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Abstract. The Transformer neural network has been used to generate new music 

with expressive features with significant success, but it has not previously been 

applied to generate an expressive performance of an existing score. We propose 

Expressor, a Transformer model with a novel encoder-decoder skip connection 

design for expressive performance rendering. The model shows promise in ap-

plying coherent temporal and dynamics expressive features based on human per-

formance. We develop a new tokenisation scheme to overcome challenges in rep-

resenting interrelated expressive performance features. 

1 Introduction and Related Work 

We outline here a work in progress on how deep learning can be used to alter temporal 

and dynamics properties of a MIDI score to add similar expressive properties to those 

present in a human performance. Previous studies have applied Recurrent Neural Net-

works to model expressive timing [1, 2], and while they found success in modelling 

periodic expressive events, they performed less well for isolated events used to convey 

emotion or meaning. Transformers have shown promise in music generation tasks [3], 

where they have been more adept at modelling the longer-term structural properties of 

a musical score. We propose Expressor, a  new Transformer model for expressive per-

formance rendering with skip connections between corresponding encoder and decoder 

layers, and a new tokenisation scheme to represent expressive features. To our 

knowledge, this is a  novel architecture and we find that the skip connections improve 

performance over the original design. 

2 Methodology 

Dataset. We use the ASAP dataset [4], with 1067 professionally-performed classical 

piano pieces with paired performed and unperformed MIDI versions.  

Tokenisation. We use a compound word tokenization [5], with a metric rather than 

absolute timing representation inspired by the REMI approach [6]. The perceptual, hi-

erarchical and interdependent nature of expressive attributes poses a significant 
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challenge in determining ground truth val-

ues. For example, note onset deviations 

are relative to local tempo, but tempo is it-

self a  subjective measure that continually 

fluctuates over time. Furthermore, preced-

ing notes may themselves deviate from 

precise metrical timings. Our solution is to 

provide the model with ground truths cal-

culated relative to a piecewise constant 

tempo function with jumps at beat times 

(see Fig. 1). For example, timing devia-

tions are calculated as the difference (as a proportion of beat length) between the actual 

note onset and expected onset given by adding a linear proportion of the beat length on 

from the start time of the beat. Expressive features for dynamics follow a similar hier-

archical classification [7], and our model also considers articulation by varying note 

length relative to the notated version to produce more staccato or legato phrasings.  

Table 1. Token Descriptions 

Model. We use the Transformer with Linear Attention design [8] in an encoder-decoder 

format. The aim is for the encoder to create a  representation of score-specific structural 

information such as note pitches, medium-term tempo and general dynamics. We de-

sign for additional attribute tokens input directly to the encoder output latent space, 

allowing for control to be imposed on the generation akin to score markings guiding a 

pianist. The decoder layers then output words containing tokens with expressive pro p-

erties such as timing deviation per note or local mean velocity. We also introduce the 

Name Type Description 
Type Meta Determines if a word is meta (for start- and end-of-sequence), metric (occurring at 

the start of each beat) or note (each word corresponds with exactly one note).   

Beat Metric Hold the number of the beat in a bar.  

IBI Metric Inter-beat interval. Express the tempo as a quantized beat length in seconds.  

Local vel. band Metric Coarse measure of MIDI velocity.  

Local IBI Metric The median IBI over a number of beats spanning closest to 4 seconds, centred on the 

beat relating to the given metric word.   

Pitch Note The MIDI pitch number of a note (integer between 1 and 127).  

Start Note Score-based start position of a note relative to the beat , given as a proportion of the 

beat (quantized to 1/60 beats).   

Duration Note Number of beats a note is designated to last for in the score, quantized to 1/60 beats.  

Rubato Note Designates any beat marked with rubato in the ASAP dataset annotations, meaning 
that the music departs from standard metrical timing during this beat.   

Timing flux Metric Mean deviation in onset of notes in a beat from the precise division of the IBI.  

Dynamic flux Metric The average number of absolute standard deviations for the velocity of each note in 

a given beat from the local mean.   

Accent Note Designed to represent an accent score notation.  Calculated as any performed note 

having a velocity of more than 2 standard deviations above the local mean.   

Staccato Note Whether or not a note should last for < 25% of the expected IBI proportion.  

Local vel. mean Metric The mean note velocity over a given number of beats, centred on the current beat.  

Tempo difference Metric Difference between a beat’s IBI and the local tempo, measured in BPMs.  

Articulation Note How long a note will last for, relative to the expected duration taken from the score.  
The value is a number of beats, quantized to a given sub-interval.   

Timing deviation Note The sub-interval of a beat by which the note onset differs the score. 

Vel. difference Note Difference between a note’s velocity and the local velocity mean.  

 ---  Approximation of continuously fluctuating tempo curve
---  Piecewise constant modelling of tempo 

Fig. 1. Illustration of tempo modelling. 
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use of skip connections (see Fig. 2) between the outputs of individual encoder layers 

and the attention mechanism in the corresponding decoder layer.  The idea is to encour-

age corresponding hierarchical representations of the information throughout the en-

coder and decoder stacks.  

Fig. 2. Expressor Architecture 

Output tokens are then combined with the input information to render back into 

MIDI format. This results in a version of the original piece that incorporates expressive 

performance features. As each compound word is made up of separate tokens, the net-

work decoder is followed by one head for each output token which consists of a separate 

feed-forward network to map latent space vectors to logits for the relevant values in the 

token’s vocabulary. The network can therefore be viewed as a multi-task network, and 

the loss is made up of a linear combination of the reconstruction losses for each head. 

3 Results Discussion and Conclusion 

Model. With hyperparameter tuning, we found the best performing model had encoder 

and decoders both with dimension 256, 8 layers and 8 attention heads per layer. Fig. 3 

shows the results from two training runs with these same model parameters, but one 

with added skip connections between corresponding encoder and decoder layers. The 

results suggest that training is improved by the addition of the skip connections. 

Fig. 3. Training and validation loss curves for identical Expressor models with and without 

skip connections between the encoder and decoder layers 
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Intuitively, the skip connections may encourage the model to match hierarchical levels 

in the music between encoder and decoder stacks.  

Music Transformers often use embedding dimensions larger than vocabulary sizes 

[3]. The use of compound words allows for tailored embedding sizes for each token 

type, and we found that embedding sizes between 4 and 16 performed better than larger 

values. As described in Table 1, many of the measures used in Expressor represent a 

quantized linear scale, such as IBI or pitch, and although there may be some higher-

dimensional relationships such as the chroma dimension for pitch, in general this data 

should not require large numbers of dimensions to represent. 

Qualitative evaluation and discussion. Selected audio examples can be found at the 

link below1. While we have yet to conduct independent listening tests, we suggest these 

demonstrate that the model shows considerable promise in mapping general expressive 

performance features onto a MIDI score in a realistic manner. The features often follow 

locally coherent patterns such as crescendi or staccato. We did notice that the expres-

sive features could often be inappropriate in relation to the musical period or the com-

monly interpreted emotional content. Additional tokens such as composer or period, 

alongside planned latent space semantic guidance tokens could help. We have yet to 

analyse statistically how well the model relates expressive features to structural features 

in the score (such as musical phrasing or unexpected harmonic moments), but our intu-

ition is that pre-training the structural modelling of the encoder section may improve 

performance in this area. We also intend to conduct an ablation study to further under-

stand the impact of the encoder-decoder skip connections.  
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