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Abstract. The paper provides a novel approach to musicologically-informed
intra-opus motif detection within polyphonic music scores. We extract diatonic
interval sequences from each voice of a score; sequence segmentation is per-
formed via pairwise local alignment between each pair of voices. From the output
of this step, string-based approaches are used for motif discovery.
Specifically, a weighted directed acyclic graph is constructed, giving a custom
measurement of motif importance. A selection and filtration procedure is applied
according to a set of rules and music structural information, to generate a final
selection of music motifs.
The ground truth annotated JKUPDD dataset is used for evaluation of the pro-
posed methodology. The results demonstrate that this algorithm is capable of ex-
tracting musically meaningful motifs with high precision and recall.

Keywords: Music Information Retrieval, Pattern Discovery, Computational Mu-
sicology

1 Introduction

A musical motif is “the smallest structural unit possessing thematic identity” within a
piece of music [1]. The detection of frequent musical patterns is a long-standing area of
work in the field of Music Information Retrieval (MIR). The existing pattern discovery
research covers both audio and symbolic music, adopting methods generally falling
into three broad categories of 1) string or sequence-based [2, 3], 2) geometric pattern
discovery, [4], and 3) machine-learning based methods [5].

⋆ This work is part of a project that has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 101004746 (Polifonia: a
digital harmoniser for musical heritage knowledge, H2020-SC6-TRANSFORMATIONS).

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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The main goal of this work is to develop a methodology that, while informed by
musicological knowledge, is not specialized to a single genre or musical tradition. A
second aim is to produce a short and focused set of output motifs, reducing the require-
ment for time-intensive human validation of the results.

We designed a novel approach to achieve these aims, by working with interval se-
quences extracted from digital music scores, and segmenting a composition based on
pairwise local alignments [6] between all possible voice pairs.Alignment has been com-
monly applied to the task of similarity between pieces of music [7, 8], but not in works
on detection of local patterns. The outputs of the segmentation are taken as the input for
a string-based motif discovery process. The overall importance of a pattern is measured
based on its frequency of occurrence, using a graph that represents the relationship
between patterns. The top-ranked patterns are further analyzed and filtered according
to their musical (metrical) structure, generating a final set of motifs. In the context of
this paper, motifs are defined as short recurring melodic patterns within a piece of mu-
sic which contain important or characteristic thematic material; it must repeat at least
two times throughout a composition, and contain at least three intervals.The proposed
method is proven to generate satisfying results for an intra-opus pattern detection task
based on the JKUPDD dataset [9], discussed in Section 4. The results exhibit a high
degree of accuracy, broadly comparable to state-of-the-art pattern detection algorithms.

Identified motifs are of importance in use cases which range from thematic analysis
of the piece of music, or musicological study of the body of work of a composer [10],
to characterisation of a musical tradition, genre or period. Apart from being applied to
polyphonic melodies as in this paper, the introduced methodology can also be applied
to detect motifs between multiple related monophonic scores, which is potentially of
use in the study of tune families or regional styles within folk traditions [11].

2 State of the art

Musical pattern detection tasks in MIR can be either “intra-opus” (within a single piece
of music) and/or “inter-opus” (across multiple pieces of music). Input data is typically
either audio or symbolic music representation. The following discussion mainly covers
work on symbolic music inputs, with the exception of [12] and [13].

Pattern detection studies on symbolic music tend to break down into string-based,
geometric or machine learning approaches. String-based pattern detection studies are
the most common of all approaches. They range from n-grams and NLP-based work
such as [14] to tree models of pattern relationships, subsuming and compressing many
unique pattern instances to a smaller set of ’maximal’ patterns. The latter approach to
pattern detection has been influential on the work presented in this paper. It has most
commonly been used in monophonic inter-opus applications [15,16]; some polyphonic
applications exist in the literature [2] but differ to our work significantly in the specific
structural model applied.

Best-in-class geometric work includes the family of “point-set” geometric compres-
sion algorithms set out in [17, 18]. This family of algorithms have performed well on
tasks ranging from intra-opus pattern detection in the JKUPDD dataset [17], to an intra-
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opus tune family classification task in [18]. Other interesting work, which both builds
on and evaluates the “point-set” approach includes [4, 19] and [20].

Works based on machine-learning are increasingly prominent in recent years. Chai
Wei [13] uses self-similarity and Dynamic Time Warping (DTW) to detect repeating
structural sections in audio corpora. Unsupervised machine learning is adopted by Ja-
copo de Berardinis et al. [12] to build graph-based music structure hierarchies adapted
for segment audio-derived feature sequences into structural sections. Matevž Pesek et
al. [5] uses unsupervised machine learning, in order to construct a compositional hier-
archical model for analysis and discovery of pattern in symbolic music.

3 Methodology

3.1 Framework

Fig. 1. A framework of motif discovery from polyphonic symbolic music

The framework of the proposed method for discovering motifs in polyphonic sym-
bolic music is illustrated in Figure 1. Taking a symbolic music score as an input, key-
invariant diatonic interval sequences are extracted from each voice, and encoded. Music
segmentation is then applied to the encoded sequences via local alignment [6]. A set of
patterns are gathered for further discovery, to find a set of potential motifs. The motifs
are ranked and filtered based on specific rules and a customized measure of importance,
and then analyzed by their music structure information, to select a final list of results.

3.2 Pre-processing

A polyphonic music score is taken as the input for pre-processing. Using music21 [21],
we extract the melodic pitch sequence from each voice of the score, represented as
a sequence of MIDI note numbers. From these pitch sequences we calculate diatonic
intervals, then normalise them to the range of a single octave.

Definition 1 (Melody). Let the kth voice in a score be υk. Let M(υk) = [m1, ...mn]
be the melody of υk, in which mi denotes the pitch of the ith note of υk.
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Definition 2 (Diatonic Intervals). Let dia(υk) = [d1, ...dn] be a sequence of diatonic
intervals, di is the diatonic interval between two consecutive pitches, mi and mi +1 in
υk.

di = (mi+1 −mi)%7 (1)

For example, from incipit of the first voice of the Bach fugue BWV889 in Figure 2,
the key-invariant diatonic interval sequence dia(υ1) can be extracted as [−2,+3,−6,+4,−2,
+ 3,−2,−2,−2,+5,−2,−2,−2,+5].

Definition 3 (Encoding).
A function Dict(x) presents a set of rules for encoding, which maps an integer in

[-6, 6] to a distinctive character. To specify in details, Dict(−6) = A,Dict(−5) =
B,Dict(−4) = C,Dict(−3) = D,Dict(−2) = E,Dict(−1) = F,Dict(0) =
M,Dict(1) = G,Dict(2) = H,Dict(3) = I,Dict(4) = J,Dict(5) = K,Dict(6) =
L.

Let an encoding sequence of dia(υk) be enc(dia(υk)),

enc(dia(υk)) = [Dict(d) : d ∈ dia(υk)] (2)

For instance, a sequence [−1,+2,+1,−4,+2] can be encoded as ”FHGCH”. The
encoding sequences are used as input for the music segmentation process.

3.3 Music Segmentation

Fig. 2. Incipit of the first voice of Bach fugue BWV889

Using swalign [22], for each pair of voices υx, υy , a Smith-Waterman local align-
ment [6] between enc(υx) and enc(υy) is generated. This step detects locally-aligned
segments between enc(υx) and enc(υy), and outputs an alignment of the two sequences.
If the similarity score of the alignment between υx, υy is below 0.2, it should be omit-
ted from further segmentation. This step ensures that the output of alignments between
highly dissimilar voices are excluded from the motif detection process.

Figure 3 presents the alignment between the openings of voices 1 and 2 of the
Bach BWV889 fugue, with locally-aligned segments identified by the Smith-Waterman
algorithm boxed in red. In this representation, characters represent diatonic intervals,
“-” represents a gap due to a mismatch between the two sequences, and “.” represents
a permitted mismatch. From the alignment of each pair of voices υx, υy , we break the
sequences on each “-” character) to obtain a set of segments. We further investigate
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Fig. 3. Alignment between the openings of voice 1 and 2 of Bach BWV889 fugue

this set of segments to take possible patterns. Furthermore, a filter is implemented to
remove all segments of less than 3 elements in length, according to the definition of
motif mentioned in Section 1.

Definition 4 (Pattern). Let the filtered set of segments outputted by the alignment be-
tween υx, υx be A(enc(υx), enc(υy)). An element in A(enc(υx), enc(υy)) is a pattern.

Definition 5 (Pattern set). Let a score of m voices be S = [υ1, ..., υm]. From the
alignment between every possible pair of voices in S, we construct a set of all possible
patterns

P (S) =
⋃

(vx,vy)∈S×S

A(enc(υx), enc(υy)) (3)

As a valid pattern in P may appear multiple times in the course of the segmentation
process, the sum of its occurrences is defined as occ(p).

3.4 Intra-pattern discovery of motifs

Fig. 4. Intra-pattern discovery example (from Bach BWV889 fugue)

String-based approaches are used to uncover additional motifs which are not well-
captured in the segmentation process, including those which occur exclusively in one
voice. For patterns of greater than 11 intervals in length in P , we identify and extract
from them the longest frequent substring which occur two or more times. The choice
of 11 as a length threshold is informed by previous use of a maximum pattern length of
12 notes in the literature on n-gram-based Music Information Retrieval [23], which is
equivalent to 11 intervals. It also follows the definition of motif in this paper, favouring
relatively short motivic patterns over longer patterns, which potentially correspond to
musical sections or themes. The lengths of such musical structural units are not defined
in absolute terms, so the length threshold of 11 elements is proposed as a working
heuristic rather than a formal definition of maximum motif length. Figure 4 illustrates
a case where a pattern repeatedly appears in a sequence of intervals.

The longest frequent substring extracted from a long pattern may become a substi-
tution of the long pattern, according to rules defined as follows:
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Definition 6 (Pattern substitution). Let p be a pattern of length |p|, and let sub(p)
of length |sub(p)| be the longest substring that repeated at least two times in p. Let
rsub(p),p be the number of times sub(p) appears in p without overlapping. sub(p) takes
place of p in P if certain conditions are met, such as:

p =

{
sub(p), if |sub(p)| > 3 and |sub(p)| ∗ rsub(p),p >= 0.6|p|

p, otherwise (4)

In which, |sub(p)| > 3 ensures that sub(p) is a non-trivial substring, following the
logic discussed above in section 3.3, with the aim of removing frequent-but-insignificant
short patterns. |sub(p)| ∗ rsub(p),p >= 0.6|p| ensures that sub(p) meets the required
threshold to substitute for p.

Consider that sub(p) could substitute for more than one pattern in P , let pi be a
pattern in P that is substituted by sub(p), then

occ(sub(p)) =
∑
pi∈P

occ(pi)× rsub(p),pi (5)

3.5 Inter-pattern discovery of motifs

Definition 7 (All possible pairs of long patterns). Let (pi, pj) be a distinctive pair of
patterns in P , and the set of all possible pairs of patterns in P that are longer than 11
elements be longpairs(P ), then

longpairs(P ) = {(pi, pj)|pi, pj ∈ P and |pi| > 11, |pj | > 11} (6)

We take the longest common substrings (LCSS) of each pattern pair in longpairs(P ).
Unique substrings discovered in this step are added as patterns for further selection in
Section 3.6.2.

3.6 Ranking and selection of patterns

Graph-based pattern importance measure for ranking A weighted directed acyclic
graph is used to capture the relationship between patterns in P , in order to measure
the overall importance of a pattern based on its frequency of occurrence. The graph is
constructed from the set of patterns P , in which each pattern in P is a node of the graph,
and the directed edges represent substring relationships between patterns. The weights
on the edges reflect the strength of the relationship.

Let a graph be G = (P,E,w), P be a set of nodes, E be a set of directed edges,
and w be the weight function. For each pair of patterns pi and pj , if pi is a substring of
pj , we add a directed edge from pi to pj and a directed edge from pj to pi, weighted
according to the weight function.

The weight function w is defined as follows:
If pj is a substring of pi, then the weight of the edge eij from pi to pj is 1, denoted

as π(eij). The weight of the edge eji from pj to pi is the frequency of non-overlapping
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Fig. 5. A weighted directed acyclic graph of 9 patterns

occurrence of pj in pi, denoted as π(eji). Let I(pi) be the custom importance measure
of a pattern pi, and [ei1, ..., ein] be the set of directed edges from pi, then

I(pi) = occ(pi) +
n∑

k=0

π(ein) (7)

Figure 5 shows an example of a DAG constructed from a P of 9 patterns. Edges
are added when two patterns have a substring relationship. The green edges are edges
from substrings to their parent string, with a number representing their weight, while
the purple edges are from parent strings to their substring. Pattern “FGEGGG” is the
substring of “IFGEGGGFGEGGGFGGFFFF” which appeared 2 times, thus the edge
from the former to the latter is weighted as 2. Both “FGEGGG” and “FGEGG” have
the highest out-degree of 4, which indicates their importance in this set of patterns.

A set of rules for selection The patterns in P are ranked by their importance measure.
The top-20 ranked patterns are selected. The set of longest common substrings gener-
ated in inter-pattern discovery of motif process are not ranked along with patterns in P,
as they are extracted substrings of patterns in P. Instead, we consider those which are
longer than 3 elements and repeated more than twice as valid patterns. The patterns out-
putted in this selection process are retained and inputted to the music structural analysis
step.
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3.7 Music structural analysis

In addition to fundamental attributes such as duration and pitch, we use music21 to
extract a beatStrength value for every note in an input musical score. beatStrength is
an encoding of the degree of rhythmic emphasis associated with each note or item in a
score. It takes the form of a float value between 0 and 1. The first note of every bar can
be assumed to be heavily rhythmically accented, and is assigned a value of 1 by default.
beatStrength values are extracted for all first notes of each pattern occurrence.

If the first note of a pattern has a beatStrength value of 1, it indicates the pattern on-
set coincides with the beginning of a bar, i.e. the pattern aligns with the metric structure
of the piece of music. Such patterns are retained, while patterns which begin on less
rhythmically-emphasised notes are filtered out of the results.

There is one exception to this rule: As it is often the case that motifs occur at or
near the beginning of a score, the above metric filtering step is not applied to patterns
which occur in the opening 8 bars of a score. A threshold of 8 bars is chosen as this is
the most common length for the opening period (the opening two phrases) in common
western musical practice. Within this subsection of the score, patterns which begin on
a less-heavily emphasised note (i.e. which are not coincident with the metric structure)
are retained.

4 Results

4.1 Evaluation process

The algorithm is tested on the JKUPDD dataset [9], a set of 5 polyphonic classi-
cal scores with ground-truth annotation of repeating patterns drawn from academic
sources [24–26]. This database has been previously used for testing and evaluation
of other pattern detection work, notably as input data for the Music Information Re-
trieval Evaluation eXchange (MIREX) 2017 Discovery of Repeated Themes & Sections
task [19].

Diatonic interval sequences are extracted from the labelled ground truth patterns for
evaluation. The scores are manually checked to identify and annotate the exact diatonic
interval occurrences of the ground truth patterns.

The pattern annotation in the JKUPDD dataset covers a wide variety of pattern
types, including motifs, themes, phrases, and sections. They range in length from three
elements to more than 150 elements. As our method specializes towards detection
of short motif patterns, we elected to omit ground-truth annotated periods and sec-
tions from our results scoring. For the same reason, we also chose to score incomplete
matches of at least 4 pattern elements as positive results in the precision and recall
calculations.

According to documentation, patterns are labelled with alphabetic identifiers: “A”,
“B” and so on for each score, named in order of their importance. We will make refer-
ence to this hierarchical ordering in the discussion.

4.2 Results

Precision and recall scores of the testing are presented in Table 1.
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Work Precision (%) Recall (%)
Bach: BWV889 fugue 66.7 61.5

Beethoven: Op. 2, No. 1, Mvt. 3 100.0 45.0

Chopin: Op. 24, No. 4 50.0 50.0

Gibbons: The Silver Swan 87.5 84.6

Mozart: K282, Mvt. 2 60.0 100.0

Average 72.8 68.2
Table 1. Results: precision and recall for all JKUPDD scores

4.3 Discussion

Fig. 6. Exact match of ground truth pattern “A”, occurrence 4, in Bach BWV889 fugue

Fig. 7. Pattern “B” from Bach BWV889 fugue with two overlapping partial matches highlighted
and boxed in red.

Bach: BWV889 fugue Patterns A and B are the most frequent and most significant
patterns in this score. The algorithm returned A exactly. It is the opening musical motif
of the entire piece and the key musical idea behind the composition. The result is il-
lustrated in Figure 6, and detailed in the following sections. Although B matched only
partially, the matching subsequence repeats twice within B. This may suggest we are
capturing a core or fundamental motif within pattern B, per Figure 7.

Beethoven: Op. 2, No. 1, Mvt. 3 We fail to identify pattern A but match the open-
ing 11-element subsequence of pattern B, which is the second-most important musical
pattern in the piece per annotation.

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

639



Chopin: Op. 24, No. 4 We found a robust partial match to ground truth pattern A.
The found motif occurs at the start of pattern A and repeats twice within it, in a similar
manner to 7 above. Thus, the motif may be core content within pattern A, which is the
most musically important/distinctive in the piece.

Gibbons: The Silver Swan Pattern A, which occurs early and repetitiously in 4 of the
5 voices, has been detected in full. Overall, our precision and recall scores are very high
for this composition. It is possible that the shortness of the ground truth patterns for
The Silver Swan play to the strengths of our tool, as it is tailored towards shorter motif
pattern detection.

Mozart: K282, Mvt. 2 The sole ground truth pattern detected is a significant subse-
quence of pattern A. This is an incomplete but positive result, capturing the last 6 notes
of this significant 10-note pattern. The detected pattern does not appear in the ‘defini-
tive’ opening occurrence of pattern A, but occurs in 10 of the 11 other noted variant
occurrences of pattern A in the course of the score.

Study Precision (%) Recall (%)
VM1 [27] 84.0 89.0

VM2 [27] 76.0 80.0

SymCHM [5] 67.9 45.4

SymCHMMerge [5] 68.0 51.0

Chen & Su [28] 50.0 69.6

Zhu & Diamond 72.8 68.2
Table 2. Average establishment precision and recall results for a selection of work evaluated on
the JKUPDD database. Standard precision and recall results for our work included for compari-
son.

Comparison with other studies Table 2 compares our scores against establishment
precision and recall values reported in other studies tested on the JKUPDD database.
The establishment precision and recall defined in MIREX task guidelines [29] allows
for the validity of a partial match, which is similar to our use of standard precision/recall
with positive scoring of partial matches.

Although the results in Table 2 allow informal comparison of our results against
similar work, it is important to note that our use of diatonic interval sequences rather
than MIDI pitch sequences, our omission of sections from the ground truth, and our
use of standard precision/recall all differ from the approach set out in the MIREX task
documentation.

In Table 2 our approach compares favorably against all studies other than Velarde
and Meridith’s VM1 and VM2 studies [27]. Both VM1 and VM2 extract short pitch
sequence ’segments’ directly from MIDI; VM2 also filters these sequences via wavelet
transform. Contiguous segments are concatenated, clustered via city block distance and
ranked by the length of their occurrences in the ground truth. This building up from
an initial set of short patterns contrasts against our work in which long patterns are
compressed in multiple passes to produce shorter motific output patterns.
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5 Contribution and future work

This paper introduces a motif extraction approach that makes novel use of local align-
ment for string segmentation. Patterns are detected by employing string-based meth-
ods, and a custom graph model for similarity scoring has been developed, combined
with a musicologically-informed analysis and filtering step. The results presented ex-
hibit a high degree of accuracy, broadly comparable to best-in-class pattern detection
algorithms. To aid reproducibility, the source code is available on GitHub [30].

The proposed method supports related musicological tasks, such as the analysis of
characteristic motifs in composition styles, or the classification of music corpora. It also
has potential applications in various domains in MIR including music generation.

In the future, we plan to improve the algorithm via encoding more musicological
knowledge. We also intend to apply the algorithm to inter-opus pattern detection in a
corpus of monophonic Irish traditional folk tunes on The Session [31], which will help
gain greater insight into the role of motifs in defining tune families [32] within the
corpus.
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