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Abstract. Composition and performance in the Western classical tradition repre-
sent fields of highly sophisticated artistic endeavor which have not been mastered
by AI. Machine performance, though it has become an indispensable tool to com-
posers for creating audio mock-ups, does not appear on the concert stage, where
human musicians perform. An eventual goal is a machine that plays a part of a
score in real time together with live musicians playing other parts, with results in-
distinguishable from human efforts. This work focuses on the collaborative aspect
of music-making, starting with a behavior-capturing experiment that investigates
how musicians adapt their playing to that of others in an ensemble. Using the em-
pirical data thus obtained, we train a Kuramoto model for synchronization which
we adapted to the context of score-based collaborative musical performance.
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1 Introduction

Within the Western classical paradigm of Composer-Performer-Listener, the composer
creates a score, and the performers convert it into a performance that the listeners can
experience. Both composition and performance have not been fully mastered by AI.
For machine composing in general, years of research have developed well-publicized
results (e.g. [1–3]), leading to commercial applications. Machine performance is simul-
taneously more commonplace and yet more distant: it has become an indispensable
tool to composers for creating audio mock-ups via sound synthesis tools; however, ma-
chines or virtual musicians [4] do not commonly appear on the concert stage to perform
alongside with human musicians.

The richness of classical music has much to do with the ways in which performers
can create different experiences for the listener out of the same compositions. To do
so, an ensemble of performers, individually and simultaneously interpreting their parts
of the score, must synchronize with each other in real time. An AI can approach this
by starting with audio transcription, whose purpose is to provide a machine-friendly
representation of musical acoustic information [5, 6], and score following, the process
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by which the machine takes a performance and determines the point in the score to
which it is most likely to correspond [7, 8]. Our motivation is to allow a machine, once
in possession of these elements, to exhibit human-like behavior acting in real-time as a
fellow musician of an ensemble.

In this research, we consider an environment with a single instrument, the piano,
to be played jointly by one person and our model. We focused particularly on synchro-
nization in the time-domain, with the goal being to simulate human-like behavior, not
to generate a perfectly aligned accompaniment.1

2 Model Design

In our approach, we assume that both musicians play exactly according to a known
score, and treat each musician’s output as a sequence of discrete “note-on” and “note-
off” events2, which are relayed perfectly to the other musician as soon as they occur.
By relating the received events to the score, our model ascertains the timing of the other
musician and adjusts in real-time the timing of its own future output.

2.1 Kuramoto Model

Previous work on other instances of synchronization have provided us with inspira-
tion regarding the specific mechanism of the adjustment. We have taken the Kuramoto
model [9, 10] as a basis. Our implementation follows Heggli et al. [11], who adapted
Kuramoto’s approach to model human synchronization behavior in a situation where
two people were faced with the task of tapping in unison.

Fig. 1. Adapted Kuramoto model, playing an m-note “output” part together with a n-note “input”.

The model consists of 3 oscillators ω1, ω2, ω3 that are coupled as in Fig. 1. Their
positions are determined by the coupling equations:

dθi(t)

dt
=

∑
j ̸=i

kijsin (θj(t)− θi(t)) +Ωi(t), (1)

for i, j ∈ {1, 2, 3}, where θi represent the positions of the respective oscillators, Ωi(t)
their intrinsic speed, and kij the coupling coefficients (with only k21, k23, k32 being
non-zero, as per Fig. 1).

1 It is in this regard that our approach distinguishes itself from applications using score-
following to automatically accompany a human player.

2 Our focus is on the piano; for other instruments, this assumption would be less workable.
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2.2 Adapting the Kuramoto Model to Musical Scores

Our oscillator model naturally deals with continuous movement, but a musical score, ac-
cording to our assumptions, consists of discrete events. We reconcile the two paradigms
as follows: we define each beat, in the traditional musical sense, as corresponding to a
rotation of the oscillator through 2π. The score gives us a sequence {pn} of positions
(in beats) at which note onsets in the input part are designated. Denoting tn the time at
which the nth note is actually received, we set θ1(tn) = 2πpn. By linear interpolation,
we construct a continuous function θ1(t) which encapsulates the timing information of
the other player.

Analogously, we obtain the output timings {Tm} by solving θ3(Tm) = 2πPm, with
{Pm} being the beat positions of the output part’s notes as given by the score.

In a real-time context, the values of θi(t) for all t are not known beforehand. Thus it
is necessary to perform the above calculations for each interval of t at the moment when
the information for that interval becomes available. It seemed reasonable to introduce
a parameter tr reflecting reaction time, that is, a delay between receiving information
from the input and performing the calculations based on it for adjusting the output.

We denote by {T ∗
m} the timings of the output events resulting from this process.

3 Implementation

Having set our objective as human-like musical collaboration, the first step was to in-
vestigate human behavior in a similar controlled environment. We prepared a series of
MIDI recordings containing the melody of well-known music pieces, and invite subjects
to accompany these recordings.3 To train our model to simulate a subject’s behavior, we
input the same MIDI recording and search for the parameters kij , tr that produce the
output {T ∗

m} most similar to the performance of the subject, which we denote {Sm}:

argmin
kij ,tr

∑
m

(T ∗
m − Sm)2 (2)

We proceed to set up the model for accompanying a human subject in real time. First
we enter the score of the chosen music piece (i.e. {pn} and {Pm} as per Fig. 1). With
this information and the MIDI input of the subject, which provides {tn}, the model
determines θ1(t), from which it calculates θ2(t), θ3(t) by Eq. 1, and finally {T ∗

m}.

3.1 Refinements

Error-handling is outside the scope of this research, which focuses on collaborative
aspect of music-making under the assumption of following the score exactly. However,
we found during a pilot experiment that having to start over whenever one mistakenly
touched a note was unnecessarily frustrating and time-wasting. Therefore, to make our
model practically usable, we made it to ignore or automatically rectify common errors.

Furthermore, we implemented a method for following the human player’s dynamics
based on a running average of velocities of recent input notes.

3 We use the terms “melody” and “accompaniment” loosely here; the described procedure may
be applied to any piece that can be separated into two parts to be played simultaneously.
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4 Conclusion

Taking inspiration from models of the synchronization of biological phenomena, we ap-
proached the subject of musical performance from the perspective of its collaborative
aspects. Our model attempts to emulate basic interactions among ensemble members,
which play an important role in classical music-making. As such, it ideally would com-
plement score-interpreting AIs, enabling machines to listen not only to identify cues
but to respond and enter musical dialogues in a human-like way.

We have observed playing together with the model to be satisfying to a surprising
degree. We performed a sort of Turing test, in which subjects did not know whether
they were being accompanied by a human or by our model, resulting in 49/83 (59%)
correct guesses, and 18/38 (47%) by listeners present. We consider this an encouraging
basis for exploring the possibilities of human-AI collaboration at an increasingly high
level of musicality.
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