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Abstract. The blending of two melodies into a third is a creative process useful
for exploring a search space and can be employed in compositional or improvi-
sational tasks. Two melodic blend tropes are considered: hybridization (recom-
bination of features) and morphing (generation of intermediate feature values).
After reviewing the approaches that have been used to this end, a bespoke im-
plementation of common methods for both tropes is undertaken, and excerpts
demonstrating some use case scenarios are provided. A set of evaluation met-
rics is then put forward and selected blending modes are tested accordingly in a
melodic blending task, for comparison.

1 Introduction

In this paper, the task of obtaining a melody C by blending two melodies A and B is
considered. The goal is to produce C so to retain perceptual properties of both input
melodies, to different degrees and according to different methods. This procedure re-
lates to conceptual blending [1] whereby two input spaces are integrated into a third by
cross-mapping and projection. Conceptual blending has been hailed as a useful tool for
creative exploration, and has been used in music with applications relating to harmo-
nization [2] or emotion [3], among others. While there are precedents [4] of conceptual
blending applied to melody generation, this paper narrows the scope by inheriting the
distinction between hybridization and morphing originally proposed in [5] and port-
ing it from the raw audio domain to symbolic representation. In hybridization, each
attribute of C is inherited by A or B. Thus, each constituent part of C is obtained by
recombining the respective parts of the input melodies. In morphing, instead, the result-
ing melody C is an “in between”, intermediate melody which typically maintains the
shared properties of melodies A and B (if they exist), and can be closer to A or to B,
proportionally to a morphing coefficient λ. Hereinafter, the terms source, target, and
blendoid will be used interchangeably with A, B, and C, respectively.

Different approaches (ranging from simple recombination [6], to music theory [7],
or even number theory [8]) have been used to implement melodic blending, each with
its own advantages and limitations. The most notable of these are reviewed in Section 2,

⋆ Part of the work on this paper was done while the second author was visiting RIKEN, Japan.

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

555



revealing frequent misnaming and ambiguity (according to the hybridization/morphing
dichotomy), as well as much diversity regarding evaluation procedures and metrics.
With focus on their creative potential for music generation and computer aided compo-
sition, some of the blending methods reviewed are reimplemented ad hoc in Section 3,
use case scenarios are illustrated in Section 4, and a set of metrics derived from [5] is
applied for the evaluation of blended melodies, in Section 5.

2 Related Work

Following is an overview of some key approaches developed so far in the context of
melodic blending.

2.1 Music Theory

Hamanaka et al. [9, 10] proposed melody blending methods based on the Generative
Theory of Tonal Music [11] (GTTM) whereby, after computing the intersection between
the time-span trees3 for melodies A and B, an intermediate melody is generated by
combining segments of the two melodic divisional reductions going from each melody
to the intersection. Because of the difficulty in applying the (often ambiguous) GTTM
preference rules, this method has suffered from a lack of automatization, and requires
human expertise (i.e., manual annotation of GTTM tree structures). This method also
assumes that the two reference melodies are in the same key and with an non-empty
intersection set. According to [9] the melodies generated using this method satisfy the
condition that A & C and B & C are more similar than A & B. The measure of similar-
ity is reportedly calculated as the intersections of notes A ∩ B scaled by the reciprocal
of max(lengthA, lengthB) and thus does not account for the interpolation of notes.
Furthermore, the literature on the GTTM-based blending method only provides exam-
ples where melodies A and B are related to each other. Arguably, said examples are
more akin to what in music is known as the “theme and variations” practice, rather than
blending of two independent melodies. For these reasons, it is unclear whether GTTM-
based melodic blending can be fully classed as a morphing method, falling somewhat
in between the two blending categories.

2.2 Probability

The probabilistic approach proposed by Wooller & Brown [12] is also difficult to class
(although its authors use the term morphing). According to it, the input melodies are
subdivided into segments of equal duration (in quarter note length). Starting from a
source segment and based on a probability value p (which determines whether to sam-
ple from either the source or target) and the order of the Markov process (how many
steps to look back within the pitch and duration sequences), the algorithm generates the
next segment, sampling from the chosen Markov chain. This repeats as many times as

3 one of the four hierarchical structures used in the GTTM, the other three being: grouping
structure, metrical structure and prolongational reduction.
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desired. This method dissociates “musical segments with their original temporal loca-
tion” [12] and ignores concerns about the alignment between the source and the target.
Nevertheless, it is suitable as a creative tool for generating melodic blends and trans-
formations. Wooller & Brown’s method was evaluated through the responses and com-
mentaries of eleven volunteers who compared transitions (both short and long) between
tracks performed by a DJ with those obtained by the Markov-based blending. While
the focus was on qualitative metrics and the perceived musicality of the blending tran-
sitions, the results of this evaluation are difficult to generalize, given the size of the
study.

2.3 Geometry

DMorph [13] is Oppenheim’s proprietary system which allows the blending of two
or more melodies based on Dynamic Time Warping [14] or time syncing algorithms.
DMorph affords different methods but, while Oppenheim defines morphing as “the sen-
sation of a natural transformation from one theme into another” [13, p.5], some of
these (e.g., recombination, interleaving, weighted selection) might class as hybridiza-
tion, while others (i.e., interpolation) abide by the formal definition of morphing found
in [5]. DMorph is suitable for pairing sections of the source to sections of the target
beyond arbitrary length sampling. It is a fully automatic method and does not depend
on corpora or domain expert knowledge. Unfortunately, DMorph is not open source and
a working version of the software is nowhere to be found. To the authors’ knowledge,
DMorph lacks a formal evaluation.

2.4 Neural Nets

MusicVAE [15] is a variational autoencoder model which addresses long-term structure
by using the embeddings of the input musical subsequences to generate output subse-
quences independently. To train and generate accordingly, MusicVAE requires mono-
phonic melodies or drum patterns of a specified length. The quantization is done in six-
teenth notes based on the assumption that all training points are in a 4/4 meter. For the
evaluation of MusicVAE, both quantitative and qualitative methods were used. The for-
mer included assessing the accuracy of the MusicVAE in reconstructing melodies and
comparing the interpolations of two types of MusicVAE against a baseline obtained by
weighted selection. The latter, instead, asked participants to indicate on a Likert scale
whether they deemed the model’s or real compositions more musical.

A more recent work [16] uses VAE to connect smoothly two musical sequences,
where smoothness relates to pitch and duration transition (i.e., a few consecutive notes
around the connection boundary are used to compute Markov transition matrices of
each statistics as states).

3 Melody Blending

Some of the techniques discussed so far are here reimplemented with in view to, in the
future, developing an integrated toolbox for melody blending. This section describes
the main technical details, to this end.
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3.1 Alignment

To blend two melodies, an appropriate alignment between them must be established
first. Here, priority for the alignment is given to the time dimension, and two approaches
are explored: time-sync and time-warp.

Time-sync In the authors implementation of time-sync alignment, it is assumed that
source and target are reasonably similar in quarter length duration. If needed, the
melodies are zero-padded (by lengthening the shortest melody with a rest of duration
equal to the sequence difference) so that their length match and divide by a quarter note
duration. Then, the melodies are partitioned into disjoint segments as follows. The first
segment starts at the beginning of each melody and ends once an event (note/pause) in
which the cumulative sum of the onset values of the source and target melodies equals
to t times quarter note duration is reached, where t is an integer (it is assumed that
such a t always exists after the zero-padding). The next segment starts after the end
of the previous segment, and so on, until the end of the melodies. An example of this
procedure is given in Figure 1.

Fig. 1. An example of time-sync alignment between melodic extracts from L.v. Beethoven’s 6
Variations in D major, op.76 (melody A, top) and S. Foster’s Beautiful Dreamer (melody B,
bottom), using quarter-note syncing.

Time-warp Dynamic time warping (DTW) [14], instead, is a geometrical approach
which can be used also when the source and target melodies are considerably dif-
ferent in length. Recall the definition of DTW between two point-sequences. Let
A = (p1, . . . , pn) and B = (q1, . . . , qm) be two sequences of points in some met-
ric space (X,dist). A DTW-coupling C = (c1, . . . , ck) between A and B is an ordered
sequence of distinct pairs of points from A×B, such that c1 = (p1, q1), ck = (pn, qm),
and cr = (pi, qj) ⇒ cr+1 ∈

{
(pi+1, qj), (pi, qj+1), (pi+1, qj+1)

}
, for r < k (note

that max{n,m} ≤ k ≤ n+m). The DTW-distance between A and B is

dtw(A,B) = min
C: coupling

{ ∑
(pi,qj)∈C

dist(pi, qj)
}
. (1)
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Fig. 2. Example of a time-warp alignment between the onset series of the same melodies given in
Figure 1.

A coupling C for which the above sum is minimized is called an optimal coupling4.
Here, the two point-sequences A and B represent melodies, where each point ai ∈ A
and each point bi ∈ B is a vector with entries corresponding to musical features (e.g.,
pitch, duration, velocity, etc.). The distance metric dist can be chosen among common
measures. In this case, the Euclidean distance was used.

Using different feature vectors for the calculation of an optimal coupling (in the
fashion of Conklin’s viewpoint sequences [17]) might produce different results. How-
ever, in an effort to achieve better rhythmic coupling, onset series were used as the new
point-sequences, to this end. The typical optimal coupling format is a sequence of tu-
ples of indices for matching events in A and B. For example, the optimal coupling in
Figure 2 would be:

C = (0, 0), (1, 1), (2, 2), (3, 3), (4, 3), (5, 3), (6, 4), (7, 4), (8, 5), (9, 5), . . . (2)

3.2 Blend Methods

Based on the precedents seen in Section 2, several methods for melodic transformation
were implemented or adapted.

Interleaving In this blend method, one simply alternates between source and target,
using the matched events obtained either by time-sync or time-warp alignment (as spec-
ified by the user). In the example used thus far, matched events are clearly delineated
using polygon contours (see Figures 1 and 2). Despite its simplicity, the interleaving
method can produce some interesting blends (see Section 4 for an example).

Weighted Selection This blend method operates similarly to interleaving, but considers
a blend coefficient between 0 and 1 as the probability p of selecting, for a given match,
from either the source or the target. Weighted selection affords the ability to steer the
output closer to the source or the target.

4 It is possible that there is more than one optimal coupling.
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Markov Chain Similarly to the previous method, for each match, either the source
or the target is selected stochastically using the blend coefficient. Accordingly, the
first event is used as the seed to generate a sequence of notes/rests based on the cor-
responding transition matrix (source or target), using a specified Markov order, and for
as long as the duration sum of the generated events (in quarter length) does not ex-
ceed that of the original events in the match. As an example, consider the subsequence
(3, 3), (4, 3), (5, 3) of the optimal coupling (2). Suppose that according to the blending
coefficient the source is selected: then, the event with index 3 in the source (i.e., an F#
eight note) will be the seed for generating notes/rests based on the source’s transition
matrix, for as long as their duration sum does not exceed a dotted quarter note, which
is the duration sum for events with indices (3, 4, 5) in the source. This process repeats
until the exhaustion of matched events in the alignment.

Interpolation This blend procedure uses pitch and duration value interpolation over
a time-warp optimal coupling. Let A = (a1, . . . , an) and B = (b1, . . . , bm) be two
melodies, where each point ai ∈ A and bj ∈ B is a vector with entries corresponding
to musical features (e.g., pitch, duration, velocity, etc.). Let C = (c1, . . . , ck) be an
optimal coupling obtained by the DTW algorithm. For each pair c = (ai, bj) ∈ C,
the musical features are interpolated so that, for each pair of points in the coupling, a
new point that is “in-between” them is obtained. Although there are many interpolation
techniques (piecewise constant, spline, etc.), in the authors’ system, the morphed feature
mi,j for a pair c = (ai, bj) ∈ C is generated by applying linear interpolation using a
blend coefficient to yield intermediate values closer to either the source or the target, as
desired.

4 Use Cases

Different blending methods may be more or less appropriate depending on the musical
task at hand.

4.1 Style Blend

For example, if one wanted to blend styles in a given musical genre, pure interpolation
methods could prove problematic for idiomatic dependencies that might be expected in
a scenario of this kind. Conversely, weighted selection or Markov-based methods might
be better candidates. Figure 3 shows II-V-I5 licks6 by C. Parker’s solo on Au Privave
and from M. Brecker’s solo on Take a Walk, and the blendoid obtained using weighted
selection with a 0.3 blend coefficient.

Source and target are indicative of how the jazz idiom developed over the years,
from the enclosure approach [18] common in the be bop era to the polychordal su-
perimposition employed by more recent players, and the blendoid is an example of
successful hybridization of the two.

5 A standard chord progression serving as building block for larger harmonic structures.
6 Idiomatic melodic patterns.
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Fig. 3. Blending styles over a II-V-I chord progression using weighted selection with time-sync
and a blend coefficient of 0.3.

4.2 Theme & Variations

Another task where time-sync is suitable could be the generation of variations, as com-
monly done in the classical tradition. Figure 4 shows a possible variation in the context
of W. A. Mozart’s 7 Variations on “Willem von Nassau”, K.25, obtained by blending
the original theme with the 3rd variation.

Fig. 4. A blendoid (bottom stave) generated by interleaving the theme (top stave) and the 3rd

variation (middle stave) of 7 Variations on “Willem von Nassau”, K.25 by W.A. Mozart.

4.3 Heterogeneous Blend

A case where time-warp interpolation methods would prove interesting is the blending
of melodies from heterogeneous genres, or with different metrical structures, length,
etc. As an example, Figure 5 shows an interpolation blend of Le Cygne by C. Saint-
Saëns and Salut d’amour by E. Elgar, using a 0.3 coefficient.
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Fig. 5. A blendoid (bottom block) generated by interpolating (λ = 0.3) excerpts of Le Cygne by
C. Saint-Saëns (top block) and Salut d’amour by E. Elgar (middle block).

5 Evaluation

As seen in Section 2, there is no standardized procedure for evaluating melodic blends.
Given the combination of available blending methods and time alignments, a universal
and exhaustive evaluation protocol might be beyond the scope of this paper. In fact,
important criteria in the evaluation of morphing methods might not have a clear cor-
respondence for hybridization techniques and viceversa, thus making the development
of consistent evaluation metrics difficult. Notwithstanding, and deferring a more com-
prehensive evaluation framework to include qualitative metrics to future endeavors, a
minimal set of objective metrics is tested. These include similarity and two of the three
independent criteria proposed in [5]: intermediateness and smoothness. It must be noted
that the latter were originally developed for raw audio and are here interpreted and
implemented to reflect the different representation (symbolic) of the musical surface.
Correspondence, originally also part of the set in [5], is not contemplated here, as one
assumes it is guaranteed by virtue of the feature matching in the representation of the
melodies. Only blending methods allowing a blend coefficient were considered in this
study: weighted selection, Markov chain, and interpolation. These are evaluated over
complete blends, going from 0.0 to 1.0 with 0.1 increments, as described below.

Similarity Many melodic similarity measures have been proposed and argued, the main
approaches being mathematical [19–29], cognition-based [30–32], and musicological
[33–35]. To account for true in-between pitch values, this study focuses on melodic
contours and employs two measures. One is obtained as in [35], albeit substituting the
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original n-gram similarity over the extended Implication-Realization (IR) symbols at
character level with the complement of the n-gram Jaccard similarity at token level.
The other similarity measure is obtained using the normalized Euclidean DTW dis-
tance between melodic contour (smoothed) series. For either of these similarity mea-
sures sim(·, ·), the indicator function in Equation 3 determines whether a blendoid b is
appropriately more similar to the source s or the target t with respect to the blend co-
efficient λ. The weighted sum over a complete blend is taken as the final measure and
indicated as SimIR or SimDTW, depending on which similarity metric was used for the
indicator function.

I(s, t, b) :=


1 if (1− λ) · sim(s,b) ≥ λ · sim(t,b), for λ ≤ 0.5
0 if (1− λ) · sim(s,b) < λ · sim(t,b), for λ ≤ 0.5
1 if λ · sim(t,b) ≥ (1− λ) · sim(s, b), for λ > 0.5
0 if λ · sim(t,b) < (1− λ) · sim(s, b), for λ > 0.5

(3)

Intermediateness For intermediateness, a problem posed by the symbolic music do-
main is the limited choice of discrete steps for in-between notes. Another issue to bear
in mind is that linear interpolation of the parametric space does not necessarily result
in perceptually intermediate blends. Notwithstanding, the following procedure is pro-
posed: first, the melodic piecewise contours for source s, target t, and blendoid b, are
calculated and resampled to n points proportionally to the blending coefficient. Then,
for each point i in this range, the following is checked: min(si, ti) ≤ bi ≤ max(si, ti).
The weighted sum of all the True values is taken as the intermediateness index for that
blendoid.

Smoothness In [36], a melody is defined smooth simply if the intervals between con-
secutive notes are within a fifth (i.e., seven semitones). In the context of this experiment,
however, a different definition is needed to compare melodies and to quantify whether
the blending from source to target is gradual and, thus, successful. In this paper, au-
tocorrelation (lag-one), roughness, and mean squared jerk (MSJ) are employed. Auto-
correlation with scores near 1 might imply a smoothly varying series whereas if there
isn’t an overall linear relationship between consecutive data points one might expect
values closer to 0. Roughness in this context is considered as the smoothness penalty
as defined in the cubic spline, albeit with a normalization factor that accounts for the
length of the input series. The mean squared jerk measure is defined as in [37], and
here adapted to the music domain (it is normally employed in movement analysis to
measure how much the acceleration of a movement contour changes over time). For all
three smoothness measures, the melodic contour (smoothed) series of each blendoid in
a complete blend is used as input (like in the DTW-based similarity described earlier).

Using the above metrics and the same two melodic excerpts of Section 3.1, yielded
the results shown in Table 1. Note that the values (mean and standard deviation) reported
refer to a run of 10 instances of complete blends since all methods but interpolation are
stochastic and might generate different blendoids for the same blend coefficient. For the
Markov-based method, an order of n = 3 was used.
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Table 1. Comparing different blending methods based on the proposed evaluation metrics, over
10 full blends. Abbreviations for the methods are: WS (weighted selection), MC (Markov chain),
and Lerp (linear interpolation), with ts and tw indicating time-sync and time-warp, respectively.
Abbreviations for the evaluation metrics are: Intrm (intermediateness), Acorr (autocorrelation),
Rghns (roughness), and MSJ (mean squared jerk).

SimIR SimDTW Intrm Acorr Rghns MSJ

WS (ts) 0.9 0.833 0.405 0.988 2.185 2.889
± 0.3 ± 0.373 ± 0.045 ± 0.005 ± 1.412 ± 2.045

WS (tw) 0.878 0.722 0.43 0.986 3.95 4.118
± 0.328 ± 0.448 ± 0.13 ± 0.007 ± 3.006 ± 2.912

MC (ts) 0.911 0.689 0.372 0.99 2.3 3.071
± 0.285 ± 0.463 ± 0.069 ± 0.004 ± 1.943 ± 3.054

MC (tw) 0.878 0.822 0.359 0.99 2.295 2.654
± 0.328 ± 0.382 ± 0.06 ± 0.002 ± 1.528 ± 2.189

Lerp 0.778 0.444 0.402 0.994 0.527 0.507
± 0.416 ± 0.497 ± 0.041 ± 0.001 ± 0.352 ± 0.413

6 Conclusion

This paper offered a brief review of melodic blending approaches, presented an orig-
inal appropriation for some of these, and proposed objective metrics, in an effort to
move towards a more standardized evaluation procedure. The blending operations im-
plemented by the authors are prototypical, and much remains to be improved upon. The
morphing methods, particularly, do not handle diatonic perceptual imperatives, and, in
cases with a strong “tonal” or “idiomatic” expectation, linear interpolation of features
is likely to violate it. Additional features (e.g., dynamics, articulation), could also be
included to enhance the blended melody’s musical quality. It is also important to note
that, while this experiment dealt with standard symbolic representation, there are other
approaches, such as the Tonal Interval Space [38], which merit consideration in future
implementations, as they might yield different and more nuanced intermediate values
for interpolation. Despite the system’s current limitations, this experiment’s results sug-
gest that a toolbox packaging of the blending functionality described in this paper could
be a useful addition to one’s creative workflow, either as a module in a larger generative
music system or, conditioned upon further development, as a standalone application.
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