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Abstract. In any piano performance, expressiveness is paramount for effectively
conveying the intent of the performer, and one of the most significant aspects
of expressiveness is the loudness at the individual key or note level. However,
accurately detecting note-level loudness poses a considerable technical challenge
due to the polyphonic nature of piano performances, wherein multiple notes are
played simultaneously, as well as the similarity of harmonic elements.
MIDI velocity is crucial for indicating loudness in piano notes. This study con-
ducted experiments for estimating a note-level MIDI velocity expanding the DiffRoll
model: the Diffusion Model for piano performance transcription. By adopting
double conditioning—audio and score information—and implementing noise re-
moval as a post-processing, our findings highlight the model’s potential in esti-
mating note level MIDI velocity.

Keywords: MIDI Velocity Estimation, Diffusion Model, Conditioned Deep Neu-
ral Network, FiLM Conditioning

1 Introduction

The assessment of piano performance can be attributed to three key factors, namely
loudness, rhythm, and accurate key strokes [1]. Owing to the polyphonic nature of piano
performances, multiple auditory streams coexist, such as melody line and accompani-
ment. This intricate aspect allows for enhanced distinguishability in the interpretations
of expert pianists [2]. The expressiveness of a musical piece is significantly influenced
by the series of loudness values associated with each note in the score, which contribute
to the dynamic alterations throughout the composition [3].

Within the realm of music education, research has demonstrated the effectiveness
of utilizing visual feedback in enhancing students’ abilities [4, 5]. In this regard, the
comprehension and management of loudness become especially significant [1] when
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it is visualised. The employment of techniques for estimating and visualizing loudness
fulfills the crucial system requirement, enabling the provision of valuable feedback to
learners.

[8,9,12] researched mapping from perceptual loudness value in dB scale to dynamic
symbols for piano performance such as forte, mezzoforte, piano, pianissimo, crescendo,
etc. Note that using MIDI velocity, we predict loudness at a lower granularity, i.e. finer
scale than the dynamic markings which are explicitly written in most of music scores
and indicate how loud the piece should be played. Furthermore, each note in a piano per-
formance may have a different loudness depending on the texture of the music [11,14].
Therefore, the note-level loudness itself has special meaning in piano performance,
considering its polyphonic characteristics.

To prevent ambiguity, we use the term ”loudness” to denote the combined MIDI
velocities within a specific time frame as measured by an electronic piano device. On
the other hand, ”intensity” refers to the maximum value of the frequency sum for a note
frame, as defined in [15]. It is essential to recognize that MIDI velocity does not have a
direct correlation with loudness as experienced by the human auditory system. Studies
have been conducted to explore the relationship between MIDI velocity and loudness
measured in decibels (dB) [30]. While the research demonstrates a consistent increase
in perceived loudness (in dB) with increasing MIDI velocity, it also reveals that this
relationship is non-linear [13].

Since this research aims to detect MIDI velocity on each note performed, auto-
matic piano performance transcription is a closely related area for this purpose. Piano
performance transcription is also an actively researched topic [10, 23, 24]. However,
these studies primarily focus on detecting individual notes, rather than note loudness
or dynamic symbols in a score. Additionally, the transcription process is not yet fully
accurate and reproducible of performance.

Several studies have explored the note-level loudness estimation task [6, 15–18].
These researchers employed NMF and DNN methods to isolate piano performance au-
dio into 88 distinct keys and estimated MIDI velocity or intensity for each note. We con-
sider this area of research as an application of Automatic Music Transcription (AMT)
and to be applied to expressiveness performance modeling. The piano note-level MIDI
velocity estimation task involves solving a two-fold problem. One aspect is a regression
problem, requiring the estimation of numbers within the 0-127 range for MIDI veloc-
ity. The other issue is audio classification, which involves sorting audio into each piano
key, typically consisting of 88 keys. To address these challenges, we propose the DiffVel
as an expansion of DiffRoll [7], a diffusion model for AMT, and Feature-wise Linear
Modulation (FiLM) conditioning layers [20] to incorporate score information into the
DNN. We conducted experiments to estimate the MIDI velocity using this approach.

2 Related Work

2.1 Automatic Music Transcription

The piano performance transcription is one of the closest problems for classification
from audio input. [29] proposed a CNN-GRU combined acoustic model which branches
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into four outputs: velocity regression, onset, offset, and note frame estimation. The note
frame estimation is the final goal of this model and the other three estimations are
gathered as input to another acoustic model to estimate the notes at the frame level.
Therefore, the estimated MIDI velocity regression is not evaluated in the paper since it
is out of the scope.

Recently, diffusion models have been explored as an alternative approach. Dif-
fWave, a state-of-the-art generative model for audio synthesis, leverages the diffusion
probabilistic framework and exhibits remarkable capabilities in generating high-quality
audio samples from various sources. The core idea behind DiffWave involves employ-
ing a series of de-noising score matching steps, iteratively refining the generated audio
samples to achieve accurate and precise output. Building upon DiffWave, DiffRoll has
been researched [7]. DiffRoll expands DiffWave into a two-dimensional representa-
tion of sound and output, taking Mel Spectrogram as a condition and forming the two-
dimensional Gaussian noise input into MIDI roll. The generative model’s characteris-
tics offer considerable potential to simultaneously address classification and regression
problems by tuning conditions. Exploring conditions with not only one but also multi-
ple conditions would contribute to estimating MIDI velocity more accurately. However,
the model disregards velocity estimation in the model evaluation.

For conditioning, existing research utilizes score information to inform musical in-
strument separation in polyphonic music [19, 21, 28]. These works employ score or
video information to enhance source separation results by creating an additional neural
network to extract features from the supplementary data, which are then fed into the
original DNN.

2.2 Feature-wise Linear Modulation (FiLM)

In this paper, we utilized the FiLM conditioning [20] to insert score information in order
to estimate note-level MIDI velocity for piano performance. FiLM conditioning is used
in the image processing area and has gained improved results on object detection [20].
In previous research, natural language is used as an external condition to indicate the
existence of target objects to be detected. This idea has been applied to audio source
separation tasks by conditioning audio with video and score information [28].

The FiLM comprises a set of neural network layers that generate an affine transfor-
mation for a given input layer in a neural network. It consists of a base DNN which is
trained in a supervised fashion and a condition generator which takes conditions such
as score as input and generates β and γ to make an element-wise affine transformation
in the latent space of the base DNN. In the math formula, it is described as follows;

FiLM(x) = γ(z) · x+ β(z) (1)

where vector z is a conditional vector.
The Figure 1 shows the architecture of FiLM conditioning. This condition embed-

ding model generates parameters, β and γ, to make an affine transformation on the
latent vector x from the base DNN.
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Fig. 1. The diagram illustrates the operation flow for inserting a FiLM condition into a latent
vector

2.3 Note Level MIDI Velocity Estimation with Score Information

Only three papers have considered note-level MIDI velocity in music performance, em-
ploying NMF [15,18] and DNN methods [6]. NMF methods have been used for source
separation problems and effectively applied to music source separation as well [22]. [15]
examined an NMF method with score information to estimate note-level intensity be-
fore creating a linear regression model to obtain note-level MIDI velocity estimation.
This research provided a detailed analysis of NMF method errors and their causes.
The DNN method attempted to address the estimation problem by applying the AMT
method and score conditioning. The DNN architecture involves stacking convolution
blocks and GRU block and inserting a FiLM conditioning generated by a fully con-
nected linear layer. Although it did not surpass the results of the NMF method, it was
the first attempt to estimate MIDI velocity using a DNN method and to generalize the
model for unseen classical music inputs, as opposed to the NMF method which op-
timizes parameters for each test data. [16] aimed to estimate the note level intensity,
rather than MIDI velocity, from the spectrogram by filtering it according to the fre-
quency of each note.

In our study, we compare our results with the NMF method proposed in [15] and
the DNN method [6] as our benchmark.

3 Method

There are two models experimented in this study: the diffusion models with and with-
out score information by FiLM conditioning. The entire architecture is based on the
DiffRoll model and the conditions, Mel Spectrogram and score, are inserted as an ex-
pansion. We used the MIDI velocity data on note frame level as supervised data for
training for both models. Score information is represented in a note frame roll in the
MIDI roll.
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For the training data, we used the Maestro dataset [26]. The data segmentation is
20 seconds, and the number of data frames is 31 in one second. Therefore, each output
from the models is a (620, 88) matrix containing onset, offset, and velocity information.

3.1 Model Architecture

The simplified overall model architecture is illustrated in Figure 2. In the diffusion
model, each residual layer takes the conditions. The Mel Spectrogram transformed from
input audio is added as another condition to each residual layer before the FiLM condi-
tional vector insertion.

For the purpose of inserting the score information, we also added a FiLM condition-
ing layer as it is introduced in Section 2. We have tested the element-wise operations
for multiplication and addition. However, the scalar multiplication and addition gave
us better results. The FiLM generator is designed as a fully connected layer to gener-
ate conditioning parameters, and it is inserted after Mel Spectrum conditioning in each
residual layer, i.e. the generated conditional vectors are sliced for each residual layer
for the affine transformation.

For the parameter setup for DiffVel, the original setup is employed from DiffRoll:
15 residual layers, sampling rate 16000Hz, the hop size 512, the drop rate 0 to be fully
supervised learning fashion, and the convolutional kernel size 9 for the residual lay-
ers. The loss function is L2 (mean square error) loss for the entire data segment, not
note-level MIDI velocity error. We have tried Binary Cross Entropy (BCE) for better
classification and L1 loss for MIDI velocity estimation. However, they did not work
well in this diffusion model setup. Due to the limitation of computational resources, the
epoch is stopped at 2000 for each training.

In the task of MIDI velocity estimation, which aims to get a number as value from
the output, dealing with the input Gaussian noise is crucial. When the Gaussian noise is
generated, it has a mean value of 0 and variance of 1. The diffusion step to denoise the
Gaussian noise is set to 200 steps. However this noise is not perfectly removed after the
diffusion steps and we need to perform denoising to each output by the post-processing.

During the post-processing, Gaussian noise removal is performed, which remained
after the diffusion steps. This remainder causes a problem that it is considered as veloc-
ity during the evaluation process and causes 100% of the recall score and its note level
estimation error is calculated high since the error is calculated where the note is not
actually detected by the model. In this research, velocity estimation evaluation is made
only on correctly detected notes. This evaluation constraint is applied to the other two
models to be compared, the DNN [6] and NMF [15] models.

In order to remove the remaining noise, three methods are considered; one is to in-
crease the diffusion steps since each step of diffusion step reduces the Gaussian noise.
The second way is using a post-processing method employed by SegDiff, which av-
erages the output from multiple inferences [25], at the expense of computational re-
sources. However, these methods were not chosen due to the limitation of computational
resources. In the process of removing the remaining Gaussian noise in the output, we
calculated the distribution where the note does not exist in the ground truth score and
defined a threshold to set output value 0. More precisely, a right Z-score is set based
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Fig. 2. The simplified overall process (right) and the detailed condition insertion into each residual
layer (left)
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on the distribution in order to find a threshold to set the output value to 0. Z-score is a
number derived by following equation;

Z =
x− µ

σ
(2)

where x is observed value, µ and σ are mean and standard deviation of all output values
for each score.

The reason why the right Z-scores is chosen, rather than taking the highest value in
the area where the note does not exist in the ground truth, is that there are wrongly de-
tected extra notes which have proper values to represent a MIDI velocity. These values
are considered above the Z-score in the distribution of the remaining noise and do not
affect the correctly detected values during the post-processing by not setting them to 0.

After removing the remaining Gaussian noise, we normalized the output to be in the
range [0, 1] looking at entire output value of each excerpt, not just for each output, and
then scaled back to [0, 127].

3.2 Evaluation

For testing purposes, we used the Saarland Music Data (SMD) dataset [27], which is
also used for testing in previous researches [6, 15]. The dataset consists of students’
piano performances, both audio data and MIDI data, which are perfectly aligned. The
amount of data includes 50 classical piano excerpts, performed on Yamaha Disklavier.
The original sampling frequency is 44.1kHz and down-sampled to 16kHz. We chose 49
excerpts from this dataset which are used in the score-informed NMF method by [15].

The model evaluation is made by taking an L1 distance of MIDI velocities for each
note between ground truth and inference by the models, similarly to the previous re-
search [15].

Error =

∑
i|V (i)ground truth − V (i)inference|

N

(3)

where i is each note and N is the number of correctly detected notes in the score.
The inferred MIDI velocity is the maximum value within the interval of each de-

tected and classified velocity frame against the ground truth velocity frame for each
note. This is because the detected velocity tends to fade after having the maximum
value in the estimated MIDI velocity in a note frame as if depicting attack and fades of
loudness of each note.

To evaluate the classification accuracy, recall score is chosen as the evaluation met-
ric. This is because the estimation is masked by the given score, and recall is considered
as the most appropriate evaluation metric for this classification problem when score is
informed, as it takes into account both true positive and false negative. It measures the
proportion of the total actual positive cases that are correctly identified by the classifier.

In this study, only correctly detected notes are evaluated, since we separate the MIDI
velocity estimation accuracy and note detection accuracy as different research problem
statements; the AMT and the MIDI velocity estimation as mentioned in the Section 2.
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4 Results and Analysis

As we can see from the Table 1, FiLM conditioning to incorporate score information
helped the estimation accuracy among the two models we have tested. The results show
that FiLM conditioning improved MIDI velocity estimation but did not help with note
detection for any setup. The result represents all note-wise errors inferred on the SMD
dataset.

In terms of Gaussian noise removal, the right Z-score = 3 improved the overall
accuracy significantly by sorting output values to correctly detected notes and the re-
maining noise after the diffusion steps. When post-processing is not performed and the
noise remains, the evaluation method considers MIDI velocity detected and recall score
is always 100%.

Single Conditioning Double Conditioning with Score

Z-score Mean SD Recall Mean SD Recall

Raw Output 32.8 20.5 100% 28.6 19.2 100%

1 24.7 16.7 60% 21.0 14.5 56%

2 24.0 16.1 58% 20.2 13.6 54%

3 23.7 15.8 56% 19.7 13.1 53%
Table 1. The mean and standard deviation (SD) of the MIDI velocity estimation error for the
models are based on Z-score for noise removal

The Figure 4 shows an example of the remaining Gaussian noise removal. The pale
red color shown in the raw output is the remaining Gaussian noise from the input to the
model, and setting Z-score determines the threshold to set the value to zero, attempting
not to touch the detected notes. It can be intuitively seen that the remaining noise is
removed without changing the value of the detected note velocities based on Z-score
values.

Proposed Model Conv-FiLM with Score [6] NMF with Score [15]

Mean SD Mean SD Mean SD

19.7 13.1 15.1 12.3 4.1 5
Table 2. The comparison of results for the proposed model and previous research

We also compared the results to the previous models that have the same setup:
a score-informed MIDI velocity estimation task. The Table 2 displays the mean and
standard deviation (SD) values for proposed and previously researched models. The
proposed model exhibited a mean value of 19.7 and an SD of 13.1, indicating the poor-
est performance among the three methods. In contrast, the Conv-FiLM DNN with Score
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Fig. 3. The visualization and comparison of Gaussian noise removal for raw output and after
removal are based on Z-score = 1, 2 and 3.

approach achieved a mean of 15.1 and an SD of 12.3, while the NMF with score method
demonstrated the best performance with the lowest mean and SD values, at 4.1 and 5,
respectively. Although the proposed model currently underperforms compared to the
other models, it is important to note that the difference between their mean values is not
substantial and we do not know significance in the sense of perceptual loudness yet.

Figure 4 displays the deviation of the error in each range of MIDI velocity, pitch,
and sustain pedal activation respectively for both models. The box-charts for pitch and
sustain pedal are similar figure for both models. These charts demonstrate that the more
training data notes you have, the more accurate your MIDI velocity estimation will be,
looking at the note ratio in the training dataset. This implies that data augmentation,
such as pitch shifting, is necessary for low and high pitch notes in the training data.
When looking at the error based on the MIDI velocity group, it is interesting to observe
that FiLM conditioning improved the model’s estimation for lower velocity notes, but
resulted in worse estimation for higher velocity notes compared to the model without
score information. It was also observed that both models tend to estimate MIDI velocity
lower than the ground truth. Further analysis is required to interpret this phenomenon.

5 Discussion and Future Work

In this study, experiments on a diffusion model with double conditions for note level
MIDI velocity estimation for piano performance have been conducted. We discovered
that FiLM conditioning for score information insertion improved the estimation error
and standard deviation on the overall test data.

We need to investigate the how the MIDI velocity error gives us the human percep-
tual sense to give the true evaluation of the model. As is mentioned in the introduction,
there is still no research has been conducted for creating mapping from MIDI velocity
to perceptual loudness. This will be one of our future works to keep this research move
forward.
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Fig. 4. The error analysis is based on ground truth MIDI velocity, pitch and sustain pedal activa-
tion. The box charts in the upper row display results for the single-conditioned model. Similarly,
the box charts in the lower row show the results of the model with score information.

One of the downside of the models is they take significant amount of time and com-
putational cost for an inference and model convergence in training phase. In this study,
for example, it took about 2.5 minutes for 20 seconds of MIDI velocity roll output. This
problem would be a blocker for a use case which requires real time processing.

The model achieved a similar result to the DNN used in a previous study [6], which
indicates that the direction of this research is promising, and further exploration is war-
ranted. Due to computational limitations, the training was stopped at 2000 epochs.
However, the losses on validation set are still showing the trend of decrease on each
model. This indicates that further training could improve accuracy within a short period
of time with high confidence. Moreover, the recent rapid development and evolution on
generative models including the diffusion model will improve its transcription accuracy,
and at the same time, it would lead more attention to the FiLM conditioning to realize
multi-modality for certain use-case scenarios such as education purposes which needs
score and audio information.

Since it has been observed that FiLM conditioning improves the estimation results,
further investigation into the condition generator is necessary for better estimation and
note detection, rather than a simple fully connected linear layer. Moreover, the pro-
posed diffusion model is adaptable to multiple conditioning techniques, making feature
engineering a particularly suitable strategy for optimization within the DiffVel setup.
By refining the features used in the model, it may be possible to extract more mean-
ingful patterns and relationships from the data, ultimately leading to improved results.
Additionally, incorporating more data and extending the training process could poten-
tially enhance the proposed model’s performance. Therefore, future research can focus
on these aspects to optimize the proposed model and potentially achieve better perfor-
mance than the existing approaches.
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In real-world use cases, such as music education, score alignment must be taken
into account for conditioning. A Dynamic Time Warping will be used to address this
issue in a future work.

The code and the dataset used for this research would be provided upon request.
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Andreas and Widmer, Gerhard : On the Potential of Simple Framewise Approaches to Piano
Transcription : arXiv:1612.05153 [cs]

25. Tomer Amit, Tal Shaharbany, Eliya Nachmani, Lior Wolf : SegDiff: Image Segmentation
with Diffusion Probabilistic Models : arXiv:2112.00390 [cs.CV]

26. Curtis Hawthorne and Andriy Stasyuk and Adam Roberts and Ian Simon and Cheng-Zhi
Anna Huang and Sander Dieleman and Erich Elsen and Jesse Engel and Douglas Eck : En-
abling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset : Inter-
national Conference on Learning Representations, 2019

27. Müller, Meinard and Konz, Verena and Bogler, Wolfgang and Arifi-Müller, Vlora : Saarland
music data (SMD), 2011
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