E

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

627



Fig. 2. J.S. Bach’s Jesu, meine Freude; mm. 11-13

New rules in composition In addition to their traditional use in tonality, add rules can
also be employed in composition to generate unconventional results. For instance, a new
rule could be introduced to mandate the inclusion of the third degree of a chord in any
dominant chord that appears. This rule might read as follows: “Whenever a dominant
chord is encountered, it must contain also the third degree” and let’s call that Th..

I

IIIV V I

Th

Incorporating this additional layer would introduce an added level of intricacy and
diversity to the harmonic arrangements produced by the system, leading to a greater
potential for novel and unforeseen outcomes. It is crucial to acknowledge that the reg-
ulations you integrate will shape the final composition to align with your specific re-
quirements.

Example 4. For example try to write a new harmonic form using this rule with also
some other rule:

Oct2

CMA7

BMA7

EMA7 Em7 BMA7

G7

C\m7(Z5)

CMA7

CMA7

GZMA7

FMA7

Gm7 C7 FMA7

DZ7

DZ7

GZMA7

GZMA7

BMA7

F\MA7

C\m7 F\MA7

BMA7

BMA7

Th

P.C. Tr

Th

Fif

Fif

Fif

5.3 Proof theory method and CCG

The presented method shares similarities with the one presented in [3] that uses Com-
binatorial Category Grammar (CCG), but there are some notable differences. On one
hand, the reduction method we propose is more flexible than the one presented in [3].
On the other hand, our method is not currently linked to machine learning or automatic
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analysis, which are areas that we plan to explore in the future. It’s worth noting that the
two methods are not in conflict and can ideally be combined in the future.

The contraction method we propose is particularly useful because it’s malleable: we
can add new rules to analyze and stress different musical aspects, and we can even invert
the method to create new harmonic structures. In contrast, the method presented in [3]
relies on a statistical machine learning technique that may not be as straightforward to
implement using our proof theoretic presentation. Moreover, our proof theoretic presen-
tation can be inverted to create new harmonic structures, which CCG can only achieve
by working on the rules. However, this inversion process is not as straightforward as it
is with our method. A common point between CCG and our method is the philosophical
and musicological idea that chord progressions are driven by the listener’s expectations
of progression, based on the same harmonic Riemannian concept. However, our method
can be expanded due to its ability to incorporate new rules.

6 Conclusions

The presented method is a different approach to understanding chord progressions,
drawing inspiration from proof theory. While music cannot be proven, this rule-based
method simplifies and clearly demonstrates the invertibility of the rules between anal-
ysis and composition. The approach’s advantage is that new rules can be added to the
system to emphasize specific structures or introduce new ones.

This approach to harmonic analysis offers several advantages for students and pro-
fessionals alike. Firstly, its visual representation can aid in better understanding the
underlying principles of harmony. By breaking down complex harmonic structures into
their component parts and representing them as a tree-like structure, students can more
easily grasp the relationships between chords and the rules that govern them. Secondly,
this approach can be helpful in promoting creativity when composing new harmonic
structures by providing the opportunity to choose new rules and leading to unexpected
solutions and unique harmonic progressions. Lastly, this method can help shed light on
a particular harmonic structure that may otherwise go unnoticed. By approaching a har-
monic structure several times, each time with a different lens, an analyst can highlight a
particular composer’s choice over another, revealing the nuances and subtleties of their
harmonic language. Overall, this approach to harmonic analysis offers a powerful tool
for understanding and creating harmonic structures, and its potential applications are
wide-ranging, from the classroom to the automatic composition.

Future researches should explore practical applications, incorporating additional ex-
amples and use cases. A deeper understanding of cut admissibility within this method
is imperative. Moreover, the method presented holds potential for automated harmonic
generation, which could be harnessed for an automatic theorem prover centered on har-
monic structures. In summary, this method transforms chord comprehension through
proof theory insights. While music eludes formal proof, this approach helps in under-
standing of rule dynamics in analysis and composition. Its adaptability and visual lu-
cidity aid learners and creators alike, finding relevance from education to composition.
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Abstract. The paper provides a novel approach to musicologically-informed
intra-opus motif detection within polyphonic music scores. We extract diatonic
interval sequences from each voice of a score; sequence segmentation is per-
formed via pairwise local alignment between each pair of voices. From the output
of this step, string-based approaches are used for motif discovery.
Specifically, a weighted directed acyclic graph is constructed, giving a custom
measurement of motif importance. A selection and filtration procedure is applied
according to a set of rules and music structural information, to generate a final
selection of music motifs.
The ground truth annotated JKUPDD dataset is used for evaluation of the pro-
posed methodology. The results demonstrate that this algorithm is capable of ex-
tracting musically meaningful motifs with high precision and recall.

Keywords: Music Information Retrieval, Pattern Discovery, Computational Mu-
sicology

1 Introduction

A musical motif is “the smallest structural unit possessing thematic identity” within a
piece of music [1]. The detection of frequent musical patterns is a long-standing area of
work in the field of Music Information Retrieval (MIR). The existing pattern discovery
research covers both audio and symbolic music, adopting methods generally falling
into three broad categories of 1) string or sequence-based [2, 3], 2) geometric pattern
discovery, [4], and 3) machine-learning based methods [5].

⋆ This work is part of a project that has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 101004746 (Polifonia: a
digital harmoniser for musical heritage knowledge, H2020-SC6-TRANSFORMATIONS).

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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The main goal of this work is to develop a methodology that, while informed by
musicological knowledge, is not specialized to a single genre or musical tradition. A
second aim is to produce a short and focused set of output motifs, reducing the require-
ment for time-intensive human validation of the results.

We designed a novel approach to achieve these aims, by working with interval se-
quences extracted from digital music scores, and segmenting a composition based on
pairwise local alignments [6] between all possible voice pairs.Alignment has been com-
monly applied to the task of similarity between pieces of music [7, 8], but not in works
on detection of local patterns. The outputs of the segmentation are taken as the input for
a string-based motif discovery process. The overall importance of a pattern is measured
based on its frequency of occurrence, using a graph that represents the relationship
between patterns. The top-ranked patterns are further analyzed and filtered according
to their musical (metrical) structure, generating a final set of motifs. In the context of
this paper, motifs are defined as short recurring melodic patterns within a piece of mu-
sic which contain important or characteristic thematic material; it must repeat at least
two times throughout a composition, and contain at least three intervals.The proposed
method is proven to generate satisfying results for an intra-opus pattern detection task
based on the JKUPDD dataset [9], discussed in Section 4. The results exhibit a high
degree of accuracy, broadly comparable to state-of-the-art pattern detection algorithms.

Identified motifs are of importance in use cases which range from thematic analysis
of the piece of music, or musicological study of the body of work of a composer [10],
to characterisation of a musical tradition, genre or period. Apart from being applied to
polyphonic melodies as in this paper, the introduced methodology can also be applied
to detect motifs between multiple related monophonic scores, which is potentially of
use in the study of tune families or regional styles within folk traditions [11].

2 State of the art

Musical pattern detection tasks in MIR can be either “intra-opus” (within a single piece
of music) and/or “inter-opus” (across multiple pieces of music). Input data is typically
either audio or symbolic music representation. The following discussion mainly covers
work on symbolic music inputs, with the exception of [12] and [13].

Pattern detection studies on symbolic music tend to break down into string-based,
geometric or machine learning approaches. String-based pattern detection studies are
the most common of all approaches. They range from n-grams and NLP-based work
such as [14] to tree models of pattern relationships, subsuming and compressing many
unique pattern instances to a smaller set of ’maximal’ patterns. The latter approach to
pattern detection has been influential on the work presented in this paper. It has most
commonly been used in monophonic inter-opus applications [15,16]; some polyphonic
applications exist in the literature [2] but differ to our work significantly in the specific
structural model applied.

Best-in-class geometric work includes the family of “point-set” geometric compres-
sion algorithms set out in [17, 18]. This family of algorithms have performed well on
tasks ranging from intra-opus pattern detection in the JKUPDD dataset [17], to an intra-
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opus tune family classification task in [18]. Other interesting work, which both builds
on and evaluates the “point-set” approach includes [4, 19] and [20].

Works based on machine-learning are increasingly prominent in recent years. Chai
Wei [13] uses self-similarity and Dynamic Time Warping (DTW) to detect repeating
structural sections in audio corpora. Unsupervised machine learning is adopted by Ja-
copo de Berardinis et al. [12] to build graph-based music structure hierarchies adapted
for segment audio-derived feature sequences into structural sections. Matevž Pesek et
al. [5] uses unsupervised machine learning, in order to construct a compositional hier-
archical model for analysis and discovery of pattern in symbolic music.

3 Methodology

3.1 Framework

Fig. 1. A framework of motif discovery from polyphonic symbolic music

The framework of the proposed method for discovering motifs in polyphonic sym-
bolic music is illustrated in Figure 1. Taking a symbolic music score as an input, key-
invariant diatonic interval sequences are extracted from each voice, and encoded. Music
segmentation is then applied to the encoded sequences via local alignment [6]. A set of
patterns are gathered for further discovery, to find a set of potential motifs. The motifs
are ranked and filtered based on specific rules and a customized measure of importance,
and then analyzed by their music structure information, to select a final list of results.

3.2 Pre-processing

A polyphonic music score is taken as the input for pre-processing. Using music21 [21],
we extract the melodic pitch sequence from each voice of the score, represented as
a sequence of MIDI note numbers. From these pitch sequences we calculate diatonic
intervals, then normalise them to the range of a single octave.

Definition 1 (Melody). Let the kth voice in a score be υk. Let M(υk) = [m1, ...mn]
be the melody of υk, in which mi denotes the pitch of the ith note of υk.
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Definition 2 (Diatonic Intervals). Let dia(υk) = [d1, ...dn] be a sequence of diatonic
intervals, di is the diatonic interval between two consecutive pitches, mi and mi +1 in
υk.

di = (mi+1 −mi)%7 (1)

For example, from incipit of the first voice of the Bach fugue BWV889 in Figure 2,
the key-invariant diatonic interval sequence dia(υ1) can be extracted as [−2,+3,−6,+4,−2,
+ 3,−2,−2,−2,+5,−2,−2,−2,+5].

Definition 3 (Encoding).
A function Dict(x) presents a set of rules for encoding, which maps an integer in

[-6, 6] to a distinctive character. To specify in details, Dict(−6) = A,Dict(−5) =
B,Dict(−4) = C,Dict(−3) = D,Dict(−2) = E,Dict(−1) = F,Dict(0) =
M,Dict(1) = G,Dict(2) = H,Dict(3) = I,Dict(4) = J,Dict(5) = K,Dict(6) =
L.

Let an encoding sequence of dia(υk) be enc(dia(υk)),

enc(dia(υk)) = [Dict(d) : d ∈ dia(υk)] (2)

For instance, a sequence [−1,+2,+1,−4,+2] can be encoded as ”FHGCH”. The
encoding sequences are used as input for the music segmentation process.

3.3 Music Segmentation

Fig. 2. Incipit of the first voice of Bach fugue BWV889

Using swalign [22], for each pair of voices υx, υy , a Smith-Waterman local align-
ment [6] between enc(υx) and enc(υy) is generated. This step detects locally-aligned
segments between enc(υx) and enc(υy), and outputs an alignment of the two sequences.
If the similarity score of the alignment between υx, υy is below 0.2, it should be omit-
ted from further segmentation. This step ensures that the output of alignments between
highly dissimilar voices are excluded from the motif detection process.

Figure 3 presents the alignment between the openings of voices 1 and 2 of the
Bach BWV889 fugue, with locally-aligned segments identified by the Smith-Waterman
algorithm boxed in red. In this representation, characters represent diatonic intervals,
“-” represents a gap due to a mismatch between the two sequences, and “.” represents
a permitted mismatch. From the alignment of each pair of voices υx, υy , we break the
sequences on each “-” character) to obtain a set of segments. We further investigate
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Fig. 3. Alignment between the openings of voice 1 and 2 of Bach BWV889 fugue

this set of segments to take possible patterns. Furthermore, a filter is implemented to
remove all segments of less than 3 elements in length, according to the definition of
motif mentioned in Section 1.

Definition 4 (Pattern). Let the filtered set of segments outputted by the alignment be-
tween υx, υx be A(enc(υx), enc(υy)). An element in A(enc(υx), enc(υy)) is a pattern.

Definition 5 (Pattern set). Let a score of m voices be S = [υ1, ..., υm]. From the
alignment between every possible pair of voices in S, we construct a set of all possible
patterns

P (S) =
⋃

(vx,vy)∈S×S

A(enc(υx), enc(υy)) (3)

As a valid pattern in P may appear multiple times in the course of the segmentation
process, the sum of its occurrences is defined as occ(p).

3.4 Intra-pattern discovery of motifs

Fig. 4. Intra-pattern discovery example (from Bach BWV889 fugue)

String-based approaches are used to uncover additional motifs which are not well-
captured in the segmentation process, including those which occur exclusively in one
voice. For patterns of greater than 11 intervals in length in P , we identify and extract
from them the longest frequent substring which occur two or more times. The choice
of 11 as a length threshold is informed by previous use of a maximum pattern length of
12 notes in the literature on n-gram-based Music Information Retrieval [23], which is
equivalent to 11 intervals. It also follows the definition of motif in this paper, favouring
relatively short motivic patterns over longer patterns, which potentially correspond to
musical sections or themes. The lengths of such musical structural units are not defined
in absolute terms, so the length threshold of 11 elements is proposed as a working
heuristic rather than a formal definition of maximum motif length. Figure 4 illustrates
a case where a pattern repeatedly appears in a sequence of intervals.

The longest frequent substring extracted from a long pattern may become a substi-
tution of the long pattern, according to rules defined as follows:
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Definition 6 (Pattern substitution). Let p be a pattern of length |p|, and let sub(p)
of length |sub(p)| be the longest substring that repeated at least two times in p. Let
rsub(p),p be the number of times sub(p) appears in p without overlapping. sub(p) takes
place of p in P if certain conditions are met, such as:

p =

{
sub(p), if |sub(p)| > 3 and |sub(p)| ∗ rsub(p),p >= 0.6|p|

p, otherwise (4)

In which, |sub(p)| > 3 ensures that sub(p) is a non-trivial substring, following the
logic discussed above in section 3.3, with the aim of removing frequent-but-insignificant
short patterns. |sub(p)| ∗ rsub(p),p >= 0.6|p| ensures that sub(p) meets the required
threshold to substitute for p.

Consider that sub(p) could substitute for more than one pattern in P , let pi be a
pattern in P that is substituted by sub(p), then

occ(sub(p)) =
∑
pi∈P

occ(pi)× rsub(p),pi (5)

3.5 Inter-pattern discovery of motifs

Definition 7 (All possible pairs of long patterns). Let (pi, pj) be a distinctive pair of
patterns in P , and the set of all possible pairs of patterns in P that are longer than 11
elements be longpairs(P ), then

longpairs(P ) = {(pi, pj)|pi, pj ∈ P and |pi| > 11, |pj | > 11} (6)

We take the longest common substrings (LCSS) of each pattern pair in longpairs(P ).
Unique substrings discovered in this step are added as patterns for further selection in
Section 3.6.2.

3.6 Ranking and selection of patterns

Graph-based pattern importance measure for ranking A weighted directed acyclic
graph is used to capture the relationship between patterns in P , in order to measure
the overall importance of a pattern based on its frequency of occurrence. The graph is
constructed from the set of patterns P , in which each pattern in P is a node of the graph,
and the directed edges represent substring relationships between patterns. The weights
on the edges reflect the strength of the relationship.

Let a graph be G = (P,E,w), P be a set of nodes, E be a set of directed edges,
and w be the weight function. For each pair of patterns pi and pj , if pi is a substring of
pj , we add a directed edge from pi to pj and a directed edge from pj to pi, weighted
according to the weight function.

The weight function w is defined as follows:
If pj is a substring of pi, then the weight of the edge eij from pi to pj is 1, denoted

as π(eij). The weight of the edge eji from pj to pi is the frequency of non-overlapping
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Fig. 5. A weighted directed acyclic graph of 9 patterns

occurrence of pj in pi, denoted as π(eji). Let I(pi) be the custom importance measure
of a pattern pi, and [ei1, ..., ein] be the set of directed edges from pi, then

I(pi) = occ(pi) +
n∑

k=0

π(ein) (7)

Figure 5 shows an example of a DAG constructed from a P of 9 patterns. Edges
are added when two patterns have a substring relationship. The green edges are edges
from substrings to their parent string, with a number representing their weight, while
the purple edges are from parent strings to their substring. Pattern “FGEGGG” is the
substring of “IFGEGGGFGEGGGFGGFFFF” which appeared 2 times, thus the edge
from the former to the latter is weighted as 2. Both “FGEGGG” and “FGEGG” have
the highest out-degree of 4, which indicates their importance in this set of patterns.

A set of rules for selection The patterns in P are ranked by their importance measure.
The top-20 ranked patterns are selected. The set of longest common substrings gener-
ated in inter-pattern discovery of motif process are not ranked along with patterns in P,
as they are extracted substrings of patterns in P. Instead, we consider those which are
longer than 3 elements and repeated more than twice as valid patterns. The patterns out-
putted in this selection process are retained and inputted to the music structural analysis
step.
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3.7 Music structural analysis

In addition to fundamental attributes such as duration and pitch, we use music21 to
extract a beatStrength value for every note in an input musical score. beatStrength is
an encoding of the degree of rhythmic emphasis associated with each note or item in a
score. It takes the form of a float value between 0 and 1. The first note of every bar can
be assumed to be heavily rhythmically accented, and is assigned a value of 1 by default.
beatStrength values are extracted for all first notes of each pattern occurrence.

If the first note of a pattern has a beatStrength value of 1, it indicates the pattern on-
set coincides with the beginning of a bar, i.e. the pattern aligns with the metric structure
of the piece of music. Such patterns are retained, while patterns which begin on less
rhythmically-emphasised notes are filtered out of the results.

There is one exception to this rule: As it is often the case that motifs occur at or
near the beginning of a score, the above metric filtering step is not applied to patterns
which occur in the opening 8 bars of a score. A threshold of 8 bars is chosen as this is
the most common length for the opening period (the opening two phrases) in common
western musical practice. Within this subsection of the score, patterns which begin on
a less-heavily emphasised note (i.e. which are not coincident with the metric structure)
are retained.

4 Results

4.1 Evaluation process

The algorithm is tested on the JKUPDD dataset [9], a set of 5 polyphonic classi-
cal scores with ground-truth annotation of repeating patterns drawn from academic
sources [24–26]. This database has been previously used for testing and evaluation
of other pattern detection work, notably as input data for the Music Information Re-
trieval Evaluation eXchange (MIREX) 2017 Discovery of Repeated Themes & Sections
task [19].

Diatonic interval sequences are extracted from the labelled ground truth patterns for
evaluation. The scores are manually checked to identify and annotate the exact diatonic
interval occurrences of the ground truth patterns.

The pattern annotation in the JKUPDD dataset covers a wide variety of pattern
types, including motifs, themes, phrases, and sections. They range in length from three
elements to more than 150 elements. As our method specializes towards detection
of short motif patterns, we elected to omit ground-truth annotated periods and sec-
tions from our results scoring. For the same reason, we also chose to score incomplete
matches of at least 4 pattern elements as positive results in the precision and recall
calculations.

According to documentation, patterns are labelled with alphabetic identifiers: “A”,
“B” and so on for each score, named in order of their importance. We will make refer-
ence to this hierarchical ordering in the discussion.

4.2 Results

Precision and recall scores of the testing are presented in Table 1.
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Work Precision (%) Recall (%)
Bach: BWV889 fugue 66.7 61.5

Beethoven: Op. 2, No. 1, Mvt. 3 100.0 45.0

Chopin: Op. 24, No. 4 50.0 50.0

Gibbons: The Silver Swan 87.5 84.6

Mozart: K282, Mvt. 2 60.0 100.0

Average 72.8 68.2
Table 1. Results: precision and recall for all JKUPDD scores

4.3 Discussion

Fig. 6. Exact match of ground truth pattern “A”, occurrence 4, in Bach BWV889 fugue

Fig. 7. Pattern “B” from Bach BWV889 fugue with two overlapping partial matches highlighted
and boxed in red.

Bach: BWV889 fugue Patterns A and B are the most frequent and most significant
patterns in this score. The algorithm returned A exactly. It is the opening musical motif
of the entire piece and the key musical idea behind the composition. The result is il-
lustrated in Figure 6, and detailed in the following sections. Although B matched only
partially, the matching subsequence repeats twice within B. This may suggest we are
capturing a core or fundamental motif within pattern B, per Figure 7.

Beethoven: Op. 2, No. 1, Mvt. 3 We fail to identify pattern A but match the open-
ing 11-element subsequence of pattern B, which is the second-most important musical
pattern in the piece per annotation.

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

639



Chopin: Op. 24, No. 4 We found a robust partial match to ground truth pattern A.
The found motif occurs at the start of pattern A and repeats twice within it, in a similar
manner to 7 above. Thus, the motif may be core content within pattern A, which is the
most musically important/distinctive in the piece.

Gibbons: The Silver Swan Pattern A, which occurs early and repetitiously in 4 of the
5 voices, has been detected in full. Overall, our precision and recall scores are very high
for this composition. It is possible that the shortness of the ground truth patterns for
The Silver Swan play to the strengths of our tool, as it is tailored towards shorter motif
pattern detection.

Mozart: K282, Mvt. 2 The sole ground truth pattern detected is a significant subse-
quence of pattern A. This is an incomplete but positive result, capturing the last 6 notes
of this significant 10-note pattern. The detected pattern does not appear in the ‘defini-
tive’ opening occurrence of pattern A, but occurs in 10 of the 11 other noted variant
occurrences of pattern A in the course of the score.

Study Precision (%) Recall (%)
VM1 [27] 84.0 89.0

VM2 [27] 76.0 80.0

SymCHM [5] 67.9 45.4

SymCHMMerge [5] 68.0 51.0

Chen & Su [28] 50.0 69.6

Zhu & Diamond 72.8 68.2
Table 2. Average establishment precision and recall results for a selection of work evaluated on
the JKUPDD database. Standard precision and recall results for our work included for compari-
son.

Comparison with other studies Table 2 compares our scores against establishment
precision and recall values reported in other studies tested on the JKUPDD database.
The establishment precision and recall defined in MIREX task guidelines [29] allows
for the validity of a partial match, which is similar to our use of standard precision/recall
with positive scoring of partial matches.

Although the results in Table 2 allow informal comparison of our results against
similar work, it is important to note that our use of diatonic interval sequences rather
than MIDI pitch sequences, our omission of sections from the ground truth, and our
use of standard precision/recall all differ from the approach set out in the MIREX task
documentation.

In Table 2 our approach compares favorably against all studies other than Velarde
and Meridith’s VM1 and VM2 studies [27]. Both VM1 and VM2 extract short pitch
sequence ’segments’ directly from MIDI; VM2 also filters these sequences via wavelet
transform. Contiguous segments are concatenated, clustered via city block distance and
ranked by the length of their occurrences in the ground truth. This building up from
an initial set of short patterns contrasts against our work in which long patterns are
compressed in multiple passes to produce shorter motific output patterns.
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5 Contribution and future work

This paper introduces a motif extraction approach that makes novel use of local align-
ment for string segmentation. Patterns are detected by employing string-based meth-
ods, and a custom graph model for similarity scoring has been developed, combined
with a musicologically-informed analysis and filtering step. The results presented ex-
hibit a high degree of accuracy, broadly comparable to best-in-class pattern detection
algorithms. To aid reproducibility, the source code is available on GitHub [30].

The proposed method supports related musicological tasks, such as the analysis of
characteristic motifs in composition styles, or the classification of music corpora. It also
has potential applications in various domains in MIR including music generation.

In the future, we plan to improve the algorithm via encoding more musicological
knowledge. We also intend to apply the algorithm to inter-opus pattern detection in a
corpus of monophonic Irish traditional folk tunes on The Session [31], which will help
gain greater insight into the role of motifs in defining tune families [32] within the
corpus.
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Abstract. We propose a system to retrieve background music (BGM) for game
scenes. BGM plays an important role in creating a particular atmosphere in game
scenes, so studies have investigated the relationship between game scenes and
BGM. However, none of the existing studies attempted to predict the audio fea-
tures of BGM directly from a sequence of images expressing game scenes. In our
system, the user inputs a sequence of images of a game scene, then our machine
learning model, trained with gameplay videos, predicts the audio features from
the input. Finally, the system retrieves the closest musical piece to the predicted
audio features. Experimental results show both positive and negative tendencies:
the predicted audio features for fight scenes are closer to the features of actually
used BGM in fight scenes than those in other scenes (positive); the same musical
piece was retrieved for different scenes (negative).

Keywords: CNN-LSTM, Video Game Music (VGM), Role-playing Game (RPG),
Speedrun Video, Copyright-free Music

1 Introduction

Background music (BGM) plays a role in creating the atmosphere of a video game. In
particular, musical pieces used in different scenes (e.g., talk, fight) would be carefully
composed to make different atmospheres that different scenes have. Therefore, we sup-
pose a strong relationship exists between the atmosphere of a scene, and the feature of
the BGM used there. For example, the BGM in a fight scene of a role-playing game
(RPG) may tend to create a tense atmosphere with strong beats, while the BGM used in
a talk scene may tend to create a calm atmosphere with soft timbres and rhythm.

The final goal of our study is to establish a technology that makes it possible to
recommend the BGM that fits each of the various scenes in a game. This technology is
intended to be used by indie game creators. After they create various scenes of their own
game, they will give each scene (a sequence of screen images) to our system. Then, the

⋆ This work was supported by JSPS Kakenhi Nos. JP22H03711 and JP21H03572.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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system recommends the musical piece that fits each scene as BGM based on a machine
learning model.

Some researchers have investigated the relationship between game scenes and BGM.
Yamauchi et al.[1] developed a system that retrieves music from game scenarios. Nemoto
et al.[2] investigated the relationship between the emotional state of a character and
BGM. Choi et al.[3] created a game music database with emotion labels and a model to
generate a baseline. Kim et al.[4] developed a game that records BGM’s and the player’s
moods simultaneously and analyzed their relationship. Ishikawa et al.[5] developed a
system that retrieves BGM from visual scenes through impression words. Zeng et al.[6]
developed a system that retrieves movies from music. “AmBeat”[7] is an application
that adds generated music to a video when the video is input. “Deep12”[8] searches for
similar music when music is input. They did not deal with directly predicting musical
features of BGM for games from those games’ visual scenes.

In this paper, we develop a method for predicting audio features of BGM that fits
given game scenes from a sequence of screen images. Because there are many gameplay
videos on Web-based video hosting services, we can quickly obtain large-scale data
consisting of pairs of a sequence of screen images of a game and audio signals of its
BGM. By learning those data, we will achieve the prediction of the audio features of
BGM from screen images.

2 Proposed Method

We propose a system that outputs the audio features of BGM suitable for the input game
scene. The system is intended to be used when the user creates his/her own game and
finds musical pieces for adding to the game as BGM. First, the user inputs a sequence
of images of a scene (e.g., Fight, Talk) included in the created game. Then, the system
predicts a sequence of the audio features that are considered to fit the given scene.
Finally, the system outputs the musical piece with the closest audio features to the
predicted ones from the music collection prepared in advance.

It is generally challenging to find a universal relationship between scenes and BGM.
We assume that the user creates a game referring to an existing game (called a referred
game here), and they are similar to each other. Therefore, we let the user specify the
referred game and learn the relationship between scenes and BGM.

2.1 Input and Output Data

The input and output data were taken from speedrun videos posted on YouTube. First,
we saved videos in MP4 format. Next, we classify the video frame by frame using
k-means[9]. Finally, we extracted one hundred 12-second segments from the video to
avoid including multiple classes.

Then, we applied the following pre-processing. We divide the input and output data
obtained by these processes in half and use them as training and test data.

Input Data We loaded a 12-second video using the OpenCV library and converted the
color space of images from BGR to HSV. The image size was also changed to 80× 80.
We accordingly obtained tensor data of dimensions 80× 80× 3.
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Output Data We extracted the audio tracks from the videos mentioned above and saved
them in WAV format. The audio features described in Table 1 were extracted using the
LiBROSA library. Some of these audio features can be selected and used.

Table 1. Audio features to be extracted

Feature Outline
01 cqt Semitone power specrogram using constant-Q transform
02 iirt Semitone power spectrogram using a multirate filter bank consisting of IIR

filters
03 chroma stft 12-dimensional features representing the power of each pitch class, calcu-

lated from the STFT-based power spectrogram
04 chroma cqt 12-dimensional features representing the power of each pitch class, calcu-

lated from the CQT-based power spectrogram
05 chroma cens 12-dimensional features with smoothed temporal variations in chroma cqt
06 melspectrogram Mel-scaled spectrogram
07 mfcc Mel-frequency cepstral coefficients
08 mfcc delta2 Temporal second-order differentials of MFCCs
09 nmf Activations obtained by non-negative matrix factorization from the spectro-

gram

2.2 Model Architecture

Our model is based on CNN-LSTM[10][11], in which the CNN[12] part reduces the
image data of the given game scene video while the LSTM[13] part models the tem-
poral features contained in the scene video and BGM. The overview of this model is
shown in Fig. 1. The CNN part consists of multiple convolution layers and max pooling
layers. The LSTM part consists of two LSTM layers to make it possible to consider
long temporal dependencies.

As mentioned above, we assume that the user has a referred game, an existing game
that he/she referred to when creating a game. Therefore, our model is trained individu-
ally on each training game, and the model trained on the referred game is intended to
be selected by the user.

This model has been implemented with the Keras library of Tensorflow. We use
ADAM[14][15] as an optimizer and the mean squared error as the loss function. The
batch size is 16. The number of epochs is 500 for chromagrams and 100 for other audio
features. They were experimentally determined to make the loss function less than 0.01.

2.3 Retrieval of musical pieces from predicted audio features

After the audio features for BGM are predicted, the system retrieves the musical piece
with the closest audio features to the predicted ones from a pre-made music collection.
This process includes the following two phases.
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Layer type Details Activation
01 Convolution Filters: 16, Size: 3× 3 ReLU
02 Max pooling Size: 2× 2 —
03 Convolution Filters: 32, Size: 3× 3 ReLU
04 Max pooling Size: 2× 2 —
05 Convolution Filters: 64, Size: 3× 3 ReLU
06 Max pooling Size: 2× 2 —
07 Flatten — —
08 Full connect Nodes: 128 ReLU
09 Full connect Nodes: 128 —

Fig. 1. Architecture of our model. The right-hand table shows the details of the CNN layers

Extraction of 12-second representative segment First, the system extracts a 12-
second representative segment from each piece included in the collection. This is be-
cause a sequence of audio features extracted from each piece in the collection should
have the same duration as the predicted audio features. Although extracting the first
12-second segment may be the simplest way, it may not capture the characteristics of
the entire music. Therefore, we extract the segment that captures the characteristics of
the music as follows:

1. A sequence of MFCCs is extracted from the target audio signal.
Let x = [x1, x2, · · · , xN ] be the sequence of the MFCCs.

2. All MFCC vectors x1, x2, · · · , xN are clustered with the k-means algorithm[16].
The number of clusters is set to 4. Let ci be the cluster ID of xi. Then, the most
frequent cluster ID, cmode, is obtained.

3. Let xi = [xi, xi+1, · · · , xi+n] be a 12-second segment beginning at xi, where n is
the number of elements for a 12-second segment. Then we compute î that satisfies
the following equation:

î = argmax
i∈[0,N−n]

count(cmode, [ci, ci+1, · · · , ci+n]),

where count(a,A) counts how many elements in a sequence A equals a.
4. xî is regarded as the 12-second representative segment.

Search of musical piece Next, we extract audio features from the extracted 12-second
representative segment for every piece in the collection. The audio features to be ex-
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tracted, listed in Table 1, are the same as those used in the prediction with the CNN-
LSTM model. Then, the Earth Mover’s Distance[17][18] of the extracted audio features
from the predicted ones is extracted for every piece in the collection. Finally, the piece
that has the minimal distance is searched.

3 Experiments

We conducted the following experiments.

1. Determination of referred and test games
2. Prediction of audio features
3. Retrieval of musical pieces from the predicted audio features

3.1 Dataset

We made a dataset from speedrun videos of the games in Table 2 posted on YouTube.
We divided them into 12-second scenes and extracted two fight scenes, two walk scenes,
and two talk scenes. We created a music collection for BGM from the copyright-free
music sites in Table 3. We downloaded 99 WAV files from free music sites.

3.2 Determination of referred and test games

As mentioned above, we assume that the user selects a referred game and uses the
model trained with that game. To simulate this situation, we adopt the following three-
step approach. To reduce the computation time for learning models, we first choose a
referred game and then decide the test game which is closest to the referred game.

1. Choose a referred game.
2. Find the game with the most similar visual scenes to the chosen one. This game is

regarded as a test game.
3. The model trained with the referred game’s data is used for predicting audio fea-

tures.

Step 2 is calculated based on the average of the image hash value differences. The
average hash value difference is calculated in the following steps.

2-1 Load the videos of the two games as images.
2-2 Compute hash values of all images.
2-3 Compute the difference between the hash values of the two games for all combina-

tions.
2-4 Compute the average of hash value differences.

The results of the calculated dissimilarities are shown in Fig. 2. For “Undertale” (re-
ferred game), “OMORI” (test game) was selected. For “Chrono Trigger” (referred game),
“Romancing Saga 3” (test game) was selected. Fig. 3 shows some excerpts of the visual
scenes of those games.
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Table 2. Games used in the experiment as referred and test games

Game Usage Outline
01 Ghost of Tsushima Test game A samurai joins a battle on a quest to pro-

tect Tsushima Island during the first Mon-
gol invasion of Japan

02 OFF Test game An enigmatic humanoid entity called Bat-
ter travels the world on a sacred mission to
purify the world

03 OMORI Test game The player explores both the real world
with Sunny and the dream world with his
alter-ego “OMORI” in the dream, over-
coming his secrets

04 Undertale Referred game The player controls a child who has fallen
underground and adventures back to the
surface while meeting various monsters

05 Chrono Trigger Referred game The player controls a group of adventur-
ers on a journey through time to prevent a
global catastrophe

06 It’s a Wonderful World Test game Players are deprived of what is most pre-
cious to them and forced to participate
in the Reaper’s Game for the survival of
Shibuya

07 NieR:Automata Test game Players take on the role of human-made an-
droids in a proxy war against an invading
army of Machines from another world

08 PERSONA5 Test game The player and his friends awaken their
persona abilities and become the Phantom
Thieves of Hearts to steal malevolent intent
from the hearts of adults

09 MONSTER HUNTER STORIES Test game Players explore the world after the village
where they live with the monsters they
were born into is hit by a disaster

10 Romancing Saga 3 Test game Rise of Morastrum occurs again, and the
player ends up involved in the hunt for the
Child of Destiny as eight main characters

11 WILD ARMS Test game Players control a boy who wields ARMS
to prevent an otherworldly threat from re-
viving their lost leader and destroying the
world

12 Okami Test game The player becomes Amaterasu and em-
barks on a journey to fulfill people’s wishes
to defeat Yamata no Orochi and restore the
world
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Site URL
01 bensound https://www.bensound.com/
02 DOVA-SYNDROME https://dova-s.jp/
03 MusMus https://musmus.main.jp/
04 PeriTune https://peritune.com/
05 Solitary Sound https://az-ho.org/
06 Devil Soul https://maou.audio/
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Undertale

Chrono Trigger

0.840 0.874 0.691 0.000 0.826 0.800 0.972 0.910 0.885 0.781 0.697 0.748

0.688 0.754 0.942 0.826 0.311 0.737 0.827 0.745 1.000 0.677 0.772 0.766

Fig. 2. Dismilarity of visual scenes between games to determine test games

3.3 Evaluation on prediction of audio features

We experimented with evaluating audio feature prediction through our CNN-LSTM
model. This evaluation compares the dissimilarity between the predicted audio features
and those of actually used BGM. Because the effectiveness of the prediction would
be different among audio feature categories, the effects of each feature category are
evaluated individually, as well as their combinations.

Method We trained models with each feature category to evaluate the effects of each
audio feature category individually. Because we have nine feature categories (Table 1)
and two games (“Undertale” and “Chrono Trigger”) as referred games, we trained 18
models. Then, we gave the models six scenes S (two fight, two walk, and two talk
scenes) from each of the two games (“OMORI” and “Romancing Saga 3”) as test
games. Hence, we obtained the predicted audio features ypredi (s) and compared them
with the audio features ytruei (s) of actually used BGM (i: audio feature type, s(∈ S):
scene).

Because BGM for different scenes should have different audio features, we identi-
fied that the audio features have inter-scene variations. Specifically, we calculate i that
maximizes the following equation:∑

s∈S

∑
s′∈S\{s}

{dist(ytruei (s′), ypredi (s))− dist(ytruei (s), ypredi (s)}

Table 3. Copyright-free music websites used to create a music collection
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(a) Toby Fox: “Undertale”, 2015 (b) OMOCAT: “OMORI”, 2020

(c) SQUARE: “Chrono Trigger”, 1995 (d) SQUARE: “Romancing Saga 3”, 1995

Fig. 3. Excerpts of visual scenes in the used games

where dist(ytruei (s), ypredi s) represents the distance between the predicted and actual
audio features of the same scene.

Results For “OMORI” (referred game: “Undertale”), the use of only chroma cqt max-
imized the inter-scene variations of the audio features. For “Chrono Trigger’ (referred
game: “Romancing Saga 3”), the combination of chroma stft, chroma cqt, chroma cens,
and mfcc delta2 maximized the inter-scene variations.

Discussion Fig. 4 (Left) shows the distance between the predicted features and actual
features of each scene for “OMORI” (referred game: “Undertale”). Observations from
this figure can be summarized as follows:

– When we focus on Fight Scene 1’s predicted features, the distance from the actual
features of the same scene should have been the smallest, but the distance from
Walk Scene 1’s actual features was the smallest. Also, for Fight Scene 2, the dis-
tance of its predicted features from Walk Scene 1’s actual features was the smallest.
These results imply that “Undertale” fight scenes and “OMORI” walk scenes may
have similar features in BGM.

– When we focus on the two walk scenes, both Walk Scene 1’s and Walk Scene 2’s
predicted features had the smallest distance from Walk Scene 1’s actual features. It
means that our models well predicted the walk scenes’ audio features.

– For the two talk scenes, the distances between their predicted and actual features
were the largest. In general, talk scenes’ actual features tended to have large dis-
tances from all scenes’ predicted features. This could be why “Undertale” tended
to have few talk scenes.
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Fig. 4. Distance matrix of predicted vs. actual audio features (Left: “Undertale”, Right: “Chrono
Trigger”)

Fig. 4 (Right) shows the distance between the predicted features and actual features
of each scene for “Chrono Trigger” (referred game: “Romancing Saga 3”). Observations
from this figure are summarized as follows:

– When we focus on the two fight scenes, the scenes with the actual features with the
minimal distance from the fight scenes’ predicted features were fight scenes. These
results imply that “Chrono Trigger”’s fight scenes may have similar features BGM
to each other.

– The walk scenes’ predicted features were closer to the fight scenes’ actual features
than the walk scenes’ ones. Similarly, the talk scenes’ predicted features were also
closer to the fight scenes’ actual features than the talk scenes’ actual features. As
well as “OMORI”, the distance from the talk scenes’ actual features tended to be
large in general. This could be why “Chrono Trigger” tended to have many fight
scenes.

3.4 Evaluation on retrieval of musical pieces from the predicted audio features

We experiment with music output. If the same music is output, even if different scenes
are input, it goes against the purpose of the research. Therefore, we verify which audio
features are suitable for outputting different music.

Method We prepared six scenes from each of the 12 games listed in Table 2 (72
scenes in total). Let S = {s1, s2, · · · , sJ} be a set of the prepared scenes. For BGM
retrieval, we used the music collection described in Section 3.1, which consists of
99 musical pieces taken from copyright-free music collection websites. Here, M =
{m1,m2, · · · ,mK} be the music collection. For each scene si in S, we retrieved the
musical piece that best fits the given scene. Here, the retrieved musical piece for scene
si is represented by output(sj).
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The important point is that retrieved musical pieces should differ for different scenes.
In other words, for si and sj (i ̸= j), it should be output(si) ̸= output(sj). There-
fore, for each musical piece mk, we calculated the number of scenes, sj(1 ≤ j ≤ J)
satisfying mk = output(sj). This number is denoted by Xi(mk) (i: the audio feature
category). When the condition mentioned above is satisfied, Xi(mk) should equal 0 or
1 (as long as M has a sufficiently large number of pieces compared to the number of
scenes), and its expected value is J/K. Therefore, we evaluated the appropriateness of
the BGM retrieval by calculating the mean squared error between Xi(mk) and J/K.
That is, we identified the most effective audio feature category î that minimizes the
following equation:

î = argmin
i∈I

K∑
k=1

(
Xi(mk)−

J

K

)2

Results Experimental results show that chroma cqt is the most effective audio feature
category for learning “Undertale”. Table 4 lists the retrieval results obtained by inputting
the scenes of “OMORI” into the model trained by “Undertale” with chroma cqt. This
shows that the same musical piece was output for different scenes (the two walk scenes
and one talk scene).

For “Chrono Trigger”, chorma stft is the most effective audio feature category. Ta-
ble 5 lists the retrieval results obtained by inputting the scenes of “Romancing Saga 3”
into the model trained by “Chrono Trigger” with chroma stft. It shows that the same
musical piece was output for Walk Scene 1 and Talk Scene 2. Otherwise, different mu-
sical pieces were output for different scenes.

Table 4. Musical pieces retrieved for scenes from “OMORI” (features: chroma cqt, referred
game: “Undertale”)

Scene EMD Music title Artist URL
01 Fight Scene 1 0.132 Catch!! watson https://musmus.main.jp/music_game.html
02 Fight Scene 2 0.075 And then we ran watson https://musmus.main.jp/music_game.html
03 Walk Scene 1 0.044 Pursuer watson https://musmus.main.jp/music_game.html
04 Walk Scene 2 0.024 Pursuer watson https://musmus.main.jp/music_game.html
05 Talk Scene 1 0.125 And then we ran watson https://musmus.main.jp/music_game.html
06 Talk Scene 2 0.051 Pursuer watson https://musmus.main.jp/music_game.html

Table 5. Musical pieces retrieved for scenes from “Chrono Trigger” (features: chroma stft, re-
ferred game: “Romancing Saga 3”)

Scene EMD Music title Artist URL
01 Fight Scene 1 0.078 And then we ran watson https://musmus.main.jp/music_game.html
02 Fight Scene 2 0.067 Pursuer watson https://musmus.main.jp/music_game.html
03 Walk Scene 1 0.033 Sonorously Box watson https://musmus.main.jp/music_game.html
04 Walk Scene 2 0.036 The Chuckling Witch Hibiki Abe https://az-ho.org/a-smiling-witch
05 Talk Scene 1 0.088 Mid-range Strength watson https://musmus.main.jp/music_game.html
06 Talk Scene 2 0.086 Sonorously Box watson https://musmus.main.jp/music_game.html

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

652



4 Conclusion

In this paper, we proposed a system that retrieves BGM that fits game scenes given as
a sequence of screen images. Using gameplay videos taken from YouTube, we learned
a CNN-LSTM-based transformation model from a sequence of screen images to audio
features of BGM. Next, the system uses this model to predict the audio features that
match the given game scene as BGM. Finally, the system retrieves the musical piece
with the closest audio features to the predicted ones.

To confirm the effectiveness of this system, we conducted some experiments. In
particular, the comparisons of the predicted audio features and those used in actual
BGM show that the predicted features for fight scenes are close to those of the actual
BGM. In contrast, the predicted features of walk scenes and talk scenes are not close
to those of the same scenes’ actual BGM. Also, we discussed retrieved musical pieces
for each scene. Retrieved musical pieces should be different for different scenes. It was
partly achieved, even though the same musical piece was output for some scenes.

This research is based on a strong assumption that screen images and BGM in games
have explicit dependencies on each other. We believe this assumption is partly true but
has not yet been fully confirmed. In the future, we will verify the appropriateness of our
ideas with larger-scale data as well as the system’s usability tests.
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Abstract. This paper proposes an interface that enables music exploration fo-
cusing on two factors of singing voices, vocal timbre and pitch, that are useful
in finding singing voices that match users’ preferences. The proposed interface
uses a two-dimensional color map to visualize songs being explored and locates
them according to timbre or pitch similarities of their singing voices. Since sim-
ilar songs are located closely on the map, users can visually find singing voices
similar to their favorite singing voices. In addition to the location, the interface
uses the color of each song on the map to visualize an additional factor related
to characteristics of singing voices, such as acoustic features or words describing
singing voices (e.g., “Clear”). Prior to developing the interface, we conducted a
questionnaire survey with 20 participants and confirmed that both vocal timbre
and pitch are important when listening to music. The proposed interface was im-
plemented with 102 songs, and a user study was conducted with 60 participants.

Keywords: Music information retrieval, vocal timbre, pitch histogram, singing
descriptors, music exploration interface

1 Introduction

Since vocals are one of the major parts in music [1], music information retrieval (MIR)
technologies focusing on singing voices are beneficial to a wide range of users [2].
In fact, MIR methods and interfaces that focus on various factors of singing voices
— such as vocal timbre [3–6], vocal range profile (i.e., pitch and intensity) [7], lyrics
[5,8–11], singing style [12–14], and gender [15] — have been proposed for the purpose
of listening to songs or the purpose of finding songs to sing. In order to provide a new
direction for such a series of academic studies, this paper proposes a novel interface
that enables exploratory music retrieval focusing on multiple factors of singing voices.
⋆ This work was supported in part by JST CREST Grant Number JPMJCR20D4 and JSPS KAK-

ENHI Grant Number JP21H04917.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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2D map representing

timbre/pitch features

Radio buttons

to change color

Audio player

Tabs to display timbre/pitch 2D maps

 or timbre/pitch vectors

Fig. 1. Screenshot of the proposed interface.

Since singing voices have various factors, a music exploration interface that allows
switching the visualized factors to be focused on is convenient for uses with different
purposes. For users who are interested in finding singers having a similar vocal tim-
bre, visualizing the vocal timbre is useful, and for users who are interested in finding
songs having a similar vocal pitch distribution, visualizing the vocal pitch is useful. The
factors to be focused on thus depend on the purpose of the exploration.

We target vocal timbre and pitch for our interface. We consider these two factors
to be effective in music exploration for two reasons. First, as a result of our survey ex-
plained later in which participants were asked to describe their favorite singing voices,
many of the answers described vocal timbre and pitch. Second, it is helpful for users
who want to find songs with their favorite singing voices to use or combine vocal tim-
bre and pitch. Recently, there has been a culture in which a lot of people enjoy singing
existing songs as cover versions and share their cover songs online. Users who enjoy
such songs could find and enjoy songs having their favorite singing voices even if they
do not know those songs or singers.

We therefore developed a music exploration interface that visualizes the two fac-
tors, vocal timbre and pitch, and enables users to switch the visualized factors to find
songs having their favorite singing voices. A screenshot of our interface is shown in
Figure 1. On the right side, each song is depicted as a circular dot on a two-dimensional
color map representing the similarity of vocal timbre or vocal pitch factors, which can
be interactively switched by a user. Since similar songs are located closely on the map,
the user can easily find a song having a vocal timbre similar to that of the user’s favorite
singer on the map focusing on the vocal timbre similarity. The user can see the song
title and singer name by mousing over a song. Each song has an identifier (ID) based
on the singer name (e.g., Ado3 means the third song of singer Ado in our dataset used
for the interface), and the user can play back a song by specifying its ID from a pull-
down menu on the left sidebar of the screen. The interface uses the color of the song to
indicate one of the following: singer name, song title, singer gender, center of gravity
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of the average mel spectrum, center of gravity of the pitch histogram, and singing de-
scriptors (e.g., “Clear”). This additional color helps users understand the characteristics
of singing voices in finding their favorite songs, and the combination of the location
and color on the two-dimensional map gives high flexibility in visualizing multiple fac-
tors of singing voices. To the best of our knowledge, such a flexible music exploration
interface that leverages both vocal timbre and pitch factors has not been proposed.

2 Related work

Related to this research are studies on music visualization interfaces for finding one’s
favorite singers or lyrics. Fujihara et al. [3] proposed VocalFinder, an interface that
retrieves songs having similar singing voices by modeling vocal timbre and singing
style using a Gaussian mixture model. Hamasaki et al. [15] proposed Songrium, a mu-
sic browsing assistance interface that has a function to analyze and visualize singing
voices. It uses a circle to visualize a song, and the color and size of the circle indi-
cate the singer’s gender and the number of play counts, respectively. Sasaki et al. [8]
proposed LyricsRadar, an interface that estimates topic distributions from lyrics text
using latent Dirichlet allocation and locates lyrics on a two-dimensional map using t-
SNE [16]. Tsukuda et al. [10] proposed Lyric Jumper, an interface that visualizes lyric
topic distributions for each singer as a donut chart to let users find singers with simi-
lar topics. Watanabe et al. [11] proposed Query-by-Blending, an interface that enables
users to find songs by a query combining lyrics, song acoustic signals, and artists.

Map-based music browsing interfaces that locate songs on a two- or three-
dimensional map have also been proposed [17]. In addition, as MIR methods targeting
pitch, Tzanetakis et al. [18] used a pitch histogram to automatically classify music gen-
res. Moreover, to recommend songs appropriate for the user’s singing ability, a feature
called vocal range profile (VRP) has also been studied (e.g., [7]). The VRP indicates
the range of intensity for each pitch that a singer can sing.

Words that describe singing voices help determine vocal characteristics that peo-
ple are likely to pay attention to when listening to songs. There have been studies on
emotional expressions of singing voices [19,20]. Scherer et al. [20] studied the correla-
tion of acoustic features to “anger”, “fear”, “tenderness”, “joy”, “sadness”, and “pride”
when eight professional opera singers sang musical scales. There have also been studies
that determined a set of words that express impressions of singing voices and annotated
them to songs [21, 22] for their automatic estimation. Kanato et al. [21] defined a set
of 47 impression words of singing voices. The factor analysis revealed three factors,
“power,” “politeness,” and “brightness,” as well as 12 words (e.g., “clear” and “cute”)
that comprise the singing impression scale. Kim et al. [22] defined 70 vocabulary words
to describe solo singers. From results of five semi-experts’ annotations of actual songs
using those 70 vocabulary words, 42 vocabulary words were obtained and classified
into five categories: pitch (range), timbre, gender, genre, and technique.

Compared with the above studies, the key contribution of this paper is to develop a
music exploration interface that uses a combination of vocal timbre and pitch. Another
contribution is that we show the appropriateness of using vocal timbre and pitch as
factors in music exploration by conducting a questionnaire survey.
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3 Survey of preference for singing voice when listening to music

Prior to the interface development, a questionnaire survey was conducted with 20 partic-
ipants, males and females in their twenties. The purpose of the survey was to investigate
users’ impressions of vocals and their needs when listening to music. Although there
were previous studies [21, 22] that defined words to describe singing voices in popular
music, they did not focus on preference for singing voice when listening to music.

The questionnaire consisted of the following three sections:

S1: a section to measure the participants’ musical ability based on the Goldsmiths Mu-
sical Sophistication Index (Gold-MSI) [23],

S2: a section in which participants were asked to write freely about their favorite
singing voices, favorite artists/songs, and the reasons for their favorites, and

S3: a section in which participants were asked to rate 3 vocal aspects (pitch height,
pitch range, and timbre) on a 7-point scale.

3.1 S1: Musical sophistication of participants

In the Gold-MSI, participants answer questions such as ”I am able to hit the right notes
when I sing along with a recording.” on a 7-point scale from 1 (Completely Disagree)
to 7 (Completely Agree). In this paper, we asked participants to answer questions on
“Active Engagement” and “General Sophistication” because we thought they are rele-
vant to music appreciation in general. Since the survey focused on singing, participants
were also asked to answer questions about “Singing Abilities.”

The scores for “Active Engagement,” “Singing Abilities,” and “General Sophistica-
tion” are shown in Figure 2. Each score was obtained by averaging the raw score values
for the relevant questions for comparisons independent of the number of questions. In
the scatter plot, differences in the Singing Abilities scores are represented by differ-
ent colors. The results show that all median values of the scores were around 4. The
correlation between Active Engagement and General Sophistication was high at 0.90,
and their medians were slightly below 4, indicating a slightly lower score distribution.
On the other hand, the median for Singing Abilities was slightly above 4, with a bal-
anced distribution of high and low scores. The correlation between Singing Abilities
and Active Engagement was 0.59, and that between Singing Abilities and General So-
phistication was 0.74. These results indicate that the participants had an average interest
and ability in music, and the high correlation between Active Engagement and General
Sophistication indicated a certain degree of reliability in their answers.

3.2 S2: Preference for singing voice when listening to music

Here, analysis focused on answers to the following two open-ended questions.

Q1 “Please describe as many characteristics as possible of your favorite singing voice
when you listen to music.”

Q2 “Please describe the artist whose voice you like to listen to. Please also describe
what you like about that artist’s voice.”
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Fig. 2. Distribution of scores for Active Engagement, Singing Abilities, and General Sophisti-
cation in Gold-MSI. In the scatter plot, differences in Singing Abilities scores are indicated by
different colors. The higher the scores, the more sophisticated with regard to those factors.

For the answers to Q1 and Q2, the words used by participants to describe the singing
voice are shown below. These words are hereafter referred to as “singing descriptors.”
The number of people who used them is also shown in parentheses. According to Kim
et al. [22], each singing descriptor was classified into four categories: pitch, timbre
(voice quality, singing style, emotion), gender, and singing ability (singing technique).

– Pitch: High-pitched (10), Low-pitched (6), Not too high (1), Mid-low range (1),
Not too low (1), Very low (1), Wide range (1)

– Timbre (voice quality, singing style, emotion)3: Clear / Transparent (14), Beauti-
ful (6), Unique (6), Tender (4), Powerful (4), Calm (4), Fluffy / Airy / Floating (3),
Cute (3), Comfortable (3), Cool (2), Sexy (2), Sweet (2), Cheerful / Energizing (2),
Likable (2), Rough (2), Soft (2), Deep (2), Delicate (2), Distinctive (2), Healing (2)

– Gender: Female (3), Male (2), Neutral (1)
– Singing ability (singing technique): Expressive (3), Falsetto (2), Large inflection

(2), Vibrato (2), Strong (2), Accurate pitch control (2), Long tones without hoarse-
ness (1), Comfortable high tone (1), Breathy (1), Head voice (1), Sound on inhala-
tion (1), Precise control (1), Not labored (1), Emotional variation (1), Steady (1),
Kobushi (1), Growl (1), Sing out from the stomach (1)

The above results show that singing descriptors related to pitch and timbre were
frequently used. Pitch-related “High-pitched” and “Low-pitched” were included in 10
and 6 answers, respectively. Timbre-related “Clear / Transparent” and “Beautiful” were
included in 14 and 6 answers, respectively. On the other hand, singing descriptors re-
lated to gender and singing ability (singing technique) were not frequently used. These
results suggest that pitch and timbre are important in describing favorite singing voices.

3.3 S3: Factors of singing to be aware of when listening to music

Using a 7-point Likert scale, we asked participants to rate three vocal aspects (pitch
height, pitch range, and timbre) that they are aware of when listening to music, without
limiting themselves to specific songs.

3 Since there were too many singing descriptors answered for the timbre category, only singing
descriptors answered by two or more participants are shown.
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Fig. 3. S3: Answers to questions related to vocal timbre and pitch on a 7-point Likert scale. The
higher the score value, the more aware of the factor when listening to music.

The numbers of participants who answered each of the rating points (scores) are
shown in Figure 3. The average scores for vocal pitch height and vocal pitch range
were 4.15 and 4.35, respectively, indicating that the degree of awareness was higher
than 4. The average score for vocal timbre was 6.1, which was also high.

3.4 Discussion

The results of this survey suggest that vocal pitch and timbre play important roles in
determining a favorite singer’s voice when participants with an average musical sophis-
tication listen to music. This is also supported by previous studies in which pitch and
timbre categories were used as vocal tags defined by Kim et al. [22] and music tags de-
fined by Turnbull et al. [24]. We therefore believe that developing a music exploration
interface focusing on vocal pitch and timbre is worthwhile and effective.

4 Interface

In order to visualize the similarity of vocal timbre and pitch and to enable exploratory
search, we implement the interface (Fig. 1) as a map-based interface [17], which has
been proposed widely in the past. The proposed interface estimates the timbre and pitch
feature vectors of vocals from audio signals of each song and uses them to locate each
song as a single circular point on a two-dimensional color map.

4.1 Data and back-end processing

The songs used for interface development are 51 songs for 17 female singers (3 songs
for each singer), and 51 songs for 17 male singers (3 songs for each singer), for a total
of 102 songs. All the songs had at least 10,000 views on YouTube as of December 2022
even though they are cover versions of 36 original songs of Japanese popular music (2
or 3 covers per song).

An overview of the back-end processing is shown in Figure 4. First, the singing
voices were separated from all 102 songs using Hybrid Demucs [25]. To estimate pitch
histograms, note-level pitch sequence was estimated by using Omnizart [26]. The pitch
histograms were standardized by song to eliminate the effect of song length and then
standardized by dimension and referred to as pitch vectors.
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Fig. 4. Overview of the back-end processing of the proposed interface.

Timbre features were obtained by calculating the mean and variance of each di-
mension of MFCCs from the separated singing voice. To calculate MFCCs, STFT was
calculated for a music signal with a sampling frequency of 22,050 Hz, with a window
length of 2048 and a shift width of 512. The number of mel frequency bins was 128
and the MFCC dimension was 12, excluding DC components. Here, the vocal activity
segments were determined by utilizing the note-level pitch information from Omnizart,
and only the MFCCs for those vocal segments were used to calculate the mean and vari-
ance. Finally, the mean and variance of the MFCCs for all 102 songs were standardized
by dimension and referred to as timbre vectors.

Finally, principal component analysis was performed on these timbre and pitch vec-
tors, and we located them in a two-dimensional timbre map and a two-dimensional
pitch map. The performance of Hybrid Demucs was high enough, but even if there
were errors, they were unlikely to affect the histograms and mean vectors.

4.2 Annotate singing descriptors

For the purpose of improving the user’s understanding of the map, singing descriptors
from human annotation are also used for coloring. To determine appropriate singing
descriptors for each song, the 102 songs were tagged by six annotators, three male and
three female. Three annotators per song were assigned to tag the singing voice, and at
least one of the three was of a gender different from that of the singer of the song.

The singing descriptors used in this paper were determined based on previous stud-
ies [21, 22, 27] in which inter-annotator agreement, intelligibility, or synonymity were
taken into account. First, 33 descriptors were selected from the tags used in the KVT
dataset [22], 3 descriptors related to pitch range and 30 descriptors related to timbre.
Then nine descriptors were added, including seven descriptors — Powerful, Nasal,
Calm, Weak, Sexy, Resonant, and Dosu (Threatening / Frightening) — that were se-
lected from previous studies on singing impression [21] and speech timbre [27], and
two descriptors — Beautiful and Cool — that were from previous studies of singing im-
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Fig. 5. Timbre maps and pitch maps colored using either the center of gravity of the timbre vector
or that of the pitch vector.

Gender Clear Cool Powerful

Male
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Fig. 6. Timbre maps colored based on gender and three singing descriptors, “Clear,” “Cool,” and
“Powerful.” Continuous coloring for each of the three descriptors depends on the number of
annotators who labeled it.

Gender High-Range Mid-Range Low-Range
Male

Female

Fig. 7. Pitch maps colored based on gender or three singing descriptors, “High-Range,” “Mid-
Range,” and “Low-Range.” Continuous coloring for each of the three descriptors depends on the
number of annotators who labeled it.

pression [21]. As a result, a total of 42 different descriptors were determined as singing
descriptors labeled by the annotators.

Then, since using all the 42 descriptors gives too much information and is difficult,
we used only the top three timbre descriptors — “Clear,” “Cool,” and “Powerful” — on
the basis of how often they were annotated. As for the pitch descriptors, we used all the
three descriptors for pitch ranges: “High-Range,” “Mid-Range,” and “Low-Range.”

4.3 Interaction

The user can select either the timbre map or the pitch map, and can change the color of
the songs by using one of the following: singer name, song title, singer gender, center
of gravity of timbre vector, center of gravity of pitch vector, and singing descriptor (the
number of annotators who assigned it). Discrete coloring is applied to the singer name,
song title, and vocal gender, and continuous coloring (i.e., gradation) is applied to the
rest. The singer name, song title, and vocal gender are taken from metadata of the songs.
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Figure 5 shows the timbre and pitch maps, each of which is colored using either
the center of gravity of the timbre vector or that of the pitch vector. Figures 6 and 7
also show the timbre and pitch maps, respectively, colored using vocal gender and the
corresponding singing descriptors. We can see that the horizontal axis of the timbre map
is correlated with gender (the correlation coefficient was 0.80) in the first map of Figure
6, placing female songs on the right and male songs on the left, as well as the center
of gravity of the pitch vector (0.62) in the second map of Figure 5. It is also correlated
with the number of annotators of “Clear” (0.57) in the second map of Figure 6, though
the vertical axis of the timbre map is weakly correlated with the number of annotators
of “Powerful” (0.34) in the fourth map of that figure.

The vertical axis of the pitch map is also correlated with gender (0.51) in the first
map of Figure 7 as well as the center of gravity of the pitch vector (0.84) in the fourth
map of Figure 5. It is also weakly correlated with the number of annotators of “High-
Range” (0.38) and “Low-Range” (−0.48) in the second and fourth maps of Figure 7,
though the horizontal axis of the pitch map is weakly correlated with the center of
gravity of the timbre vector (−0.37) in the third map of Figure 5.

As shown in these examples, the proposed interface enables flexible changes in loca-
tion and coloring with respect to timbre and pitch as well as related singing descriptors.

5 Evaluation

Since the proposed interface has functions for people who like music, we evaluated the
effectiveness in terms of entertainment and knowledge discovery rather than efficiency
and accuracy. Sixty participants, males and females in their teens or twenties, were
assigned to the following groups, G1 through G3, each with 20 participants.

– G1 (proposed): Using music exploration interface based on vocal timbre and pitch
– G2: Using music exploration interface based on pitch
– G3: Using music exploration interface based on timbre

G2 and G3 are comparison groups to evaluate the effectiveness of the proposed inter-
face. Participants assigned to G2 could not use the timbre map, the center of gravity
of the timbre vector, or the singing descriptors for timbre. Participants assigned to G3
could not use the pitch map, the center of gravity of the pitch vector, or the singing
descriptors for pitch. Prior to the start of the experiment, the experimenter verbally ex-
plained the experiment procedure to the participants in Japanese. The experiment was
conducted on a laptop computer, and participants played music using canal-type wired
earphones. Participants were paid 1,800 JPY for their participation in the experiment
(approximately 1 hour and 45 minutes).

Participants first completed a questionnaire that measured their level of interest in
music and then they watched a video explaining the interface. The explanation was
made as easy to understand as possible for participants who are not familiar with MIR,
using as little technical terminology as possible. Next, while recording the screen op-
eration, participants were asked to explore their favorite music until they got bored
within the duration of the experiment. After the experiment, each participant answered
a questionnaire and was interviewed. In the post-experimental questionnaire, we as-
sessed focused attention (FA), perceived usefulness (PU), aesthetic appeal (AE), and
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reward factor (RW) using questions from the User Engagement Scale (UES-LF) [28]
on a 7-point scale. Participants also answered open-ended questions about the pros and
cons of the interface. In addition, participants in G1 answered whether they felt that
vocal timbre or pitch was more suitable for them when exploring the music.

5.1 Results

First of all, the data of three participants (two in G2 and one in G3) were filtered out
because the data were inappropriate (e.g., the map was not used). Using the data from
G1 to G3 after filtering, each score in the UES-LF was calculated. The average screen
recording time for the 57 participants was 28.8 minutes (ranged from 11.8 to 53.1 min-
utes).

Their distribution is shown in Figure 8, where “Overall” is the overall engagement
score, obtained by averaging the other four scores. A one-way ANOVA confirmed a sig-
nificant difference only in PU at the 5% level (p = 0.037). The results of Bonferroni’s
multiple comparison test based on Wilcoxon’s rank-sum test showed no significant dif-
ferences in all combinations. This suggested that the type of interface did not affect user
engagement.

Regarding the answers to the experimental questionnaire, 13 of the 20 participants in
G1 answered that the vocal timbre feature was more suitable when searching for music,
while 7 participants answered that the pitch feature was more suitable. This confirmed
the need for our interface that allows searching from multiple factors since the vocal
timbre feature works best for some users and the pitch feature works best for others.
Moreover, in the interview, seven participants in G1 commented that the combination
of vocal timbre and pitch facilitated their exploration. Some participants in G1 to G3
understood their own preferences for vocal timbre and pitch, while others found that
they unexpectedly liked timbres and pitches that they had thought they did not like.

The top three functions mentioned as pros by all 57 of the participants were the
timbre and pitch maps by 29 participants and the timbre and pitch vectors by 16 partic-
ipants. In addition, 11 participants mentioned the design and usability of the interface,
and 11 participants mentioned the identification or change of their preferences. On the
other hand, since the design and usability were also mentioned as cons by 50 partici-
pants, it is necessary to improve the usability of the implementation in the future. Eight
participants also commented that they did not understand the meaning of the axes of
the two-dimensional color map and that the differences in color according to acoustic
features and singing descriptors did not match their own perception. Therefore, there is
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a possibility of developing a better interface to help users grasp the meaning of acoustic
features and singing descriptors.

5.2 Discussion

The following can be considered as reasons for the small differences in UES-LF be-
tween G1 and G2 or between G1 and G3.

– Exploring music from the visualization of pitch and timbre was a novel experience
for the participants. Even for G2 and G3, the participants may have felt that it was
enough for them to find preferred songs from a new point of view. In fact, some
participants understood their own preferences for pitch and timbre and discovered
new or unexpected preferences during the use of the interface.

– This may be due to the doubling of the amount of information and manipulation.
The interface has become more complex, which probably increased the time and
effort required for participants to become familiar with the interface operation.

Three participants in G2 commented that while they felt the pitch information was
effective, they also wanted information on vocal timbre. Therefore, some users are ex-
pected to be more satisfied with our interface that allows for both pitch and timbre.

6 Conclusion

In this paper we proposed a music exploration interface that flexibly visualizes vocal
timbre and pitch as well as singing descriptors. The questionnaire survey results indi-
cated that the vocal timbre and pitch can be utilized to explore music. In the present
analysis based on the UES-LF, no significant differences were identified between the
proposed interface and the comparison interfaces. However, the results of the question-
naire and interviews indicated that music exploration based on vocal timbre and pitch
not only provides enjoyment and fun but also leads to the discovery of preferences re-
garding timbre and pitch. Future work will include building an interface that improves
usability and taking into account the singer’s singing style.
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Exploring Diverse Sounds: Identifying Outliers in a
Music Corpus
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Abstract. Existing research on music recommendation systems primarily fo-
cuses on recommending similar music, thereby often neglecting diverse and dis-
tinctive musical recordings. Musical outliers can provide valuable insights due
to the inherent diversity of music itself. In this paper, we explore music outliers,
investigating their potential usefulness for music discovery and recommendation
systems. We argue that not all outliers should be treated as irrelevant data, as they
can offer unique perspectives to contribute to a richer musical understanding. We
attempt to identify ’Genuine’ music outliers, which may reveal unique aspects of
an artist’s repertoire and serve to enhance music exploration and discovery.

Keywords: Music Outlier · Music Outlier Detection · Audio characteristics ·
Music discovery

1 Introduction

In the field of music information retrieval, a primary focus is often on finding similari-
ties among digital musical recordings, to enable recommendation systems and facilitate
music discovery [10, 14, 23, 5]. Given this context, analysis of outliers has attracted less
research attention [18], as they are often considered irrelevant data and removed during
preprocessing, or are naturally scored lower by most similarity-focused algorithms [7].
However, outliers in the context of music can provide interesting insights and reveal
unique patterns, as music inherently exhibits great diversity [20, 13].

In this paper, we explore the identification and categorization of music outliers,
with an aim to ultimately enhance music discovery and recommendation systems. We
propose a method to describe and discover genuine musical outliers based on audio
characteristics, such as tempo and loudness. By doing so, we aim to identify outliers
that can provide valuable information for music discovery while not being non-musical.

⋆ We would like to acknowledge the support received from Assoc. Prof. Sam Ferguson, In Addi-
tion, Le Cai wants to thank his partner Hanyu Meng for her unwavering patience and constant
presence in his life.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

667



We present a definition of what constitutes a ’Genuine’ music outlier and investigate its
characteristics. Genuine outliers exhibit unique characteristics that set them apart from
an artist’s main style, providing insightful information for music discovery.

This paper is structured as follows: The introduction presents the motivation of our
study, followed by a comprehensive literature review, which discusses the relevant back-
ground and prior research. Next, the aims and objectives are followed by the method-
ology section which outlines our proposed definition of Genuine music outliers and
the subsequent dataset and algorithm developed for the detection. The results and dis-
cussion section evaluates the effectiveness of our algorithm based on the dataset and
provides insights into its performance. Finally, the conclusion summarizes our findings
and highlights the implications of our work, while also suggesting potential avenues for
future research in the realm of music outlier detection and analysis.

2 Related Work

2.1 What Makes a Song Different from Audio?

Understanding outliers in the context of music recommendation systems necessitates
a thorough examination of their diverse nature and the ability to differentiate actual
music from other forms of audio. Müller [17] provides a comprehensive overview of
music structure analysis, focusing on techniques for segmenting and organizing mu-
sic into meaningful sections, laying the foundation for understanding the key aspects
of music structure and demonstrating how various representations and algorithms can
be used to analyze and compare music pieces. A system for finding structural descrip-
tions of musical pieces defines the structure of a piece as segments with specific time
ranges and labels, with segments sharing the same label considered occurrences of a
particular structural part [21]. In another study, a multi-task deep learning framework is
introduced for directly modeling structural semantic labels in music, such as “verses”
and “choruses”, from audio signals. This approach proposes a 7-class taxonomy that
includes intro, verse, chorus, bridge, outro, instrumental, and silence, and consolidates
annotations from four different datasets [27]. A large-scale analysis of songs in 315
different societies has found that songs share universal features like tonality, rhythm,
and repetitive structures [16]. A study conducted by Shuqi et al [8]. analyzes the signif-
icance of repetition and structure in music, specifically in popular music, and demon-
strated that deep learning models often struggle to identify these essential elements,
which are crucial for generating coherent and appealing musical pieces. Subsequently,
Sargent et al [22]. introduced a fourth principle: regularity. This principle posits that
musical segments possess a certain degree of regularity, which can be leveraged to bet-
ter understand and analyze the structure of the music.

2.2 Outlier Detection Approaches

The purpose of outlier detection algorithms is to identify patterns and samples that de-
viate significantly from the normal characteristics of a group of data [12]. The reason
to detect outliers is it can providing interesting insights contribute to a richer under-
standing of an artist’s work. General outlier detection methods can be categorized into
4 categories based on an overview conducted by [26]:
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Clustering-based methods: use a clustering algorithm to classify the majority of the
elements of the set, while also clearly defining the outlying elements of the set.

Density-based methods: identifying outliers as points in low-density regions within
a data set.

Distance-based methods: determining the distance between points, and considering
outliers to be points with a large distance from their nearest neighbors.

Statistical methods: using measures such as mean, median and standard deviation to
identify data points that fall outside of a defined range.

Clustering-based methods, exemplified by [2], utilize subspace cluster analysis to
construct classification trees while addressing dataset scarcity. A deep learning model
using a Clustering Augmented Learning Method (CALM) classifier improves genre
classification by extracting deep time series features [11]. In contrast, density-based
methods like DBSCAN [9] and OPTICS [1] identify outliers in low-density regions
within a dataset, as demonstrated by the OPTICS algorithm applied to traditional Chi-
nese folk music [28]. In the exploration of automatic outlier detection methods on mu-
sic genre datasets, Lu et al [15] characterized outliers using their musical attributes,
demonstrating the potential of these techniques to unveil unique insights into music
structure and diversity within genre classification. Distance-based methods, including
K-means [4] and CLARANS [19], examine the distance between data points and their
nearest neighbors, considering outliers as points with large distances from the near-
est neighbors. This approach has been successfully applied to traditional Irish music
in [24]. Meanwhile, statistical-based methods employ measures such as mean, median,
and standard deviation to identify data points outside a defined range to reveal patterns
in cluster structure dynamics in popular music data [25]. However, while these stud-
ies focus on detecting outliers based on their statistical properties, the potential of the
outliers themselves for music discovery has not been as extensively investigated.

3 Aims & Objectives

In this paper, our aims center around exploring the potential of music outliers for music
discovery. To achieve this, we propose the following objectives:

Propose an approach to describe musical outliers: by examining various attributes
that distinguish them from an artist’s typical style, facilitating their identification
and analysis. This implies establishing a clear definition to describe ’Genuine’ mu-
sic outliers as a distinct category of outliers that exhibit meaningful deviations from
a set of existing digital musical recordings.

Categorise music outliers: into meaningful categories based on their distinguishing
characteristics to create a meaningful interpretation, that also can help find the out-
liers that are helpful to understanding and discovering interesting music while ex-
cluding outliers that hold little data.

4 Method

We introduce the concept of genuine outliers within the context of music data and ex-
plore their potential value in recommendation systems. To accomplish this, we first
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(a) Example of a subsequence of audio
forms a complete song

(b) Example of a k-means cluster with
identified outlier

Fig. 1: The Definition of Genuine Music Outliers

propose a definition for genuine outliers, then create a labelled dataset for evaluation,
and finally, apply an outlier detection algorithm to validate our definition.

4.1 Definition of Genuine Music Outliers

A “Genuine” music outlier is a complete song that maintains an artist’s typical musical
structure while distinctly diverging in sound and style from their predominant body of
work, due to the complex nature of music, in our scenario, we consider pop music only.

To achieve this, a genuine outlier must satisfy the following constraints: 1): Forms
a complete song, this distinguishes the identified outlier must be a song, not something
else, e.g. speech, or sound effect, shown in fig.1a. To ensure this, audio must satisfy
these conditions: a): The length of music structure ϕ must be greater than one in a
subsequence, this means the input recordings must at least have one or more music
structures otherwise it is not music. b): The identified music structure must at least has
one unique pair. e.g. a music structure in (A−B) is a song that can identify at least one
unique pair, not (A − A) or (B − B). c): The identified music structure must contain
repeated parts, as repetition is a crucial element in music. A piece of audio that forms
music should exhibit repeating sections, such as (A−B−A−B) patterns. The formal
definition of a Genuine outlier is as follows:

Let M represents the set of all recordings produced by a specific artist. For a finite
set SM , suppose function Φ : M → N+ that maps a recording to a finite integer and a
function fΦ : M → S

Φ(M)
M that maps a recording m ∈ M to a finite length sequence.

A recording m ∈ M is defined as a “Genuine” music outlier if the following conditions
is satisfied:

1. Forms A Complete Song: For any recording m ∈ M , the sequence fΦ(m) and
number Φ(m) should satisfy the following:

1. Φ(m) > 1,
2. There exist a subsequence ak1

...akp
(k1 < ... < kp, p > 1) from fΦ(m) that, at

least one repeated subsequence from f(m) can be found, i.e., there exist ak′
1
...ak′

p
(k

′

1 <

... < k
′

p, p > 1) that k1 ̸= k
′

1 and kp ̸= k
′

p.
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Fig. 2: Dataset Creation Process

For any given recording m ∈ M , if the previous condition satisfied, for given con-
stant CG ∈ (0, 1], κ and a positive integer Nd, either of the following conditions must
be satisfied,

2. Distinctiveness: Define F : M → Rn be a function that maps each recording to
an n-dimensional feature space, where n is a positive integer representing the number
of musical features being considered. Define Card(·) as the Cardinality of a set, ∥ · ∥ as
the 2-norm and κ-means cluster sets Ω = {Ω1, ..., Ωκ}(1 ≤ κ ≤ Card(M)) that

Ω ∈ argmin
Ω̄

κ∑
i=1

∑
x∈Ω̄i⊂M

∥F (x)− µi∥2

s.t. µi =
1

Card(Ω̄i)

∑
y∈Ω̄i⊂M

F (y), for 1 ≤ i ≤ κ.

(1)

For any given integer Nd > 0, for any m ∈ M , if m ∈ Ωi and Card(Ωi) < Nd, we
say that recording m is distinct with respect to M .

3. Non-adherence: For a given positive number CG ∈ (0, 1]. We define

RM (m) :=
Card({m′ |fΦ(m

′
) = fΦ(m) for all m

′ ∈ M})
Card(M)

. (2)

If RM (m) < CG, we say m is not adhere to set M .
In conclusion, if recording m does form a complete song, either the song m is

distinct with respect to M or m is not adhere to set M , with given CG, κ, and Nd, then
we say song m is an outlier.

4.2 Dataset Creation and Outlier Selection Algorithm

In order to evaluate our above-proposed definition for Genuine music outliers, we cre-
ated a dataset specifically designed to examine our hypothesis, To achieve this goal, the
following steps were carried out:

Artist Selection: From the Million Song Dataset 1, a smaller sample consisting of
10,000 songs extracted from the MSD, we randomly chose 20 artists using a random

1 Million Song Dataset [6] is available at: http://millionsongdataset.com
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number generator to pick artist IDs. For each of the selected artists, we identified a list
of all the songs contained in the dataset with the particular artist id.

Identifying Outlier Songs: To identify and categorize outliers within the selected
artists’ music, we conducted a manual listening and labeling process for these songs
by ear. First, we acquainted the artist’s typical styles. To achieve that, we listened to
about 20%-30% songs in this artist’s main cluster. After establishing the primary styles,
we listened to these songs once with selected artists again, focusing on identifying
tracks that significantly deviated from the typical style. Attention was paid to musical
elements, such as tempo, melody, harmony, instrumentation, and song structure.

Categorizing Outliers: We then listened to the characteristics of the identified out-
liers, focusing on specific attributes such as tempo, melody, harmony, instrumentation,
and song structure that differentiate them from the artist’s dominant style. By exam-
ining these properties, we classified outliers into five categories: Error, Speech, Intro,
Sound Effect, and Genuine. Each identified outlier was assigned to one of the categories
based on a two-step process. First, we selected songs with a Euclidean distance greater
than 3 times the z-score threshold from the main cluster. Second, we manually reviewed
these outliers, focusing on listening to their distinctive features such as tempo, loudness,
melody, and the composition of instruments.

Creating the Labeled Dataset: Finally, After identifying and categorizing outliers,
we compiled a list of all songs from the selected artists, along with their corresponding
outlier categories. This list included each song’s title, artist, genre, and other meta-
data. Utilizing the pre-extracted audio features from the MSD Subset, such as tempo,
loudness, key, and mode, we created a dataset compiled with data including outlier
categories and the MSD pre-extracted features.

We consider this to be a classification problem where each artist typically consists
of 1 main distinct style. Note we only considered the case for 1. Distinctiveness and 2.
Non-adherences for the current approach, the case of forms a complete song is discarded
due to the complexity of the anlysis of music structures.

Let M be a set of recordings under an artist. Let xi ∈ Rd to denote a d-dimensional
feature vector for the i-th song from M (1 ≤ i ≤ Card(M)). Suppose K is an inte-
ger that 1 ≤ K ≤ Card(M). For 1 ≤ k, k

′ ≤ K, define Ck as a subset of M , such
that Ck ∩ Ck′ = ∅ for k ̸= k

′
, and ∪1≤i≤KCi = M . In our case, d = 2. We adopt

k-means algorithm [3] to partition set M that satisfies such conditions. In the next sec-
tion, we first delineate the outlier categorization, followed by the presentation of outlier
detection results.

5 Results

5.1 Outlier Categorisations

We found 34 genuine outliers from 29 artists in 320 songs as well as 17 errors, 5
speeches, 1 intro, 5 noise, and 3 sound effects from 29 artists shown in Fig. 3, they can
categorize into 5 types: a) Error: such as erroneous data value, e.g. doubling tempo
due to feature extractor failure, incorrect data type, such as text entered as a numeric
type. b) Noise: unintentional sounds such as non-musical noise, jitter, or glitches in a
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Fig. 3: Outlier Dataset: Categorisation of Outliers by Artists

recording, often due to recording issues or equipment quality. e.g. a live performance
recording with excessive audience noise. c) Speech: such as some spoken words, or a
short story integrated into the music to enhance the atmosphere of the listening experi-
ence. these types of practices commonly occur in certain music genres, such as hip and
electronic music. d) Sound Effect: This type of recording is used to create a certain
mood, it can build tension and add extra impact to certain sections of the song. Particu-
larly, sound effect is used in certain genres of music such as electronic & rock music to
add extra depth and interest to music. e) Intro: A very short track is often less than 30
seconds in length and serves as an introduction or a brief to establish the identity of the
album. f) Genuine: a musical piece that deviates significantly from an artist’s typical
style or the norm within a genre, exhibiting unique characteristics. These outliers are
not classified as errors, noise, or other non-musical categories.

5.2 Automation Outlier Detection Result

The outlier detection algorithm was applied to the dataset, and the results obtained
were analyzed to assess the performance of the method. The table 1 summarizes the
performance of the outlier detection for various artists in the dataset. True Positive
Rate (TPR) and False Positive Rate (FPR) represent the proportion of outliers that
were correctly and incorrectly identified as outliers, respectively. True Negative Rate
(TNR) and False Negative Rate (FNR) represent the proportion of non-outliers that
were correctly and incorrectly identified as non-outliers, respectively. Not Applicable
(N/A): indicates no outliers being identified for a particular artist.

6 Discussion

6.1 Outlier Categorisation

Genuine outliers are complete songs that adhere to an artist’s typical musical structure
but differ in sound and style. Often custom-made for specific events, they incorporate
unique elements like distinct percussion. For instance, Colin Meloy’s “Lazy Little Ada”
is situated at the center of Blue Oyster Cult’s cluster (Figure 4), deviating from Meloy’s
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Table 1: The Result of Automatic Outlier Detection

Artist Name TPR FPR TNR FNR
Zakk Wylde 0 0.455 0.545 1
Blue Oyster Cult 1 0 1 0
Biohazard 0.5 0.381 0.619 0.5
Yoko Ono 0.25 0.049 0.951 0.75
Wilson Pickett 1 0.316 0.684 0
Wild Strawberries 1 0.087 0.913 0
Whitney Houston 0.5 0 1 0.5
Warren Zevon 1 0.356 0.644 0
Voivod 0.833 0 1 0.167
Uncle Tupelo 0.4 0.217 0.783 0.6
Triangle 0.75 0 1 0.25
Tim Deluxe 1 1 0 0
Thin Lizzy 0.429 0.37 0.63 0.571
Thievery Corporation 0.667 0.299 0.701 0.333
The Zombies 1 0.378 0.622 0
The Weather Girls 1 0.344 0.656 0
The Waybacks 0.5 0.214 0.786 0.5
The Trammps N/A 0.136 0.864 N/A
The Subhumans N/A 0.133 0.867 N/A
The Skatalites N/A 0.317 0.683 N/A
THERION 0 0.275 0.725 1
The Mutton Birds N/A 0.269 0.731 N/A
The Mission N/A 0.324 0.676 N/A
The Mamas & The Papas 1 0.206 0.794 0
The Juan MacLean N/A 0.324 0.676 N/A
Zee Avi N/A 0.231 0.769 N/A
MNEMIC 1 0.043 0.957 0
Rod Lee 1 0.167 0.833 0
Colin Meloy 0.333 0.062 0.938 0.667

usual style yet resembling Blue Oyster Cult’s. In comparison, Meloy’s cluster exhibits
lower loudness, potentially due to less percussion. When percussion is added to Meloy’s
outliers, they show similarities to Blue Oyster Cult’s cluster. Conversely, most of Blue
Oyster Cult’s songs form a well-defined cluster, but 4 outliers incorporate synthesizers
and lack percussion, producing similarity to Meloy’s cluster.

In contrast, non-genuine outliers can be categorized into four types: Error, Speech,
Sound Effect, and Intro. 1) Error tracks result from feature extractor misinterpretations
or exceptions, such as doubling tempo or missing audio features. 2) Speech is often
used in albums for storytelling, setting narrative themes, or as interludes to create a
narrative flow between musical pieces, e.g., Kendrick Lamar’s “To Pimp a Butterfly.”
3) Sound effects enhance the musical narrative, especially in concept albums like Pink
Floyd’s “The Trial.” 4) Intros are short tracks that set the tone, introduce themes, or
provide transitions between songs. However, these tracks do not follow typical musical
structures (e.g., ABAB, ABAC), so we consider them non-genuine outliers.

6.2 Outlier Detection Result

The overall results of the outlier detection algorithm show that it is capable of identi-
fying outliers in an artist’s body of work. The algorithm performs exceptionally well
on some artists by correctly classifying all outliers and non-outliers. However, varying
performance among artists suggests the need for refining the algorithm with additional
constraints. In summary, we can obtain these insights from the following results:

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

674



Fig. 4: Outlier Overlap: Shared characteristics between two artists’ outliers.

The consideration of distinctiveness in the algorithm has worked well on artists that
primarily have one style, for example, Blue Oyster Cult, The Mamas & The Papas, and
Wild Strawberries had a perfect TPR and TNR, indicating that the definition works well
for this artist even without considering the constraints of whether it forms a complete
song. Furthermore, we find the distinctiveness constraint effective in identifying gen-
uine music outliers in some artists. For example, the algorithm isolated outliers in artists
such as Blue Oyster Cult (TPR: 1.0, FPR: 0, TNR: 1, FNR: 0) and Warren Zevon (TPR:
1.0, FPR: 0.356, TNR: 0.644, FNR: 0).

However, the varied performances across different artists suggest that discarding
the consideration of constraints 1. Forms A Complete Song and 2. Non-adherence may
lead to the algorithm’s inability to accurately determine whether an outlier is genuine,
as it lacks the capacity to assess the music structure of input recordings. The reasons
causing these varying performances can be summarized as follows:

Mixed content: Recordings may contain various non-musical elements, including
intros with predominantly speech content (e.g., “Rod Intro” by Rod Lee), live record-
ings featuring audience applause or speech interactions with the audience (e.g., “Drac-
ula’s Daughter” by Colin Meloy), or studio chats consisting solely of speech (e.g., “The
Way I Feel Inside / Studio Chat” by The Zombies). These non-musical segments may
introduce noise and impact the algorithm’s performance.

Noise and artifacts: The presence of noise, artifacts, or other non-musical elements
within a recording might lead to it being classified as an outlier, even if it does not
constitute a genuine outlier in terms of musical content. Such factors can interfere with
the algorithm’s capability to accurately assess a song’s structure.

Transitional pieces: Some artists release tracks with transition pieces containing
sound effects or ambient sounds, which can be difficult for the algorithm to categorize
as genuine outliers. Notable examples include “Catalepsy I” by Voivod and “The Audio
Injection” by MNEMIC.

6.3 Limitations and Future Work
Overall, the findings of this study highlight the importance of considering outliers and
their potential impact on the audio characteristics of different genres and artists in music
production. It suggests several avenues for future research, including:
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(a) Artist (Blue Oyster Cult) (b) Artist (Rod Lee)

Fig. 5: Automatic Outlier Detection Using k-means: Demonstrating the algorithm
works well on single-style artists (a) but fails for multi-style artists (b).

Integration of more music features: Expanding the range of music features inte-
grated into the algorithm can potentially improve its performance in detecting genuine
outliers. The current features, such as loudness and tempo, may not fully capture the
characteristics and the style of music. Therefore, incorporating additional features like
timbre, harmony, and chroma could enhance the algorithm’s effectiveness in distin-
guishing genuine outliers from the rest of an artist’s work.

Consideration of “Forms A Complete Song” and “Non-Adherence” constraints:
Incorporating the “Forms A Complete Song” constraint ensures that the detected out-
liers are actual pieces of music. This guarantees that the outliers are indeed genuine mu-
sical outliers and not artifacts or other irrelevant audio content. The ’Non-Adherence’
constraint ensures detected outliers distinctly deviate from an artist’s typical musical
structure. This helps to identify unique songs that stand out from an artist’s typical
style. Furthermore, music segmentation techniques can be considered to extract musi-
cal parts from audio pieces that may contain both speech and music. This will aid in
ensuring the detected item actually is music.

Handling artists with more than one style: The current outlier detection approach
may struggle with artists exhibiting multiple styles, such as Rod Lee (shown in fig.5).
Addressing this limitation would result in a more representative understanding of an
artist’s work and improve the accuracy of outlier detection. One possible solution is to
consider an artist’s stylistic diversity when detecting outliers, thereby accounting for
the various styles present within their body of work.

Exploration of other clustering models: In this study, only the k-means clustering
algorithm was considered for the clustering model. However, k-means is based on cir-
cular data, which can lead to suboptimal results. Exploring other clustering models that
may better handle the complexities of music data could further enhance the performance
of the outlier detection algorithm and yield more accurate results.

7 Conclusion

In conclusion, this study has proposed a definition for genuine music outliers and ex-
plored the application of an outlier detection algorithm in music genre datasets. The
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results have demonstrated that the consideration of distinctiveness is a reasonable start-
ing point for detecting music outliers. However, the current approach lacks the ability
to detect the music structure and struggles when handling artists with more than one
style. To overcome these limitations, future work should focus on integrating more mu-
sic features, such as timbre, harmony, and chroma, and considering the constraints of
“Forms A Complete Song” and “Non-Adherence.” Furthermore, music segmentation
techniques should be explored to extract musical parts from audio pieces containing
both speech and music. Handling artists with multiple styles and exploring alterna-
tive clustering models, such as those that can better accommodate non-circular data,
are other avenues for improvement. By addressing these limitations and incorporating
these suggestions, the proposed outlier detection approach can be further refined and
made more robust for detecting genuine music outliers in diverse music genre datasets.
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Abstract. In this study, the author developed an augmented reality (AR) system 

to assist beginners in learning guitar strumming. This system offers support that 

allow users to practice strumming anywhere using a smartphone, without the 

need for a physical guitar. This system utilizes hand tracking to capture the hand’s 

coordinates and angles, effectively supporting strumming practice in the manner 

of a music game. 

Keywords: Augmented reality, guitar strumming, hand tracking  

1 Introduction 

Mastering the guitar is challenging for beginners due to the need for distinct hand tech-

niques. The technique of strumming involves plucking the strings with the fingers and 

requires proper adjustment of relaxation, timing, angle, and force. According to Hosoi 

and Matsushita [1], skilled guitarists have been found to exhibit faster wrist rotations 

during strumming compared to beginners. 

To practice the guitar, one needs to have a physical guitar, which can sometimes pose 

a limitation. This study aims to enable beginners to practice strumming even in the 

absence of a physical guitar. According to Fujioka [2], practicing ‘air guitar’ in the 

absence of a physical guitar is an effective means for beginners to acquire ‘strumming’ 

skills. However, the lack of feedback in air guitar poses a significant challenge when 

attempting to correct movements. Therefore, the proposed system conducts visual feed-

back in the style of a music game and analyzes hand movements to allow beginners to 

practice guitar strumming while enjoying the process. 

Motogawa and Saito proposed a system that displays information on a display to 

assist in playing an actual guitar, supporting the user in playing intuitively [3]. We uti-

lize both a vision marker and the natural features of the guitar for tracking, enabling the 

constant projection of support information to the appropriate position. This study fo-

cuses on fretting, but the scope of use is limited due to the use of various hardware. 

 
* This work was partially supported by JSPS KAKENHI Grant Number JP23K17023. 
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Kashiwagi and Ochi [4] proposed a method using Kinect to detect guitar picking; 

however, due to the absence of real-time feedback, it is insufficient for supporting prac-

tice. This system improves right-hand strumming through AR and hand tracking, 

eliminating the need for a physical guitar. With the goal of providing intuitive 

interaction between virtualn objects, musical scores, and the user’s hand, we develop 

an AR smartphone system equipped with hand-tracking functionally for guitar 

strumming practice. Through hand tracking, the system displays the user’s own hand 

movements on the UI, providing visual feedback by showing finger coordinates and 

wrist angle. Futhermore, its usability on smartphones renders it an excellent practice 

support tool for beginners. 

2 Development of a Guitar Stroke Learning Support System 

We have employed Unity and C# in the development of the proposed system, integrat-

ing ARToolKit for AR development and utilizing ToF AR for precise hand tracking. 

Our main challenge is to enhance the strumming techniques of the user without the 

physical guitar, and to address this, we have developed a game-style AR practice sys-

tem. 

Fig. 1 NotesEditor for creating a chart (left). arrow-shaped notes (right). 

Fig. 2 The hand tracking process enabled by ToF AR. 
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In this system, we use arrow-shaped notes created with NotesEditor. As these notes 

flow at a tempo of 100 BPM (beats per minute), they indicate the direction of strum-

ming, enabling a user to move their hands in accordance and evaluate their own accu-

racy and timing (Fig. 1). 

For hand-tracking, we utilize depth information from the ToF sensor integrated into 

smartphones to detect a hand within the camera’s field of view (Fig. 2). 

Fig. 3 shows the string object displayed on the smartphone, along with the orange 

judgment line used to measure the timing of strumming. As shown on the left of Fig.3, 

our system displays six elongated rectangular objects in different colors, representing 

the guitar strings. While holding the smartphone in the left hand, a user can produce the 

sound of an open string on an acoustic guitar by interacting with the string object using 

the right hand for strumming. 

Fig.3 right shows the screen during the system’s execution. The guitar string objects 

(Fig. 3 left), are displayed from a top-down perspective, similar to actual guitar strings. 

Upon executing the system, arrow-shaped notes flow in sync with the metronome sound 

set at BPM 100, and the user strums in accordance with them. When the user’s hand 

touches the strings at the correct timing, the word "GOOD" appears. 

Additionally, in the top-left corner of the screen, the user’s finger coordinates and 

wrist angles are displayed. The wrist angle is calculated based on vector calculations 

using the coordinates. 

3 Discussion 

As challenges of this system, it currently has limitations in terms of the available prac-

tice tempo and stroke patterns, lacks tactile feedback, and does not possess a compara-

tive feature for assessing hand movements against the correct reference. To address 

these constraints, the plan for the future is to first introduce various tempos and a range 

of stroke patterns for practice. For example, we plan to create multiple scores in the 

NotesEditor that correspond to various stroke patterns, allowing the user to freely select 

their preferred tempo and stroke pattern. 

Fig. 3 The strings and judgement line (left), the system screen (right). 
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Currently, this system is designed to be used while holding a smartphone in one hand. 

In the future, we are considering the use of AR headsets to enable the use of both hands 

freely. Utilizing an AR headset allows for the user’s non strumming hand to function 

as a substitute for the strings, enabling the provision of tactile feedback during strum-

ming.  

Furthermore, we plan to create 3D models that demonstrate the correct strumming 

motions as a reference, allowing the user to visually compare their own movements 

with the correct one. Additionally, in the future, we plan to implement features that 

provide the user with advice based on the data obtained through hand tracking. 

4 Conclusion 

In this study, we developed a guitar strumming learning support system that utilizes AR 

and hand tracking to provide audio feedback. We utilized Unity for the system devel-

opment, supporting user’s strumming practice through hand tracking technology and 

gamification. This gamification is achieved through interactive objects that generate 

guitar string sounds and arrow-shaped notes representing strumming directions. These 

notes appear synchronized with a metronome sound set to a specific tempo, enabling 

the user to practice their strumming while assessing their timing accuracy.  

Through hand tracking, we visualized the user’s hand movements and quantified fin-

ger coordinates and angles. Our future plans include expanding the options for tempo 

and strumming patterns to facilitate more versatile practice sessions. Additionally, The 

challenges that we plan to address and improve upon in the future include limitations 

in terms of tempo and stroke patterns, the absence of tactile feedback, and the lack of a 

feature that enables users to visually compare their hand movements. We plan to con-

duct evaluations of the system in the future. 
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Abstract.  This demo paper presents and explains the system of MVP (Musical 

pitch Visualization Perception) support system as an AR (Augmented Reality) 

real-time pitch feedback system for instrumentalists who must play with correct 

intonation. The pitch feedback system itself uses a machine learning system 

called "ml5.js" and utilizes Google Glass as a feedback indicator. The system will 

assist not only in musical performance as a support system but also in investigat-

ing the cognitive process of intonation and musical performance as an experi-

mental application. 

Keywords: Realtime Pitch Feedback, ICT, Performance Support, System De-

velopment, Augmented Reality 

1 Introduction 

The proliferation of ICT (Information and Communication Technology) and the ad-

vancement of information sciences have brought about innovation in musical perfor-

mance. Playing a musical instrument can be considered a perceptual-motor skill. Sev-

eral studies have explored the process of perceptual-motor skill acquisition and learn-

ing. Perceptual-motor learning can be divided into three stages: the cognitive stage, 

associative stage, and autonomous stage [1]. On the other hand, the Acquisition of Cog-

nitive Skill (ACT) theory consists of two stages with one section: the declarative stage, 

knowledge compilation, and the procedural stage [2]. In these contexts, feedback is one 

of the most crucial concepts in the realm of perceptual-motor learning [1]. 

Within the context of musical performance, there has been extensive discussion about 

intonation. In the fields of cognitive science and musical education, Kreitman defines 

a listening loop for the intonation of musical performance by instrumentalists [3]. Ac-

cording to Kreitman, the cognitive process of instrumentalists can be classified into 

four sections. First, the student begins with a concept of the music in their inner ear. 

Second, their brain sends messages to the body to create actions. Third, these actions 

produce sound from the instrument. Fourth, the sound enters the ear and is sent to the 

     This work is licensed under a Creative Commons Attribution 4.0 International License 

(CC BY 4.0).  
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brain for analysis [3]. In this process, pitch feedback from a tuner greatly assists in 

performing with correct pitch and intonation.  

Due to the benefits of using a tuner during performances, some instrumentalists tend to 

use a tuner placed on their music stand to receive real-time pitch feedback. While this 

action may contribute to good intonation, it can limit their ability to freely gaze at their 

music sheet, the conductor, and other musicians. Furthermore, this situation can cause 

a downward head posture, which is considered detrimental for instrumentalists. To ad-

dress these issues, we have been developing the MVP (Musical pitch Visualization Per-

ception) support system for smart glasses as an AR (Augmented Reality) pitch feedback 

system [4-5]. 

Fig. 1. The picture of the conventional tuner on the music stand and the aim of the MVP sup-

port system with a Google Glass 

2 Development Background and System 

To develop our pitch feedback system, we focused on four key aspects. Firstly, we 

prioritized timeliness, ensuring that the system can provide real-time pitch feedback. 

Secondly, we aimed for the feedback indications to be easily understandable and clear. 

Traditional tuners often use complex scale and needle displays, which can be over-

whelming for performers during their play. Therefore, we designed our system to utilize 

color indicators instead. Thirdly, we incorporated recordability, a feature that sets our 

system apart from conventional tuners. This aspect enables the system to offer new 

methods and teaching materials to enhance musical education and improve perfor-

mance skills. Lastly, we aimed for stability that is independent of the type of ICT equip-

ment and environment used. Our goal is to develop a system that can work on various 

ICT equipment by leveraging web browsers. 

The fundamental structure of our pitch feedback system is depicted in Figure 2. The 

system captures the sound from the participants' instrument using a condenser micro-

phone connected to a computer. The information is then analyzed, and the pitch is 
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estimated using the pitch detection system. The estimated value is colorized on a web 

page based on the browser's capabilities, and the Google Glass displays the colorized 

webpage for the participant to view. 

The computation for determining the tonal pitch is performed using the "ml5.js" library, 

which runs in TensorFlow [6]. This library incorporates the "Pitch Detection" package, 

which employs the deep-learning-based "CREPE" algorithm [7-8]. We have imple-

mented this user-friendly system using the TensorFlow backend. In this system, the 

participant receives a rating based on a three-tier scale: "correct," "higher," or "lower" 

in comparison to the correct pitch. The feedback is sent to the participant's Smart Glass 

device. The display shown on the participant's Smart Glass changes interactively based 

on the received rating. A green display indicates a correct pitch, purple indicates a 

higher pitch, and blue indicates a lower pitch. This visual feedback helps the participant 

adjust their pitch accordingly. For our study, we defined the correct pitch range as the 

target, expressed in Hertz, with a tolerance of ±1%. This range determines the threshold 

for determining whether the participant's pitch is correct, higher, or lower. We specifi-

cally utilized the "Glass Enterprise edition 2" device by Google for this study. It was 

selected as the platform for delivering the tonal pitch feedback. Notably, we ensured 

the reliability of the Google Glass system as a musical tuner by verifying its perfor-

mance with a professional musician. 

Fig. 2. The Schematic view of the MVP support system 

Fig. 3. The sight of user and function of MVP support system 
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3 Conclusion 

3.1 Future Development 

In the early stages of development, we initially adopted FFT algorithms; however, the 

resolution rate and computation time proved insufficient for real-time pitch feedback 

in musical performance situations. Consequently, we decided to utilize the machine 

learning package provided by ml5.js, as it proves capable enough to achieve our goals. 

On the other hand, we encountered an issue with the smart glass. The microphone at-

tached to the glass was not robust enough to accurately capture the tones of musical 

instruments. It occasionally recognized overtones of the instrument. To address this, 

we need to incorporate a low-pass or high-pass filter into the system. 

3.2 Information 

The system's effectiveness was successfully presented as a pilot study [5] at the EdMe-

dia + Innovate Learning 2022 conference in New York, held in June 2022 and further 

research [4] continued to display this effectiveness. In these experimental evaluations 

of the system, participants provided positive comments, and the system demonstrated 

superior performance compared to conventional tuners. These experiments highlight 

the potential of the browser-based system as an experimental tool for studying musical 

performance and pitch intonation. This demo paper is a description of the MVP support 

system utilizing Google Glass in [4-5] for demonstration for CMMR 2023. 
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Abstract. This paper describes a system that reduces a melody for novice gui-
tar players to practice guitar solo phrases without lowering their motivation. Al-
though there have been systems already that generate the guitar tablature for given
melodies, they did not deal with melody reduction for novice guitar players. In
this paper, we propose a system that generates melodies in which the difficulty
of the play is reduced by using a Viterbi-like dynamic programming search. A
preliminary results shows that our system can reduce melodies based on the dif-
ficulty of the play.

1 Introduction

Our goal is to develop a system for beginners to practice their favorite solo phrases on
the electric guitar. However, it is not easy because their favorite solo phrases may be too
difficult for them to play. If a system can generate melodies that are reduced but similar
enough to their favorite melodies, it will be effective in maintaining their motivation.

There have been studies on generating tablatures from given melodies. For example,
Hori et al. used a hidden Markov model to generate a tablature by minimizing the mov-
ing distance of fingering positions[1]. Tuohy et al. used a genetic algorithm to generate
a tablature [2]. However, they did not deal with reducing melodies of the guitar so-
los. On the other hand, there have been many attempts of melody reduction, e.g., Ryan
Groves’s method using a probabilistic context-free grammar[3]. However, they do not
consider the difficulty of playing melodies on the guitar.

Our system reduces melodies by introducing a playing cost and a melody modifi-
cation penalty, and by finding a tradeoff between them. In particular, the playing cost
becomes high when the fingering moves at upbeat, so the system generates melodies
that do not move in pitch at upbeat.

2 Proposed System

The system inputs a monophonic tablature and generates a reduced melody tablature
using a Viterbi-like search algorithm. It calculates the playing cost and melody mod-

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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ification penalty, and minimizes the sum of them to obtain an optimal sequence of
fingering from the viewpoint of the ease of the play.

2.1 Loading MusicXML data

Given a tablature of a monophonic guitar solo melody in the MusicXML format, it is
converted to a sequence of fingering positions, {x1, x2, · · · , xN}. Here, the fingering
positions for the n-th note, xn, is defined as xn = sn + 6fn where the string number
sn(= 0, 1, 2, · · · , 5) and the fret number fn(= 0, 1, 2, · · · , 20) are combined. We alsp
identify whether that each note is on a downbeat or upbeat.

2.2 Modeling Melody Reduction

The reduced melody is assumed to have the same number of notes and rhythm as the
original melody, and a sequence of its fingering positions is represented by {x′

1, x
′
2, · · · , x′

N}.
The fingering position for the n-th note, xn is defined as x′

n = s′n+6f ′
n using the string

number s′n and fret number f ′
n.

Our system outputs a melody that is close to the original melody, but with reduced
movements shift of the fingering position. For example, we set a high cost for move-
ments of the fingering position on upbeats. This allows us to obtain the melodies such
that the pitch only changes on downbeats.

2.2.1 Playing cost The playing cost represents the difficulty in moving the fingering
position from note to note. In order to reduce pitch motions on the upbeat, we set differ-
ent costs for the downbeat and upbeat.Because the use of open strings is not accepted
in the current implementation, we assign a sufficiently higher cost to the movement to
an open string.

(i) When x′
n is on a downbeat

We define the playing cost from x′
n to x′

n+1 as follows.

C(x′
n+1|x′

n) =



α (|f ′
n − f ′

n+1| > 3)

α (f ′
n+1 = 0)

10000 (|s′n − s′n+1| = 3),

7500 (|s′n − s′n+1| = 2, |f ′
n − f ′

n+1| = 2, 3)

5000 (|s′n − s′n+1| = 2, |f ′
n − f ′

n+1| = 1)

1000 (|s′n − s′n+1| = 2, f ′
n = f ′

n+1)

400 (|s′n − s′n+1| = 1, |f ′
n − f ′

n+1| = 2, 3)

200 (|s′n − s′n+1| = 1, |f ′
n − f ′

n+1| = 1, 0)

50 (s′n = s′n+1, |f ′
n − f ′

n+1| = 2, 3)

0 (s′n = s′n+1, |f ′
n − f ′

n+1| = 1, 0)
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Let α be a sufficiently large positive value (1000000000 in the current implementa-
tion).

(ii) When x′
n is on an upbeat

We define the cost of playing from x′
n to x′

n+1 as follows.

C(x′
n+1||x′

n) =

{
α (x′

n ̸= xn)

0 (x′
n = xn)

As a criterion for identifying whether each note is on the downbeat or upbeat, the
user can select quarter-note-level one and eighth-note-level one.

2.2.2 Melody Modification Penalty The melody modification penalty represents
how much the output melody differs from the original melody. The melody modifi-
cation penalty P (x′

n|xn) for x′
n is defined as follows.

P (x′
n|xn) =

{
0 (x′

n = xn)

α (x′
n ̸= xn)

2.3 Viterbi-like dynamic programming search

The system searches {x′
1, x

′
2, · · · , x′

N} that minimizes the following values

S =

{
N−1∑
n=1

(P (x′
n|xn) + C(x′

n+1|x′
n))

}
+ P (x′

N |xN )

This minimization can be performed using a Viterbi-like dynamic programming algo-
rithm.

2.4 Tablature Output

The system finally outputs x′
1, x

′
2, · · · , x′

N as a tablature in the MusicXML format.

3 Preliminary Results

We attempted to generate a reduced melody’s tablature. Figure 1 shows the tablature
used as an input (representing the original melody). This melody has a series of six-
teenth notes, so requires a fast fingering movement to play. On the other hand, Fig-
ure 2 shows the generated tablature (representing the reduced melody). The fingering
movements on the upbeats have been removed, and the fingering movements on the
downbeats have been made smaller.
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Fig. 1. A tablature used in the preliminary experiment

Fig. 2. A tablature of the reduced melody

4 Conclusion

In this paper, we developed a prototype system for generating a tablature that can be
played more easily than the original melody. This system is intended to allow novice
guitar players to practice solo melodies without lowering their motivations. After learn-
ing to play reduced melodies, they can try to practice the original melody.

However, there are still various issues to be addressed. First, it is necessary to eval-
uate the similarity of the reduced melody and the original melody to assess our melody
reduction method. Because there have been many methods for melody reduction, such
as GTTM-based ones, we need to compare our method with those ones.
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Abstract. The physical environments for musical instrument instruction include
a mixture of various types of information such as performance sounds and speech.
In our previous study, we analyzed the speech segments of audio data recorded
in real one-on-one classical guitar lessons. In the current work, we annotate two
types of labels for the teacher’s utterance information and analyze them struc-
turally by applying the Generative Theory of Tonal Music (GTTM) to summarize
the lessons. Our findings revealed a commonality in the interpretation of utter-
ance groupings and demonstrate that the labels for semantically categorizing the
content of teachers’ utterances are useful in determining the hierarchy.

1 Introduction

In musical instrument lessons, teachers and learners often record audio or video for
later review and reflection. However, these private recordings are rarely made publicly
available as a research resource. Additionally, the specific terms and instructional con-
tent utilized in real lessons have not been analyzed in detail. Therefore, we previously
collected sound information from one-on-one classical guitar lessons to help clarify the
features of the music teaching-learning process [1].

In the current study, we structurally analyze the utterances that occur during a guitar
lesson with the aim of summarizing the overall lesson. Specifically, We annotated the
teacher’s utterances data with two types of labels and generated tree structures using an
analysis method based on the Generative Theory of Tonal Music (GTTM) [2]. Through
a comparison of the tree structures by two analysts, we examined the common structural
patterns and rules for the aggregation of tree structures. Our findings revealed a com-
monality in the analysts’ interpretations and showed that labels related to instructional
content are useful in determining hierarchy.
⋆ This study was partially supported by Kayamori Foundation of Informational Science Ad-

vancement.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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A research [3] proposed an interactive information structuring method for meeting
minutes utilizing the GTTM. In that study, to explicitly express the intentions contained
in discussions, a tree structure and a method for its extraction were implemented to rep-
resent hierarchical importance levels based on verbal and non-verbal information. Our
study aims to find a method suitable for lessons utilizing this same approach. We also
take advantage of CROCUS, a publically available dataset containing performances and
their written critiques [4]. While this dataset does not provide real-time performance in-
struction, it is applicable to our study as it focuses on the instructor’s “words.”

2 Data Preparation

Features of Audio Segment of Classical Guitar Lessons In our previous study, we
collected audio data from a pair (teacher and student) of one-on-one guitar lessons
and categorized them into groups based on musical pieces for which the lessons had
been given at least three times [1]. We then manually transcribed the utterances for
each teacher and student and segmented them on the basis of the time interval between
utterances.

Our analysis of the segmented data showed that (i) the percentage of students’ ut-
terances tended to decrease as the number of lessons progressed, and (ii) the percentage
of teachers’ utterances did not change much. These findings suggest that a more de-
tailed analysis focusing on teachers’ utterances might make it possible to extract the
main points of the lesson. In addition, an integrated analysis of audio segments and the
content of utterances is necessary to achieve a comprehensive summary of the lesson.

Annotation of Types of Teacher’s Utterance In this study, we focused on the teacher’s
utterances and annotated two types of labels representing instructional information with
the transcribed data. Through these annotations, it is possible to clarify the type of
instructions given at specific times during a musical lesson.
– Instructional Topic Labels: The Music Teacher’s Ontology [5] is a knowledge sys-
tem for music education that represents a hierarchy of topics on which teachers might
provide feedback to students. We referred to this ontology to define instructional topic
labels. First, we defined four upper-level labels: Musical piece, regarding the musi-
cal style of the piece (period, musical form, etc.), Musical expression, regarding the
intentional use of expression by the teacher or learner, Technique, regarding physical
technique, and Other, regarding performance, mental aspects and so on. Then, we de-
fined 18 specific topics as lower-level labels, such as Tempo, Rhythm, Fingering, and
Articulation. We annotated one upper-level label and two or fewer lower-level labels
for each unit of utterance.
– Instructional Content Labels: SOAP is a classification framework that takes into ac-
count the semantic elements of sentences for natural language [6]. It was originally de-
signed for scientifically describing the thought processes of doctors in medical records
using natural sentences. In this study, by referring to research [4], we adapted the clas-
sification categories of SOAP to the field of music as follows:

– Subjective data (S): teacher providing general and/or specific conceptual informa-
tion based on subjectivity.
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– Objective data (O): teacher providing general and/or specific conceptual informa-
tion based on objectively referable events or concepts.

– Assessment (A): teacher’s evaluation of a student’s applied and/or conceptual knowl-
edge.

– Plan (P): giving a specific opinion or recommendation to guide the student’s action
towards the achievement of a specific musical aims.

We pointed that the four items can characterize the instructional content and an-
notated them to the teacher’s utterances. If an utterance had more than one label, we
provided two or more annotations.

3 Structural Analysis of Teacher’s Utterances

Generation of Tree Structures using the GTTM The Generative Theory of Tonal
Music (GTTM) is a musical framework that can generate a tree structure with a hier-
archical temporal organization and a principal-subordinate relationship of branches. A
key feature of GTTM is that it enables somewhat subjective musical analysis because it
allows for different interpretations based on the analyst’s judgment while still adhering
to the basic rules. It also enables “reduction,” which extracts abstracted groups from the
upper layers of the tree structure. These mean that GTTM can be utilized to reveal the
analyst’s perspective and identify structuring rules for summarizing the lesson.

In this study, two researchers independently generated a tree structure. First, we
took one of one lesson data described in previous section and divided the teacher’s
utterances into five sections based on the segments and the content of the utterances.
Next, we applied the time-span analysis method defined in the GTTM for grouping and
hierarchization.

Comparison of Tree Structures and Discussion Figure 1 shows an example of ut-
terances, annotated labels, and two generated tree structures, where structures A and B
correspond to the results of analysts A and B. As we can see, the groupings of the two
tree structures tended to be similar. Specifically, the branches were divided into three
groups, suggesting a commonality in the analysts’ perceptions of speech cohesion. On
the other hand, there were differences in the hierarchy within the groups. This was due
to the fact that (i) analyst A was conscious of summarization and placed S in the upper-
level labels of the instructional content labels, representing the problems of the student’s
performance, whereas (ii) analyst B focused on the number of low-level labels and the
latter half of the utterance.

The breakdown of instructional content labels in the five sections was S: 16.7%,
O: 18.6%, A: 2.1%, P: 37.5%, S&A: 2.1%, and None: 22.9%. The fact that about 23%
of the utterances could not be annotated (None) indicates that semantically significant
utterances were limited. Examples of such unannotated utterances include rhythmic
counting and responses using short words phrases as “I see.” Furthermore, P tended to
be located at a higher level of hierarchy in both structures. These results indicate that
instructional content labels are useful for identifying hierarchies.

We need to collect additional tree structure data because the samples in this study
were very small. Additionally, we need to define aggregation rules for the tree struc-
tures by applying GTTM: specifically, (1) Grouping Preference Rules, which group
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Instructional 

content label

Instructional topic label
UtterancesSpeaker

Low-levelLow-levelUpper-level

TempoMusical expressionYes, about this much. One-two-three.Teacher

SRenditionTempoMusical expressionWell, you tend to rush with the portamento.Teacher

RenditionTempoMusical expressionYes.Teacher

PNote valueRenditionMusical expression
Please keep the sound properly to the note 

value. This too.
Teacher

Oh, I see.Student

STempoMusical expressionAlso, it is fast after “ti.”Teacher

PNote valueMusical expressionKeep the note value tight. Teacher

S!ATempoMusical expression
Yes, I think that would make it in time. You 

are rushing too much about this.
Teacher

Yes, around here, I'm in a hurry, so my  

performance is getting squished, here.
Student

TempoMusical expressionFlop.Teacher

PNote valueTempoMusical expressionYes, play each note properly.Teacher

I see. My performance is getting more and 

more messed up here.
Student

ATempoOther

Yeah, don't rush. As you get better at 

playing it, the speed gets faster. So, you 
have to be careful.

Teacher

! Tree structure A

--- Tree structure B

Fig. 1. Example of utterance data and tree structures.

utterances based on measures such as utterance duration, interval, and the number of
utterances, and (2) Significance Preference Rules, which identify important utterances
based on key words and label information.

4 Conclusion

In this paper, we performed a structural analysis of teacher’s utterances to summarize
the content of musical instrument lessons. First, we annotated the transcribed data of
a classical guitar one-on-one lesson with two types of semantic labels. Then, we hi-
erarchically structured the utterances based on the GTTM. As a result, we were able
to clarify the analyst’s perspective and examine the issues with the structuring rules. In
future work, we will expand the data and conduct a more in-depth analysis of individual
data. This will enable us to apply the findings to support student reflection and improve
the quality of teaching.
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Abstract. Music in the Air is a pioneering system that generates real-time music 
from the "theoretically audible but practically inaudible range" (TAPIR) ambi-
ent sound, opening new possibilities in music composition. The system captures 
and analyzes the ambient sound and utilizes its TAPIR portion to generate mu-
sical notes in a MIDI format. It has proved to function successfully at an audio-
visual art exhibition, showing the potential to blur the line between natural and 
artistic by unveiling hidden melodies within "silence" for inspiring composi-
tions. In addition to its musical significance, this paper introduces the system 
focusing on the mapping strategy for MIDI note generation. The demo at the 
conference will showcase its initial implementation and a newer version with 
more advanced features supporting versatile musical mappings. 

Keywords: Real-time music generation, ambient sound, spectral analysis, 
TAPIR (Theoretically Audible but Practically Inaudible Range), MIDI, musical 
composition, musical sonification  

1 Introduction 

Throughout history, humanity has continuously sought inspiration from the world 
around us to create music. While natural soundscapes have often served as a source of 
creative influence, the concept of generating a new piece of music from hardly audi-
ble portions of the ambient sound is relatively unexplored.  

In this context, we introduce Music in the Air, a system for real-time music genera-
tion from the almost inaudible high-frequency part of the ambient sound, thereby 
unveiling the melodies hidden within "silence." The system provided the music (or a 
monophonic melody) for an audiovisual art exhibition with the same title held at Gal-
lery Insa Art, Seoul, Republic of Korea, in May 2023, which was presented by the 
authors (see Fig. 1).  

       This work is licensed under a Creative Commons Attribution 4.0 International License 
(CC BY 4.0).  
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Fig. 1. Photo of Music in the Air exhibition held at Gallery Insa Art in May 2023. 

The motivation behind creating new music from the hardly audible part of the am-
bient sound of a space lies in the desire to push the boundaries of music composition 
and foster a deeper appreciation for the intricacies of sound; by extracting, analyzing, 
and transforming the inaudible ambient sounds, we aim to unlock a new realm of 
musical possibilities, allowing composers to explore uncharted auditory landscapes. 
Not only can this be understood as an effort to extend the range of human audibility, 
but also a unique and innovative method to generate original sounds or compose new 
music based on something that is not audible.  

This paper introduces a brief technical background to the practically inaudible au-
dio, describes not only the overall structure of the system but also the technical details 
of the implementation and the demo scenarios, and discusses its musical significance 
and possible future enhancements.  

2 System and Methodology 

Fig. 2 illustrates the overall setup and the signal flow of the system. Here, only the 
TAPIR components of the captured ambient sound get analyzed in the frequency 
domain to provide musical information. 

Fig. 2. System Overview. 
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2.1 (In)audible Range 

Human audible frequency range spans from 20 Hz to 20 kHz, theoretically. However, 
in reality, very few individuals possess the ability to hear sounds at the extreme ends 
of this. Several factors, including age, genetics, and the environment (e.g., exposure to 
loud noises over time), can affect an individual's hearing sensitivity and narrow the 
practical audible range. In practice, the upper limit of the audible frequency range at 
average volumes is around 18 kHz for most adults – including those in their 20s, 
which is lower than the theoretical value. As a result, we may call this marginal 
bandwidth in the upper end of human audible frequencies as the "theoretically audi-
ble, but practically inaudible range" (TAPIR), as suggested in [1]. 

2.2 Audio Capture and Spectral Analysis 

Notably, with a sampling rate of 44.1 kHz or above and typical acoustic transducers 
(i.e., ordinary microphones without ultrasound features) covering a frequency re-
sponse range up to above 20 kHz, most computers and smartphones can capture and 
analyze sounds in this TAPIR range with little problem. Understanding the existence 
of these sounds, which we can hardly hear but that machines easily can, is crucial for 
designing audio experiences and related technologies for Music in the Air. For the 
exhibition, we used an SM58 by Shure [2], one of the most common microphones.  

The spectrum of the captured audio signal is then analyzed in real time using the 
fast Fourier transform (FFT) function of the minim library [3] in the Processing pro-
gramming environment [4]. Depending on the size of the FFT, the "resolution" (or the 
interval between adjacent frequencies) and the number of spectral components (or 
frequency bins) of the resulting spectrum may vary. For example, with the FFT size 
of 1024 and the sampling rate of 44.1 kHz, we get about 94 bins within the range 
from 18 to 22.05 kHz at the interval of 43.07 Hz between the adjacent frequency bins 
of FFT. 

2.3 MIDI Mappings 

For the actual generation of music/sound (i.e., something we can hear), spectral anal-
ysis results must get utilized to determine the elements of musical notes or parameters 
for sound synthesis. In the exhibition, real-time spectrum information was "mapped" 
to generate musical notes in a MIDI message format, i.e., pitch by note number, dura-
tion by Note On and Note Off (or onset and release, respectively), and the type of the 
instrument by MIDI channel (or other program messages, if necessary), as briefly 
described below: 

Pitch. To determine the pitch of the musical notes to generate, we should establish a 
rule that maps selected frequency bins from the FFT result to musical notes, which 
has the most significant impact on the overall impression of the result. Depending on 
the type of musical characteristics in mind, the mapping rule can change differently, 
involving questions on musical texture (i.e., monophonic vs. polyphonic) and scale 
(i.e., limited choice of pitch). 
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Onset and Release. In the case of real-time generation, the duration of a MIDI note 
can only be determined as the interval between the reception of Note On and Note Off 
messages. For this, the loudness level of each frequency bin of interest needs to be 
monitored continuously to detect the moment of onset and release. Note that, in addi-
tion to adjusting the threshold levels for onset and release detection, we may need to 
check/control the gain level of the microphone input signal. 

Instrument. Generated note information is sent to any instruments, either hardware 
synthesizers or virtual instruments, that support MIDI connection. Multiple instru-
ments can be connected simultaneously, each playing a different melody. 

3 Demo 

Music in the Air is a work in progress and continues to evolve. As such, the demo will 
feature not only the original system used in the exhibition but also a newer version 
that provides a graphic user interface (GUI) that allows the user to choose the desired 
musical mapping scheme from various options. In addition, we will share our experi-
ence obtained through the design and development process of the system in detail, 
primarily focusing on the MIDI mapping rules.  

As for the musical instrument, the demo will showcase several software synthesiz-
ers with different timbre and tonal characteristics, including those provided on macOS 
via Logic Pro, providing a chance to experience the effect of timbral change. 

4 Conclusion 

Music in the Air demonstrates the ability to generate musical information from the 
inaudible portion of ambient sounds, suggesting a new approach in musical composi-
tion that blurs the lines between the natural and the artistic. By expanding the bounda-
ries of traditional musical sources and unveiling the hidden melodies within silence, 
composers can draw inspiration from the subtle and often overlooked soundscapes 
and gain a fresh perspective on the infinite possibilities within our sonic environment.  

In addition to performing tests in various environments to develop a versatile but 
robust methodology and mapping schemes, future work will include the integration of 
the system into interactive and immersive musical experiences with novel and engag-
ing performances in mind. 
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Abstract. This demo shows a work-in-progress development of an intelligent 

interactive system for the Piano Machine, a physical computing system that 

causes the strings of the piano to sound through mechanical excitation. While 

the first version of the Piano Machine, developed in 2017 by Patricia Alessan-

drini and Konstantin Leonenko, employed a simple midi-keyboard control us-

ing Aftertouch for continuous control, the Piano Machine was further developed 

in 2019-2020 with Machine Learning to allow for higher-level control, allowing 

the Piano Machine to respond interactively to inputs such as live sound and ges-

ture. The current development will integrate the Piano Machine into AI-driven 

co-creative systems, such that performers/improvisors can use a variety of in-

puts in-person or remotely. By expanding inputs – ranging from text to gesture, 

tapping or humming – and providing remote access through a browser-based 

environment, this system will increase access to musical experiences with the 

Piano Machine, including for Disabled and/or non-expert music-makers. 

Keywords: #Accessibility #Network Performance #Artificial Intelligence 

1 Employing AI for inclusive interaction with the Piano 

Machine in remote or in-person music-making 

This project endeavors to bring greater accessibility to music-making 

with the Piano Machine for both Disabled and/or non-expert music-

makers by creating an expressive, dynamic and responsive generative 

music system that allows a performer to dialogue and interact in real 

time with the Piano Machine. The Piano Machine - a “robotic” physical 

computing device designed and created by Patricia Alessandrini in col-

laboration with Konstantin Leonenko in 2017 - plays the strings of the 

piano directly through mechanical, sustained vibration created by a set 

of motors and finger-like appendages controlled by microprocessors, 

thus creating dynamic control of notes over time [1]. Control data for 

     This work is licensed under a Creative Commons Attribution 4.0 International License 

(CC BY 4.0).  
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the Piano Machine will be generated in real time using AI models to 

interpret a range of different inputs – including text, gesture, tapping 

and humming – to create an environment for accessible creative music-

making, including composition and improvisation.  

The use of accessible inputs is based on research performed by 

Prateek Verma, Constantin Basica, and Patricia Alessandrini principal-

ly over the past year [2], with financial and institutional support from 

Stanford Human-centered Artificial Intelligence (HAI), the Stanford 

Humanities Changing Human Experience Grant project Considering 

Disability in Online Cultural Experiences; the EU Horizon project 

Multisensory, User-centred, Shared cultural Experiences through Inter-

active Technologies (MuseIT); the Center for Computer Research in 

Music and Acoustics (CCRMA); and the Institute for Research and 

Coordination in Acoustics/Music (IRCAM), particularly through its 

European Research Council (ERC) Project REACH: Raising Co-

creativity in Cyber-Human Musicianship. 

2 Piano Machine developments to date 

2.1 A MIDI-based instrument for direct control in performance 

The first Piano Machine was built in the Hatch Lab at Goldsmiths, 

University of London, with funding from the Arts Council of England 

(ACE). It was commissioned by Explore Ensemble for the première of 

Tracer la lune d’un doigt [3] at the Huddersfield Contemporary Music 

Festival (HCMF) in 2017 as well as for other new repertoire [4].  

To facilitate composition, notation and performance in varying com-

positional contexts, the first Piano Machine was controlled by a MIDI 

keyboard, with Aftertouch used to independently control the post-attack 

intensity of each note. As the midi-messaging is handled by a micro-

computer, no computer is required, only a (USB) MIDI keyboard.  

2.1 Voltage handling and playing mechanism 

As illustrated in Figure 1 below, the original Piano Machine uses an 

external voltage source to power individual motors with added append-

ages – with one motor per piano note - while the voltage sent to each 

individual motor is determined by the MIDI messages received by the 

Raspberry Pi, including polyphonic pitch, attack and Aftertouch. 
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Fig. 1. Voltage and control data flow in the original Piano Machine, with a close-up of the 

motors and appendages forming the Piano Machine playing mechanism. 

The playing mechanism consists of small, cell phone “pager” vibra-

tion motors equipped with laser-cut appendages suspended between 

two piano strings of the same note (or just next to low notes with a sin-

gle string), which only touch the strings when voltage is sent to them 

(Figure 1). It is thus possible to play the piano using standard tech-

niques without any interference while the Piano Machine is installed. 

2.2 Higher-level control of the Piano Machine 

The 2019 version of the Piano Machine was created for Ada’s Song, in 

which it is controlled in realtime using AI processes [5]. It has up to 96 

notes (instead of the original 64), wireless OSC messaging, improved 

stability of the appendages leading to better tone quality, finer dynamic 

control, lighter weight, better adaptability to different pianos, improved 

stability, better cushioning and portability, as well as gestural control.  

Fig. 2. The new Piano Machine, pictured in rehearsal at The Warehouse, London, October 2019 

3 Developing accessible inputs for the Piano Machine 

3.1 Integrating text inputs into the Piano Machine 

Building on Basica et al’s previous work using AI models to respond 

generatively – both online and in-person – to text inputs using language 
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models trained with tagged musical data sets such as MTG-Jamendo 

[2] [6], in the course of 2022-23 these generative music systems have

been furthered developed in collaboration with IRCAM, to further

elaborate on the melodies generated by the models with the Somax2

system, which can be stylistically trained using music provided or cho-

sen by a participant. While much of this work to date has been work-

shopped and performed using a Disklavier, the Piano Machine’s capaci-

ty for continuous control will allow for greater expressivity.

3.2 Humming, tapping and gesture for music-making 

In 2022-2023, collaborative co-design workshops organized as part of 

the Considering Disability in Online Cultural Experiences project have 

explored a range of inputs to be interpreted into musical outputs by AI 

models, particularly for potential music-makers who may have limited 

language use and/or prefer humming, tapping or gesture. Humming and 

tapping can both be translated by AI models into music, and sonically 

integrated into improvisations [2]. Integrating humming and tapping, 

along with the existing gestural control, will thus offer more options for 

defining musical materials for non-expert music-makers.  

4 Remote music-making with the Piano Machine 

The goal is to allow the above inputs to be transmitted remotely to the 

Piano Machine, which will then be live-streamed to the participant(s) 

using the low-latency, uncompressed audio environment JackTrip (7).  
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A Singing Toolkit: Gestural Control of Voice Synthesis,
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Abstract. The Singing Toolkit demo presents three approaches to real-time ges-
tural control of voice : control of vocal synthesis using the Cantor Digitalis instru-
ments; syllabic re-sequencing and modification of pre-recorded vocal tracks with
the Voks instrument; control of real-time vocal performances, using DAFx and
inertial devices. These three approaches exemplify the potential of gesture-based
control to enhance vocal performances, expand the creative possibilities in vocal
music production, and open up new avenues for expressive control and artistic
exploration.

Keywords: Gestural Control of Voice, IMU, Theremin, Voks, Chironomic, Ges-
ture, Cantor Digitalis

1 Introduction

The Singing Toolkit demonstrates our recent work in three directions for real-time ges-
ture control and modification of voice signals. The first instrument, Cantor Digitalis, is
a formant synthesizer using bimanual (chironomic) gestures for melodic and forman-
tic control with the help of graphic tablet. The second instrument, Voks, allows for
syllabic resequencing using tapping gestures and chironomic control of intonation and
voice quality. The third approach is real-time voice transformation through gesture-
controlled vocal effects using the IMU RiOT-Bitalino inertial measurement units (an
Ircam and Bitalino joint project).

⋆ This Research is funded by ANR National Research Agency: Analysis and Transformation of
Singing Style ANR-19-CE38-0001 & Gepeto: GEsture and PEdagogy of inTOnation ANR-
19-CE28-0018

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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2 Cantor Digitalis : Chironomic control of synthesized voice

Cantor Digitalis 1 is a vowel and semi-vowel singing instrument controlled by chi-
ronomic gestures [2]. It translates manual gestures into formant synthesis parameters
based on the linear model speech production [1], allowing musicians to control the
pitch, vocal effort, and vowel of a synthetic voice in real time. The primary gesture
interface used for controlling Cantor Digitalis is the Wacom graphic tablet. Writing or
drawing gestures by the preferred hand are controlling pitch and vocal effort, while the
other hand control the vowel space using a 2D (2 formants) surface, as shown in Figure
1a.

The pen’s low latency (5 ms) makes sound produced by Cantor Digitalis seem to
exhibit a direct causality similar to that of acoustic instruments. A visual cue is also
printed on the tablet to enhance usability. The graphic tablet has proven effective for
controlling voice intonation and singing with Cantor Digitalis. Cantor Digitalis can
also be controlled with other continuous interfaces, e.g. the Roli Seaboard RISE Multi-
dimensional Polyphonic Expression interface (MPE) [6]. In this case, pitch is controlled
using a chromatic keyboard, and vocal effort is controlled by pressure on the touch sur-
face. MPE allows for continuous transitions between notes and pressure levels. Cantor
Digitalis [7] [3] won the first prize in the Margaret Guthman Musical Instrument Com-
petition (2015). Cantor Digitalis is limited to vowels or vocalic sounds, to the exclusion
of most consonants.

3 Voks: Syllabic sequencing of a prerecorded voice

The Voks singing instrument [4] makes it possible to control any voice utterance, in-
cluding consonants. As it appeared impossible to control each individual articulatory
parameter in real time, the syllable is chosen as rhythmic control unit. In practice, the
user first loads a sample recording of the desired text being uttered, together with a
syllabic annotation of said recording. The loaded sample needs not have any particu-
lar rhythm or melody. Then, during the performance, the system resequences the loaded
sample, with a rhythm, pitch and vocal quality controlled in real time by the performer’s
manual gestures.

Syllabic sequencing: Syllabic rhythm control is performed using a cyclic tapping
gesture. Several interfaces can capture such gesture data, including buttons, keys, pads,
and pressure sensors. Upon tapping/pressing or releasing one’s finger on the interface,
a one-time signal is sent to the system, triggering advancement of a virtual playhead to
the next frame timestamp.

Other gestures: In addition to rhythm sequencing, other parameters are to be con-
trolled by the performer: pitch, vocal effort, vocal tract stretching factor. Some of those
parameters are common to Cantor Digitalis, although they are not implemented in the
same way — in Cantor, synthesis parameters are controlled directly, whereas in Voks,
a prerecorded sample is modified in real time based on control values.

Following Cantor Digitalis, the graphic tablet and MPE interfaces are used to con-
trol pitch and vocal effort in Voks. In addition, the theremin has been used as a control

1 https://github.com/CantorDigitalis
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(a) A Wacom graphic tablet. (b) Theremin and pressure sensor

Fig. 1: Two interfaces that can be used for gestural control of vocal synthesis. (a) The
Wacom tablet has been used with Cantor Digitalis (pen and finger) and Voks (pen only)
(b) The theremin and pressure sensor have been used to control Voks.

interface, with one antenna controlling pitch and the other controlling vocal effort, and
an added pressure sensor placed in between the thumb and index of the performer for
rhythm control. T-Voks (i.e. Voks played by a Theremin and a rhythm control button)
won second place in the 2022 Guthman musical instrument competition.

4 Gesture Control of Digital Audio Effects with IMU

The third tool in the Singing Workshop is interactive real-time gestural control of digital
audio effects (DAFx) for voice. The the BITalino R-IoT (abbreviated as R-IoT)[5] is
chosen because of its lightness and powerfullness. It is a 9-axis digital IMU sensor
(LSM9DS1) that provides absolute orientation in space with low latency over the OSC
protocol. The data flow follows the structure indicated in Figure 2. First, R-IoT data is
carried to the computer by a router through wifi. Then, data from R-IoT (orientation,
quaternions, and acceleration) is received in MAX using the dedicated Bitalino object
and Mubu package (by IRCAM). For each DAFx, a selection of parameters, mapping,
limit conditions, and appropriate scaling must be made. The data is then sent from
Max to the TouchOSC object in Ableton Live using the OSC protocol. There, another
mapping is performed to assign those OSC values to different controls in the effects
used.

Now we will describe briefly some effects that have been implemented. We have
mapped hand rotation to panning: visually, the performer can make an opening ges-
ture, which allows capturing an appropriate range of orientation values for the axis of
rotation. Body limitations help define the scaling limits in MAX so that the movement
adequately covers the maximum, minimum, and center of stereo panning. Figure 3 a) il-
lustrates this gesture simply. The second effect is an overdrive effect. Within the specific
musical piece for which it has been developed, this effect involves distortion applied to
all vocal tracks, which gradually increases towards the end of the song. The backward
movement of the hand, as shown in Figure 3 b), relates to the incremental distortion by
tilting the arm. Finally, another performer triggers a delay effect momentarily using the
same gesture. In this case, the sudden movement launches the delay effect based on the
speed of the motion, making the control of the delay much more efficient than with a
traditional knob. This movement can be seen in Figure 3 c).
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Fig. 2: Flow diagram for Interactive Vocal DAFx with R-devices using MAX and Able-
ton LIVE.

Fig. 3: Schema for the configuration of a) Panning, b)distorsion, c) delay using the R-
IoT devices.

5 The Demo

The Singing Workshop the demo consists of a room with the three devices set up, each
with its corresponding interfaces and computers. Additionally, there will a poster and
three assessors who will explain how the three devices work using musical pieces as
examples, within there are also included some tracks of the Chorus Digitalis project,
including Cantor Digitalis, Voks and real voices.
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Sonifying Players’ Positional Relation in Football

Masaki Okuta and Tetsuro Kitahara⋆
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Abstract. This paper presents a prototype system that visually and aurally repre-
sents information on the positions and movements of players in a football game,
with the aim of facilitating understanding of football. Understanding the posi-
tional relationship of players is important in analyzing the situation of a game.
Although visualization has been used for this purpose, there are no examples of
audible representation. In this paper, we use Delaunay triangulation to find the
pass courses between the players, and then sonify the pass courses with sound.
By extending this trial, we expect to be able to understand the match situation
more effectively than with visualization alone.

Keywords: Football Sonification visualization

1 Introduction

In football, eleven players work together and yet move differently to move the ball to the
goal. In order to understand the matchup, it is necessary to understand the movements
of the players who do not have the ball. However, it is not easy to keep track of the
standing positions and movements of all eleven players at the same time.

There have already been studies on tracking the positional relationship of football
players [1][2]. On the other hand, sonification is used in other fields to facilitate to
understand complex scenes [3], but there have not been attempts for analyzing footnote
scenes.

In this paper, we attempt to visualize and sonify the positional relationships of play-
ers in a football game. In football, it is necessary to pass the ball in order to carry the ball
to the goal. Therefore, our system analyzes available pass courses from the player hold-
ing the ball by making triangles among the players and tell them through sonification
as well as visualization.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).

⋆ This work was supported by JSPS Kakenhi Nos. JP22H03711 and JP21H03572.
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2 Proposed System

2.1 System overview

Our system visualizes the positional relationships between players and then represents
these relationships as sound to promote understanding of football. The visualization
and sonification shown below are performed only when one team (called team A here)
is attacking.

2.2 Data

We use positional tracking data provided by Data Stadium Corporation, which records
frame numbers, players, and the ball’s position at every 1/25 second. The players’ data
are recorded for a total of 22 players (11 players × 2 teams) on the field (Table 1).

Table 1: Tracking Data
Data Description

Game ID ID that uniquely identifies a match
Frame Tracking system frame number

HA Flags for home and away identification．1：Home 2：Away 0：Ball
NO Player’s back number . 0 for ball
X -5250∼5220 Pitch size 105m x 68m, 105m side
Y -3400∼3400 Pitch size 105m x 68m, 68m side

Speed Indicates the speed of the ball and the players in km/h

2.3 Visualization

First, every 1/25 second, the coordinates of the players and the ball for both teams are
represented by a circle. Each team is distinguished by a different color, and the ball is
represented by black.

Next, the system connects the points P1, · · · , P11 representing each player of team
A by an edge so that the following conditions are satisfied.

– Every point Pi has an edge.
– Every edge PiPj does not intersect any other edge PkPl.

This edge are drawn by using the Delaunay triangulation algorithm [4]. Suppose
now that the player represented by vertex Pi is in possession of the ball (i.e., the coor-
dinates of Pi and P0 overlap). When vertex Pi has edges PiPj1 , PiPj2 , · · · , PiPjN , we
can consider these as pass courses from Pi.

An example of the visualization is shown in Figure 1.
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2.4 Sonification

The position of the ball and the pass courses obtained above are represented as sounds
because these are highly related to the chances of scoring goals. These data are con-
verted to MIDI note numbers and MIDI Note On messages are sent out. In the current
implementation, an acoustic piano tone is used.

Sonification of ball position Every 2/5 second, the coordinates of the point P0 repre-
senting the ball are converted to a MIDI note number. The note number is determined
according to Figure

Sonification of pass courses When a player holds the ball, the pass courses’ feature
obtained above is made audible. Let Pi be the vertices of the player holding the ball
and Pi be the edges of PiPj1 , PiPj2 , · · · , PiPjN . The vertices Pj1 , Pj2 , · · · , PjN can be
interpreted to represent players to whom the ball can be passed from Pi. The coordinates
of these vertices are then converted to note numbers according to Figure 2 and sounded.
When N is large (when there are many passable players), chords with many tones are
formed. When the edge PiPjn (n = 1, 2, · · · , N ) is long or the coordinates of Pjn

are far from each other, chords with open voicings are formed. In this way, the user
can know the occurrence and characteristics of the pass courses from the chords. This
sonification process occurs only when the player holding the ball changes, unlike the
sonification of the ball position.

Fig. 1: Visualization Results Fig. 2: How to determine note numbers

3 Preliminary Results

Using this system, the position of the ball and the pass courses were sonified using the
positional data described in Section 2.1. Figure 3 is a spectrogram obtained by sonifying
a scene in which team A connects a pass from a position close to its own goal to a player
in the center of the rival team and carries the ball. As a result of the sonification, the
following can be read.
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– From around 0 to 4 seconds, only the sound of the ball was heard; there was no
movement of the ball between blocks.

– From around 4 to 12 seconds, the sound (chord) consisting of multiple tones was
heard as multiple pass courses were found

– From 12 to 18 seconds, only the ball is sounded, but the ball is moving between the
blocks, so the pitch of the sound ascends

– From 18 seconds onwards, the pass courses were audible, while the ball was closer
to the rival’s goal, so the pitch of the sound was higher than in the 4–12 second
period.

Fig. 3: Spectrogram of the sound generated by our sonification method

4 Conclusion

This paper described a prototype system that visually and aurally represented infor-
mation on the positions and movements of players in a football game. The system fa-
ciliatedthe feature of pass courses in the football game by sonifying them as well as
visualization.

For more precise analysis of game scenes, we have to solve many issues. If a player
in the defending team is near from pass courses found through our system, this pass
course cannot be considered available. If this is the case, this pass course must be ex-
cluded, but this has not yet been implemented. It is also necessary to consider how to
sonify players other than those forming pass courses. Through such development, we
would like to establish a technique that helps understand football games.
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Talking with Fish: an OpenCV Musical Installation
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UC San Diego
gzalles@ucsd.edu

Abstract. Talking with Fish is an interactive multi-media installation in which
the movement of fish is translated to musical material using OpenCV. Specifi-
cally, the installation makes use of the centroids algorithm to track the position of
multiple blobs simultaneously, and the data generated by these blobs is applied
to synthesis parameters that generate sound. The X coordinate of each blob pro-
vides us with a frequency and position for the voice, the Y coordinate modulates
the volume, and the area of each blob modifies the spread of the voice over the
loudspeakers. The algorithm is perpetually modulating the musical key, moving
clockwise along the circle of fifths, creating a constant harmonic movement for
added interest.

1 Introduction

The idea of using fish and a sensing system to create art is not a novel concept. Walker,
Kim, and Pends [1] from the Georgia Institute of Technology wrote about this idea
in 2007. In this paper, the authors actually noted that sonifying elements of exhibits
is not simply an artistic endeavor but actually has deeper implications. The concept
the authors were attempting to convey is that visually impaired guests do not have the
same experience in museums, or aquariums, as those with 20/20 vision. Therefore, as
an approach to increasing inclusion in these spaces, sonifying data becomes imperative
for all patrons to derive a meaningful experience. Part of our future goal, therefore, is to
explore not just how this tank can be meaningfully sonified, but rather how can we add
sound to the entire aquarium, to make a richer experience for visually impaired people1

FuXi [2] is another project which featured fish in a real-time music performance
system. In contrast to our project, the authors of that work decided to incorporate a
MIDI controller into the design, allowing the musician to collaborate with the fish in the
music-making process. The authors note how the use of live animals adds indeterminacy
to the composition and natural gestures. Rather than using a MIDI controller, our system
tracks and reports the musical key while it generates the music. Our vision was that,

⋆ Thanks to Birch Aquarium at Scripps.
1 This might include a guided audio tour or audio descriptors at our various tanks.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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habitually, professional musicians would be invited to the aquarium to accompany the
fish in the music-making process2.

Baldan et al. [3] also discuss a real-time motion-tracking-based aquarium installa-
tion in their 2012 paper. The authors use four webcams, the Processing programming
language, Pure Data, and Open Sound Control (OSC). The use of Free and Open Source
Software (FOSS) makes this project more accessible and is something we would like
to consider. Using a single application like MAX/MSP simplifies this process since a
single program can be run. Baldan et al. used a number of interesting criteria for music
making, such as evaluating the different blobs for color and using this data to influence
timbre. They also use blob velocities which is something our system does not currently
consider.

This installation, while not entirely novel, stands out due to the fact that it is per-
manent. Some of the other authors we mention in the literature review intervene in
different contexts briefly, in contrast, this project was designed to be viewed by patrons
of the aquarium 363 days a year (we close on New Year and Christmas). This means
that thousands upon thousands of people will experience this material in one form or
another over the course of the year - last year’s attendance record for our aquarium was
almost half a million people!

2 Technical Design

Talking with Fish relies on a Panasonic AW-HE2 camera mounted across our large kelp
tank at Birch Aquarium at Scripps. The video signal is fed to a capture card which lets
us use the feed directly in MAX/MSP. Once the video signal is recognized we modify
the feed to facilitate blob tracking. To reduce GPU load the frames are resized to a much
smaller resolution and these are then converted to a gray-scale before converting to a
binary format. In this final conversion, the pixel data is essentially assigned a value of
0 or 1 based on the luminosity of the data point (e.g., bright pixels become white, dark
pixels become black).

The centroid algorithm then works by looking for clusters of white pixels. A size-
able mass of grouped white pixels is considered a blob, and these blobs are evaluated
moment per moment to determine their position at each frame. Our system currently
allows for at most eight voices for the harmonic synthesis section. In order to create
a constant sonic environment we built an operator which has a random note duration,
above a specified minimum, and an envelope to control its gain. After each operator
concludes producing the desired note, it uses the last available frequency value stored
for the analysis to play the next chord member.

Before playing the new note, the operator also determines which musical key the
system is currently in, to determine the final MIDI value to assign to the voice. As a
result of this design the system is often in between musical keys and the harmonic anal-
ysis of the music would reveal that it is perpetually modulating around the chromatic
scale. In other words, very often, the chords are composed of members of two musical
keys, closely related by the number of incidentals. Figure 1 depicts this idea using only

2 For example during special events.
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three notes; notes before the key change are in C major, and notes after the key change
are in G Major. At certain moments the two keys are overlaid one on top of the other,
making the modulations smoother.

Fig. 1. Diagram showing harmonic structure using only 3 notes.

One of the challenges with this installation was creating something that would be
informed by the data from the feed but that would remain active while fish were out of
frame. Guests, however, also expected a marked sound to be played when a blob was
detected. For this reason, a second instrument was developed digitally to satisfy this
criterion. We call this the melodic element because the tones are short and sequenced
linearly. The instrument matches the musical key of the chord generator and evaluates
the number of columns in our data matrix. The OpenCV algorithm dynamically tracks
the number of blobs, thus, whenever the count goes from low to high, we generate a
melodic note to signify that a new blob has been detected.

3 Fabrication

The hardware for this project was placed inside a wooden box custom-made to fit the
space we needed; the box actually shaped like a parallelepiped due to the topology of
the space. Inside the box we hold the computer which runs the MAX/MSP standalone
application and a mouse, to start the program each morning. The box also contains the
aforementioned video card which turns the Panasonic AW-HE2 HDMI output into a
serial stream recognizable by the computer. The audio output of the computer is the
built-in headphone jack which connects the computer to a set of PreSonus speakers
mounted on the walls of the aquarium. Above the box is a display monitor which shows
the original video, the processed video (with green circles around each blob), and infor-
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mation about the piece. A QR code on the GUI links to the project page on the artist’s
site. Please visit this temporary link for a demo. 3

4 Future Work

One of the big criticisms of the work currently is that the kelp inside the Kelp Forrest
often triggers sound more than the fish does. This is because the OpenCV program we
are using does not use a trained model to identify fish, it simply searches for clusters of
white pixels4. In the next version of this project, I would like to use a database of marine
life species (e.g., images) to train a model. Unfortunately, the current hardware we have
might not be able to handle this task in real-time, so for now we are sonifying both the
fish and kelp. Even more appealing, would be the idea of identifying specific species
using machine learning and computer vision. We envision a system that is trained to
identify all the various species found in this tank and use a different instrument for each
species - for example.

5 Conclusion

This paper has described the installation Talking with Fish which generates music ma-
terial from the video analysis of a kelp forest in San Diego, CA. The MAX/MSP visual
programming environment was leveraged to create a custom system that tracks cen-
troids in the field of view. The area and coordinates of these pixel masses are used to
drive a live synthesis algorithm that creates harmonic material in all 12 keys of the
Western scale sequentially. The resulting program was compiled as a standalone appli-
cation and copied to a dedicated computer responsible for creating the sound material
from the live video feed.
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The Sound Morphing Toolbox: Musical Instrument
Sound Modeling and Transformation Techniques
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Abstract. Sound morphing requires the use of several audio processing algo-
rithms involving the analysis, transformation, and resynthesis of sounds. The aim
of this demo is to review the techniques implemented in the sound morphing tool-
box (SMT). The SMT is open-source and freely available on GitHub. This demo
will cover the analysis, transformation, and resynthesis steps used in standard
morphing techniques applied to isolated notes from musical instrument sounds,
such as sinusoidal modeling, spectral envelope estimation, time-scale modifica-
tion, and resynthesis models. The demo will include sound examples to illustrate
each step and a hands-on session to show the participants how to use the SMT.

1 Motivation and Relevance

Perceptually, sound morphing is a transformation that gradually blurs the categorical
distinction between the sounds being morphed by blending their sensory attributes [4].
When morphing musical instrument sounds, the challenge lies in interpolating across
dimensions of timbre to produce the perception of hybrid musical instruments. Figure 1
shows a striking example of image morphing to illustrate sound morphing with a visual
analogy. For musical instrument sounds, the corresponding transformation gradually
transitions from the source instrument to the target instrument. Additionally, the mid-
point (α = 0.5) should give rise to the perception of a hybrid instrument that resembles
both source and target instruments at the same time. To achieve that, we need a sound
model that captures perceptual information and transformation strategies that allows
manipulating this information in a perceptually meaningful way.

This demo will explore the methodological foundations and philosophical implica-
tions of morphing, from the conceptual formalization of morphing to the categorical
perception of sounds. Morphing raises important issues in perception and cognition
both in terms of research questions and the mathematical and computational means to
address them. How is the morph represented in the brain given the representations of
the source and target stimuli?

⋆ This project has received funding from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Sklodowska-Curie grant agreement No 831852 (MORPH)

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

Fig. 1. Image morphing used to illustrate the aim of sound morphing.

The topic of the proposed demo overlaps with several of the topics of interest of the
CMMR community, such as audio and music processing; representations of sound and
music; timbre and musical instruments; sound and music analysis, synthesis, and trans-
formation; philosophical implications and methodological foundations; and expression
and performative aspects of music. Sound morphing uses several audio and music pro-
cessing algorithms for the analysis, synthesis, and transformation of sounds. For exam-
ple, sinusoidal modeling, additive synthesis, spectral modeling, and time-scale modi-
fication. Given the strong connection between musical instruments and timbre [1], in-
teresting morphing transformations happen across dimensions of timbre perception [4]
and timbre features [2] lie at the core of sound morphing.

2 Innovation

Sound morphing has found creative, technical, and research applications in the litera-
ture. In music composition, sound morphing allows the exploration of the sonic contin-
uum [22,10,15] by creating hybrid sounds that are intermediate between a source and a
target sounds. Sound morphing is also used in audio processing, sound synthesis, and
sound design [21,6]. Additionally, sound morphing techniques have been used to inves-
tigate different aspects of timbre perception [9,5,19]. More recently, Google Magenta’s
NSynth https://magenta.tensorflow.org/nsynth-instrument applied
machine learning techniques to sound morphing. New technologies push the bound-
aries of what is possible to achieve in terms of sound transformations. Particularly, the
great yet unexplored potential for creative applications in music composition and per-
formance that sound morphing possesses is capable of driving further developments in
creative music systems.

The primary aim of this demo is to introduce the Sound Morphing Toolbox (SMT)
to the participants. The SMT contains MATLAB® implementations of sound modeling
and transformation algorithms used to morph musical instrument sounds. The SMT is
open-source and freely available on GitHub1, making it highly flexible, controllable,
and customizable by the user. This hands-on workshop is aimed mainly at less tech-
nically inclined participants such as composers or researchers without the technical
background. During the workshop, participants will be guided on how to use the SMT

1 https://github.com/marcelo-caetano/sound-morphing
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step by step. Our aim is to provide an intuitive rather than technical understanding of
the audio processing algorithms used. By the end of the workshop, the participants will
be able to make informed decisions about audio processing algorithms and parameter
values and use the SMT on their own. Additionally, the workshop will draft a research
agenda for sound morphing that introduces technical aspects, aesthetic and perceptual
issues. Finally, we will identify shortcomings of the currently available pieces of mor-
phing software listed above and research opportunities.

3 Research

The SMT has open-source implementations of sound modeling and transformation al-
gorithms based on the sinusoidal model [14,18] and the source-filter model [20,4]. The
demo will review several classic audio processing algorithms widely used in sound
analysis, transformation, and resynthesis, giving the participants a broad overview of
musical instrument sound morphing and the tools to use them.

The demo will briefly review the analysis steps, namely parameter estimation, peak
selection, partial tracking, partial selection, and harmonic selection in the SMT. In
additive synthesis, the estimation of the parameters can use nearest-neighbor estima-
tion [14] or parabolic interpolation under linear, log [18], or power scaling [3]. Peak
selection [17] allows to only keep the parameters of the spectral peaks that correspond
to sinusoids. Partial tracking [14] connects these peaks across frames to create time-
varying sinusoids called partials, that are further selected according to their duration
and harmonicity.

The demo will cover spectral envelope estimation with linear prediction [12] and it-
erative cepstral smoothing [16]. The demo will also cover the time-scaling modification
(TSM) and frequency transposition techniques currently implemented in the SMT. TSM
uses SOLA-FS [11]. Frequency transposition uses the sinusoids, with the frequencies
transposed by intervals in cents. The amplitudes can be transposed or preserved using
the spectral envelope [4]. Finally, the demo will cover both additive and source-filter
resynthesis techniques. The SMT has implementations of additive synthesis by cubic-
phase polynomial fitting [14], phase reconstruction by frequency integration [13], and
overlap add [8,7]. Additionally, the residual from sinusoidal analysis is further mod-
eled with the source-filter paradigm. The demo will briefly discuss residual modeling
by time-varying linear prediction estimation [18].
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Morphing of Drum Loop Sound Sources
Using CNN-VAE

Mizuki Kawahara1, Tomoo kouzai1, and Tetsuro Kitahara1⋆
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Abstract. In this paper, we attempt a morphing technique that combines a con-
volutional neural network (CNN) and a variational autoencoder (VAE) in order
to produce a variety of sound sources of drum loops. Although there have al-
ready been studies related to sound or music morphing, and some of them have
focused on drum sound synthesis, morphing of sound sources of drum loops has
not been attempted. Our system trains the spectrograms of the drum loop sound
sources using CNN-VAE and generates a new source by interpolating two sources
in the latent space. Preliminary experiments using commercially available sound
sources show promising results.

Keywords: morphing, spectrogram, convolutional neural networks (CNN), vari-
ational autoencoder (VAE), drum sound source

1 Introduction

A loop sequencer is commonly used in music production, with which the creator con-
catenates and mixes various loop sound sources. However, it is often difficult to find
the sound sources that they desire from a limited set of sound sources. For this reason,
research has been conducted to generate a variety of sound sources by morphing. For
example, Primavera et al. [1] proposed a method to achieve smooth transitions between
different sound sources in sound morphing. Nistal et al.[2] and Aouameur et al.[3] pro-
posed a method for the synthesis of drum sounds, in which they have explored methods
for extracting features of drum sounds and generating new sound sources based on the
extracted features.

In this paper, we propose a sound sources morphing method that combines a convo-
lutional neural network (CNN) and a variational autoencoder (VAE). First, the features
of given drum loop sound sources are extracted using a CNN and are mapped to the la-
tent space using a VAE. Then, a new sound source is generated by morphing two given
sound sources in the latent space.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).

⋆ This work was supported by JSPS Kakenhi Nos. JP22H03711 and JP21H03572.
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2 Proposed System

Our proposed method uses a model based on CNN and VAE (hereinafter referred to
as CNN-VAE) to achieve morphing in a low-dimensional latent space representing the
features of sound sources.

In the training phase, the sound sources are first transformed into spectrograms by
the Fourier transform. Then, a convolutional layer is used to map the sound sources
into a low-dimensional latent space. Then, the inverse convolution layer is used to re-
construct the spectrogram of the original sound source. The CNN-VAE model is trained
so that the reconstructed spectrogram is equivalent enough to the original spectrogram.

At the generation phase, two sound sources are selected from the trained one. A new
vector in the latent space is generated by interpolating the two vectors corresponding to
the selected sources. Then a spectrogram is generated by using the decoder.

2.1 Generation of spectrograms

An input audio signal is transformed into a spectrogram with the short-time Fourier
transform (STFT). A Hamming window is used with a window width of 2048 and a
hop size of 1/4 of the window length. Since the sampling frequency is assumed to be
22050 Hz and the length of the audio signal is about 3.43 seconds (two measures at 140
BPM), the spectrogram is a 1025-by-148 matrix.

2.2 Building a CNN-VAE model

The CNN-VAE model is built and trained with given spectrograms of drum loop sound
sources. This model has an encoder consisting of three convolution layers to compress
spectrograms and them to the 16-dimensional latent space. The decoder consists of
three deconvolution layers that reconstruct spectrograms from the 16-dimensional latent
vector. The ReLU function is used as the activation function, the batch size is 64, and
the number of epochs is 3000. The mean square error is used as the loss function.

2.3 Morphing

The user selects two sound sources (denoted as si and sj) from the trained ones. Let zi

and zj be the latent vectors obtained from si and sj , respectively. Then, a new latent
vector znew = (1 − α)zi + αzj is calculated, in which znew represents an internally
dividing point of zi and zj in the ratio α : 1−α. Finally, the spectrogram is transformed
into an audio signal by inverse Fourier transform and phase restoration.

3 Preliminary Experiment

3.1 Method

We trained our model with 74 drum loop sound sources. The morphing parameters α
were set to 0.00, 0.25, 0.50, 0.75, and 1.00. The 74 drum sounds were taken from a
commercial loop sound dataset ”Sound PooL vol.2” 1(genre: Techno & Trans).

1 https://www.ah-soft.com/soundpool/
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degree of similarity 0.0013 0.2505 0.5101 0.7501
sound source pair s17, s24 s15, s28 s34, s73 s08, s51

Table 2. Morphing result (similarity to original source)

(a) s17 — s24
α 0.00 0.25 0.50 0.75 1.00

s17 1.0000 0.8510 0.1120 0.0041 0.0013
s24 0.0013 0.0211 0.3877 0.9331 1.0000

(b) s15 — s28
α 0.00 0.25 0.50 0.75 1.00

s15 1.0000 0.9221 0.6264 0.3368 0.2505
s28 0.2505 0.4165 0.6708 0.8931 1.0000

(c) s34 — s73
α 0.00 0.25 0.50 0.75 1.00

s34 1.0000 0.5736 0.5838 0.5830 0.5101
s73 0.5101 0.6714 0.6954 0.9250 1.0000

(d) s08 — s51
α 0.00 0.25 0.50 0.75 1.00

s08 1.0000 0.9492 0.8218 0.7596 0.7501
s51 0.7501 0.7818 0.7873 0.9773 1.0000

After these sound sources were trained, pairs were selected for morphing. The se-
lected pairs are shown in Table 1. The ”s + number” (e.g., s01, s02, · · ·) represents
sound sources. The pairs of sound sources used for morphing were selected so that the
cosine similarity of the spectrograms is 0.00, 0.25, 0.50, and 0.75 in order to try a wide
range of pairs, including those similar and dissimilar to each other.

When α is close enough to 0 (or 1), the generated sources should become similar
to si (or sj) as α. We confirm this by calculating the cosine similarity between the
spectrograms of the generated sources and the original sources.

3.2 Results

The results of the morphing are shown in Table 2. Some of the generated results are
posted at the following URL: https://sites.google.com/kthrlab.jp/en-drum-morphing

It is confirmed that the original sound sources are reconstructed with sufficient ac-
curacy for α=0.00 and α=1.00. In the cases of α=0.25 and α=0.75, the similarity is
intermediate between the values when α = 0.00 and when α = 1.00. This indicates
that generated sound sources that contain both features of the two sources.

For the pairs in Table 2 (b) and Table 2 (c), when α=0.50, sound sources with
low similarity to both original sources were generated. It implies the possibility that
our model can generate novel sources. In fact, Fig 1 shows that the spectrogram with
α = 0.50 is different from those with α = 0.00 and α = 1.00.

4 Conclusion

In this paper, we proposed a CNN-VAE model to achieve sound source morphing in
the latent space. When we changed α (a morphing ratio), the model generated different
sound sources accordingly. Future work includes larger-scaled experiments with various
sound source pairs and subjective evaluation through listening experiments.

Table 1. Pairs of sound sources used in the experiment

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

722



Fig. 1. Spectrogram of morphed source from s17 and s24 (from left to right α =
0.00, 0.25, 0.50, 0.75, 1.00)
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Generating Tablature of Polyphony
Consisting of Melody and Bass Line
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Abstract. Our final goal is to develop a system that generates a tablature for
a given lead sheet consisting of a melody and a chord progression. Generating
a tablature for a lead sheet requires a complex solution search because plural
possibilities exist in voicing each chord. As the first step, we address a system
that generates a tablature consists of a melody and a bass line using the Viterbi
algorithm. Polyphonic fingering states are modeled as 6-dimensional vectors and
the playing difficulty is modeled as a cost function of such vectors. By minimizing
the cost function, our system generates a playable tablature.

1 Introduction

Tablatures are helpful to play the guitar, so many non-professional guitarists use tab-
latures. Therefore, there have been attempts to automatically generate tablatures from
audio signals or scores. Wiggins et al. used audio signals as inputs and estimated finger-
ing positions using a neural network [1]. Yazawa et al. also used audio signals as inputs,
and generated tablatures using fingering forms and note value-based costs [2]. Hori et
al. proposed a web application that enables arrangement with transposition using hidden
Markov models [3].

The solo guitar, which means playing both a melody and an accompaniment alone,
is an attractive playing style for guitars, especially classic guitars. However, there are
less commercially available tablatures for the solo guitar. Therefore, if one wants to
play their favorite songs in the solo guitar, they must arrange those songs for the solo
guitar. However, it is a difficult task for most amateur guitarists.

The final goal is to achieve a system that automatically generates such tablatures for
the solo guitar. Inputs are assumed to be lead sheets, which describe melodies and chord
progressions but no voicings. We need a complex solution search to generate tablatures
from lead sheets because there are plural possibilities in the voicing of each chord. As
the first step, we address a system that generates tablatures for simultaneously playing
a melody and bass line.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).

⋆ This work was supported by JSPS Kakenhi Nos. JP22H03711 and JP21H03572.
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2 Proposed System

Given a lead sheet describing a melody and a chord progression, our system generates
tablatures for simultaneously playing the melody and the bass line on the classic guitar.

2.1 Importing MusicXML data

Once a lead sheet given in the MusicXML format, a sequence of the melody notes and
the bass notes is represented as:

X = {(x1, r1), (x2, r2), · · · , (xN , rN )}

where xn is the pitch (MIDI note number) of the n-th note and rn is the chord’s root note
(pitch class from 0 to 11) when note xn is being played. In the current implementation,
the root note is played only at the timing of a chord change, and rn is empty when there
is no chord or the previous chord continues (represented by rn = ϵ).

2.2 Designing the Viterbi Algorithm

Given X , our system estimates the fingering positions for each element of X .

Set of fingering state vectors Let V be the set of vectors representing the playable
fingering states. Each element v in V is represented by a 6-dimensional vector v =
(f1(v), f2(v), f3(v), f4(v), f5(v), f6(v)). Let fm(v) denote the fret number of string
m (fm(v) = −1, 0, . . . , 14), where fm(v) = −1 means not to play and fm(v) = 0
means open string. To ensure that V contains only playable fingering states, V only has
elements that satisfy the following conditions.

1. maxm(fm(v))−minm(fm(v)) ≤ 3,
2. The number of m satisfying fm(v) > 0 is 2 or less,
3. Multiple strings do not correspond to the same pitch.

Basic Mechanism Given X = {(x1, r1), · · · } representing the main melody (+ root
notes of the chord progression), the system finds the optimal sequence of fingering
states, Q = {q1, q2, · · · , qN} (qn ∈ V ) by minimizing the cost (degree of non-
optimality) for Q. The cost is defined as a combination of the following three.

– Initial cost C(q1): gives a slightly larger cost to the fret furthest from the neck,
based on the idea that playing in a position closer to the neck is more common.

– Transition cost C(qn+1|qn): Based on the idea that it is easier to play when the
movement of the fingering position is less, a larger cost is given when the movement
of the fingering position is larger.

– Emission cost C((xn, rn)|qn): gives a sufficiently large cost if somebody cannot
play the correct note at the given fingering position.
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The total cost C(Q) is defined by the following equation:

C(Q) = C(q1) +

{
N−1∑
n=1

(C((xn|rn)|qn) + C(qn+1|qn))

}
+ C((xN |rN )|qN )

and the Viterbi algorithm finds the minimum Q.
The initial cost, transition cost, and emission cost are defined as follows:

Initial cost On acoustic guitars, the closer-to-the-neck position is more common than
the closer-to-the-body position. Therefore, we give the closer-to-the-body position a
slightly higher cost than the closer-to-the-neck position. That is, the initial cost C(q1)
is defined as follows:

C(q1) =

{
2.5 (maxm(fm(q1) ≤ 5)

5.0 (otherwise)

Transiton cost By giving higher costs to large movements in fingering-positions, we
reduce the difficulty of playing the strings. In addition, for the same reason as above,
we prioritize the position closest to the neck. Therefore, we divide the transition cost
C(qn+1|qn) into the cost of the move itself C1(qn+1|qn) and the cost to prioritize the
neck side C2(qn+1):

C(qn+1|qn) = C1(qn+1|qn) + C2(qn+1)

C1(qn+1|qn) =


0.0 (dist(qn, qn+1) ≤ 3)

5.0 (dist(qn, qn+1) ≤ 4)

30.0 (otherwise)

C2(qn+1) =


5.0 (maxm(qn+1)) = 0)

10.0 (maxm(qn+1)) ≤ 4)

20.0 (otherwise)

where dist(v1,v2) (v1,v2 ∈ V ) is defined as follows:

dist(v1,v2) = |max
m

(fm(v1))−max
m

(fm(v2))|

Emission cost The emission cost indicates whether the fingering position can produce
the given note. Let note(fm(v)) be the pitch (MIDI note number) played at the finger-
ing position fm(v) on string m. The fingering state qn produces (xn, rn) when each of
m = 1, · · · , 6 satisfies one of the following:

– fm(qn) = −1
– note(fm(qn)) = xn

– note(fm(qn)) = rn + 12o (in the case of rn ̸= ϵ)
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o is an integer to change octaves in the range satisfying rn < xn. The emission cost
C((xn, rn)|qn) is represented as follows.

C((xn, rn)|qn) =

{
0.0 (satisfying the above conditions)
10.0 (otherwise)

2.3 Exporting Tablature

The notes and fingering positions obtained by the method described above are exported
in the MusicXML format.

3 Preliminary Results

We tried to generate a tablature for a lead sheet shown in Figure 1. The tablature gen-
erated by the proposed system is shown in Figure 2. The melody in the lead sheet in
Figure 1 was retained, and the root note of each chord was output. Because the initial
and transition costs for open strings are relatively low, the generated tablature used open
strings as much as possible.

Fig. 1. Input lead sheet Fig. 2. Generated tablature through our system

4 Conclusion

In this paper, we proposed a system that generates a tablature containing a melody
and bass line from a lead sheet. Our preliminary experiment shows that the system
generated a tablature with which the player can play a melody and a bass line simul-
teneously. Future work will include the generation of more complex accompaniments
such as arpeggio.
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Development of an easily-usable smartphone application
for recording instrumental sounds
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Abstract. We have studied the automatic performance skill evaluation in the in-
strumental sound based on only the recorded sound. Since many instrumental
sounds are essential for statistical analysis, a tool for effectively collecting in-
strumental sounds is helpful. This paper introduces an easily-usable smartphone
application that users can record their performance with a single tap operation.
This application has several functions to appropriately reject the insufficient re-
sult based on simple acoustical analysis.

Keywords: recording application, instrumental sound, acoustical analysis

1 Introduction

Instrumental sound analysis has been carried out from several aspects [1–3], and the
recording tool is essential to collect the sounds. To record the instrumental sounds with
high quality, the researchers often employ a recording engineer and use a quiet envi-
ronment, such as a soundproof room and recording studio. On the other hand, if the
background noise in the environment does not affect the acoustic analysis, it is unnec-
essary to record the sound with such quality. In such a case, it is reasonable to record
the instrumental sounds by each user with a smartphone application.

In this study, we developed a smartphone application for recording instrumental
sounds with a fundamental frequency that the user can easily record the sound. Since
the player and the recording operator use this application for recording, the user includes
both of them in this study. This application has several functions to automatically reject
insufficient results based on acoustic analysis. The concept of this application is that
non-expert can record instrumental sounds with a simple operation.

⋆ We thank Dr. T. Oku for providing the instrumental sound required for making Fig. 2. This
work was supported by JSPS KAKENHI Grant Number JP21H04900.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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1. Ready 2. Recording 3-1. Result (Failed) 3-2. Result (Succeed)

Fig. 1. Screenshots of the implemented application. The user can record the instrumental sounds
with a single tap of the START button, and the insufficient result is automatically rejected.

2 Concepts and implementation

2.1 Concepts of the application

It is assumed that users cannot always record their performances in soundproof rooms
or recording studios and may record in general rooms. Since background noise is con-
tained in the instrumental sound recorded in such an environment, it is desirable to
guarantee enough sound pressure level (SPL) of instrumental sounds. Based on the
above, we attempted to implement an interface and functions that meet the following
two points.

– When this application is launched, the recommended distance between the smart-
phone and the instrument is provided as a guide for recording at the sufficient SPL.
The recording can be completed with a single button tap operation.

– A simple analysis is performed immediately after the recording to automatically
detect errors such as missed performances, clipping, and inappropriate recording,
for example, far distance from the smartphone.

2.2 Procedure for recording

Fig. 1 shows the procedures for recording by using the implemented application. After
setting the recording condition by the left panel of Fig. 1, the user can record the instru-
mental sounds with only a single tap. We explain the detailed procedure as follows.

First, the user places a smartphone in an appropriate position and launches this
application. On the 1. Ready panel, the user selects the pitch and volume of the in-
strumental sound from the “pitch” and “dynamics” boxes and starts recording by the
START button. As shown in 2. Recording panel, the application records instrument
sound for 5 seconds after the 3-second countdown. During recording, the user plays a
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Fig. 2. Time sequences of the relative SPL of ten trumpet sounds played as the decrescendo.

long tone with monitoring the equivalent continuous A-weighted SPL. Clipping is au-
tomatically detected when the maximum absolute amplitude of the instrumental sound
exceeds 0.95. If clipping, the icon in the upper right corner lights up, and the applica-
tion skips the following step. If not, a simple acoustic analysis is carried out to reject
the insufficient result.

When the result does not meet the required quality, it moves to 3-1. Result (Failed)
panel and instructs re-recording. If it does, it moves to 3-2. Result (Succeed) panel. It
feeds back the fundamental frequency contour, power based on equivalent continuous
A-weighted SPL, and spectrogram of the instrumental sound to the user. The user can
select whether to Accept or Reject by referring to these results; if Accept, the user can
return to 1. Ready panel by the NEXT button, and if Reject, the user can move to 2.
Recording panel by RETRY button and start over from the countdown. The accepted
result is automatically saved with a filename based on the selected conditions.

2.3 Implementation

This application was developed with Swift. The instrumental sounds are recorded using
the AVAudioRecorder [4] of the AVFAudio Framework. The sampling conditions are 48
kHz, 16 bits with PCM format. The equivalent continuous A-weighted SPL displayed
on 2. Recording panel was calculated with a frame length of 200 ms.

An acoustic analysis to determine the validity of the recording results is as fol-
lows. First, the fundamental frequency and spectral envelope are calculated from the
recorded instrumental sounds using WORLD [5]. The spectral envelope is summed for
each frame to obtain the relative SPL. The validity of the recording results is judged
based on the relative SPL, and the insufficient results are rejected.

This application can reject the sound with too high SPL by detecting the clipping.
On the other hand, provided the distance between the microphone and the instrument is
too far, the instrumental sound is not likely to be recorded with sufficient SPL. To solve
this problem, we test-recorded ten decrescendo trumpet sounds with this application
with the sufficient condition and confirmed the relative SPL. Fig. 2 shows the relative
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SPLs of all results. The horizontal and vertical axes show the time and relative SPL,
respectively. According to this result that the relative SPLs were included from 3 to
27 dB, we calculated a median value from the relative SPL in all frames identified as
voiced section. When the median value is in the range of 3–27 dB, the result is accepted.
This calculation enables to reject where the SPL of the instrumental sound is too low.

3 Discussion

The user can use this application from recording to analysis with a single tap opera-
tion. The application can reject the insufficient result. The clipping detection rejects the
recorded sound with too high SPL. The identification by the threshold also rejects the
recorded sound with too low SPL. Since this function does not require an environment
such as a soundproof room, the user can record their performance in a general room.

Since our research target is the automatic performance skill evaluation by recorded
instrumental sounds, the next step requires the evaluation of the application by record-
ing many kinds of sounds with many players. We can evaluate the application in two
aspects; One is whether the insufficient result is appropriately rejected. The other is
whether the sufficient result is appropriately accepted. The evaluation also includes the
usability evaluation of whether the user can easily use this application.

4 Conclusion

In this study, we implemented a smartphone application to record instrumental sounds
and confirmed that users can record, analyze, and save a file with a single tap operation.
This application has several functions to obtain only reliable sounds. Informal tests
confirmed that this application could automatically reject the insufficient sound.

We will statistically evaluate the performance of implemented functions by many
recording results. After confirmation of the adequacy of them, we will collect the in-
strumental sounds by various kinds of users. Developing acoustic features related to the
performance skill by using the recording sounds is also an important future work.
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Abstract. In this research, we explore the application of deep learning tech-

niques, including recurrent neural networks and LSTM, to traditional Paraguayan 

music known as "Guarania". This style is characterized by specific playing tech-

niques and ornaments such as arpeggios and glissandos, which are executed using 

the Paraguayan harp. The learning and generation processes are performed indi-

vidually using the TensorFlow and Keras libraries comparing the different results 

from different architectures to identify which one generates the most accurate or 

similar harp music that captures the intricacies of "Guarania" style. Furthermore, 

in future work, we demonstrate the capability of these techniques in other world 

harp music styles, such as Meiji period music employing the Koto, and western 

music from the 19th and 20th centuries incorporating the concert harp. 

Keywords: LSTM, Guarania, Musical Ornaments, Glissando, Arpeggio, Trem-

olo.  

1 Introduction: Paraguayan Identity 

Paraguay, a landlocked country nestled in the heart of South America, has its own 

unique history and culture, which may not be as widely recognized externally but is 

deeply rooted in the hearts of Paraguayans. This identity, referred to as “Paraguayidad” 

(Paraguayan-ness), is shaped by a history of war and immigration, bilingualism (Gua-

rani and Spanish), geographical isolation, among other factors. The primary means of 

expressing this Paraguayan national identity is through folkloric music [1]. 

Despite the deep-rooted and widespread nature of this Paraguayan identity within 

the country’s culture, its music is barely recognized outside its borders and there are 

few examples of scientific research dedicated to it. This situation has led to the initiation 

          This work is licensed under a Creative Commons Attribution 4.0 International License 

(CC BY 4.0).  
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of this research, which focuses on Paraguayan music and employs contemporary deep 

learning techniques for music generation. The aim is to raise awareness about the ex-

istence and beauty of Paraguayan culture while simultaneously exploring the capabili-

ties of deep learning in a slightly different context. 

2 Paraguayan Music Styles: Guarania and Paraguayan Polka 

In the Paraguayan folkloric repertoire there are two major musical styles: Guarania and 

Paraguayan Polka. 

The Paraguayan Polka is a rhythmically lively song, with a 6/8-meter, diatonic har-

mony, and the use of hemiola and syncopation in rhythmic patterns [2]. Due to its lively 

nature, it is more popular in rural areas, as it is well-suited for dancing and festive cel-

ebrations. 

On the other hand, Guarania, it was created by musician José Asunción Flores in the 

early 20th century as a way to express the character of the Paraguayan people [3]. While 

it shares melodic and harmonic features with the Paraguayan Polka, Guarania is slower 

and imparts a more nostalgic, sentimental feel resonates predominantly in urban areas. 

Both styles, can be performed in various ways, including orchestra arrangements, 

guitar renditions, and vocal interpretations. However, the most cherished and traditional 

instrument in Paraguayan culture for playing them is the Paraguayan harp (Diatonic 

Harp), known for its charming melodies, driving rhythms, and rich ornamentation. 

Some of the best know Guarania pieces include “Recuerdos de Ypacarai” (Memories 

of Ypacarai) [4] and “Mis Noches sin Ti” (My Nights Without You) [5]. For the Polka, 

a representative piece is “Pájaro Campana” (Bellbird) [6]. 

3 Musical Ornaments 

Musical ornaments, in music, refer to additional notes added to a melodic line to en-

hance interest, variety, and expressiveness in a song or musical piece. For string instru-

ments like the harp, some common ornaments are: 

 Glissando: A glissando is a rapid slide between two or more notes, played fast

and in succession. It creates a smooth and sliding effect, producing a seamless

transition between pitches.

 Tremolo: Tremolo is the rapid reiteration of a single musical tone or the alter-

nation between two different tones, producing a trembling or quivering effect.

 Arpeggio: An arpeggio is a broken chord, where the individual notes of a

chord are sounded one after the other in a progressive rising or descending

order.
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4 LSTM Model Experiment 

In this experiment, the Guarania piece "Lejania" composed by Herminio Gimenez was 

utilized. The model was designed with an LSTM layer containing 512 neurons, fol-

lowed by a 3-neuron dense layer outputs for predicting the pitch, duration of the note, 

and step time. 

The pitch was represented by an integer value ranging from 1 to 128, which corre-

sponded to all possible MIDI note values. The duration of the notes was measured in 

seconds, while the step represented the time interval between the start of the previous 

note and the current note, also in seconds. Each note in the sequence was represented 

by these three values. 

For training the model, various experiments were performed with sequences of 25,12 

and 5 notes that was fed into the neural network, which then outputted a prediction for 

the next note. The objective was to enable the model to learn the patterns and structures 

present in the Guarania piece and generate music that resembled the style of the original 

composition. The following section presents the best results. 

Table 1. Additional Hyperparameters. 

Hyperparameter Value 

Optimizer Adam 

Epochs 1000 

Loss (Pitch) 
Sparse Categorical 

Cross entropy 

Loss (Duration, Step Time) MSE 

5 Results 

After training the model with the mentioned Guarania music and the specified hy-

perparameters, a generation test was conducted to evaluate the effectiveness of the 

model in creating similar Guarania music. 

Throughout the training process, the loss function was monitored, and it showed a 

decreasing trend as the epochs increased, indicating that the model was learning from 

the data. However, for the 25-note sequence, the resulting MIDI file exhibited sparse 

notes scattered randomly, failing to form any recognizable melody or musical structure. 

On the other hand, the 5-note sequence displayed a greater variety in note durations and 

even included some short notes resembling an ornament known as an appoggiatura (a 

short note before a longer note). 

Fig. 1. Loss Reduction for 25 and 5-Note Sequences Over Epochs. 
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Fig. 2. Results for 25 and 5-Note Sequences. 

6 Exploring Solutions for Improved Music Generation 

One of the key challenges in deep learning for music generation is the requirement 

of a large dataset to capture all the intricate details, including the ornaments. These 

details are often scattered throughout the music, making it essential to have numerous 

examples for the machine to learn and replicate accurately. 

Another challenge lies in the model used for music generation. The current model 

only considers a limited size note input during the generation process, neglecting the 

context of the entire music piece. This limitation can make it difficult for the model to 

capture and generate the intricate nuances, such as ornaments. 

To tackle these challenges, we are exploring alternative models, including trans-

formers or models with attention mechanisms, and expanding the dataset with addi-

tional Guarania music. 

7 Future Work 

In the future, we plan to explore and compare the effectiveness of alternative models in 

music creation. We will investigate how different architectures perform in generating 

music, including harp music from the 19th and 20th centuries and Japanese koto music. 
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Abstract. It is important to control the amount of hot water poured and the tim-
ing of each operation when brewing coffee by the drip method. Since this is diffi-
cult for inexperienced people, some kind of guidance is needed to brew delicious
coffee to their liking. We aimed to enable users to enjoy brewing delicious cof-
fee regardless of their coffee brewing knowledge or experience, and proposed
a method to automatically generate music to play during coffee brewing. In the
demonstration, participants can generate coffee brewing music based on their per-
sonal sensibilities, brew coffee while listening to the generated piece and taste it.

Keywords: Coffee Brewing, Music Composition, Symbiotic Evolution

1 Background

The taste of coffee depends not only on the type of bean, its condition, the grinding
method, and the temperature of the hot water, but also on the brewing method. There
are several brewing methods, such as drip, immersion, and pressurized, but drip is the
most popular as an easy way to enjoy delicious coffee. Generally, a small amount of hot
water is first poured over all the coffee powder in the dripper to steep it. Then the two
processes are repeated, slowly pouring hot water to about halfway up the dripper and
waiting for the water to fall into the cup. Because it is difficult for inexperienced people
to control the amount of hot water poured and the timing of each operation, some kind
of guidance is needed to brew delicious coffee to their liking.

Music is known to have various effects, such as inducing emotions, creating an
atmosphere, activating the brain, and enhancing the effects of exercise. However, the
impressions and feelings that arise when listening to music are different for each indi-
vidual, and therefore, the sources distributed to the general public may not be effective
for each individual. The way one feels may vary depending on one’s mood or situation
when listening to music, and one may get bored and want to listen to different music
after listening to the same music for a long period of time.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).

⋆ This work was supported by JSPS KAKENHI Grant Number 23K11384 and the Faculty of
Informatics, Tokyo City University.
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Table 1. Music structure

Order Operation BPM Part ID Timbre No. of bars
1 Lift the kettle a Marimba 1
2 Aim the spot to pour b Marimba 1
3 Pour hot water (1st) 49 d Piano 4
4 Wait f Bass 5
5 Aim the spot to pour b Marimba 1
6 Pour hot water (2nd) e Piano 5
7 Wait g Bass 3
8 Aim the spot to pour 54 b Marimba 1
9 Pour hot water (3rd) e Piano 5

10 Remove the dripper c Marimba 3

In this context, we aimed to enable users to enjoy brewing delicious coffee regard-
less of their coffee brewing knowledge or experience, and proposed a method to au-
tomatically generate music to play during coffee brewing. The following describes the
proposed method and the details of the demonstration.

2 Music Composition for Brewing Coffee

2.1 Music Structure

In order to find out the focus of the coffee brewing process, an experiment was con-
ducted with the expert with the Coffee Sommelier Certification and the inexperienced
persons. They were instructed to brew coffee freely, and the process was filmed from
above, in front of, and to the left of them. Analysis of the videos revealed that the num-
ber of pours, the number of spout rotations, and the time required for each operation
were important.

In order to guide operations similar to those of the expert, the structure of the music
was determined as shown in Table 1. The number of spout rotations in each pouring
was equal. Since the first pouring took longer time than the second and third pourings,
the tempo is changed after the fourth operation. It is assumed that the spout makes one
rotation in one beat. The BPMs are calculated from the average rotation time, and the
number of bars required for each operation is determined.

Part a - f are the parts consisting of a piece of music. The same part is assigned to
the operation with the same content and the same number of bars. To make it easy to
recognize the start and end of the pouring and the end of the waiting process, the timbre
of each part should be different. A bell is played on a vibraphone with the key note two
octaves higher for one beat to signal the end of each operation. The bell should ring on
the beat before the end of pouring, so that the kettle can be returned after the bell rings
during pouring.

2.2 Composition Method

The parts a - g are generated by the proposed method, that is based on the composition
method adapting to individual sensibilities[2]. The composition flow of the proposed
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Fig. 1. Composition flow

method is illustrated in Fig. 1. Some existing pieces are needed as the training dataset.
The pieces included in the training dataset and the parts generated by the proposed
method consists of a chord progression, a melody and a bass part with a 4/4 time sig-
nature. The basic duration of a note or rest in a melody is defined as that of a sixteenth
note. The basic duration of a chord in a chord progression is defined as that of a quarter
note. The bass part is a sequence of eighth notes with the lowest pitch of the chord in
the chord progression.

First, existing pieces are specified as the training dataset according to the targeted
person’s sensibilities, aims, and/or the purpose of the intended composition. Sensibility
models for the chord progression and the melody are obtained based on the training
dataset. In the next step, chord progressions a - g and melody templates a - g that
adapts to the sensibility models and the basic music theory are generated depending
on the numbers of bars for the parts a - g. A melody template indicates the time at
which each sound in the melody is played, the length of time each sound is played in
succession, and the up-and-down stream of the melody line. In other words, a melody
template is a melody without the pitch of each note. Subsequently, the pitch of each note
in melodies a - g is determined using the melody templates a - g and chord progressions
a - g. Finally, bass parts a - g are generated and combined with the chord progressions
a - g and melodies a - g to form the parts a - g. Arrange the parts a - g in the order
shown in Table 1, set the BPM, add bells, and output in the form of a MIDI file.

Symbiotic evolution[1], an evolutionary computation algorithm that results in a fast,
efficient search and prevents convergence to suboptimal solutions, is applied to generate
a chord progression and melody template. It is characterized by maintaining two sepa-
rate populations: a partial solution population, the individuals of which represent partial
solutions, and a whole solution population, the individuals of which are combinations
of individuals in the partial solution population and represent whole solutions. In the
former population, partial solutions that may be components of the optimal whole so-
lution are generated. In the latter population, combinations of the partial solutions that
may be the optimal solution are generated.

In generating chord progressions and melody templates, a bar is represented as a
partial solution and a part is represented as a whole solution. The fitness of a whole
solutionin individual is calculated based on the degree of adaptability to the sensibility
models and the basic music theory. The fitness of a partial solution individual is the
fitness of the best whole solution individual that refer to the partial solution individual.
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(a) Select existing pieces for training (b) Listen to the generated piece

Fig. 2. Screens in the composition system

2.3 Effectivity

Experiments were conducted with three inexperienced people. First, they were instructed
on how to brew coffee, then they brewed the coffee at their own pace and tasted the
brewed coffee. Next, they selected some pieces as training data according to their own
sensibilities. Using the proposed method, a new piece of music was generated for brew-
ing coffee. They brewed the coffee while listening to this piece and tasted the brewed
coffee. The total dissolved solids and extraction yield of the brewed coffee were mea-
sured, and the values of the second cup were closer to the ideal for all participants.
Subjective taste ratings were also higher for the second cup, and listening to the piece
while brewing coffee was also well received.

3 Demonstration

In the demonstration, the participants can use the system in which the proposed method
is embedded to generate coffee brewing music for themselves based on their personal
sensibilities. Examples of the system screen are shown in Fig.2. When they select some
pieces for training and press the “Compose” button on the screen of Fig.2(a), the screen
of Fig.2(b) will appear in about 10 seconds after passing through the progress indicator
screen. The selected pieces are displayed on the screen and they can listen to the gener-
ated piece. If they wishes, they can actually brew coffee while listening to the generated
piece and taste it.
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Abstract. The Transformer neural network has been used to generate new music 

with expressive features with significant success, but it has not previously been 

applied to generate an expressive performance of an existing score. We propose 

Expressor, a Transformer model with a novel encoder-decoder skip connection 

design for expressive performance rendering. The model shows promise in ap-

plying coherent temporal and dynamics expressive features based on human per-

formance. We develop a new tokenisation scheme to overcome challenges in rep-

resenting interrelated expressive performance features. 

1 Introduction and Related Work 

We outline here a work in progress on how deep learning can be used to alter temporal 

and dynamics properties of a MIDI score to add similar expressive properties to those 

present in a human performance. Previous studies have applied Recurrent Neural Net-

works to model expressive timing [1, 2], and while they found success in modelling 

periodic expressive events, they performed less well for isolated events used to convey 

emotion or meaning. Transformers have shown promise in music generation tasks [3], 

where they have been more adept at modelling the longer-term structural properties of 

a musical score. We propose Expressor, a  new Transformer model for expressive per-

formance rendering with skip connections between corresponding encoder and decoder 

layers, and a new tokenisation scheme to represent expressive features. To our 

knowledge, this is a  novel architecture and we find that the skip connections improve 

performance over the original design. 

2 Methodology 

Dataset. We use the ASAP dataset [4], with 1067 professionally-performed classical 

piano pieces with paired performed and unperformed MIDI versions.  

Tokenisation. We use a compound word tokenization [5], with a metric rather than 

absolute timing representation inspired by the REMI approach [6]. The perceptual, hi-

erarchical and interdependent nature of expressive attributes poses a significant 

          This work is licensed under a Creative Commons Attribution 4.0 International License 
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challenge in determining ground truth val-

ues. For example, note onset deviations 

are relative to local tempo, but tempo is it-

self a  subjective measure that continually 

fluctuates over time. Furthermore, preced-

ing notes may themselves deviate from 

precise metrical timings. Our solution is to 

provide the model with ground truths cal-

culated relative to a piecewise constant 

tempo function with jumps at beat times 

(see Fig. 1). For example, timing devia-

tions are calculated as the difference (as a proportion of beat length) between the actual 

note onset and expected onset given by adding a linear proportion of the beat length on 

from the start time of the beat. Expressive features for dynamics follow a similar hier-

archical classification [7], and our model also considers articulation by varying note 

length relative to the notated version to produce more staccato or legato phrasings.  

Table 1. Token Descriptions 

Model. We use the Transformer with Linear Attention design [8] in an encoder-decoder 

format. The aim is for the encoder to create a  representation of score-specific structural 

information such as note pitches, medium-term tempo and general dynamics. We de-

sign for additional attribute tokens input directly to the encoder output latent space, 

allowing for control to be imposed on the generation akin to score markings guiding a 

pianist. The decoder layers then output words containing tokens with expressive pro p-

erties such as timing deviation per note or local mean velocity. We also introduce the 

Name Type Description 
Type Meta Determines if a word is meta (for start- and end-of-sequence), metric (occurring at 

the start of each beat) or note (each word corresponds with exactly one note).   

Beat Metric Hold the number of the beat in a bar.  

IBI Metric Inter-beat interval. Express the tempo as a quantized beat length in seconds.  

Local vel. band Metric Coarse measure of MIDI velocity.  

Local IBI Metric The median IBI over a number of beats spanning closest to 4 seconds, centred on the 

beat relating to the given metric word.   

Pitch Note The MIDI pitch number of a note (integer between 1 and 127).  

Start Note Score-based start position of a note relative to the beat , given as a proportion of the 

beat (quantized to 1/60 beats).   

Duration Note Number of beats a note is designated to last for in the score, quantized to 1/60 beats.  

Rubato Note Designates any beat marked with rubato in the ASAP dataset annotations, meaning 
that the music departs from standard metrical timing during this beat.   

Timing flux Metric Mean deviation in onset of notes in a beat from the precise division of the IBI.  

Dynamic flux Metric The average number of absolute standard deviations for the velocity of each note in 

a given beat from the local mean.   

Accent Note Designed to represent an accent score notation.  Calculated as any performed note 

having a velocity of more than 2 standard deviations above the local mean.   

Staccato Note Whether or not a note should last for < 25% of the expected IBI proportion.  

Local vel. mean Metric The mean note velocity over a given number of beats, centred on the current beat.  

Tempo difference Metric Difference between a beat’s IBI and the local tempo , measured in BPMs.  

Articulation Note How long a note will last for, relative to the expected duration taken from the score.  
The value is a number of beats, quantized to a given sub-interval.   

Timing deviation Note The sub-interval of a beat by which the note onset differs the score. 

Vel. difference Note Difference between a note’s velocity and  the local velocity mean.  

 ---  Approximation of continuously fluctuating tempo curve
---  Piecewise constant modelling of tempo 

Fig. 1. Illustration of tempo modelling. 
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use of skip connections (see Fig. 2) between the outputs of individual encoder layers 

and the attention mechanism in the corresponding decoder layer.  The idea is to encour-

age corresponding hierarchical representations of the information throughout the en-

coder and decoder stacks.  

Fig. 2. Expressor Architecture 

Output tokens are then combined with the input information to render back into 

MIDI format. This results in a version of the original piece that incorporates expressive 

performance features. As each compound word is made up of separate tokens, the net-

work decoder is followed by one head for each output token which consists of a separate 

feed-forward network to map latent space vectors to logits for the relevant values in the 

token’s vocabulary. The network can therefore be viewed as a multi-task network, and 

the loss is made up of a linear combination of the reconstruction losses for each head. 

3 Results Discussion and Conclusion 

Model. With hyperparameter tuning, we found the best performing model had encoder 

and decoders both with dimension 256, 8 layers and 8 attention heads per layer. Fig. 3 

shows the results from two training runs with these same model parameters, but one 

with added skip connections between corresponding encoder and decoder layers. The 

results suggest that training is improved by the addition of the skip connections. 

Fig. 3. Training and validation loss curves for identical Expressor models with and without 

skip connections between the encoder and decoder layers 
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Intuitively, the skip connections may encourage the model to match hierarchical levels 

in the music between encoder and decoder stacks.  

Music Transformers often use embedding dimensions larger than vocabulary sizes 

[3]. The use of compound words allows for tailored embedding sizes for each token 

type, and we found that embedding sizes between 4 and 16 performed better than larger 

values. As described in Table 1, many of the measures used in Expressor represent a 

quantized linear scale, such as IBI or pitch, and although there may be some higher-

dimensional relationships such as the chroma dimension for pitch, in general this data 

should not require large numbers of dimensions to represent. 

Qualitative evaluation and discussion. Selected audio examples can be found at the 

link below1. While we have yet to conduct independent listening tests, we suggest these 

demonstrate that the model shows considerable promise in mapping general expressive 

performance features onto a MIDI score in a realistic manner. The features often follow 

locally coherent patterns such as crescendi or staccato. We did notice that the expres-

sive features could often be inappropriate in relation to the musical period or the com-

monly interpreted emotional content. Additional tokens such as composer or period, 

alongside planned latent space semantic guidance tokens could help. We have yet to 

analyse statistically how well the model relates expressive features to structural features 

in the score (such as musical phrasing or unexpected harmonic moments), but our intu-

ition is that pre-training the structural modelling of the encoder section may improve 

performance in this area. We also intend to conduct an ablation study to further under-

stand the impact of the encoder-decoder skip connections.  
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Abstract. Composition and performance in the Western classical tradition repre-
sent fields of highly sophisticated artistic endeavor which have not been mastered
by AI. Machine performance, though it has become an indispensable tool to com-
posers for creating audio mock-ups, does not appear on the concert stage, where
human musicians perform. An eventual goal is a machine that plays a part of a
score in real time together with live musicians playing other parts, with results in-
distinguishable from human efforts. This work focuses on the collaborative aspect
of music-making, starting with a behavior-capturing experiment that investigates
how musicians adapt their playing to that of others in an ensemble. Using the em-
pirical data thus obtained, we train a Kuramoto model for synchronization which
we adapted to the context of score-based collaborative musical performance.

Keywords: Classical music, interpretation, chamber music, expressive perfor-
mance, automatic accompaniment, rhythmic synchronization, Kuramoto model

1 Introduction

Within the Western classical paradigm of Composer-Performer-Listener, the composer
creates a score, and the performers convert it into a performance that the listeners can
experience. Both composition and performance have not been fully mastered by AI.
For machine composing in general, years of research have developed well-publicized
results (e.g. [1–3]), leading to commercial applications. Machine performance is simul-
taneously more commonplace and yet more distant: it has become an indispensable
tool to composers for creating audio mock-ups via sound synthesis tools; however, ma-
chines or virtual musicians [4] do not commonly appear on the concert stage to perform
alongside with human musicians.

The richness of classical music has much to do with the ways in which performers
can create different experiences for the listener out of the same compositions. To do
so, an ensemble of performers, individually and simultaneously interpreting their parts
of the score, must synchronize with each other in real time. An AI can approach this
by starting with audio transcription, whose purpose is to provide a machine-friendly
representation of musical acoustic information [5, 6], and score following, the process

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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by which the machine takes a performance and determines the point in the score to
which it is most likely to correspond [7, 8]. Our motivation is to allow a machine, once
in possession of these elements, to exhibit human-like behavior acting in real-time as a
fellow musician of an ensemble.

In this research, we consider an environment with a single instrument, the piano,
to be played jointly by one person and our model. We focused particularly on synchro-
nization in the time-domain, with the goal being to simulate human-like behavior, not
to generate a perfectly aligned accompaniment.1

2 Model Design

In our approach, we assume that both musicians play exactly according to a known
score, and treat each musician’s output as a sequence of discrete “note-on” and “note-
off” events2, which are relayed perfectly to the other musician as soon as they occur.
By relating the received events to the score, our model ascertains the timing of the other
musician and adjusts in real-time the timing of its own future output.

2.1 Kuramoto Model

Previous work on other instances of synchronization have provided us with inspira-
tion regarding the specific mechanism of the adjustment. We have taken the Kuramoto
model [9, 10] as a basis. Our implementation follows Heggli et al. [11], who adapted
Kuramoto’s approach to model human synchronization behavior in a situation where
two people were faced with the task of tapping in unison.

Fig. 1. Adapted Kuramoto model, playing an m-note “output” part together with a n-note “input”.

The model consists of 3 oscillators ω1, ω2, ω3 that are coupled as in Fig. 1. Their
positions are determined by the coupling equations:

dθi(t)

dt
=

∑
j ̸=i

kijsin (θj(t)− θi(t)) +Ωi(t), (1)

for i, j ∈ {1, 2, 3}, where θi represent the positions of the respective oscillators, Ωi(t)
their intrinsic speed, and kij the coupling coefficients (with only k21, k23, k32 being
non-zero, as per Fig. 1).

1 It is in this regard that our approach distinguishes itself from applications using score-
following to automatically accompany a human player.

2 Our focus is on the piano; for other instruments, this assumption would be less workable.
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2.2 Adapting the Kuramoto Model to Musical Scores

Our oscillator model naturally deals with continuous movement, but a musical score, ac-
cording to our assumptions, consists of discrete events. We reconcile the two paradigms
as follows: we define each beat, in the traditional musical sense, as corresponding to a
rotation of the oscillator through 2π. The score gives us a sequence {pn} of positions
(in beats) at which note onsets in the input part are designated. Denoting tn the time at
which the nth note is actually received, we set θ1(tn) = 2πpn. By linear interpolation,
we construct a continuous function θ1(t) which encapsulates the timing information of
the other player.

Analogously, we obtain the output timings {Tm} by solving θ3(Tm) = 2πPm, with
{Pm} being the beat positions of the output part’s notes as given by the score.

In a real-time context, the values of θi(t) for all t are not known beforehand. Thus it
is necessary to perform the above calculations for each interval of t at the moment when
the information for that interval becomes available. It seemed reasonable to introduce
a parameter tr reflecting reaction time, that is, a delay between receiving information
from the input and performing the calculations based on it for adjusting the output.

We denote by {T ∗
m} the timings of the output events resulting from this process.

3 Implementation

Having set our objective as human-like musical collaboration, the first step was to in-
vestigate human behavior in a similar controlled environment. We prepared a series of
MIDI recordings containing the melody of well-known music pieces, and invite subjects
to accompany these recordings.3 To train our model to simulate a subject’s behavior, we
input the same MIDI recording and search for the parameters kij , tr that produce the
output {T ∗

m} most similar to the performance of the subject, which we denote {Sm}:

argmin
kij ,tr

∑
m

(T ∗
m − Sm)2 (2)

We proceed to set up the model for accompanying a human subject in real time. First
we enter the score of the chosen music piece (i.e. {pn} and {Pm} as per Fig. 1). With
this information and the MIDI input of the subject, which provides {tn}, the model
determines θ1(t), from which it calculates θ2(t), θ3(t) by Eq. 1, and finally {T ∗

m}.

3.1 Refinements

Error-handling is outside the scope of this research, which focuses on collaborative
aspect of music-making under the assumption of following the score exactly. However,
we found during a pilot experiment that having to start over whenever one mistakenly
touched a note was unnecessarily frustrating and time-wasting. Therefore, to make our
model practically usable, we made it to ignore or automatically rectify common errors.

Furthermore, we implemented a method for following the human player’s dynamics
based on a running average of velocities of recent input notes.

3 We use the terms “melody” and “accompaniment” loosely here; the described procedure may
be applied to any piece that can be separated into two parts to be played simultaneously.
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4 Conclusion

Taking inspiration from models of the synchronization of biological phenomena, we ap-
proached the subject of musical performance from the perspective of its collaborative
aspects. Our model attempts to emulate basic interactions among ensemble members,
which play an important role in classical music-making. As such, it ideally would com-
plement score-interpreting AIs, enabling machines to listen not only to identify cues
but to respond and enter musical dialogues in a human-like way.

We have observed playing together with the model to be satisfying to a surprising
degree. We performed a sort of Turing test, in which subjects did not know whether
they were being accompanied by a human or by our model, resulting in 49/83 (59%)
correct guesses, and 18/38 (47%) by listeners present. We consider this an encouraging
basis for exploring the possibilities of human-AI collaboration at an increasingly high
level of musicality.
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Abstract. Intuitive control of synthesis processes is an ongoing challenge within 
the domain of auditory perception and cognition. Previous works on sound mod-
elling combined with psychophysical tests have enabled our team to develop a 
synthesizer that provides intuitive control of actions and objects based on seman-
tic descriptions for sound sources. In this demo we present an augmented version 
of the synthesizer in which we added tactile stimulations to increase the sensation 
of true continuous friction interactions (rubbing and scratching) with the simu-
lated objects. This is of interest for several reasons. Firstly, it enables to evaluate 
the realism of our sound model in presence of stimulations from other modalities. 
Secondly it enables to compare tactile and auditory signal structures linked to the 
same evocation, and thirdly it provides a tool to investigate multimodal percep-
tion and how stimulations from different modalities should be combined to pro-
vide realistic user interfaces.  

Keywords: sound synthesis, invariant signal structures, multimodal perception, 
tactile perception, continuous friction interactions 

1 Introduction 

Previous results in the field of multimodal perception have provided examples of 
strong perceptual influences between modalities. One well-known example is the 
McGurk effect in which visual stimuli influence speech perception [8].  More recent 
studies revealed that sounds can modify the perception of a visual trajectory and even 
the gestural reproduction of the visual shape [12]. In the case of touch perception, sev-
eral studies have revealed a strong influence of auditory stimuli on perceived textures  
[2, 5, 6,7, 10, 11].  

In the present study we explore such multimodal interactions in the light of our pre-
vious works on intuitive sound control that describes the sound as the result of an action 
on an object. This approach presumes the existence of sound invariants responsible for 
the evocation of sound events [4], and has led to a synthesizer that makes it possible to 

          This work is licensed under a Creative Commons Attribution 4.0 International License 
(CC BY 4.0).  
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control sounds from semantic labels that describe the action (rubbing, scratching roll-
ing) and the object (material, shape, size, …). Continuous control between the different 
evocations makes it possible for the users to freely navigate between different actions 
hereby creating both realistic and virtual sound events [1,3,9].  

As a first approach to multimodal synthesis, we focus on evocations of continuous 
friction interactions, in particular rubbing and scraping, to investigate whether tactile 
invariants of these actions exist and whether they resemble the corresponding auditory 
invariants. In the following section we describe the synthesis process of the tactile stim-
ulation, the experimental setup and some preliminary results of ongoing perceptual 
tests.  

2 Synthesis of Auditory and Tactile Stimulations Evoking 
Continuous Friction Interactions 

As a first approach to investigate perceptual invariants for tactile structures, we focus 
on the evocation of two different continuous interactions namely scraping and rubbing. 
In the auditory domain it has been shown that these actions can be simulated by suc-
cessive impacts (see Fig. 1) with different temporal intensities [13]. The impact distri-
bution is smoother for rubbing than for scratching since scratching is considered as an 
action in which the interaction with each surface irregularity is encountered one after 
another and more intensely than in the case of rubbing. This model was perceptually 
validated by Conan et al [3] and confirmed that impact distributions are associated to 
the auditory invariant allowing for the distinction between scratching and rubbing.  

Fig. 1. Phenomenological model of continuous interactions 

Would this also be the case in the tactile domain? To answer this question, we de-
signed a synthesis model based on the same features as in the auditory modality, i.e. 
mean and standard deviations of the amplitudes and the temporal distance between suc-
cessive peaks, to investigate evocations of rubbing and scratching using an actuator 
attached to a pen. Then we conducted a perceptual test in which subjects were asked to 
explore the surface of a graphic tablet and to determine (on a continuous cursor) 
whether the sensation evoked scraping or rubbing. The experimental protocol is de-
scribed in the next section.  
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3 Perceptual Evaluations 

Sixteen subjects evaluated 96 evoked continuous interactions induced by auditory and 
tactile stimulations. They wore anti-noise headphones when evaluating the tactile stim-
uli. During the tactile evaluations, they were asked to hold a pen equipped with the 
actuator and to explore a surface of a graphic tablet. After the exploration they evalu-
ated the evocation on a continuous one-dimensional scale between the (French) words 
“gratter” (scratch) and “frotter” (rub). While the preliminary results confirmed previous 
findings related to the impact distribution as the most influent parameter on the evoca-
tion of rubbing and scratching in the auditory domain [3], this parameter did not turn 
out to have a significant influence in the tactile domain. On the other hand, amplitude 
variations tended to be more important in the tactile domain and had a significant in-
fluence on the perceived action. Scratching evocations were associated with strong am-
plitudes while the weakest amplitudes were associated with rubbing.  

4 Audio-tactile Synthesizer 

The current study suggests that perceptual invariants differ in the case of auditory and 
tactile perception. In the case of simulations of continuous friction interactions, tem-
poral variations are essential in the auditory domain while amplitude variations seem 
to play a greater role in the tactile domain. The proposed demo consists of a multimodal 
synthesizer calibrated according to the previous perceptual results that enables partici-
pants to explore auditory and tactile signal invariants and to combine the evocations 
with auditory evocations of objects (see Fig. 2). The user is invited to wear headphones 
(for auditory stimulations) and to hold a pen equipped with the actuator (for tactile 
stimulations) coupled with a tablet. A computer displays a graphical interface on which 
the user can choose the type of interactions (rubbing or scratching) in a continuous way. 

Fig. 2. Set up of the synthesizer device 

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

750



Acknowledgements This work was partly finance by the French National Research Agency 
(ANR) in the case of the France Relance program (C. Bernard) and the COMMUTE ANR-22-
CE33-0009 project and the by Institute of Language, Communication and the Brain 
(ILCB)/Center of Excellence on Brain and Language (BLRI) Grant Nos. ANR-16-CONV-0002 
(ILCB) and ANR-11-LABX-0036 (BLRI), the Excellence Initiative of Aix- Marseille University 
(AMIDEX). We would like to thank Raphaël Vancheri for his precious contribution to the per-
ceptive evaluations.      

References 

1. Aramaki, M., Besson, M., Kronland-Martinet , R., Ystad, S. Controlling the Perceived Ma-
terial in an Impact Sound Synthesizer. IEEE Transactions on Audio, Speech, and Language
Processing 19(2):301–314. (2012)

2. Bernard, C., Monnoyer, J.,Wiertlewski,M., Ystad, S. Rhythm perception is shared between
audio and haptics. Scientific Reports, Nature Publishing Group, 2022, 12, 10.1038/s41598-
022-08152- w (2022)

3. Conan S., Thoret E., Aramaki M., Derrien O., Gondre C., Kronland-Martinet R., Ystad S.
An Intuitive Synthesizer of Continuous-Interaction Sounds: Rubbing, Scratching, and Roll-
ing. Computer Music Journal, vol. 38(4), pp. 24-37. (2014)

4. Gibson, J. J. The Ecological Approach to Visual Perception. Boston, Massachusetts: Hough-
ton Mifflin. (1979)

5. Guest, S., Catmur, C., Lloyd, D., Spence, C.. Audiotactile interactions in roughness percep-
tion. Exp Brain Res. 146(2):161-71. doi: 10.1007/s00221-002-1164-z. PMID: 12195518.
(2002)

6. Jousmäki, V. and Hari, R.. Parchment-skin illusion: sound-biased touch. Curr Biol. Mar
12;8(6):R190. doi: 10.1016/s0960-9822(98)70120-4. PMID: 9512426. (1998)

7. Lederman, S.J.. Auditory texture perception. 8(1):93-103. doi: 10.1068/p080093. PMID:
432084. (1979)

8. McGurk, H., MacDonald, J. Hearing lips and seeing voices, Nature, vol. 264, no 5588, p.
746–748 (1976)

9. Poirot, S., Bilbao, S., Aramaki, M., Ystad, S. and Kronland-Martinet, R., A Perceptually
Evaluated Signal Model: Collisions Between a Vibrating Object and an Obstacle.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 31, pp. 2338-
2350, doi: 10.1109/TASLP.2023.3284515 (2023).

10. Rocchesso, D., Monache, S., Papetti, S., Multisensory texture exploration at the tip of the
pen. International Journal of Human-Computer Studies (2016)

11. Romano, Kuchenbecker. Creating Realistic Virtual Textures from Contact Acceleration
Data. IEEE Trans Haptics. 2012 Apr-Jun;5(2):109-19. doi: 10.1109/TOH.2011.38. PMID:
26964067. (2012)

12. Thoret E., Aramaki M., Bringoux L., Ystad S., Kronland-Martinet R. Seeing circles and
drawing ellipses : when sound biases reproduction of visual motion. PloS One, 11(4)
:e0154475, doi.org/10.1371/ journal.pone.0154475 (2016)

13. Van den Doel, K., Kry, P.,  Pai, D., FOLEYAUTOMATIC : Physically-based Sound Effects
for Interactive Simulation and Animation. In Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques, pp. 537–544 (2001)

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

751



From jSymbolic 2 to 3: More Musical Features 

Cory McKay1 

1 Marianopolis College and the CIRMMT 
cory.mckay@mail.mcgill.ca 

Abstract. This demo will provide participants with the opportunity to experiment 

with the jSymbolic software, which extracts a broad range of statistical features 

from digital scores in formats such as MIDI. Participants will be able to use and 

compare both the current 2.2 release version and the pre-release jSymbolic 3. 

Past research using jSymbolic in diverse areas of computational musicology and 

music information retrieval (MIR) will be discussed, involving machine learning 

and statistical analysis. Participants will be encouraged to engage in dialogue on 

how jSymbolic might be incorporated into their own research, and on ideas for 

new features that could be added to the jSymbolic catalogue that would benefit 

their work. Research focusing on symbolic data as well as multimodal investiga-

tions will both be emphasized. jSymbolic is entirely open source.  

Keywords: Symbolic music; Features; Computational musicology; MIR. 

1 jSymbolic and its Motivation 

Three essential advantages of applying computational methodologies to musicology 

are: 1) the ability to directly consider and compare corpora consisting of hundreds or 

thousands of pieces of music, more than would be feasible using manual techniques; 2) 

movement towards “objectively” analyzing music in ways that filter out at least some 

of the biases we are all subject to when manually analyzing music; and 3) the creation 

of opportunities to explore music in novel ways that can reveal musically meaningful 

insights in areas we might not have thought to consider using traditional techniques. 

This demo presents the jSymbolic software, whose primary purpose is to help music 

researchers and scholars benefit from these advantages. It automatically extracts fea-

tures (characteristic pieces of information) from digital scores encoded in symbolic file 

formats such as MIDI or MEI. Each feature describes a clearly defined characteristic 

of music that can be consistently extracted and compared, as a single number or as a 

vector of associated values. For example, a “range” feature could be defined as the 

number of semitones separating the lowest and highest pitches in the music being ana-

lyzed. Features extracted from multiple pieces can be aggregated into categories of in-

terest (e.g., composers, genres, regions, etc.), which can themselves be compared col-

lectively. Although jSymbolic allows features to be extracted over smaller windows of 

          This work is licensed under a Creative Commons Attribution 4.0 International License 

(CC BY 4.0).  
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set length, typically features are extracted from pieces or major sections (e.g., mass 

movements) in their entirety, so as to more broadly characterize them. 

Once extracted by jSymbolic, features can be used in a variety of ways, such as for 

training classifiers using supervised machine learning, or for exploratory clustering via 

unsupervised learning. For example, a classifier could be trained on jSymbolic features 

to model the compositional styles of various Renaissance composers, and this classifier 

could then be used to help identify probable authorship of unattributed or controver-

sially attributed works. This approach, often carried out using relatively simple algo-

rithms like support vector machines, is particularly appropriate in situations where there 

are relatively few extant training exemplars, as is often the case with early music, since 

deep learning alternatives (which tend to in effect learn their own features from raw 

musical data) can have too many parameters to perform well in such circumstances. 

Another important advantage of engineered features like jSymbolic’s is that they are 

largely musically interpretable. This enables the application of statistical techniques, 

such as information gain analysis or feature selection (e.g., with genetic algorithms), to 

determine which features most meaningfully separate different pieces or groups of mu-

sic; this can be more musicologically important than actual classifications themselves. 

So, to continue the Renaissance sample use case, one might use jSymbolic features to 

gain insight into what specifically statistically differentiates the styles of composers 

like Josquin, de la Rue and Ockeghem, in musically meaningful terms. 

Feature values can also be examined directly by domain experts if desired. They can 

be saved as CSV files (or in specialized machine learning-oriented formats), which can 

then be imported into spreadsheet or data analysis software for study or visualization. 

Although much of the jSymbolic research to date has focused on either Western early 

music or popular music, jSymbolic can also be applied to many other musics, or com-

bined with other types of data (e.g., audio) in multimodal research. All the jSymbolic 

features can be extracted from any kind of music that can be encoded as MIDI, which 

permits complex rhythmic structures and pitches outside the Western chromatic scale. 

2 Previous Work 

jSymbolic was first released in 2006 [1], was included in the multimodal jMIR music 

research suite in 2010 [2] and the current release version (2.2) was published in in 2018 

[3]. jSymbolic has been used as a core part of many published research projects, in 

areas including popular music genres [2], investigating the origins of Renaissance gen-

res [4], regional style [5], compositional style [6] and multimodal analysis [7]. 

Of course, jSymbolic is not the only research platform available for computational 

musicology or symbolic MIR. However, its focus specifically on standardized high-

level summary features means it has quite different use cases from other excellent soft-

ware like Humdrum [8], Music21 [9], pretty_midi [10], CRIM [11] and MIDI Toolbox 

[12], which emphasize tasks like retrieving specified instances of local events, or visu-

alizing or manipulating user-specified elements. The alternatives are less suited to the 

macro statistical analysis that jSymbolic specializes in. Notably, Music21 can extract 

features, but mostly just a subset of ported-over jSymbolic 1.2 features. 
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3 Details About jSymbolic 2.2 

The current release version (2.2) of jSymbolic extracts 246 unique features, which total 

to 1497 feature values when feature vectors are expanded. This feature catalogue is 

designed to be diverse, so that it is applicable to as many characteristics of as many 

types of music as possible. The jSymbolic features can be divided into these groups: 

• Pitch Statistics: How common are various pitches and pitch classes relative to

one another? How are they distributed and how much do they vary?

• Melodic Intervals: What melodic intervals are present? How much melodic var-

iation is there? What can be observed from melodic contour measurements?

• Chords and Vertical Intervals: What vertical intervals are present? What types

of chords do they represent? What kinds of harmonic movement are present?

• Rhythm: Information associated with note attacks, durations and rests, measured

in ways that are both dependent and independent of tempo. Information on meter

and rhythmic variability, including rubato.

• Instrumentation: Which instruments are present, and which are emphasized rel-

ative to others? Both pitched and non-pitched instruments are considered.

• Texture: How many independent voices are there and how do they interact (e.g.,

parallel vs. contrary motion)? What is the relative importance of voices?

• Dynamics: How loud are notes and what kinds of variations in dynamics occur?

jSymbolic has a graphical user interface (Fig. 1) as well as a command line interface 

and a Java API for those wishing to use jSymbolic via scripting or to integrate it into 

their own software. There is also a detailed manual, which includes individual feature 

explanations, and a tutorial with worked examples.  

Fig. 1. The jSymbolic 2.2 graphical user interface. 

In addition to being a ready-to-use application, jSymbolic is also intended as a plat-

form for building new features, including ones of increasing sophistication built upon 

existing features. New features are added as plug-ins, and jSymbolic automatically 

schedules extraction to resolve feature dependencies. Many of the features added since 

jSymbolic was first released have resulted from consultation and collaboration with 

musicologists, theorists and MIR researchers, and it is hoped that this will continue. 
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4 Towards jSymbolic 3 

The upcoming jSymbolic 3 is currently undergoing final testing and improvement be-

fore release. In addition to many miscellaneous usability improvements, it has a sub-

stantially expanded feature catalogue of 533 unique features and 2040 feature values in 

total. Of particular interest, these include a new n-gram group of features, which extract 

information from aggregated sequences of musical events, thus giving jSymbolic more 

insight into local context. Features are extracted from three types of n-grams: melodic 

interval, vertical interval and rhythmic.  

During this demo, participants will be given the first public hands-on look at jSym-

bolic 3, and will be able to compare it with jSymbolic 2.2. 

jSymbolic, its code and documentation are all available at http://jmir.sourceforge.net 

(version 2.2) and at https://github.com/DDMAL/jSymbolic2/ (version 3 development). 
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Abstract. We present a compendium of sounds and analyses that support a com-
prehensive approach to the musical use of the vocoder in automatic vocal tuning
correction. Vocoder design has primarily focused on refining the vocoder as a
realistic vocal transformer. However, its application within modern music em-
phasizes its unique sonic identity, adding distinctive coloration to the performer’s
voice. In this demo, we propose a benchmark that encompasses the vocoder’s
key elements. The vocoder is considered and analyzed as an audio effect playing
an important role in vocal composition, in an approach similar to the study of
musical instruments.

Keywords: Vocoder Benchmark Voice Transformation

1 Introduction

The term “vocoder” [1] has two meanings: it can either refer to (i) a software device for
transparent voice coding, transmission and natural transformation, or to (ii) a musical
device for cross-synthesis and pitch flattening. In this paper, we address the first defini-
tion, keeping in mind that this technology may also be used in musical applications, in
particular for auto-tuning.

The aim of this work is to establish a parametric benchmark that will facilitate
technical discussion of the vocoder, particularly in the case of automatic vocal tuning
and audio distortion. In establishing such a benchmark, one should be wary of judging
vocoders based on the same criteria as natural voice, whose sound description is ex-
tremely challenging [3]. In this demo, we present an audio and graphics repository that
supports our benchmark, which can help define the vocoder identity.

2 The Benchmark

Currently, there are no studies that merge musicological and technical approaches to
describe the vocoder as a vocal coloring instrument. Acoustically, the vocoder can be
⋆ This Research is funded by National Research Agency: Analysis and Transformation of

Singing Style ANR19CE380001 & GEsture and PEdagogy of inTOnation ANR19CE280018

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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seen as just one more of the many parts that compose the vocal apparatus. The vocoder
has its own characteristics and identity which are inherent to its technique. We propose
a benchmark that precisely frames the unique characteristics of the vocoder as a vocal
coloring instrument. The modern music repertoire evidences two main uses: the distor-
tion due to the technique itself (re-synthesizing with the original F0) and the re-pitching
technique (like Autotune).

Methodology: We started with a sample sound which was passed through the Antares
autotune software. We framed the two main use cases (presets): one with extreme cor-
rection that merely quantizes pitch, and another “transparent” preset that modifies nei-
ther pitch nor any other characteristic. The resulting audio files were analyzed with
Praat and shaped with Python, generating an f0.wav file as shown in Figure 1. This
file, along with the original sound file, was then processed through various vocoders to
obtain the sounds with extreme correction and the desired transparent modification.
The samples used come from previous studies at our lab. They can be heard in an online
library along with the vocoded tracks(https://on.soundcloud.com/1d7mx).

We have used the following vocoders: Circe is based on deep learning [4]. The
encoder generates a latent code for selected features, and the decoder transforms it back
for a given f0 using a bottleneck technique [5]. Retune [7] uses frequency and time
domain methods such as the Reduced Heisenberg Uncertainty Transform and the Cross-
Frequency Phase Coupling . It is used in ZTX, MAX, Digital Performer, and MOTU.
Autotune Antares (Abbreviated as ATA) [6] serves as an intonation corrector. It is the
most commonly used vocoder in contemporary music. World [8] is a vocoder based on
a custom spectral representation that generates high-quality audio and fast processing .
The benchmark descriptors proposal is summarized in table .

2.1 Descriptors of the benchmark

In this section, we summarize some examples of the benchmark. First, we can identify
some descriptors independently of the preset used (transparency or extreme retuning).
Latency is the first appreciable descriptor: retune has the largest latency and ATA the
smallest latency. In addition, vocoding involves changes in spectrum, formants and f0-
spreading. For those, the transparent preset allows to test the technique alone, avoiding
the f0-jumps collateral effect. If the spectrum and signal shape remain unchanged, the
vocoder can be considered “distortion-free”; ATA and World exhibit this character-
istic. Regarding formants, World tends to deepen them and Circe/retune to distort
them. Although Circe is known for performing constant transposition well: it generates
a tremolo aligned to vibrato when using the transparent preset, we also include this
effect as descriptor. Concerning harmony, vocoders can present increasing harmonic
differences (World) or residual noise (Retune); we include these changes as descrip-
tors as well. As discussed later, they also appear with the extreme retuning preset.

The extreme retuning preset also involves latency, changes in signal shape, spectrum
and formants. ATA and World show good preservation of the signal shape despite the
pitch jumps. The extreme retuning preset causes discrete pitch steps; the transitory parts
generate spectral changes which manifest as vertical lines on the spectrogram. Those
are related to local f0-spreading (or f0-loss), which deteriorates pitch perception and
vocoder realism on a global scale. On the other hand, f0-spreading adds a particular
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Fig. 1. Flow diagram for the methodology for vocoding with two presets: transparent and extreme
retuning (f0 discrete curve).

Fig. 2. Green block (Signal Shape): Changes are observed for 2 vocoders. Autotune extreme
correction case shows minimal changes while Circe transparent case exhibits significant shape
variations. Yellow block (Formants): World shows notable deepening in formant variation and
CIRCE exhibits substantial formant alterations. Blue block: (spectral slices): f0-spreading at a
given time for original audio and ATA extreme retuning. Black block (spectral changes): In the
CIRCE re-synthesis case, upper harmonics appear spread (shown in red), while lower harmonic
content seems more prominent in relation to noise (shown in sky blue). In the World retuning
case, vertical lines (purple) correspond spectral content spreading at each f0-steps. The audio
sample used for all the examples is “real3maleintervals.wav”.

Fig. 3. F0-Path for extreme retuning using (left to right): Autotune, CIRCE, Retune and World.
Autotune and World reach exact pitch values more accurately than the others. Retune presents a
bigger latency than the other ones.
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color due the transient (inherent to the technique) and it contributes to the unique tim-
bre of each vocoder. Each vocoding technique affects harmonics and timbre differently,
giving rise to the harmonic coloration and amplification descriptors. Circe and Re-
tune are visible examples that alter the harmonic content. Similarly, we observe the
inharmonic coloration descriptor, which involves residual noise in the low and high-
frequency regions of the spectrum. It is notably present in the retune extreme retuning
case. Inharmonic coloration affects the presence of noise notably around silences. A
summary of the parameters can be seen in Figure 2 and Table 1.

Table 1. Benchmark
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Autotune X X
Circe X X X X X X X X X
World X
Retune X X X X X X

3 Discusion

Vocoders can introduce changes in timbre properties, like coloration (filter-like action)
or discrete pitch variation, while preserving articulation and prosodic content. Our demo
provides an audio and visual comparison of the auditory changes introduced by the use
of various vocoders. This comparison has been carried out in a systematic way, yielding
the benchmark summarized in table 1. Such a benchmark could serve as basis to develop
a shared language for technicians and musicians to describe a vocoder’s identity.
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Abstract. Most of the musical heritage is only available as physical documents.
Their mere availability as scanned images does not enable tasks such as indexing
or editing unless they are transcribed into a structured digital format. Many tran-
scription processes have been traditionally performed following a fully manual
workflow. At most, it has received some technological support in particular stages,
like optical music recognition (OMR), or transcription to modern notation with
music edition applications. A new online tool named MuRET has been recently
developed, which covers all transcription phases, from the manuscript image to
an digital score. MuRET is designed as a machine-learning based research tool,
allowing different processing approaches to be used, and producing both the ex-
pected transcribed contents in standard encodings and data for research activities.
The objective of the demonstration is to showcase it for an efficient transcription
process and provide guidelines on how to get the most out of it.

1 Description of the demonstration

MuRET is a research oriented optical music recognition tool (OMR) based on a series of
machine learning techniques, mainly deep neural networks, that has been recently ported
to be an online application [4] from the original desktop application proposal.

The demonstration will focus on showing all the possibilities that MuRET [4] offers
and the process required to convert a series of input images into a digital score in MEI
format. MuRET being a research tool, a discussion will be held on possible extensions
of interest to the community. Specifically, the demo will consist of the following items:

1. Collection handling (Fig. 1a) in order to organize large corpora.

2. Section and images management (Fig. 1b), used to group, correctly ordering the
images to be transcribed, and setup the correct nature of the document (parts based,
incipits book, etc.).

⋆ This work has been supported by the Spanish Ministerio de Ciencia e Innovación through project Mul-
tiScore (No. PID2020-118447RA-I00), supported by UE FEDER funds.

This work is licensed under a Creative Commons Attribution 4.0 International License (CC
BY 4.0).
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3. Document analysis (Fig. 2) to show how the system has detected the different re-
gions, namely, staves, title, and lyrics, and how user can edit them.

4. Part linking (Fig. 3) in order to let the system identify which instrument belongs each
image or crop of the image.

5. Region contents recognition (Fig. 4) where the machine learning models identify the
sequence of symbols contained in each region using different approaches depending
on the content type, lyrics or music, or the granularity and interaction strategy. In this
step, the recognized symbols are just graphical representations (denoted as agnostic
representation in [2]) without musical meaning.

6. Music encoding of individual staves (Fig. 5) to obtain an actual music encoding of
the agnostic representation obtained in the previous step. We will introduce the ex-
tension of the formats **kern and **mens used to accommodate layout information
besides the musical content itself. The possibility of transliterate early notations into
modern ones will be also explored.

7. Scoring up and exporting (Fig. 6) as the final step in a transcription project, where
user can obtain a whole score from the different spread parts, and export a MEI file,
either as a whole MEI file or divided into parts including facsimile information to be
used by other tools such as MP Editor [3].

8. Offline model training and uploading to allow the user to use his/her already tagged
collections to create new fine-tuned models.

9. User action logs analysis from interaction data to obtain the actual transcription times
and study the real improvement of new models and approaches.

(a) User collections
(b) Two sections of a document of a
complete opera shown at left column

Fig. 1: Work organization

At the end of the tutorial, attendees should understand the operation of MuRET and
how systems based on machine learning can be interactively improved. Also, we hope
that attendees will perceive how the use of MuRET, even without being able to guarantee
absolute accuracy, significantly decreases the temporal cost of transcription compared to
a completely manual process [1].
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Fig. 2: Document analysis screen excerpt. In this example, only the staves and lyrics re-
gions are segmented. The snapshot shows controls to rotate, manually or automatically,
the image, and two possible classifiers to perform the operation automatically. The cur-
rent catalog of region types shown at the left of the image can be easily modified.

(a) Parts in orchestral score (b) Parts in choir book

Fig. 3: Different parts and arrangements. All regions must be attributed to a part.

(a) Lyrics. See text transcribed at the bottom of
the snapshot.

(b) Strokes

(c) Bounding boxes of agnostic symbol

(d) Staff-level end-to-end

Fig. 4: Transcription of regions.
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(a) Agnostic to semantic

(b) MEI conversion of semantic content

(c) Modern transcription

Fig. 5: Semantic contents recognized from the image.

(a) Image selection (b) Score preview

(c) Parts based MEI includ-
ing facsimile (see more de-
tails in [3]).

Fig. 6: Previsualizing and exporting
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Abstract. In this paper, we propose a microtonal music dataset, comprising mu-
sical compositions that utilize microtones, tones with intervals that are more re-
fined than those found in the 12 equal temperament. As part of the Microtonal mu-
sic dataset v1, we present 100 manually created microtonal music pieces, along
with their characteristics and statistical information. Furthermore, we will discuss
the potential for future music information processing research that can be realized
using the microtonal music dataset.

Keywords: Microtonal music; microtone; dataset

1 Introduction

The recent advancements in generative AI technology are progressing at an astonishing
speed, and the distinctions between human-composed music and AI-generated music
are becoming increasingly blurred. As a result, we are reaching a point where music can
be generated with a single click, reducing the need for human composition, especially
for music for trivial purposes.

Microtonal music is cited as one of the musical expressions that necessitates tools
for supporting expression. Microtonal music refers to music that uses microtones, pitches
that do not conform to the 12 equal temperament,which is difficult to perform with many
traditional instruments. Composing microtonal music is challenging even for people
with experience in composing conventional music. We believe that expanding human
expressive capabilities through AI assistance, especially for music that are difficult to
perform or compose within current frameworks, can contribute to the development of
musical culture. Therefore, in this study, we propose a microtonal music dataset to ac-
celerate research on the technology capable of handling microtonal music.

If technology capable of handling microtones is realized, it could enable support
such as redesigning the piano roll according to the temperament inferred from the mi-
crotones input by the user[1], or providing accompaniment to the microtone melodies
composed by the user. These tasks are currently challenging even for humans, and as-
sistance through technologies such as AI is effective.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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Fig. 1. Directory structure of the dataset.

In this study, as a first step towards realizing technology capable of handling such
microtones, we propose a dataset composed of 100 manually composed microtonal
music pieces.

2 Related Work

The RWC Music Dataset, consisting of 315 songs and 50 types of instrumental sounds,
has significantly impacted music information processing research. This dataset avoid
copyright issues in research, and continues to be influential in the field.

The JSB Chorales Dataset, which digitizes 382 four-part chorales composed by
Bach, has been utilized in many studies on music generation technologies[3], [4]. On
the other hand, no dataset related to microtonal music has been proposed so far.

3 Design of Microtonal Music Dataset v1

3.1 Structures of the Dataset

The structure of the Microtonal Music Dataset directory is illustrated in Fig 1. The data
for each piece is stored in folders with IDs 001 to 100. Each folder contains the music
file, MIDI data for each track that composes the piece, wav data written with sine waves
for those tracks, a CSV file recording the frequency, onset, and offset of each note for
every track, and a text file recording the BPM data of the piece. Since MIDI data cannot
record the exact frequency of microtones, the frequency information is included in the
CSV file. The misc folder includes items such as tuning files (.tun) loaded into the
software synthesizer for playing microtones. The file details.xlsx consolidates various
information, including the statistical data of the pieces comprising the dataset and the
temperament information.
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Fig. 2. Histogram of notes in cent (left) and distribution of temperament in the dataset (right).

3.2 Dataset Creation Method

The pieces comprising the dataset were produced using the DAW software Studio One
v5.5.2 by one of the authors. To create pieces including microtones in Studio One, we
used the software synthesizer Vital, which can play microtones by loading tuning files,
and SimpleMicrotonalSynth, which allows for a variety of selectable microtonal tuning
options. Each piece was created either by inputting one microtone at a time or by using
a MIDI controller for real-time input.

The tuning files for loading into Vital were created using a web page called Scale-
WorkShop. We also used microtones expressed by tuning the synthesizer in cent units.

4 Statistis of the Dataset

Here we describe the characteristics of the dataset. Piece lengths average 22.7 seconds,
ranging from 6.0 to 74.0 seconds, with an average BPM of 130.4, between 80 and 180.

Fig. 2 (left) illustrates the histogram of notes appearing in the dataset, converted
into cents. Here, we set 261.626Hz as the 0-cent reference point and, by utilizing octave
equivalence, we convert all notes to frequencies within the same octave before calcu-
lating their values in cents. In fig. 2 (left), bins at multiples of 100 represent the notes
in 12 equal temperament. The fact that these bins do not show particularly high values
indicates that no specific 12 equal temperament notes are being used extensively. Con-
versely, the infrequent use of sounds in certain frequency bands, such as those around
340 cents and 1040 cents, is intriguing. Despite being a microtonal music dataset, many
pieces also include tones from 12 equal temperament. Notably, in 24 equal tempera-
ment, half the tones align with the 12 equal temperament. In the pieces, the proportion
of 12 equal temperament notes ranged from 0% to 67.1%, with an average of 21.4%
across the dataset. Considering the familiarity of the music, a certain degree of use of
the 12 equal temperament notes is allowed.

In the dataset, 525 distinct pitches appear, including 474 types of microtones and 51
tones of the 12 equal temperament. These microtones could be candidates for pitches
in microtonal music generation models using this dataset.

This dataset includes microtonal music based on N-equal temperament (N-EDO)
other than 12, music created by uniformly shifting tunings from specific temperament
by X cents (calibrate), and their combinations (mix). Fig. 2 (right) shows the distri-
bution of temperament that make up this dataset. As a temperament that is easy for
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the composer to create music, scales that felt harmonically familiar were frequently
adopted, particularly pieces with the 22, 24, and 31 equal temperaments. In the future,
we plan to enhance the diversity of temperaments.

5 Potential Uses of the Dataset

The primary envisioned use of this dataset is for machine learning models. In deep
music generation models based on 12 equal temperament, the model is constructed
on the assumption that the input and output data are in 12 equal temperament. When
extending this to microtonal music, it is anticipated that simply changing the input and
output layers would not be sufficient. By utilizing this dataset, it becomes possible to
further conduct research into models that can handle microtones.

Additionally, it can be utilized as test data to further generalize conventional music
recognition techniques. In music analysis, concepts that presuppose 12 equal tempera-
ment, such as chromagrams, are sometimes used; however, these cannot be applied to
microtonal music. We expect this dataset to be valuable for developing how conven-
tional techniques, such as pitch recognition and chord recognition, can be generalized
to microtones.

6 Conclusion

In this paper, we introduced a dataset titled Microtonal Music Dataset v1, consisting
of 100 short pieces of music that include microtones. By advancing research based on
this dataset, we believe that current music information processing techniques can be
extended to include microtones, and ultimately, this could lead to the application of
generative AI technology to enhance human musical expression.

In the current dataset, 100 pieces of microtonal music were created, but because
the range of sounds that microtones encompass is diverse, there are plans to increase
both the number of pieces and the diversity of the music in upcoming versions such
as version 2 and beyond. Specifically, in order to enable the conversion of music in
12 equal temperament into microtonal music, we would like to increase the data of
microtonal pieces that are paired with 12 equal temperament music. By doing so, we
believe it will be possible to microtonalize existing pieces in the 12 equal temperament
and significantly increase the size of the dataset. Additionally, by exploring methods
of data augmentation, we plan to develop this dataset into a resource that is adequately
applicable to deep learning techniques, which are indispensable for large-scale data.
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Abstract. This study proposes a control method for changing light to a suitable
color according to the timing of a bar position in synchronization with the mu-
sic. The aim is to provide users with more realistic experiences when they are
enjoying online live performances at home by changing light colors to match the
music. Conventional methods switch the light for each word, and there are some
variations associated with words within lyrics. Therefore, the proposed method
increases the variations of the color image scale and the colors associated with
the words to match the lyrics and song information. Moreover, our system is de-
signed to change the lighting color at the timing of each bar position based on
beat estimation from the song.

Keywords: lighting control, lyric, color image scale

1 Introduction

Online live performances have been increasing as part of the new life styles that emerged
during the COVID-19 pandemic. However, watching live-streaming performances at
home tends to be less present than watching in person due to insufficient lighting effects,
venue size, and sound volume. As a result, participants only have partial enjoyment of
their experiences.

The aim of our study was to consider a method that could easily create lighting
effects suitable for songs without specialized knowledge. The previous study [1] devel-
oped lighting control on the stage, and the system incorporated 300 words that corre-
sponded to a color image scale [2]. This color image scale was developed psychologi-
cally to define the common senses of color images and facilitated the classification and
correlation of images of words within lyrics. We apply this idea to the PHILIPS Hue Go
portable accent light [3], which can be used in the home. However, it should be noted
that the timing of the lighting transitions in the original scheme did not match the song.

⋆ This work was supported by JSPS KAKENHI Grant Numbers 20K19947 and 22H03711.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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Fig. 1. Overall view

In this study, a lighting control method was developed that instigates light transi-
tions at appropriate timing using the colors associated with words within lyrics. This is
achieved by changing the lighting color at bar positions containing each word. In addi-
tion, we increase the number of image scale color variations to 1,317 words, allowing
the method to suggest light colors that match the impression of lyrics more effectively.

2 Methods

Figure 1 provides an overview of the proposed method, in which there are two main
processes: estimating bar positions from acoustic signals and selecting colors from a
color image scale that match each word in the lyrics. It should be noted that we only
focused on the first chorus part of songs.

2.1 Bar Position

Bar positions are often helpful in providing hints for the locations of structure bound-
aries and turning points within the music. Thus, we extract bar positions to switch the
lighting color according to appropriate timings in the music. We estimated the time of
each beat [4] and calculated the bar position time assuming a time signature of 4/4.

2.2 Lighting Color Selection

We search for the appropriate image scale color for each word in the lyrics according
to the following procedure.

1. Extract nouns and adjectives from lyrics using MeCab (Yet Another Part-of- Speech
and Morphological Analyzer) [5]. For the model dictionary, we used mecab-ipadic-
NEologd [6], which is robust for new words and proper expressions.
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Fig. 2. Example of lighting “CHE.R.RY (Artist:
YUI)” (upper left: koi / love, upper right: hoshi /
star, lower left: cherry, lower right: message.)

Table 1. Time [s] to switch lighting color
“CHE.R.RY (Artist: YUI).”

Word
Japanese / English

Previous Proposals

Koi / Love
Hoshi / Star 7.428

6.594Yoru / Night 1.005
Negai /Wish 0.814

Cherry/ Cherry 2.673
4.389Yubisaki / Fingertip 1.144

Kimi / You 1.162
Message / Message 0.060 2.206

2. Obtain embedding vectors for each word using Word2Vec [7] and the pre-trained
Japanese Wikipedia entity vectors [8]. Each word is then complemented based on
the word in the color image scale database using highest cosine similarity.

3. Search for the bars in which each word appears from the lyrics information sepa-
rated into bars.

4. Select the word with the highest cosine similarity once every two bars.
5. Set the image scale color as the lighting color based on each selected word.

2.3 Apply to lighting

We used the Philips Hue API to set the lighting colors and start timing to Hue Light
using RGB values based on the color image scale, and the start time of the bar in which
the word appears. To represent the lighting color in the XYZ color space, we converted
the RGB values to xy color space.

3 Demonstration

We conducted simulations of lighting effects based on the proposed method. Figure 2
displays an example using “CHE.R.RY (Artist: YUI)”1, and Table 1 presents an example
of words and switching times in the song “CHE.R.RY.”

The proposed method selected four of eight words for the lighting color. Each word
appeared in bars 1, 4, 6, and 7. In the proposed method, the word with the highest cosine
similarity was “cherry,” and its similarity was 1.0. Conversely, the lowest similarities
were 0.471 for both “message” and “arigatou (thank you).” In the simulation based
on the method of the previous study, all eight words were used as the lighting color.
The highest similarity between words was 0.466 for the words “kimi (you)” and “ure-
shii (happy).” In contrast, the lowest similarity was 0.256 between “hoshi (star)” and

1 Our demonstration movies are available at https://scrapbox.io/uemaiklab/Lighting Control Demo
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“mabushii (dazzling).” The increment of the word variation in the image color scale
also increased the variety of lighting colors. We assumed that we had enhanced the
harmony between the music impression and the colors associated with the lyrics.

Table 1 displays the time corresponding to each word and the time required for each
method to switch to the next light color. Table 1 indicates that the longest and shortest
times for the proposed method were 6.594 and 2.206 s, respectively. In contrast, the
longest and the shortest switching times in the previous study was 7.428 and 0.606
s, respectively. In the previous study, there were five locations where the time until
the color switched was 1 s or less. This indicated that frequent switching of lighting
colors occurred. We consider that the proposed method improved the temporal harmony
because the colors were only switched for each bar.

We also found that words whose meanings were the exact opposite of each other
when using Word2Vec were sometimes candidates as the most similar words. For ex-
ample, “kanashimi (sadness)” was complemented with “yorokobi (happiness).” This
could be because the model was trained to assume that words appearing in the same
context have similar meanings.

4 Conclusions

We developed a lighting control method using colors associated with lyrics through
word embedding and the color image scale. Furthermore, we improved the lighting tim-
ing by transitioning at bar positions instead of at each word. Ultimately, our proposed
light system illuminates with appropriate colors and timing.
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Melody Changing Interfaces for Melodic Morphing
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Abstract. We have developed several applications based on the Generative The-
ory of Tonal Music utilizing the melodic morphing method. Since multiple melodies
generated by the morphing method have similar musical structures, the global
structure of the melodies does not change when a portion of one melody time
axis is replaced by another. When developing the apps, we used dial-based and
grid-based interfaces for switching melodies. In this paper, we present the results
of a comparison of the two interfaces conducted with 30 users.

Keywords: Melody switching interface, Melodic morphing method, Generative
Theory of Tonal Music (GTTM), Dial-type interface, Grid-type interface

1 Introduction

We have developed several applications using a melodic morphing method based on the
Generative Theory of Tonal Music (GTTM) [1, 2]. In the GTTM, a time-span tree is a
binary tree in which each branch is connected to each note (Fig. 1). The branches of
a time-span tree are connected closer to the root than those connected to structurally
important notes.

The main advantage of time-span trees is that they can be used to reduce notes.
Specifically, reduced melodies can be extracted by cutting a time-span tree with a hor-
izontal line and omitting the notes connected below the line. In melody reduction with
GTTM, these notes are essentially absorbed by structurally more important ones.

We previously proposed a melody-morphing method that applies this reduction
(Fig. 2) to generate a melody that is structurally intermediate between two input melodies[3,
4]. This is done by combining two melodies after executing the reduction on their re-
spective time-span trees.

Since multiple melodies generated by the morphing method have similar musical
structures, the global structure of the melodies does not change when a portion of one
melody time axis is replaced by another. When developing apps with the melodic mor-
phing method, we used dial-based and grid-based interfaces for switching melodies. In
this work, we present the results of a comparison of the two interfaces conducted with
30 users.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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Time-span tree

Fig. 1. Time-span tree.
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︙

Fig. 2. Melodic morphing method.

2 Applications for Melodic Morphing Method

ShakeGuitar The ShakeGuitar (Fig. 3(a)) and ShakeGuitarHD (Fig. 3(b)) apps change
the morphing level according to the speed at which the iPhone or iPad is shaken [5].
For the morphing input, we utilize the basic melody of “The Other Day I Met a Bear”
and the melody of a guitar solo played with the same chord progression. The unique
feature here is that not only interpolation of the two melodies but also extrapolation is
performed [6]. With the extrapolation, we can generate an intense guitar solo with more
notes than the original. When the iPhone is held stationary, a basic melody is played,
and the faster the iPhone is shaken, the more intense the melody becomes.

ShakeGuitar and ShakeGuitarHD both feature a grid mode with time on the vertical
axis and morphing level on the horizontal axis. The morphing level can be changed by
touching the grid. In ShakeGuitarHD, the guitar is animated to swing up and down, and
the width of the swing changes according to the morphing level. The morphing level
also changes depending on how fast you swipe your finger up and down on the swinging
guitar.

Melody Slot Machine We developed the Melody Slot Machine, a research demon-
stration device, to promote the melodic morphing method. With this application, the
performer’s movements can be viewed on a Pepper’s ghost display (Fig. 4(a)). Melody
segments are displayed on a dial, and the melody to be played can be switched by rotat-
ing the dial (Fig. 4(b)). We exhibited the Melody Slot Machine at an international con-
ference shortly after it was developed, but the COVID-19 pandemic made it difficult to
conduct further demonstrations in person [7–9]. We therefore adapted the Melody Slot
Machine for the iPhone so that people could experience it simply by downloading the
app.

Melody Slot Machine for iPhone Figure 5 shows a screenshot of the Melody Slot
Machine iPhone app [10]. The horizontal axis is time, and each dial displays a melody
segment in musical notation (Fig. 5(a)). By swiping up and down on each dial, you can
switch between the segments. Due to the limited screen size of the iPhone, only four
melody segments can be viewed simultaneously, and the currently playing segment can
be viewed by automatically scrolling left as the musical piece progresses (Fig. 5(b)).
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(a) ShakeGuitar (b) ShakeGuitarHD

Fig. 3. Screenshot of ShakeGuitar.

(b) Slot dial

(a) Pepper's ghost 
display

Fig. 4. Melody Slot Machine.

The dial changes for the entire musical piece are displayed in a grid at the bottom
of the screen, corresponding to the numbers written on the dials . Swiping up from the
bottom of the grid display brings up the full-screen grid (Fig. 5(c)), and users can touch
it to change the selected grid. The change in the grid is linked to the dial, and the melody
is played reflecting the change. Swiping down terminates the full-screen grid, and the
dial appears again. When the iPhone is shaken up and down, each dial is shuffled to
generate a new combination of melodies (Fig. 5(d)).

Melody Slot MachineHD Figure 6(a) shows a screenshot of Melody Slot MachineHD,
in which the symbols represent changes in melody variations [11]. For example, the
musical note symbol means that the same variation will continue, and the cherry symbol
indicates that the variations will change one after another.

Pressing the mode-switch buttons on the left and right of the screen displays the grid
tile screen, and you can check and change the variations in the entire song (Fig. 6(b)). If
you use the grid to change the combination of variations, the symbols on the slot screen
will also change accordingly.

The performer screen is displayed by pressing the mode-switch buttons or holding
the iPad vertically (Fig. 6(c)). This display shows a performer playing new combina-
tions of melodies determined by the slots or grids. Short interpolation video clips of the
performer generated by AI are sandwiched into recorded videos of an actual performer,
so the performer moves seamlessly.

(a) Dial display (b) Scrolling left

(c) Full-screen grid (d) Dial shuffled

Fig. 5. Melody Slot Machine iPhone app.

(a)

(b)

(c)

(d)

Fig. 6. Melody Slot MachineHD.
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3 Experimental Results

We launched the Melody Slot Machine iPhone app in May 2021 and Melody Slot Ma-
chineHD in March 2022. As of July 2023, they have downloaded 657 times. After
launching the app ten times, users are presented with a message inviting them to com-
plete a questionnaire regarding its usability. The following is a portion of the question-
naire.
Q1: Which was easier to operate, the dial screen or the grid screen?
Q2: Which was more enjoyable to operate, the dial screen or the grid screen?

Thirty responses were received, 20 people said that the dial type was easier to oper-
ate and more enjoyable than the grid type.

4 Conclusion

In this work, we compared several interfaces that change the melody of applications
using a melodic morphing method based on the Generative Theory of Tonal Music.
Our findings showed that more people found the dial-type interface easier and more
enjoyable to operate than the grid-based one.

In the app version of the Melody Slot Machine, the dials on the iPhone were musical
notations and on the iPad they were symbols, but we plan to make it possible to switch
between the two types of dials on both devices.
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Abstract. We propose a novel representation method of time-span tree of Gen-
erative Theory of Tonal Music (GTTM), which is suitable for deep learning using
neural networks. We are interested in representing the meaning of music in a tree
structure, as in natural language understanding, and employ the time-span tree
of GTTM. The strengths of our method are relative tensor representation of pa-
rameter values and tree structure of variable shape and size. Our method properly
reduces the number of parameter values and the amount of information describing
the time-span tree structure for deep learning. That is, the same information can
be expressed with fewer symbols. Through small-scale experiments, the relative
representation has been shown to be promising.

Keywords: Generative theory of tonal music (GTTM), time-span tree, block
view

1 Introduction

Generative theory of tonal music (GTTM) [1] which is a cognitive music theory, rep-
resents the hierarchical structure of melodies by expressing the relative importance of
each note as a time-span tree. The time-span subtrees exhibit both local and global de-
pendencies, and it is important to consider the both dependencies for a comprehensive
analysis of the hierarchical structure of time span trees. Takahashi et al. [2] proposed
a method in which a time-span tree is represented by the block view considered as a
tensor, and Seq2Seq model with the attention mechanism captures the both local and
global dependencies contained in time-span tree. However, since the block view uses
absolute values for representing duration and pitch, it leads to difficulty in learning the
general rules for the values and the relationships among block.

Therefore, we introduce a block view containing relative values. Specifically, we es-
tablish representations for relative vertical and horizontal positions, duration, and pitch,
enabling a block view to express the relationships among subtrees. This approach is
expected to reduce feature complexity, leading to improved accuracy improvement and
reduced of training time.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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2 Relative Representation of Time-Span Tree

Our proposed method introduces a relative block view representation, enabling a more
detailed and expressive description of the hierarchical structure of melodies. Fig. 1
shows the existing block view converted to a relative representation.

Durations are represented by a combination of nine basic labels, such as quarter
note, eighth note, and so on. For example, note id 1 in the 1st layer has a duration of
0.75. Converting this to a relative expression, 0.75 can is represented as the sum of 0.5
and 0.25.

The pitch class is calculated as an interval and direction of melodic change between
the pitch and the parent time span that governs the pitch, that is, the block directly
superior to the pitch. For example, note id 2 in the 1st layer has pitch class D and is
dominated by C♯ in note id 3 in the 2nd layer. D is one interval above C♯, and hence, the
interval is 1 and the direction of melodic change is +. In some cases, melodic change
may be more than one octave. At present, we assume that melodic change is within one
octave (0 to 11) for such cases.

The branching information in the tree structure is represented by the sequence of
left- or right-branchings from the maximum time-span position. For the depth of se-
quence, 0 is assigned to the initial occurrence of time-span (the maximum time-span),
and + to the same time-span occurring in the subsequence. Concerning the left/right
branching, ϵ is assigned when no branching occurs, and L and R are assigned to the
left- and right-branching, respectively. For example, the 4th layer is assigned [0,ϵ] be-
cause it has no branches and no upper layers. Furthermore, note id 1 in the 3rd layer
is represented as [+, L] because the value 1 means one-level deep from the above 4th
layer and left-branching occurs.
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Fig. 1. Conversion of Absolute Representation of Block View to Relative One

When entering data into the model, each note information information is treated as
multi-hot. Specifically, we combine a multi-hot vector indicating duration, a one-hot
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vector indicating pitch interval, a one-hot vector indicating pitch direction, a one-hot
vector indicating branch number, a one-hot vector indicating branch direction, a label
indicating padding, a label indicating mask. Table. 1 shows details of each category.

Table 1. Melodic Features in Multi-Hot Vector

Category Values or Labels Length
Mask mask or not 1
Padding BOS, EOS, padding for sequences, padding for layers 4
Duration 0.125, 0.1667, 0.25, 0.3333, 0.5, 0.6667, 1.0, 2.0, 4.0 9
Pitch interval 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 12
Pitch direction 0, +, - 3
Sequence of branch 0, + 2
Left/right branching ϵ, L, R 3

3 Experiment

Through the fill-in-the-blank task for the block view of a time-span tree, let us validate
the the proposed relative representation. In this paper, we call the representation method
employed in the previous study as the absolute method [2], and the proposed method
as the relative method. To evaluate how much the proposed method improves the re-
sult of the fill-in-the-blank task over the absolute one, we measure the accuracy of the
following three factors: pitch, duration and a pair of pitch and duration. Since a pitch
is represented by a pitch interval and the direction of melodic change in the relative
method, we have the correct answer if both a pitch interval and the direction are the
same.

3.1 Experimental Setup

We use the GTTM database [3], with 176 songs for training data, 44 songs for validation
data, and 55 songs for testing data. we crate dataset for the fill-in-the-blank task by
masking each subtree. By masking, we obtain 6117 training data, 1498 validation data,
and 1797 test data. Each batch contains 64 pieces of data. The embedding dimension
by skip-thought is set to 300 and the size of the hidden layer of the Seq2Seq model is
set to 200. We use the optimizer Adam with a learning rate of 1.0× 10−4.

3.2 Results

Fig. 2 shows the results of the accuracy to masking ratios for the three factors. For pitch
accuracy, the relative method exceeded accuracy of 0.60 for almost all masking ratios,
and, for all masking ratios, the relative method was superior to the absolute method.
For duration accuracy, the absolute method was advantageous for almost all masking
ratios. Furthermore, the maximum difference of accuracy rates exceeded 20%. For a
pair of pitch and duration, the relative method was equal to or better than the absolute
one, and, for low masking ratios, the relative method was superior by about 10%.
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Fig. 2. Accuracy to Masking Ratios for the Three Factors

4 Conclusion

We proposed the relative representation of duration, pitch, and branching information
in a block view of time-span tree. The results of the fill-in-the-blank task show that the
relative method is advantageous for the factors of pitch and a pair of pitch and duration.

The points to be improved in the future are as follows. To improve duration accu-
racy, we need to examine and refine the representation method for duration. For exam-
ple, we consider the relative representation based on metrical information. Furthermore,
since the current validation test is conducted on a small dataset, we need to validate on
a larger dataset through data augmentation.
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Abstract. This demo proposes a novel task for curating theme music for manga
(Japanese comics). One of the biggest challenges in this field is the lack of avail-
able paired data for manga and music. Hence, we employ alignment properties
of pre-trained models to infer the relationship between music and manga and re-
trieve music given an input manga page. We call this zero-shot, as we do not train
on any explicit aligned music-manga dataset. Our preliminary results show po-
tential in the task of music retrieval from manga when fine tuned on independent
manga-text and music-text pairs compared to the original AudioCLIP model.

Keywords: Music Retrieval, Multi-Modal, Manga, Emotion-Aware Retrieval

1 Introduction

Storytelling shares fictional or non-fictional accounts for knowledge, entertainment, and
even branding in modern society [1]. To bridge the gap between reality and stories,
artists make use of additional modalities such as illustrations, onomatopoeia, sound and
movement. Comic books are an example of story telling that employs illustrations and
onomatopoeia. In a country like Japan, where manga or Japanese comics hold signif-
icance in history of popular culture [2], the evolution of comic story telling has ex-
perienced waves of digitisation and animation [3]. In an effort to enhance the reading
experience, such adaptations also use sound effects and music with digital comics1.

However, additional modalities can be expensive and require domain knowledge.
Attempts have been made to curate background music for books using the soundtracks
from the movie adaptations [4]. However, curating background music for comics re-
mains a novel task. To our knowledge, our work remains one of the first attempts to
curate music based on comics. One of our biggest challenges remains the lack of pub-
licly available music datasets from manga or anime. Hence, we focus on extracting
alignment relationships between music and manga books by training a shared embed-
ding space of image, text and audio. In the current stage, our demo proposes a solution
to retrieve music for manga based on a given page, by aligning the relationships im-
plicitly through text. Our method is inspired from the recent success of ImageBind

1 https://www.webtoons.com/en/

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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[6], which trained six modalities together by binding them with image embeddings.
A shared embedding space is trained with independent datasets: AudioSet [7] (Music-
Text) and Manga109 [8] (Manga-Text). In this paper, we report the progress of the
training and results from our first iteration. We also comment on our current limitations
and future work for the task. The code and some example runs are made available at
https://github.com/ms3744/Music-Manga-Retrieval.

2 Implementation

At the current stage, we approach the problem as a manga-to-music retrieval task.
Hence, our focus is on strengthening the embedding space between the modalities.
An ESResNeXT encoder [12] is used for audio while the Res-Net and Transformer
encoders from CLIP [11] are used as image and text encoders respectively. The three
encoders share a multi-modal embedding space using the AudioCLIP architecture [10],
which is an extension of the CLIP model with an audio encoder. We use the pre-trained
weights from AudioCLIP as large-scale trained models exhibit emergent properties in
modality alignment [6]. We first train the audio encoder on (audio-text) pairs, and then
finetune the image and text encoders on (image-text) pairs.

Datasets. The model is fine-tuned on two datasets independently. The first is a sub-
set of AudioSet [7]. We use the “Music Mood”2 collection which contains music audio
classified into seven classes, namely: Happy, Funny, Sad, Tender, Exciting, Angry, and
Scary. We use the label of each audio as its corresponding text in the audio-text pairs.
Due to the subjectivity of music retrieval, we focus on class-based descriptors instead
of long-form descriptors as seen in MusicCap [9] to analyse the preliminary results in
the current stage. We also use the Manga109 [8] dataset for manga-text pairs, which
contains a collection of pages of 109 manga books from 12 genres. We use the genre of
each manga as the corresponding text label for the manga-text pairs.

Model Hyper-parameters. The model is trained with an SGD optimizer, using a
momentum of 0.9. The learning rate is 5e-5. While training on AudioSet, we trained
the model for 30 epochs, used a batch size of 32, and applied audio augmentation tech-
niques on the training set from [10]. For training on Manga109, we trained the model
for 50 epochs, used a batch size of 64, and applied image normalisation techniques from
CLIP [11] on the training and validation set . Since the AudioCLIP model is already
pre-trained on AudioSet, we need fewer epochs to improve the performance on the mu-
sic mood subset. We only saved the model with the best validation loss while training.
For training the model with each dataset, we use a symmetric contrastive learning loss
[13] for the (text, image) pairs with Manga109 and (text, audio) pairs with Audioset.

Evaluation Methods. Given the subjective nature of the task, our focus was on
measuring the quantitative performance while training. We use the mean Average Pre-
cision (mAP) scores and mean accuracy scores for evaluating on validation sets of Au-
dioSet and Manga109, respectively. For the qualitative performance, we report example
retrievals based on input images and audios, and discuss our results here.

2 https://research.google.com/audioset/ontology/music mood 1.html

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

781



3 Results and Discussion

Table 1 highlights the validation results on the two datasets, before and after fine-tuning
the model. We achieve a 4% improvement on the Music-Mood subset of AudioSet after
training the model further for 30 epochs. Unlike the original training in AudioCLIP
[10], we train only on audio and text modalities to strengthen the relationship between
music and text. We achieved high accuracy on the Manga109 dataset after training the
model for 50 epochs compared to the zero-shot accuracy. The zero-shot model tends
to classify images of manga panels as “fantasy” genre label. However, the pre-trained
encoders from CLIP [11] fine-tune well on the manga dataset, and the model achieves
over 97% accuracy on classifying input images. On the other hand, the audio-head is a
much slower learner, and does not seem to fine-tune as well on the audio dataset.

Table 1. Classification results from the validation set. We used a train-validation split of 80-20.
*Original number of epochs for training the AudioCLIP on AudioSet [10]. **Results from zero-
shot classification using CLIP [11]

Dataset Metric Epochs Score
AudioSet (Music Mood Subset) mAP 60 40.8%

30* 36.8%
Manga109 Accuracy 50 97.2%

0** 6.9%

To understand the emergent trends of the model on the unaligned music and manga,
we queried the model on 200 samples for image (manga) to music and vice versa. We
then calculated the average confidence for each music mood retrieved given all genres
of manga and vice versa. Our qualitative results imply some subjective emergence of re-
lation between the moods of the music and the genre of the Manga. When querying im-
ages of genre “historical drama”, Sad (54% confidence) and Tender (45% confidence)
are the most common moods of the retrieved audio files. Genres like “romantic comedy”
retrieve Happy (37% confidence) while “suspense” retrieves Scary (34.4% confidence)
music. However, certain genres like “horror” have very low confidence, with Tender
music (19.6% confidence) being the strongest case. We note that the relationship music
to manga retrieval is not as strong. “animal” is a common manga genre that is most
likely to be retrieved when querying Angry, Happy, Scary and Tender music. We plan
to continue experiments to understand the reason for this behaviour in future work.

Although there is no explicit baseline in our model, we compare our results to orig-
inal AudioCLIP [10]. Interestingly, when we query any manga image, the model does
not achieve confidence beyond 20%. The highest confidence is Sad music (15.6%) for
“historical drama” manga. In general, the model has 5% confidence, and retrieved mu-
sic with poor subjective compatibility, such as retrieving Angry music for “humour” and
“romantic comedy” manga. Similarly, music to manga retrieval performs inconsistently,
with 72% confidence for retrieving “romantic comedy” manga for Angry music. Over-
all, the model seems to achieve better zero-shot retrieval after training the model. This
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implies the potential of the model for building a music generation system for Manga
without aligned music and manga datasets.

4 Future Work and Conclusion

We propose a task for retrieving music from pages of Japanese manga and demonstrate
how strong multi-modal embeddings have the potential to solve the novel task through
emergent properties. We plan to demonstrate this capability to a larger audience, and
understand the behaviour of these emergent relationships. We view our work as prelim-
inary to future work including, improving training efficiencies for the audio encoder,
incorporating long form text such as manga dialogues and music descriptions, and con-
ducting a qualitative test of the model. Ultimately, we plan to build a decoder for the
model to generate novel music for any given Manga.
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Visualizing Musical Structure of House Music
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Abstract. This paper describes a simple method for visualizing the musical struc-
ture of house music. A given audio signal is separated into drums, bass, vocals,
and others, and then the sound pressure of each instrument part is calculated and
visualized. Using those sound pressures, the audio signal is segmented into four
sections: intro, drop, break, and outro. A preliminary analysis revealed that the
drums and bass have a significant impact in delineating musical structure.

Keywords: House Music, Musical Structure, Music Analysis, Visualization, RMS,
Audio Segmentation

1 Introduction

House music is a type of dance music that has a different structure from that of popular
music. Whereas popular music often makes a structure by changing the characteristics
of the melody and chord progression, house music enhances groove by repeating the
same music loops and creates movement by adding new music loops and/or removing
the added music loops.

Visualizing such a structure of house music will provide an opportunity for a deeper
understanding of individual pieces. Therefore, we aim to develop a system that provides
useful information to composers and DJs by analyzing and visualizing various house
music pieces.

There have been many methods for visualizing musical structure in musical compo-
sitions, such as those based on a self-similarity matrix[1], a greedy search algorithm[2],
and pattern matching of note sequences[3]. However, a house-specific method has not
yet been proposed.

This paper describes preliminary results of visualizing the musical structure of
house music. A given audio signal is first separated into drums, bass, vocals, and others,
and then their sound pressures are calculated. By visualizing the sound pressure of each
instrument part, it enables the user to grasp the musical structure.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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2 Proposed System

Although no clear definition exists for the designation of musical structure in house and
other dance music, this paper defines the following four sections.

– Intro: Introductory section of a song
– Drop: The climax of the song
– Break: The part of the song other than the climax
– Outro: The end of the song

The drop corresponds to the ’chorus’ in popular music, and the break is similarly
positioned to the interlude after the chorus or verses A and B before the chorus. In house
music, new sound materials called music loops are often added to give the music a more
lively feel. Therefore, the musical structure as described here is expected to be highly
related to sound pressure.

2.1 Pre-processing of sound sources

From a given audio signal, t the sound source for each part (drums, bass, vocals, other)
is extracted. We use Demucs for sound source separation. The sound source format is
mp3 and the bit rate is 320 kbps, and the sampling frequency is 44.1 kHz.

2.2 Calculation of sound pressure for each part and unseparated sound source

The sound pressure is calculated as the root mean square (RMS) of the waveform of
the target sound source. Specifically, the sound pressure Si(t) at waveform y(t) is ex-
pressed by

Si(t) =

√√√√ 1

T

T∑
τ=0

y(t+ τ)2dt

where i denotes the part (i ∈ {drums, bass, vocals, others,mixed}). The window
width T for calculating RMS was set to 65000 samples, and the time resolution (time
interval of S(t)) was set to 16250 samples.

The RMS is calculated using Librosa, a Python module for music analysis. The
RMS values of each part are then normalized so that the maximum value of the pre-
separation source is 1 and the minimum value is 0.

2.3 Drawing Graphs

Using Sbass, Sbass, Svocals, Sothers as well as RMS of the pre-separation source Smixed,
the audio signal is segmented into four sections (Intro, Drop, Break, Outro) The judg-
ment criteria for each section are as follows.

– Intro (yellow): The section from the start of the song to the time when S mixed first
exceeds 0.85
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– Drop (red): The interval where S mixed exceeds 0.85
– Break (green): Interval when S mixed is below 0.85 (excluding intro and outro)
– Outro (blue): the interval from the last time when S mixed exceeds 0.85 to the end

of the song

This criterion is based on the hypothesis that the drop corresponding to the cho-
rus is basically louder than the other sections; the threshold of 0.85 was determined
experimentally by testing several songs.

3 Preliminary Results

We conducted a preliminary experiment on visualizing house music using the method
described in Section 2. The following songs were used.

Piece 1 Selecao - Mark Knight, Shovell
Piece 2 Phoenix - Daft Punk

The results are shown in Figs. 1 and 2.

Fig. 1. Selecao - Mark Knight, Shovell

For Piece 1 (Fig. 1), we can see that the four sections are appropriately divided
and that some instrument parts enter and/or leave at the boundaries of the sections. For
example, the sound pressure of the drums and bass increases when switching from the
intro to the first drop. In the middle of the piece, the drums and bass leave as soon
as the drop is over, the vocalist enters, and in the next drop, the vocalist leaves again
and the drums and bass enter. This piece has a typical structure of house music, so the
visualization is generally functioning.

On the other hand, Fig. 2 shows that almost all sections were segmented into the
drop. This is because the drum sound continues with high sound pressure and it makes
the sound pressure of the mixed (pre-separation) source very high in almost all sections.
This implies that more sophisticated criteria will be needed to improve the judgment of
the musical structure.
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Fig. 2. Phoenix - Daft Punk

In those two pieces, drums and bass are always played during the drop section,
indicating that these two parts have a significant influence on the sound pressure. Oth-
erwise, the bass does not sound in most of the break sections, indicating that the bass
tends to leave at transitions from the drop to the break. From those observations, we
can consider that the drums and bass play an important role in house music to make
movement from one section to another section.

4 Conclusion

In this paper, we attempted to visualize the music structure of house music by drawing
the sound pressure of each instrument and by coloring sections judged with the sound
pressure of the pre-separation sources.

The preliminary experiments revealed some influences of each part on the musi-
cal structure. In particular, drums and bass play a role in transitions of sections (e.g.
entering and leaving the drop) in house music.

In the future, we plan to visualize richer information, such as detailed drum pat-
terns obtained with a drum transcription technique. In addition, we have to make more
sophisticated criteria to decide section boundaries, for example, using a technique for
detecting repetitive patterns.
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Acts for Hacks
Aταραξια (Ataraxia) (Vasilis Agiomyrgianakis and Haruka Hirayama)

La Solitudine Delle Moltitudini (The Solitude of the Multitudes)
Marco Buongiorno Nardelli, Alice Grishchenko, Gabor Kitzinger and A.Laszlo
Barabasi

Construction in ENSO
Ryo Ikeshiro

Thee Doug Van Nort Electro-Acoustic Orchestra
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