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Abstract. This paper presents a music generation model trained with Bach’s
chorales and classical music theory rules. Although previous work has shown
promising results in generating the four-part harmony, one of the limitations is the
frequent appearance of parallel 5th or 8th, which are prohibited in music theory
and rarely used in Bach’s chorale. To address this issue, we propose an additional
loss that minimizes the probability of prohibited patterns, comparing the results
with those from inference using a post-hoc probability manipulation to prevent
parallel 5th and 8th. The experimental result shows that applying the proposed
loss term can help to reduce parallel motion without losing other quality.
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1 Introduction

Music generation is a fascinating research topic that has received much attention for
centuries. From W.A. Mozart’s Musikalisches Würfelspiel (musical dice game), there
have been several works conducted in a rule-based approach, such as David Cope’s
Experiments in Musical Intelligence [1]. Since the success of deep learning, however,
data-driven approaches using neural networks have been dominating the music genera-
tion. Especially, several Bach chorale generation models have shown promising results
[2, 3]. However, previous works [4, 5] pointed out that these models tend to generate
note patterns that were avoided by Bach, such as parallel 5th and 8th, which are shown
in Figure 1. Fang et al. showed that these parallel 5th and 8th patterns are the most
distinctive characteristics to distinguish the model’s generation from Bach’s original
chorales [5].

It is not surprising that the data-driven model could generate prohibited patterns,
because most music generation models, including language-modeling-based, use like-
lihood maximization for the training objective; models only learn the pattern that exists
in the training dataset. Therefore, this training strategy is not effective in teaching the
model what patterns to avoid.

In this context, we raise three research questions. First, how can we inject music
domain knowledge or rules into the data-driven generation model? Second, how can we
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Fig. 1. Example of parallel 5th in four voice chorale. The highlighted notes are intentionally
manipulated to demonstrate parallel 5th, which are rare in Bach’s original chorale.

teach the generation model to recognize the absence of something rather than its pres-
ence? Third, can we improve the generation model performance using music theory?

To address this issue, we propose a novel musically-informed loss term for training
a music generation model. We compared the experimental results with the JS Fake
Chorale dataset [6]. Generated music samples are available on the online webpage. 3

2 Related Works

2.1 Deep Music Generation with Domain Knowledge

While early deep learning-based music generation studies were conducted by bringing
models from computer vision [7] or natural language processing (NLP) [8, 9] domains,
there are an increasing number of music generation models inspired by intuition from
music domain. We have summarized these cases into two main groups. One group fo-
cuses on the structure and repetition of music defined as a unit of pattern such as theme
[10], loop [11], bar relations [12], skeleton [13], or hierarchical structure [14], and ex-
tracted the unit with a rule-based approach and utilized it for modeling, or focused
on modeling the structure of music using hierarchical encoding methods [15–17]. The
other group utilizes intuition from music domain knowledge to suggest novel music
generation system paradigms: non-unidirectional music generation system suggested
by Coconet [3], and BERT-based music generation system [18, 19], combinatorial mu-
sic generation system [20], harmonic expectation-based music harmonization system
[21].

3 https://bit.ly/3LMajEK
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To the best of our knowledge, so far there have been no (or few) studies that have
used music theory directly in the training procedure of deep learning-based music gen-
eration. We conjecture that it is not necessary to follow the rules strictly unless it is
classical music, and the stricter the rules we impose on the model, the less diverse the
music produced. Rather, studies indirectly utilize some music knowledge by steering
models to learn specific features of music.

[22] proposed a contrastive loss that steers a music transformer to have arbitrary
logical music features. Studies on the disentanglement of latent representation [23, 24]
proposed models to learn specific music features in certain latent dimensions, which
can be useful to steer the model in a controllable way. Studies that focus on the chord-
conditioned music generation [25, 26] could be an example that uses music theory
in a music generation as well. However, as we noted in the introduction section, the
likelihood-based models ended up rarely generating notes prohibited in music theory.
In this context, our approach has novelty in that it uses music knowledge directly in
the model training scheme so that the model could learn to avoid prohibited patterns
according to music theory.

2.2 Bach Chorale Generation

As a representative corpus of Western classical polyphonic music, Bach’s chorale has
been widely adopted for music generation research. Among many, we introduce previ-
ous deep learning-based approaches to Bach chorale. BachBot [27] is one of the earliest
examples of success in modeling Bach chorale with the deep neural network, or long
short-term memory (LSTM) more specifically. BachBot uses 16th-grid sampling, along
with additional tokens for time grid delimiter. Fermata, which plays a critical role in
notating the phrase boundary in Bach’s chorale, was also considered as an additional
token in BachBot.

DeepBach [2] proposed to apply pseudo-Gibbs sampling instead of generating the
music in sequential order. While DeepBach used LSTM as a main neural network block,
CocoNet [3] applied a convolutional neural network using similar ideas of applying
Gibbs sampling. The model was employed as a backbone to serve Google’s first AI-
powered doodle, Bach doodle, which generates Bach-like harmonization for a user’s
input melody.

Another recently proposed model, TonicNet[28], is closer to BachBot in the sense
that it uses the 16th-grid sampling with ancestral sampling. Here, the author proposed
a feature-rich encoding scheme, such as a number of sustain counts for each voice and
adding a chord token at the head of each time frame. The author later proposed the JS
fake Chorale [6], a dataset of machine-generated chorales, even though an explanation
of the model used for the generation was not provided along.

The frequent appearance of parallel 5th and 8th is considered as a problem with
deep learning-based Bach chorales generation. However, no previous research has made
a direct attempt to reduce the parallel motions of the generated chorale. This paper
suggests a novel loss function that directly prohibits parallel motion.
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3 Methods

3.1 Problem Formulation

In ordinary language modeling, the problem can be defined as modeling the probability
distribution of the next token for given previous tokens, such as P (xt+1|x0, . . . xt).
However, in the symbolic music generation, one can provide more information about
the current time step before predicting the token, such as a beat position or which voice
the current token has to belong to. We can group this information as a condition c and
formulate the music language modeling as Equation 1

P (xt|x0, . . . , xt−1, c0, . . . , ct) (1)

where xt and ct represents a predicting token and a condition token of timestep t, re-
spectively. During the inference, c can be calculated by a rule-based approach for every
timestep. Since the condition of the current time step is given explicitly, the model does
not have to implicitly predict the information, such as to which beat the current time
step belongs. While providing the condition also can be done synchronously with the
predicting token xt, separating the ct from xt−1 has several advantages. Even though ct
is easily predictable for a given ct−1 in many cases, there are some exceptional cases,
such as measure boundary with different time signatures. If we notate the offset of the
current time step from measure starting in the sixteenth notes, the next offset for 11 is
0 for time signature 3/4 and 12 for time signature 4/4. By providing ct instead of ct−1,
we can eliminate this type of ambiguity.

While any causal model, such as a transformer decoder, can be used for this task, we
used a stack of uni-directional GRU as our model. We also tried a stack of transformer
decoder module, but the result was not better than GRU.

3.2 Data Representation

Following the previous works on Bach chorales generation [2, 27, 28], we use 16th-
grid sampling so that a single bar of 4/4 time signature is represented with sixteen-time
frames. A single voice is represented as a sequence of F -dimensional tokens v ∈ ZT×F ,
where T represents the number of total time frames and F represents the number of
features. Thus, an entire four-voice chorale can be represented as c ∈ Z(T×4)×F and
this flattened voices as (S, A, T, B)-repeated order was fed to the GRU model.

To extract metadata such as the number of sharp in the key signature and time sig-
nature, we used the music21 [29] library. Analyzing the major minor tonality was done
using the Krumhansl-Schmuckler key-finding algorithm [30] in music21. For pitch rep-
resentation, we adapted a sustain token for representing the same repetitive pitch with-
out onset, following [2]. The selected features we used are described in Table 1. Besides
the features in Table 1, we also considered the tonality(major or minor), num beat in 3/4
or 4/4 time, voice index of current time step, the recent previous MIDI pitch value of
current voice, the number of time step current voice sustained, beat distance from last
fermata, and remaining number of fermata. However, our preliminary ablation study
showed that using Pitch, Fermata, Beat position, Beat strength, and Num sharp in key
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Feature Description Type
Pitch MIDI pitch value of current time step I & O

Fermata 1 when the fermata starts at current time step, 0 otherwise I & O
Beat position Beat position in sixteenth note grid (0 - 15 for 4/4) I
Beat strength Beat strength in sixteenth note grid I

Num sharp in key The number of [-flats/+sharps] in key signature. I

(PFBBN) was most effective in modeling Bach-like music for our generation model.
Therefore, we used PFBBN as a default encoding scheme of experiments in this paper.

It’s important to highlight that the dimensions of our input and output features
differ in our study. For our input, we utilized all the features previously described.
However, for our output feature, xt, which the model is tasked with predicting, we
only incorporated pitch and fermata. The features that aren’t predicted, ct are initially
fed into the model shifted to the left by one step so that xt−1 and ct are concate-
nated together. This allows the model to anticipate the subsequent token xt based on
(x0, x1, . . . , xt−1, c0, c1, . . . , ct). During the inference process, ct+1 was obtained us-
ing a rule-based approach. For the initial condition token c0, we derived it from the
pre-established distribution for each feature across the entire dataset.

3.3 Pitch Onset Loss

As we used note sustain as an independent token, we found that this sustain token
appears 2.5 times more often than note onset, or change of pitch in the dataset. This can
lead the model to predict sustain too frequently, as this single token occupies 70 % of
entire pitch values. Therefore, we additionally imposed pitch onset loss, a pitch loss of
a time step where onset exists, to enforce the model to focus more on the note onset
and not hold the same pitch too much time during inference. The onset boolean can be
represented as o ∈ {0, 1}T for a single voice v ∈ ZT×F , where ot = 1 if the voice
has a note onset at time frame t and otherwise ot = 0. The pitch onset loss Lpo can be
represented as an equation below.

Lpo =
1

T

∑
t

ot · (− log ŷt) (2)

3.4 Loss Function Design According to Music Theory

Parallel Prohibition Loss We designed a loss function that penalizes parallel 5th and
parallel 8th, which imitates one of the most marked rules for composing counterpoint.
Even though we can also penalize concealed 5th and 8th along with the parallel, we only
focus on the parallel error in this work. To force the model to avoid these prohibited
patterns, our system calculates prohibition matrix Pr for a given preceding voice v ∈
ZT×F and the following voice w ∈ ZT×F using a rule-based algorithm. The result can
be denoted as Prv,w ∈ {0, 1}T×P , where T and P represent the number of time frames
and total note pitch in the vocabulary, respectively.

Table 1. List of considered features for note encoding.
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The prohibited pitches f(p, q, t) at time t for a sequence of MIDI pitch for voice, q ∈
NT , for a sequence of MIDI pitch for the preceding voice, p ∈ NT , can be represented
as below:

f(p, q, t) =


qt−1 + (pt − pt−1) if |pt−1 − qt−1| ≡ 7 or 0(mod12)

and pt−1 ̸= pt and qt ̸= pt − pt−1 + qt−1

0 else
(3)

We intentionally did not prohibit the parallel progression that actually occurred in
training set for two primary reasons. Firstly, there are instances where Bach himself did
not adhere to the prohibition rule. Secondly, the log-likelihood loss and the prohibit loss
directly conflict with each other. While the log-likelihood loss seeks to maximize the
probability of a particular note, the prohibition loss aims to minimize the probability of
that very same note. Therefore, we did not apply the prohibition rule in these cases.

Using f(p, q, t), the piano-roll-like prohibition matrix Prv,w ∈ {0, 1}T×P for the
voice w and its preceding voice v, can be represented as Equation 4.

Prv,w[n, t] =

{
1 if f(v, w, t) = n

0 else
(4)

The integrated Pri, the prohibition matrix for i-th voice for every preceding voice,
can be represented as Equation 5, where ui represents a sequence of features for i-th
voice. For example, if the voice order is soprano, alto, tenor, and bass, u0 is soprano,
and u3 is bass.

Pri =
i−1∑
j

Pruj ,ui
(5)

After the language model predicts the shifted events, we calculated the prohibition
loss Lphb, the cross entropy loss between the predicted pitch token probabilities ŷ ∈
(0, 1)T×P and the prohibit matrix Pr, which can be represented as an equation below:

Lphb = − 1

T

∑
t

Pr[t] · (log(1− ŷαt )) (6)

where α is a hyperparameter, which helps to preserve loss and gradient for small ŷ.
In our experiment, we used α = 0.5. Minimizing Lphb forces ŷ to be close to zero in
the case of prohibited pitches. We have also tested to maximize − log(ŷ), but this often
results in unstable training since the gradient explodes around log(0).

Our final loss function is formulated as follows:

Ltotal = LLM + λphb · Lphb + λpo · Lpo (7)

where LLM is Cross Entropy loss between predicted pitch and fermata tokens and tar-
get, Lphb and Lpo are prohibited and pitch onset loss, and λphb and λpo are weights for
prohibit and pitch onset loss. We applied weight annealing for λphb, so that λphb = 0
for the first 10% of iteration, and apply sigmoid annealing, so that the prohibition loss
is gradually applied after the training becomes stable.
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Rule-based Parallel Masking To compare the effectiveness of applying parallel pro-
hibition loss, we also tested a rule-based parallel masking that avoids parallel progress
during inference. Using a similar approach in Equation 3, we calculated the possible
prohibited pitch for every step of the autoregressive inference. While we only prohib-
ited parallel progression with exactly the same interval in the prohibited pitch during
the training, we prohibited every possible pitch across the entire octave that makes the
same 5th or 8th interval as a pitch class during the inference so that we could achieve
zero parallel errors in the evaluation metric.

4 Experiments

In this section, we describe the experiment to investigate the effect of our suggested
prohibit loss and pitch onset loss terms.

4.1 Dataset

For the train and validation dataset, we used 366 Chorales of Johann Sebastian Bach,
which are provided in the format of Humdrum kern [31]. The data provides note infor-
mation of each of the four voices, including the fermata symbol.

4.2 Experiment Setting

We split the dataset as 9:1 for the train and validation dataset. For the model, we used
a 4-layer GRU model with a hidden size of 512 and a dropout rate of 0.2. For the
hyperparameter, we used batch size 8, Adam optimizer with learning rate 1e-3, and Step
LR scheduler with step size 2k and gamma 0.8. Since the model normally converges
within 30k steps, we used 30k steps to train the model. For the embedding size of
used features, the default feature embedding size is 512 and all features have a feature
dimension ratio of 0.1 of the default feature embedding size, which corresponds to
51. As the pitch feature is the most important feature, we used dimension ratio 0.75
for the pitch, which makes 384 dimensions. The embeddings from each feature are all
concatenated, forming a total of 588 dimensions.

4.3 Evaluation Metric

Since we change loss weight with different values, total validation loss values are not
directly comparable to evaluate the model performance. Therefore, for evaluation, we
used the metric suggested by [5], which calculates Wasserstein distance of distribution
of generated note, rhythm, parallel errors, harmonic quality, intervals of each voice (S,
A, T, B), repeated sequence, and overall grade values compared to the Bach’s original
chorale dataset. To compare with the previous works, we evaluate our suggested model
with JS Fake Chorale Dataset [6].

The original implementation of the metric [5] distinguishes enharmonic like C\ and
DZ, which are encoded in the same MIDI pitch. MIDI files generated from our proposed
method or from JS Fake Chorale get severe distortion when converted by music21 in
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the evaluation code. For example, MIDI pitch from 64 to 63 can be encoded either E4
to D\3 (minor second) or E4 to EZ4 (augmented first). If this interval is interpreted
as E4 to EZ4 by music21, this makes a large error in Wasserstein distance because
Bach’s original chorale corpus uses a lot of minor seconds but not augmented first.
Therefore, we modified the code to use interval and note pitch classes in MIDI pitch,
not distinguishing enharmonic notes. Note that we calculated the distribution of each
feature in the Bach chorale corpus based on the dataset from [31], which is slightly
different from the one used in [5].

Table 2. Experiment results for suggested losses. PE: parallel error, HQ: harmonic quality, B
Intervals: bass intervals, RS: repeated sequence. Lower values mean better chorales. Here, the
first row means using only PFBBN feature. Bold values are minimum values among our model
conditions.

Conditions Metrics
Lphb Masking Lpo Note Rhythm PE HQ B Intervals RS Grade
× × × 0.30 (0.16) 0.22 (0.16) 0.94 (2.39) 0.62 (0.38) 0.42 (0.21) 1.38 (0.93) 4.77 (2.76)
√ × × 0.30 (0.17) 0.22 (0.15) 0.74 (1.77) 0.63 (0.41) 0.41 (0.23) 1.38 (0.91) 4.58 (2.28)
× √ × 0.31 (0.20) 0.23 (0.12) 0.0 (0.0) 0.65 (0.38) 0.54 (0.33) 1.52 (2.11) 4.19 (2.47)
√ √ × 0.36 (0.23) 0.21 (0.10) 0.0 (0.0) 0.69 (0.39) 0.68 (0.42) 1.40 (0.77) 4.25 (1.31)
× × 0.2 0.29 (0.16) 0.21 (0.09) 1.00 (2.60) 0.61 (0.36) 0.41 (0.19) 1.30 (0.81) 4.72 (2.94)
× × 0.5 0.31 (0.18) 0.21 (0.14) 0.67 (1.56) 0.61 (0.36) 0.40 (0.19) 1.33 (0.86) 4.42 (1.94)
× × 1.0 0.30 (0.17) 0.20 (0.11) 0.76 (2.24) 0.59 (0.37) 0.40 (0.19) 1.26 (0.61) 4.40 (2.43)
× × 2.0 0.31 (0.17) 0.21 (0.10) 0.69 (1.86) 0.61 (0.37) 0.40 (0.20) 1.33 (0.72) 4.46 (2.27)
√ × 1.0 0.31 (0.18) 0.20 (0.09) 0.52 (1.3) 0.63 (0.42) 0.40 (0.20) 1.28 (0.63) 4.27 (1.61)

Bach [31] 0.27 (0.15) 0.25 (0.16) 0.30 (0.88) 0.57 (0.32) 0.40 (0.21) 1.43 (0.92) 4.14 (1.60)
JS Fake [6] 0.29 (0.14) 0.17 (0.07) 3.91 (4.01) 1.03 (0.77) 0.37 (0.16) 1.12 (0.40) 7.73 (4.43)

4.4 Effect of Losses

To investigate whether the suggested loss terms are effective, we conducted an ablation
study of prohibition loss and pitch onset loss. As we mentioned earlier, we selected
PFBBN as the baseline to apply the loss. Since the voice intervals except bass (S, A, T)
are not significantly different among the conditions, we omit the column in the result
table 2.

For prohibition loss, we experimented with λphb = 1k, which yields the lowest par-
allel error in our preliminary experiment. Rule-based parallel masking was also com-
pared with the condition using λphb. Similarly, we tested the effect of the pitch onset
loss with λpo = 0, 0.2, 0.5, 1.0, 2.0. The results are shown in Table 2. The result shows
that parallel prohibition loss helped to reduce parallel errors but could not completely
avoid them. This is also partially due to the fact that the training data itself does not per-
fectly exclude parallel motion. For the pitch onset loss experiment, we found that using
λpo = 1.0 results in the best performance for most of the metrics. The combination of
prohibition loss and the pitch onset loss showed the best performance, which is nearly
similar to the metric of Bach’s original corpus.
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Table 2 reveals that our rule-based masking method can effectively eliminate par-
allel errors during inference. However, this approach also resulted in a degradation of
the metric for harmonic quality or bass intervals, as the model must sample lower-
probability pitches to avoid producing parallel fifths. The most significant impact is
observed in the Wasserstein distance of the bass interval, as the bass voice is influenced
by three preceding voices, resulting in a more densely constrained inference process.
Therefore, rule-based hard masking has to be carefully considered.

5 Conclusion

In this paper, we suggested a music theory-based novel loss term and applied it to
the Bach chorale generation. Using the previously suggested quantitative evaluation
metric, we showed that the model can generate chorales in quality that follow a similar
distribution of musical characteristics as Bach’s corpus. We found that the suggested
loss terms could improve the sample quality of generated chorale in terms of parallel
errors, which was one of the main critical limitations of previous chorale generation
models.

For further study, we will continue investigating the effect of voice order and pitch
augmentation to improve the generated sample quality. Also, we can apply other well-
known prohibitions such as concealed fifth and voice crossing into our prohibit loss
term. Although our current work only studied hard prohibition (strict prohibition), soft
prohibition is another topic of imposing the rule to the model.
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