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Abstract. I recently introduced the concept of dynamical score network to rep-
resent the harmonic progressions in any composition. Through a process of chord 
slicing, I obtain a representation of the score as a complex network, where every 
chord is a node and each progression (voice leading) links successive chords. In 
this paper, I use this representation to extract quantitative information about har-
monic complexity from the analysis of the topology of these networks using state 
of the art statistical mechanics techniques. Since complex networks support the 
communication of information by encoding the structure of allowed messages, 
we can quantify the information associated with locating specific addresses 
through the measure of the entropy of such network. In doing so I can then intro-
duce a measure of complexity that can be used to quantify harmonic evolution 
when applied to an extensive corpus of scores spanning 500 years of western 
classical music.  
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1 Introduction 

In the article Topology of Networks in Generalized Musical Spaces, published on the 
Leonardo Music Journal, [1] I have introduced the concept of harmony as a network 
representation of the musical structures built out of all possible combinatorial pitch 
class sets in any arbitrary temperament. Inspired by a long tradition of network repre-
sentations of musical structures such as the circle of fifths [2], the Tonnentz [3], and 
recent works on the spiral array model of pitch space, [4] the geometry of musical 
chords [5] and generalized voice-leading spaces [6] [7], I interpret the harmonic struc-
ture of a composition as a large-scale complex network whose topological properties 
uncover its underlying organizational principles and demonstrates how classifications 
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or rule-based frameworks (such as common-practice harmony, for instance) can be in-
terpreted as emerging phenomena in a complex network system. Since the conclusions 
of that study serves as foundations for the present paper, let me review some of its 
principal results. 

Network analysis methods exploit the use of graphs or networks as convenient tools 
for modelling relations in large data sets. If the elements of a data set are thought of as 
“nodes”, then the emergence of pairwise relations between them, “edges”, yields a net-
work representation of the underlying set. Similarly to social networks, biological net-
works and other well-known real-world complex networks, entire dataset of musical 
structures can be treated as networks, where each individual musical entity (pitch class 
set (pcs), chord, rhythmic progression, etc.) is represented by a node, and a pair of nodes 
is connected by a link if the respective two objects exhibit a certain level of similarity 
according to a specified quantitative metric. Pairwise similarity relations between nodes 
are thus defined through the introduction of a measure of “distance” in the network: a 
“metric” [8]. As in more well-known social or biological networks, individual nodes 
are connected if they share a certain property or characteristic (i.e., in a social network 
people are connected according to their acquaintances, collaborations, common inter-
ests, etc.) Clearly, different properties of interest can determine whether a pair of nodes 
is connected; therefore, different networks connecting the same set of nodes can be 
generated. 

In this paper I construct networks where nodes are the individual chords that can be 
extracted from a score, and edges are built between successive chords in the progres-
sion: nodes are connected if they appear as neighbours in the sequence. Naturally, nodes 
are visited numerous times, and the score evolution implies a directionality of the links. 
The networks are thus “directed”, and each edge will have a weight (strength) propor-
tional to the times the link is visited.  

Given a network, we can perform many statistical operations that shed light on the 
internal structure of the data. In this work I will consider only two of such measures, 
degree centrality and modularity class. [9] The degree of a node is measured by the 
number of edges that depart from it. It is a local measure of the relative “importance” 
of a node in the network. Modularity is a measure of the strength of division of a net-
work into communities: high modularity (above 0.6 in a scale from 0 to 1) corresponds 
to networks that have a clearly visible community structure. [10]. Isolating communi-
ties through modularity measures provides a way to operate within regions of higher 
similarity.   

In a more recent work [11] I have proposed that this score network can be viewed 
both as a as a static graph that represents all the existing chord changes in a composi-
tion, or as a dynamical system, a time series of a non-stationary signal, and as such, it 
can be partitioned, as for community structures, using time series analysis and change 
point detection. This dual representation (static and dynamical) offers novel ways to 
quantify the harmonic complexity of a single score or a full corpus without relying on 
comparisons with pre-determined reference sets.  
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2 Methods 

2.1 Network models 

I will make use of two principal software libraries for computational music analysis, 
both written in the Python language: MUSICNTWRK (at www.musicntwrk.com) and 
music21 (at https://web.mit.edu/music21). MUSICNTWRK is an open source python 
library for pitch class set and rhythmic sequences classification and manipulation, the 
generation of networks in generalized music and sound spaces, deep learning algo-
rithms for timbre recognition, and the sonification of arbitrary data [11]. music21, de-
veloped at MIT [12], is an object-oriented toolkit  for  analysing,  searching,  and  trans-
forming  music  in  symbolic  (score-based) forms of great versatility, whose modularity 
allows a seamless integration with MUSICNTWRK and other applications.  

Scores are read in musicxml format by the readSCORE function of MUSCNTWRK, 
where their harmonic content (and other relevant information, like in which bar the 
chord is found) is extracted using the music21 parser and converter (using the “chor-
dify” method). With this we obtain easily the full sequence of pcs, chord by chord, 
where each change to a new pitch results in a new chord. Upon “chordification”, each 
pcs is reduced to its normal form. While such “quantization” of pcs is quite adequate 
for the analysis of pieces with a harmonic movement where each vertical pcs plays 
some functional values (for instance in the corpus of J.S. Bach’s chorales), for compo-
sitions where there is more contrapuntal development, the number of individual pcs in 
the sequence can become very large, without providing necessarily more detailed in-
formation, since many such chords are only modifications via passing notes or vagrant 
harmonies. To circumvent this problem and make the analysis more manageable with-
out losing any functional value, we have devised a “filtering” algorithm based on the 
cumulative measure of how many times an individual pcs appears in the sequence. All 
pcs with a frequency lower than a threshold are eliminated.  

Starting from digitalized scores (in musicxml or MIDI format) I then construct net-
works where nodes are the individual chords, and edges are built between successive 
chords in the progression: nodes are connected if they appear as neighbors in the se-
quence. Naturally, nodes are visited numerous times, and the score evolution implies a 
directionality of the links. The networks are thus directed, and each edge will have a 
weight (strength) proportional to the times the link is visited. In Figure 1 I show the 
network of one score from the L. van Beethoven’s corpus.  

I have analyzed an extensive corpus of scores by composers spanning five centuries 
of western classical music: Josquin des Prez (1450-1521), G.P. da Palestrina (1525-
1594), Claudio Monteverdi (1567-1643), J.S. Bach (1685-1750), J. Haydn (1732-
1809), W.A. Mozart (1756-1791), L. van Beethoven (1770-1827), J. Brahms (1833-
1897) and G. Mahler (1860-1911).  

2.2 Conditional Degree Matrix 

The local metrics usually used in networks theory fall short of capturing the richness of 
the vast majority of natural network topologies. At the same time, one of the most com-
monly used (local) characteristics is a node's degree. Based on this attribute, I propose 
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to use what has been named ``conditional degree matrix" 𝐷 [13] to characterize the 
topology of the harmonic networks. 

This matrix captures the classical node distribution and shows the existing architec-
ture between the network nodes taking into account their different degrees. Each ele-
ment of the matrix, D!,# is defined as the number of nodes of degree 𝑖 connected to 
nodes of degree 𝑗, 𝑁$,%, divided (normalized) by the number of total nodes, 𝑁& , that is: 

𝐷$,% =
𝑁$,%
𝑁&
. 

This definition produces a symmetric matrix and ensures that 𝐷 is properly normal-
ized. More generally, directed and weighted networks would result in non-symmetric 
matrices. 

The structure of the 𝐷 matrix allows to estimate the complexity of a given network 
and provides more information than the classical degree distribution:  
𝐷 effectively acts as a probability matrix and can be the input for the evaluation of other 
metrics such as entropy, divergence, and complexity among others.  

One of the essential properties of this matrix is that it allows to explore the charac-
teristics of the degree of connections of each node with its environment (its close neigh-
borhood) in a direct way. Its importance can be understood in terms of information 
diffusion: the rows 𝑖 of this matrix show the probability that nodes of degree 𝑖 are con-
nected with nodes of another degree 𝑗. Their frequency will finally be reflected in each 
of its elements 𝐷$,%. 

2.3 Kullback-Leibler divergence 

To extract quantitative information from the network topology I use the the Kullback-
Leibler (KL) divergence as metric. In both information theory and probability theory, 
the Kullback-Leibler divergence is used as a measure indicating the difference between 
two probability functions. In general terms, KL measures the expected number of extra 
bits or excess surprise from using 𝑄 as a model when the data distribution is 𝑃. 

The Kullback-Leibler divergence for the conditional degree matrix is defined as: 

𝐾𝐿 =-𝐷$,%𝑙𝑜𝑔1𝐷$,%/𝑄$,%3
$,%

 

where 𝐷 is our CDM, and the reference matrix 𝑄 is defined as the mean of all the 𝐷 for 
the whole corpus:  

𝑄𝑖, 𝑗 =
1
𝑁-𝐷$,%'

'

, 

and 𝑁 is the total number of score networks. 
Since the KL divergence quantifies how much the topology of any individual net-

work "diverges" from the average of the reference corpus, it provides a way to quantify 
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the difference in the distribution of observed degrees and in particular, the way in which 
the occurrence and distribution of hubs (as chords that are more important in the har-
monic progression of a piece) characterizes the harmonic structure of the composition. 

2.4 Diffusion Entropy Analysis 

Diffusion Entropy Analysis (DEA) is a time-series analysis method for detecting 
temporal complexity in a dataset; such as heartbeat rhythm [14] [15] [16] a seismograph 
[17], or financial markets [18]. DEA uses a moving window method to convert the 
time-series into a diffusion trajectory, then uses the deviation of this diffusion from that 
of ordinary brownian motion as a measure of the temporal complexity in the data. It is 
thus appropriate to analyze the score time series and derive quantitative estimates of 
complexity. 

Diffusion Entropy Analysis was first introduced by Scafetta and Grigolini [19] as a 
method of statistical analysis of time-series based on the Shannon entropy of the diffu-
sion process to determine the scaling exponent of a complex dynamic system. It was 
later refined with the introduction of ``stripes'' (MDEA) by Culbreth 𝑒𝑡	𝑎𝑙. [20] in the 
context of detecting crucial events. While the reader should refer to the publications 
above for a full treatment of DEA, here I use the realization that the scaling of the 
diffusion coefficient δ obtained in DEA provides a measure of complexity of the time-
series, measured through the statistics of occurrences of crucial events. Here, δ ranges 
between 0.5 and 1.0: for a completely non-complex process, such as a random walk, 
MDEA yields δ = 0.5. For a process at criticality, MDEA yields δ = 1. Therefore, δ 
represents a measure of the ``strength'' of the complexity present in the process: the 
closer δ is to 1 the closer the process is to criticality. 

In Fig. 2, we show a MDEA analysis of the first movement of Beethoven's string 
quartet Op. 127 n. 12, that was extensively discussed in [21]: δ ≈ 0.7 indicates a "me-
dium" level of complexity as observed in other composition of the same period as it 
will be discussed extensively below. 

MDEA analysis has been carried out using the module DEA implemented in the 
MUSICNTWRK library [11]. 

3 Results and discussion 

I have applied the above metrics to our selected corpus of composition and the results 
are summarized in Fig. 3 and 4.  
 In Fig. 3 I show the KL divergence calculated for the full corpus of compositions. 
Here the values are referenced to the average of the corpus, that is, I am capturing how 
much the topology of a given piece deviates from the cumulative average. The results 
point to a clear distinction between earlier polyphony (des Prez, Bach) and later chro-
maticism (Mahler). There is a marked transition starting in the XIX century and culmi-
nating with the works of Brahms and Mahler. It is important to note that this metric 
provides a somewhat indirect measure of complexity as a relative difference between 
compositions. Of course, more work is needed to understand this metric further: alt-
hough large, the corpora I have analyzed are still small in statistical terms, and more 
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analysis should be done by extending the corpora to a larger repertoire and/or using 
simulated data as toy models of the musical practice of selected composers. 

For a more direct evaluation of complexity, we turn now to the MDEA results. By 
applying the procedure outlined in Fig. 2 to the full corpus, I have extracted the values 
of δ for each piece and collected the results in Fig. 4. 

Although the data points show a wide distribution around the averages for each com-
poser, the results point to an increase of harmonic complexity over time, a result that 
agrees broadly with other analysis based on different metrics. These results allow us to 
discriminate further among composers and different time periods. We can, in principle 
divide this graph in three regions. The first region corresponds to the Renaissance and 
Early Baroque composers, where δ is consistently lower. Since this musical period is 
characterized by a modal approach to harmony, we can easily infer that modal harmony 
is characterized by a lower complexity, as observed in the scarcity of functional chords 
(functional chords are hubs in tonal harmony networks [21], a more homogeneous dis-
tribution of node degrees, and a lack of multiple tonal centers.1 

The second section corresponds to the Common Practice period, that shows an av-
erage complexity measure of ≈ 0.7. This is when tonal harmony has matured into an 
established musical language. Once again in the third section, corresponding to XIX 
and early XX century, harmonic complexity increases to an average of 0.8. Once more, 
enhanced criticality and complexity correspond to a fragmentation of the tonal harmony 
language towards increase chromaticism, as it was observed in the CDM data above. 

Finally, I have superimposed measures of complexity for pieces of the pop/rock rep-
ertoire as a suggestion for further analysis and discussion beyond the realm of classical 
music genres.  

4 Conclusions 

In conclusion, with this study I have built on the concept of network representation of 
musical spaces, introduced the idea of a composition as a dynamical score network, and 
discussed two complementary measures of music complexity. Although the results 
point unequivocally to an increase of harmonic complexity in western classical music, 
the present study is just an initial exploration of this fascinating topic. One of the chal-
lenges is the availability of large score corpora that would make the analysis of a single 
composer's production more coherent. I am currently working to expand the availability 
of corpora and I hope to extend this work in the future. Notwithstanding its limitations, 
this study demonstrates that combining the abstraction of a score as network with es-
tablished mathematical and statistical techniques is a powerful tool for a quantitative 
analysis of music production that is independent of prior musicological or music 

1 It is important to note that here complexity must be interpreted as a statistical measure on the 
network topology associated to a dynamical system behavior, and not as a measure of how 
sophisticated a piece is or is perceived by a listener: a Palestina's Mass can be more challeng-
ing and sophisticated than a Bach's chorale, although their measured complexities might sug-
gest otherwise. 
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theoretic information and opens the way to a novel interpretation of music as a dynam-
ical process. 

5 Acknowledgements 

This paper is based on an earlier study published as: M. Buongiorno Nardelli, G. 
Culbreth and M. Fuentes, “Evolution of harmonic complexity in western classical 
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Fig. 1. Network structure of the third movement of Ludwig van Beethoven’s string quartet Op. 
127 n. 12. Node size is proportional to degree, colors indicate the network community structure 
(the tonal region central to that particular section) and links correspond to voice leading (the 
transition from one chord to the next). 
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Fig. 2. Diffusion Entropy Analysis applied to the third movement of Beethoven's string quartet 
Op. 127 n. 12, whose network is shown in Fig. 1. 

Fig. 3. Kullback-Leibler divergence. Horizontal lines are the average values of KL across the 
corpus of each composer; shaded areas indicate standard deviations. 
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Fig. 4. Complexity for different composers as measured from the diffusion entropy analysis. 
Horizontal lines are the average values of δ across the corpus of each composer; shaded areas 
indicate standard deviations. 
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