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Abstract. This paper describes our development of a deep learning based time-
span tree analyzer of the Generative Theory of Tonal Music (GTTM). Construc-
tion of a time-span tree analyzer has been attempted several times, but most pre-
vious analyzers performed very poorly, while those that performed relatively well
required parameters to be manually adjusted. We previously proposed stepwise
reduction for a time-span tree, which reduces the branches of the tree one by one,
and confirmed that it can be learned by using the Transformer model. However,
stepwise reduction could not obtain a time-span tree because it does not know to
which notes the reduced notes were absorbed. Therefore, we improved the en-
coding for learning stepwise reduction and specified which notes are absorbed by
which notes. We also propose a time-span tree acquisition algorithm that iterates
stepwise reduction by representing the time-span tree as a matrix. As a result of
experiments with 30 pieces, correct time-span trees were obtained for 29 pieces.

Keywords: Generative theory of tonal music (GTTM), time-span tree, melody
reduction, Transformer model0

1 Introduction

We have developed a time-span tree analyzer that is based on the Generative Theory of
Tonal Music (GTTM) by using deep learning called deepGTTM-IV. The GTTM was
proposed by Leardahl and Jackendoff in 1983, and the time-span tree is a binary tree
with each branch connected to each note [1].

Many time-span tree analyzers have been proposed, but most have many analytical
errors [2–6]. The time-span tree analyzer that had the highest analytical performance
required parameters to be manually adjusted [7].

The reason previous time-span tree analyzers performed insufficiently is that they
analyzed in a bottom-up manner using only local information. [2–7]. Therefore, we
considered learning the raw data of the entire piece by deep learning. Our deepGTTM-
IV has four features.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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Stepwise reduction: The Ground Truth data of a time-span tree is insufficient to di-
rectly learn the relationship between a piece and its time-span tree. To enable learn-
ing, we set the learning target as the process of reducing one note.

Branch priority: To make possible the stepwise reduction, the priority order of branches
needs to be defined. The maximum time span is used as the branch priority.

Encoding: By encoding the score into text, stepwise reduction can be learned in the
framework of automatic translation. This makes it possible to reduce notes at des-
ignated positions in a piece as if words are omitted in a sentence.

Time-span-tree matrix: The time-span tree has been handled in XML and Json for-
mats, making coding difficult [8]. We made coding easier by expressing the in-
formation necessary for reduction (i.e., pitch, duration, time-span-tree shape, and
branch priority) in a matrix.

We performed an experiment in which 270 items from a GTTM analysis corpus
consisting of 300 pieces and their time-span trees were used to learn the Transformer
model with the remaining 30 used for evaluation and found that our analyzer was able
to obtain correct time-span trees for 29 out of 30 pieces. The remainder of the paper is
as follows. Section 2 presents problems of time-span tree analysis based on deep learn-
ing, Section 3 describes the data for learning and evaluation, and Section 4 describes
the implementation of the analyzer. Section 5 describes the experimental results, and
Section 6 gives a summary and mentions future plans.

2 Problems of Time-span Tree Analysis based on Deep Learning

In GTTM analysis, the relationship between structurally important notes and other notes
in a score is expressed by a binary tree called a time-span tree. The time-span tree in
Fig. 1 is the result of analyzing Melody A on the basis of GTTM. Reduced melodies
can be extracted by cutting this time-span tree with a horizontal line and omitting the
notes connected below the line. In melody reduction with GTTM, decorative notes are
absorbed by structurally important notes.

There are the following three problems in the deep learning of time-span tree anal-
ysis.

Fig. 1. Time-span tree
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2.1 Low Number of Ground Truth Data

As ground truth data of the time-span tree, 300 classical melodies and their time-span
trees are published in the GTTM database [8, ?]. However, the number of datasets (300)
is extremely small for learning deep neural networks (DNNs) [10]. In the case of a small
number of pieces of learning data, over-fitting is inevitable, and an appropriate value
cannot be output when unknown data is input.

In the time-span analysis by musicologists, the entire time-span tree cannot be ac-
quired at once but is gradually analyzed from the bottom up. Therefore, the minimum
process of analysis is set as one dataset, and then the number of datasets is increased.
For example, if the DNN directly learns the relationship between a four-note melody
and its time-span tree, the number of datasets is only one. On the other hand, if we
consider the process of reducing one note to one dataset, the number of datasets will be
three, as shown in Fig. 2(a).

The trained DNN estimates the melody consisting of n− 1 notes that is reduced to
one note when a melody consisting of n notes is input. A time-span tree for a melody
consisting of four notes can be constructed by estimating four to three notes, three to
two notes, and two notes to one note, and combining the results (Fig. 2(b)).
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Fig. 2. Stepwise reduction

2.2 Ambiguity of Reduction Process

Time-span reduction removes decorative notes by pruning from the leaves at the tip
of the tree, leaving only structurally important notes in the melody. To implement the
stepwise reduction, the priority of branches must be obtained in a total order.

However, when it comes to GTTM itself, there are only a few examples of reduction
using the time-span tree, and there is no detailed explanation on the reduction procedure
[1]. For example, in Fig. 1, we can see two levels of reduction results, but it is not clear
how many levels are actually necessary.
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Marsden et al. [11] suggested a way to determine the salience of two note events
(a and b), neither of which are descendants of the other. They proposed defining the
salience of an event as the duration of the maximum of the time spans of the two chil-
dren at the branching point when the event is generated, or where it is reduced.

In contrast, in this study, the DNN needs to learn the relationship before and after the
reduction than it is to reduce the order of the notes to close to that of human cognition.
We use a time-span tree leveled by the duration of the time span for a simple reduction
order that it is easy for the DNN to learn [12].

2.3 Long Note Sequence

The previous time-span tree analyzers performed poorly because they analyzed in a
bottom-up manner using only local information [2, 5–7]. In contrast, we propose using
the entire note sequence before and after stepwise reduction for learning the DNN.

When a recurrent neural network (RNN) [13] or long short-term memory (LSTM)
[14] is used as the DNN, the DNN can learn using note sequence, but when a long note
sequence is input, the DNN forgets the beginning of it, and then the DNN cannot make
use of the whole information of the note sequence.

The Transformer model [15] can learn and predict using the information of the entire
note sequence. Moreover, the Transformer model has an additional layer of position
information independently and uses the absolute position.

3 Data for deepGTTM-IV

This section describes the data for training the Transformer model. The Transformer
model, which is an automatic translation tool, uses text for both input and output. Also,
the Transformer model can learn the task of adding two values [16]. The duration of a
note after reduction is the sum of the durations of the two notes before reduction, and
we thought that this task could also be done with Transformer.

3.1 Learning and Evaluation Data

The preparation of the dataset for stepwise reduction is as follows. First, the priority
of each branch of the time-span tree is evaluated on the basis of the duration of the
maximum time span [12]. We refer to the longest temporal interval when a given pitch
event becomes most salient as the maximum time span for the event. Next, stepwise
reduction is applied to the least important note. A learning dataset of stepwise reduction
is then created using the data before stepwise reduction as input data and the data after
reduction as output data.

3.2 Encoding

Learning data are created from MusicXML and time-spanXML in the GTTM database.
Since all melodies in the GTTM database are monophonic, the reduction method is
limited to monophony. The notes in the melodies are made into a one-character string
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with the pitch and duration concatenated. The pitch is represented as 12 types without
distinguishing between different octaves. By multiplying by 4, the duration of most
notes becomes an integer, but since there are melodies containing only a few triplets,
quintuplets, sextuplets, and septuplets, the duration is rounded up to an integer. The
placeholders ”l” or ”r” are inserted at positions where notes disappeared due to the
reduction. The ”l” (left) is inserted when the reduction is absorbed into the left note, and
”r” (right) is inserted when it is absorbed into the right note. In our previous work, we
were unable to reconstruct the time-span tree because we did not distinguish between
”l” and ”r” [12]. Figure 3 is an example of learning data.

Before reduction. → After reduction.

c14 c16 d30 c14 c12 c16 d20 c16 . → c14 c16 d30 c26 l c16 d20 c16.
c14 c16 d30 c26 c16 d20 c16 . → c14 c16 d30 c26 r d36 c16. 
c14 c16 d30 c26 d36 c16 . → c14 c16 d30 r d62 c16. 
c14 c16 d30 d62 c16 . → c30 l d30 R2 d62 c16. 
c30 d30 d62 c16 . → c60 l d62 c16. 
c60 d62 c16. → c62 r c78. 
c60 c78. → r c138.

Fig. 3. Learning data for melody reduction

As a result of preparing the datasets, 7362 stepwise reduction training datasets are
generated from 270 music pieces from the GTTM database consisting of 300 pieces and
849 stepwise reduction evaluation datasets are generated from the remaining 30 pieces
for evaluation.

3.3 Data Augmentation

The 7362 training datasets are not enough to train the Transformer model, so we carry
out data augmentation. Each note is shifted 11 times by a semitone and the amount
of training data is augmented by 12 times. The durations of notes are 2-16 times and
rounded up to the nearest integer, then the amount of data is augmented by 16 times.
Finally, we prepare 1,432,704 (= 7362 x 12 x 16) learning datasets.

4 Implementation of deepGTTM-IV

A time-span tree is obtained by iterating stepwise reduction. We expressed time-span
trees in XML or Json, but they were difficult to handle with programs because of
their deep hierarchical tree structure. Representing a time-span tree as a matrix makes
melody reduction easier to implement in a program.

4.1 Matrix Representation of Time-span Tree

In Fig 4(a), the first row of the matrix is the encoded pitch and duration and the second
row is the connected parent branch number. The root branch has no parent branch to
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which to connect, so the parent branch number is set to 0. Both the 2nd and 4th branches
are connected to the 1st branch, but the branches of the time-span tree do not cross [1],
indicating that the 4th is connected to the 1st at a position closer to the root. Notes that
are missing due to reduction have blank pitches and durations on the matrix.

The 3rd row of the matrix is the branch priority. Since the branch priority is obtained
from the time-span tree and the note duration, it is redundant information, but it is
differentiated in this paper for clearer explanation.

4.2 Generation of Stepwise Reduction Data

Stepwise reduction data is generated by performing stepwise reduction in the order
from the lowest priority branch. Applying a step-wise reduction to Fig. 4(a) reduces
the notes in the 3rd branch, which has the lowest priority, to the 4th branch. The input
of the Transformer model is ”d8 e8 e8 f8.” The output is ”d8 e8 r f16.” because the
third note is absorbed on the right side. Next, when stepwise reduction is applied to
Fig. 4(b), the note on 2nd branch with the second lowest priority is reduced to the note
on 1st branch, and the input and output of the Transformer model are ”d8 e8 f16 -¿d16
l f16.”. Stepwise reduction data is created by repeating stepwise reduction until there is
only one note left.
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Fig. 4. Generation of stepwise reduction data

4.3 deepGTTM-IV: Reduction System

Figure 5 shows an overview of the reduction system. First, the input melody is con-
verted into Matrix Representation of the time-span tree. In the initial state, no branches
are connected, so the matrix has all 0 in the second row (Fig. 5(a)). Then the note se-
quence in the first row is sent to the Transformer model (Fig. 5(b)). The output of the
Transformer model is reflected in the matrix in which the 3rd note is absorbed in the
4th note (Fig. 5(c)). Then (a) to (c) are iterated until there are no notes for reduction
(Fig. 5(d)). Finally, a time-span tree is output (Fig. 5(e)).

The Transformer model may produce unexpected outputs from untrained inputs. In
such a case, it may be difficult to proceed with the reduction process and our method
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Fig. 5. Overview of reduction system

multiplies the initial duration of one note by a randomly chosen value between 2 and
16 and restarts the reduction process.

5 Experimental Results

We trained the Transformer model using 1,432,704 (= 7362 x 12 x 16) learning datasets
created by data augmentation of 7362 stepwise reductions made from 270 pieces out
of 300 pieces in the GTTM database. Accuracy was 0.99 when evaluated with 849
Stepwise reductions made from the remaining 30 pieces. Learning was carried out using
Nvidia Quadro RTX5000 for laptops [17], and the learning time was seven hours.

We tried to acquire time-span trees for the remaining 30 pieces with deepGTTM-
IV using the trained Transformer model, and we were able to acquire time-span trees
for 29 pieces. The one remaining piece contained quintuplets and the output of the
Transformer model was unexpected, so the notes could not be reduced.

6 Conclusion

Previous time-span analyzers could hardly obtain time-span trees without analysis er-
rors, but we dramatically improved the analysis performance by learning step-wise re-
duction with the Transformer model. At the time of encoding the training data, by spec-
ifying which note to be reduced to the left or right will be absorbed, decoding becomes
possible and a time-span tree can be obtained. As a result of experiments with 30 pieces,
all time-span trees were obtained except one piece that contained quintuplets. We plan
to conduct evaluation experiments with more pieces. In the case of quintuplets, septu-
plets, and higher multituplets, there is little data in the GTTM database and it is difficult
to learn by the Transformer model, so we plan to increase the data of multituplets by
data augmentation to improve performance.
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