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Abstract. Deep-learning beat-tracking algorithms have made significant advance-
ments in recent years. However, despite these advancements, challenges persist
when processing complex musical examples, which are often under-represented
in training corpora. Expanding on our prior work, this paper delves into our user-
centric beat tracking approach by subjecting it to highly challenging musical
pieces. We probe the adaptability and resilience of our methodology, illustrat-
ing its ease of integration with state-of-the-art techniques through minimal user
annotations.
The chosen samples, namely, Uruguayan Candombe, Colombian Bambuco, and
Steve Reich’s Piano Phase, not only demonstrate our method’s efficacy but also ex-
emplify challenging rhythmic dissonance effects such as polyrhythms, polymetres,
and polytempi. Thereby, we demonstrate the applicability of our human-in-the-
loop strategy in the domain of Computational Ethnomusicology, confronting the
prevalent Music Information Retrieval (MIR) constraints found in non-Western
musical scenarios. Our approach enables notable improvements in terms of the
F-measure, ranging from 2 to 5 times the current state-of-the-art performance. In
terms of the annotation workflow, these results translate into a minimum reduction
of 50% in the number of manual operations required to correct the beat-tracking
estimates.
Beyond beat tracking and computational rhythm analysis, this user-driven adapta-
tion suggests wider implications for various MIR technologies, particularly when
music signal ambiguity and human subjectivity challenge conventional algorithms.

Keywords: User-Centred, Transfer Learning, Beat Tracking, Computational Eth-
nomusicology

1 Introduction

Rhythm is a fundamental aspect of music, making computational rhythm analysis a
critical topic within Music Information Retrieval (MIR). This area involves tasks such
as tempo determination, rhythmic pattern recognition, and metre determination [9].
Algorithmic beat tracking, the automatic detection of a musical signal’s pulse, plays an
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essential role in various MIR applications that require the parsing of musical time, i.e., the
beat. In the past decade, beat tracking has seen significant progress, with the current state-
of-the-art achieving accuracy levels over 90% on benchmark datasets [5, 2]. However,
even these advanced methods can face challenges with complex rhythms, especially
if they differ from the features of their training data. These challenges are amplified
in specialised areas like Computational Ethnomusicology (CE) [20]. In this domain,
the availability of annotated datasets is limited, and the need for specalised cultural
knowledge to annotate unique rhythmic examples is crucial. Due to these limitations,
many musical traditions remain under-represented in MIR research. This gap highlights
a known issue in MIR systems: a primary focus on Western (or Eurogenetic) music at
the expense of diverse global genres and expressions [4, 8].

To overcome these obstacles, adaptive methods have been proposed for tasks like beat
tracking [7] and metre determination [19]. While genre-aware knowledge models might
provide solutions, they lack scalability. Fiocchi et al. [6] explored how beat tracking
knowledge transfers from mainstream Western to Greek music, but their approach,
besides being computationally intensive, did not perform as well as training on the same
dataset from scratch and yielded less than satisfactory results on the established SMC
dataset [10], designed with a focus on challenging musical audio examples.

In light of these shortcomings, we shifted towards a more streamlined solution.
Our approach harnesses minimal user annotations to optimise a state-of-the-art beat
tracker. In earlier works [16, 15], we introduced this user-centric method, aiming for
very high accuracy on specific music pieces. Designed for computational efficiency
and compatibility with personal computing devices, our methodology has outperformed
established methods across various datasets, most notably on the demanding SMC
dataset [14].

In this study, we expand the scope of our approach beyond Western music. We eval-
uate our beat-tracking method using challenging datasets such as the Uruguayan Can-
dombe and the Colombian Bambuco, both distinguished by their respective polyrhythm
and polymetre features. These musical traditions, with their intricate rhythmic structures,
serve as a rigorous test bed to assess the adaptability and robustness of our method. More-
over, we apply our technique to Steve Reich’s Piano Phase, a composition renowned
for its innovative use of concurrent tempi. The choice to analyse this piece subjects our
method to a formidable challenge: to our knowledge, it is the first reported attempt at
beat tracking a polytempo composition. Our findings indicate that our method effec-
tively manages diverse rhythmic intricacies, allowing for the streamlined adaptation of a
leading beat-tracker across a spectrum of musical styles and genres.

2 Rhythmic Dissonance Challenges

Rhythm serves as a foundational scaffold for many musical traditions. Particularly, within
African heritage cultures, there is a notable use of complex rhythmic techniques such
as polyrhythms, polymetres, and to a lesser extent, polytempi [1]. While these rhythmic
intricacies contribute to the distinctiveness of these traditions, they introduce unique
challenges in Music Information Retrieval (MIR). In this section, we briefly address the
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concept of rhythmic dissonance, emphasizing its manifestations in the datasets selected
for our study.

Fig. 1: Left: Interaction of the main Candombe patterns and the resulting metric structure
levels (adapted from [13]). Right: Colombian Bambuco pattern showing a) downbeat in
a rest; b) caudal syncopation; and c) guitar pattern suggesting 6/8 at the top voice and
3/4 at the bass voice (adapted from [3]).

Polyrhythm in Uruguayan Candombe: Candombe is an African-origin rhythm
prominent in Uruguay and, to a lesser extent, in other South American countries [18].
Musically, as illustrated in Fig. 1, it is characterised by the interplay of three percussion
instruments: the chico, the repique, and the piano, with an additional time-line pattern
called clave, shared by the three drums [11]. This combination produces a typical
rhythmic structure consisting of a four-beat measure evenly divided into 16 tatums,
typically played at a tempo of about 110–150 bpm. Candombe distinguishes itself from
other rhythms through two features that connect it to Afro-Atlantic music traditions [13]:
a) the pulse pattern emphasises the second tatum rather than the one on the beat, and
b) the clave divides the 16-tatum cycle irregularly (3+3+4+2+4), with only two of its
five strokes synchronised with the beat. This interplay creates an overall polyrhitmic
texture. Moreover, in actual performances, the primary pattern of repique leans towards
a triplet feeling, and although the chico drum establishes the metrical foundation, its
pattern exhibits a contraction of inter-onset intervals (IOIs). These unique characteristics
of Candombe present challenges for both untrained listeners and standard beat-tracking
algorithms, making it a challenging test case for evaluating our user-driven approach.

Polymetre in Colombian Bambuco: Bambuco is a Colombian traditional music
genre known for its rhythmic complexity, characterised by heavy syncopation, odd
accents, and a certain degree of rhythmic freedom, including tempo variations and
micro-timing [3]. Its most distinctive aspect is the polymetric nature, resulting from the
superposition or alternation of musical elements in two metres: a simple metre (3/4)
and a compound one (6/8), as illustrated on the right part of Fig. 1. This phenomenon,
commonly known as “hemiola” or the equivalent Latin term “sesquialtera”, is relatively
common in other South American musical genres [18] but poses a challenge for compu-
tational metre and beat-tracking analysis of Bambuco. As illustrated by the guitar voice,
depending on the simple or compound metre interpretation, the beats’ locations do not
align, except for the downbeat. This indicates a close relationship between the tasks of
metre analysis and beat tracking. Essentially, it implies that we can deduce the metric
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interpretation from the placement of the beats. These properties make Bambuco an ideal
test case. More specifically, while our approach primarily targets beat tracking, it also
informs metre analysis due to the interconnected nature of these rhythmical facets.

Polytempo in Steve Reich Piano Phase: Steve Reich’s Piano Phase stands out as an
interesting example of polytempo, a phenomenon mostly absent from mainstream music
genres and unrepresented in datasets used to train deep-learning beat-tracking models.
This rhythmic dissonance effect presents a significant challenge for general-purpose beat-
trackers, as it involves concurrent and isochronous pulses within the same music piece.
This compositional technique is primarily found in avant-garde Western music, with
Charles Ives’s Symphony no. 4 being considered the earliest formalised work featuring
polytempo. Later, composers such as Conlon Nancarrow or György Ligeti explored
this approach. Steve Reich’s phasing is a unique manifestation of polytempo, where
identical phrases are played simultaneously at slightly different tempi, creating a gradual
phase shift. Piano Phase brings Reich’s technique to live performance (a rendition of
the original score is shown in Fig. 2), complete with a detailed set of instructions for
performance, which we briefly summarise:

1. One performer starts, the other fades in unison (bars 1–2), and both continue play-
ing the pattern over and over again;

2. The first performer keeps a constant tempo. The other performer gradually increases
his tempo, until he is one note ahead of the first performer (bar 3);

3. After playing in synchronisation for a while, the second performer again begins
increasing his tempo, and the phase shifting process starts again (bars 3-4);

4. In the first part of the piece, this procedure is repeated twelve times.

(x 4 - 8) (x 12 - 18) (x 4 - 16) (x 4 - 16)

(x 4 - 16) (x 4 - 16) (x 4 - 16)

(x 16 - 24)

(x 16 - 24) (x 16 - 24) (x 16 - 24)

holdtempo1

accelvery slightly

(tempo1)

(tempo1)(tempo1)(tempo1)(tempo1)

a.v.s. a.v.s. a.v.s.

hold tempo1

hold tempo1 hold tempo1 hold tempo1

Fig. 2: Piano Phase: Partial Reproduction of the Original Score.
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3 Methodology

Building on our earlier contributions [14, 15], our approach integrates user knowledge
with a state-of-the-art beat tracker [2], enabling direct, content-specific adaptation.
Through minimal manual annotation, we tailor this system to the unique characteristics
of a musical piece and the user’s own subjective musical judgement.

Retraining and Inference: To ensure this paper stands as a self-contained resource,
we provide a concise overview of our fine-tuning parameterisation process. For an in-
depth understanding and further details on the fine-tuning process, readers are directed
to consult [15].

Fine-tuning is allowed for all layers of the baseline network. Given the present task
is beat-tracking, the losses for tempo and downbeat tasks on the underlying multitask
network [2] are masked. Common practice in transfer learning is followed, thus reducing
the learning rate to one fifth of the rate used in the base training. To control network
adaptation, we divide the fine-tuning segment into two adjacent, disjoint regions for
(re)training and validation, setting a maximum of 50 epochs, and employing learning rate
reduction and early stopping strategies. To account for the limited data in the fine-tuning
region, target widening and data augmentation are employed. The user-annotated region
also serves to parameterise the post-processing Dynamic Bayesian Network (DBN),
which extracts beat positions from the Temporal Convolutional Network’s likelihood
output. For DBN parameterisation, we employ two strategies: 1) adjusting the transition-
λ parameter for the adaptive processor type (pt), and 2) setting a tempo tolerance
window using user annotations as the tempo guide (tg). While fine-tuning (ft) and
data augmentation (da) are general user-driven techniques, strategies like the adaptive
processor type and tempo guide are specific to networks employing DBN.

Lastly, the length and characteristics of the annotated region, determined by end-
users in real-world situations, play a pivotal role in affecting the final performance. In
the current experiment, we opted for a relative length, specifically a quarter of the total
file length, to standardise the influence of the fine-tuning region length on the evaluation
results.

User Context

Tempo Guide?
tg

e_tempo = 60/median(diff(user_anns))
min_bpm = max(e_tempo -20, 25)
max_bpm = min(e_tempo+20, 330)

Processor Type? 
pt

min_bpm
 max_bpm
transition_

transition_  = 75
user_anns

Fig. 3: DBN parameterisation (defaults to min bpm:50, max bpm:215, transition λ:100).

Scope of Evaluation: In this study, we report results with (fullRes) and without
(testRes) the fine-tuned part of the input signal for evaluation purposes, and consider
the main combinations of user-driven techniques: fine-tuning (ft), data augmentation
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(da), and DBN customisations (tg and pt). To minimise variability, we adapt the data
augmentation procedure from [14] to a deterministic sampling approach based on a
linear distribution with a ±30% deviation from the local tempo, calculated using the
median inter-beat interval across the annotated region. Results are averaged over three
iterations, except for the Piano Phase analysis, which results include a single run.
While there are 11 combinations of user-driven beat-tracking configurations, this report
centres on the primary configurations: ft+da, ft+da+pt, ft+da+tg, and ft+da+tg+pt.
These are compared with the state-of-the-art, denoted as baseline (bsl). Occasionally, we
reference results from configurations that highlight the standalone application of specific
techniques, namely ft, pt, and tg.

Evaluation Metrics: In the present study, we employ both the standard F-measure
and a previously proposed annotation efficiency (Ae) metric [17] for beat tracking evalu-
ation. The Ae conceptualises beat tracking evaluation from a user workflow perspective,
framing it in terms of the effort necessary to modify a series of detected beats to align
with the ground-truth annotations. It provides a more intuitive understanding of the eval-
uation process and aligns better with practical annotation workflows. This is quantified
by counting the number of edit operations, specifically insertions and deletions, but also
- contrarily to the F-measure -, including the shifting of poorly localised individual beats,
a very common operation in annotation workflows. This dual evaluation framework,
combining both traditional and user-centric metrics, offers a more comprehensive insight
into beat tracking performance.

Datasets: We utilise two external datasets and a custom-developed dataset with a
simplified version of Piano Phase. The Candombe dataset has 35 full-length songs with
variable durations that accumulate to almost 2.5 hours [11]. The Bambuco dataset features
two sets of ground-truth annotations corresponding to the predominant meters [12]: 3/4
and 6/8, referred to as Bambuco (simple) and Bambuco (compound) respectively.

Piano A

Piano B

Fig. 4: Musical score of the simplified version of Piano Phase.

To address the significant challenges Piano Phase presents for human annotators
attempting to accurately annotate the beat “by ear”, we created a simplified version (as
depicted in Fig. 4) of the composition using a PureData patch. This patch produced two
streams of 12 MIDI notes played at slightly different tempi, and the audio was obtained
using a piano synthesizer. Ground-truth beat annotations were generated for each stream,
assuming a 6/8 time signature (thus adopting the dotted quarter note ( ˇ “‰ ) as the beat,
as inferred from the original score). The score of this simplified rendition is shown in
Fig. 2. Our primary experimental objective is to assess the ability of our beat-tracker to
synchronise with each of the tempi present in the music. To achieve this, the custom
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dataset is composed of two files, pianophaseM A and pianophaseM B, representing the
mixed audio (M:A+B) and ground-truth annotations for streams A and B.

4 Results

Beat Tracking in Uruguayan Candombe: Fig. 5 provides a summary of the overall
results. A clear improvement in accuracy scores is observed across all fine-tuning
configurations when compared to the baseline (bsl). Exceptions arise with configurations
exclusively utilising DBN-parameterisation techniques (pt and tg), which yield scores
similar to the baseline. Quantitatively, the best-performing configuration (ft) elevates
the mean F-measure score from 0.280 to 0.952 when excluding the fine-tuned region
(testRes), and from 0.334 to 0.956 when considering the entire file extent (fullRes).

testRes fullRes

Fig. 5: Distribution of F-measure scores by configuration for the Candombe dataset.

When examining the annotation-correction workflow detailed in Table 1, it is ob-
served that the Annotation Gain (Ag) improvements are marginally less than those of
the F-measure. This indicates that the shift operation plays a minor role in this dataset’s
annotation workflow. However, the results demonstrate that our method significantly
enhances efficiency. The number of operations (#ops) required to correct beat detections
drops from 12,912 in the baseline to just 1,904 with the ft configuration. Given that
there are 19,136 total beat annotations in the Candombe dataset, this means that the ft

configuration requires only about 10% of the total beats to be corrected, achieving a
reduction of approximately 85% from the baseline. Even accounting for the required
user annotations for fine-tuning (which amount to 4,757 in the current experimental
scenario), the results demonstrate a compelling decrease in manual annotation effort.

Table 1: Mean of the Ae score and sum of the #det, #ins, #del, #shf, and #ops scores
across the Candombe dataset for the main configurations. (fullRes)

Dataset Model Ae #det #ins #del #shf #ops

Candombe

bsl 0.319 6,316 2,901 92 9,919 12,912
ft+da 0.919 16,688 1,885 181 561 2,632
ft+da+pt 0.915 16,575 1,997 178 563 2,739
ft+da+tg 0.922 16,892 1,504 190 739 2,437
ft+da+tg+pt 0.923 16,903 1,504 188 726 2,421
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Beat Tracking in Colombian Bambuco: As summarised in Fig. 6, all primary fine-
tuning configurations outperform the baseline (bsl). Results are consistent across both
settings (testRes and fullRes), revealing notable F-measure improvements: around 25
percentage points ( p.p.) for the simple metre and close to 30 p.p. for the compound
metre datasets. The ft+da+tg configuration emerges as the standout performer in both
scenarios. Although each of the techniques (ft, pt, and tg) yields different contributions
individually, their combined implementation is what truly augments performance.

testRes testRes

fullRes fullRes

Fig. 6: Distribution of F-measure scores by configuration for the Bambuco datasets.

Table 2 shows Ae gains slightly outpacing F-measure, illustrating a greater relevance
of the shift operation in this setting. Compared to the baseline, the ft+da+tg setup in
simple metre trims beat estimate correction operations (#ops) by two-thirds (455 vs
1,610). For the compound subset, correct detections (#det) almost double in the optimal
setting (from 899 to 1,665), underscoring our method’s enhancement over the state of
the art.

Table 2: Mean of the Ae score and sum of the #det, #ins, #del, #shf, and #ops scores
across the Bambuco datasets for the main configurations. (fullRes)

Dataset Model Ae #det #ins #del #shf #ops

Bambuco (simple)

bsl 0.556 1,756 1,110 60 440 1,610
ft+da 0.726 2,439 602 91 265 957
ft+da+pt 0.718 2,428 588 94 291 972
ft+da+tg 0.869 2,990 12 138 306 455
ft+da+tg+pt 0.866 2,978 12 137 316 465

Bambuco (compound)

bsl 0.338 899 424 410 947 1,781
ft+da 0.509 1,319 285 340 665 1,292
ft+da+pt 0.513 1,322 285 332 663 1,282
ft+da+tg 0.685 1,665 63 62 541 667
ft+da+tg+pt 0.671 1,640 73 61 557 691
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Beat Tracking in Steve Reich Piano Phase: The primary experimental objective
is to evaluate the capability of our beat-tracking method in synchronising with distinct
tempi present in this musical piece. When referencing stream A or B, we are essentially
assessing the beat tracker’s ability to tune into each stream’s tempo. This task, which is
already immensely challenging for most humans, i.e., allowing themselves to align with
one tempo while ignoring conflicting ones, presents an even more formidable test for an
automatic beat tracker. Given this complexity, any advancement in performance, even if
slight, can be considered significant. With this perspective, we now delve into the results
obtained from our experiments.

From Fig. 7, results indicate improvements across all fine-tuning configurations
when compared to the baseline for both streams (A and B). The F-measure score rises
from approximately 0.2 to 0.7 across the main configurations. The role of fine-tuning
(ft) is prominent, emerging as a key factor in performance enhancement. However, a
more constrained adaptation to stream B is also apparent, an aspect we currently lack
comprehensive data to fully elucidate. Another aspect worth further investigation is
the observed efficiency of the adaptive processor type (pt) over the tempo guide (tg).
This observation is somewhat counterintuitive, given that the primary goal of this beat
tracking method aims to synchronise with conflicting, yet stable, tempi.

bsl ft+da ft+da+pt ft+da+tg ft+da+tg+pt
0.0

0.2

0.4

0.6

0.8

1.0

F-
m

ea
su

re

ft pt tg

Model

Fig. 7: F-measure vs model for Piano Phase (left:pianophaseM A; right:pianophaseM B).

As represented in Fig. 8, a closer examination of specific musical segments for
stream A is provided. This figure offers a comparative perspective between the baseline
approach and our best-performing configuration (ft+da). The superiority of the fine-
tuned configuration over the baseline is evident across most parts of the musical segment.
Notably, the beat estimates are accurate up to nearly bar 6 (or up to 68 seconds to be
precise). However, around bar 6, signs of desynchronisation emerge, with the imprecise
predictions persisting until bar 8. In this specific range, the baseline method manages to
hold a slight edge over our approach by correctly identifying certain beats. In terms of
the annotation-correction workflow, we see that the state-of-the-art correctly estimates
40 beats, while our fine-tuned configuration improves this count significantly, estimating
105 correctly. Even considering the required 19 user annotations for the fine-tuning
segment, this is a notable improvement with such challenging material.

However, it is important to place the results obtained in the appropriate context.
When comparing our method with non-adaptive beat trackers, including the current
state-of-the-art, we recognize that this is not an even comparison. Most traditional beat
trackers are designed for music that adheres to a single tempo, and data-driven methods
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have not been exposed to similar training examples, as polytempo is absent from standard
datasets. Despite these differences, it remains logical to use a baseline for performance
assessment. Our focus is in demonstrating that with minimal user input, our approach can
leverage the model’s general knowledge and adapt to music with rhythmic dissonance.
This showcases the versatility of our approach and its applicability in diverse musical
scenarios.

0.0

0.5

1.0 Fm: 0.219 Em: 0.190  #det: 40  #ins:  0  #del: 66  #shf:105  #ops:171
Output (bsl)

2 3 4 5 6 7 8Bar 

0 20 40 60 80 100 120
time (seconds)

0.0

0.5

1.0 Fm: 0.707 Em: 0.691  #det:105  #ins:  0  #del:  7  #shf: 40  #ops: 47
Output (ft+da)

2 3 4 5 6 7 8Bar 

−0.5

0.0

0.5 Ag: 0.298 #det: 28 #ins: 0 #del: 50 #shf: 16 #ops: 66 (fullRes)
Output (bsl)

0 500 1000 1500 2000 2500 3000 3500 4000

−0.5

0.0

0.5 Ag: 0.818 #det: 36 #ins: 1 #del: 0 #shf: 7 #ops: 8 (fullRes)
Output (ft+da+tg+pt)

prediction annotations validation fine− tune test

Shifts Deletions Detections InsertionsShifts Deletions Detections Insertions

Fig. 8: Detailed analysis for pianophaseM A (Mixed audio and annotations for stream A
tempo).

5 Conclusions

In this study, we presented a user-centric approach to beat tracking designed specifi-
cally for challenging music signals. By leveraging concise user-annotated regions, our
method significantly enhanced the performance of current state-of-the-art beat tracking,
especially in environments dominated by complex rhythms. The rhythmic intricacies of
Colombian Bambuco, Uruguayan Candombe, and Steve Reich’s Piano Phase were put
under scrutiny. These music forms represent, in order, the phenomena of polyrhythm,
polymetre, and polytempo.

Among the notable results, for Candombe, our approach achieved an excess of 3-
fold improvement over existing techniques. In the case of Bambuco, the performance
was enhanced by approximately 25 p.p. for the simple metre and neared 30 p.p. for the
compound metre datasets. With Reich’s Piano Phase, even though the F-measure score
escalated 50 p.p., our primary objective was to underscore our method’s capability in
handling the extreme challenges posed by polytempo. To the best of our knowledge,
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this study is the first to attempt beat tracking of a musical composition with such
compositional technique.

While these results are promising, it is essential to interpret accuracy variations
carefully and circumscribe them to the scope of our investigation. Looking forward
to future research directions, the exploration of extended musical segments, enriched
with a diverse set of fine-tuning parameters, could provide more profound insights into
polytempo adaptability. Though this study’s scope was restricted, it introduces promising
methodologies for situations where traditional techniques might not be as effective.

In summary, our research demonstrated the potential of transfer learning and user-
driven adaptation for beat tracking in rhythmically complex musical contexts. Using
minimal user feedback, we enhanced the state-of-the-art model, enabling its adaptability
to challenging musical scenarios and underscoring its utility for specific applications,
notably musicological analysis. Our research reach extends past beat tracking, touching
upon rhythm-focused tasks such as metre determination and downbeat tracking. Yet,
our user-centred approach suggests even wider application across various MIR tasks,
beyond computational rhythm analysis. Given the inherent ambiguity in music signals,
integrating a user-centric viewpoint is pivotal in integrating subjectivity and accurate
analysis.

While our findings represent an encouraging step forward, there remains much to
explore in this domain. We hope this study serves as a starting point for future endeavours,
aiming to refine adaptive strategies and the human-in-the-loop paradigm. Ultimately, our
goal is to promote the development of MIR tools capable of effectively handling a wider
range of musical traditions, fostering inclusivity and a deeper appreciation of the world’s
rich musical heritage.

References

1. K. Agawu and V. K. Agawu. African Rhythm: A Northern Ewe Perspective. Cambridge
University Press, 1995.

2. S. Böck and M. E. P. Davies. Deconstruct, Analyse, Reconstruct: How To Improve Tempo,
Beat, and Downbeat Estimation. In Proc. of the ISMIR, pages 574–582, 2020.
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