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Abstract. In this paper, we address a system that generates a bass line from a
chord backing played on the electric guitar in an audio-to-audio manner. Yield-
ing bass lines for guitar chord backings would be helpful for amateur musicians
composing band music. Conventional music arrangement systems targeted MIDI-
like symbolic music representations, but accurately obtaining symbolic represen-
tations from guitars takes work. To solve this problem, we attempt an audio-
to-audio approach; Once the user gives an audio recording of the guitar’s chord
backing, the system extracts some audio features (spectrogram, mel-spectrogram,
or chromagram) and then generates an audio signal of bass lines using a convo-
lutional neural network. The experimental results showed that the model with
chromagrams generates bass lines the most robustly.
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1 Introduction

The electric guitar is one of the central instruments in light music, especially in band
music. Therefore many amateur guitarists enjoy playing in a band. When they try to play
their original songs in a band, a particular member (such as the guitarist) often composes
a melody and a chord progression. They often collaboratively decide the phrases of in-
strumental parts (e.g., bass, drums). However, it is a challenging task because it requires
musical knowledge, like typical phrases of each instrument. If the phrases of each in-
strument part can be automatically decided on a computer and the band members can
listen to them, creating original songs may be more efficient.

Most of the existing studies on automatic music arrangements have been for the
piano, such as piano arrangement from band or orchestra pieces[1, 2] and score reduc-
tion of piano pieces for beginners[3]. Although some studies targeting guitar, most of
them are systems for arranging solo guitar scores, such as generating solo guitar scores
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from orchestral scores[4]and from audio signals[5]. No research has been done on band
arrangements that add drums, bass, or other sounds from the guitar sound.

Our goal is to develop a system that automatically makes band arrangements for a
given song. This system is intended to be used by people who can play a simple backing
for their original song on the guitar but cannot create phrases of other instruments, such
as the bass and drums. As the first step, this paper addresses a system that generates a
bass line for a given chord backing played on the guitar.

Most existing systems of music arrangement use MIDI-like symbol music represen-
tations, but it is not easy to accurately obtain a symbolic representation from recordings
of guitar performances (Although there are commercial products of MIDI guitars, their
audio-to-MIDI conversion is not necessarily accurate). We, therefore, adopt an audio-
to-audio approach in which both inputs (guitar backings) and outputs (bass lines) are
audio signals.

2 Proposed Method

Given an audio signal of a chord performance played on the electric guitar, our method
generates an audio signal of a bass performance that fits the given guitar performance.
For simplicity, the tempo and length are fixed (120 BPM and four measures in the
current implementation). First, the given guitar signal is converted to a feature repre-
sentation (i.e., spectrogram, mel-spectrogram, or chromagram). Then, it is segmented
by 0.5 seconds, and each segment is input to a convolutional neural network (CNN),
which generates a bass spectrogram. Finally, the bass spectrogram is converted to an
audio signal. To train the CNN model, we use a pairwise dataset consisting of guitar
feature representations and bass spectrograms.

2.1 Calculation of the spectrogram of the input sound source

The spectrogram is computed from a given guitar audio signal(and the bass source when
learning) using the short-time Fourier transform (STFT) after downsampled to 22050
Hz. The Hann window is used. The window size is set to 2048, and the hop size is set
to 1/1000 of the sampling frequency.

2.2 Feature extraction

We attempt three different feature representations:

– Spectrogram: The amplitude spectrogram obtained in Section 2.1 is used without
conversions.

– Mel-spectrogram: This is calculated from the spectrogram using Librosa.
– Chromagram: This is also calculated from the spectrogram using Librosa. The hop

size for the chromagram is set to 512.

Below, the models with a spectrogram, a mel-spectrogram, and a chromagram are called
the STFT model, Mel model, and Chroma model, respectively.
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2.3 Generation of bass spectrogram

The feature representation (spectrogram, mel-spectrogram, or chromagram) of the given
guitar signal is converted into a spectrogram of a bass performance using a CNN model,
because CNNs are widely used for analyzing spectrograms[6–11]. Our CNN model
(Figure 1) consists of convolution layers and deconvolution layers as follows:

Convolution layers For the STFT model, the convolution layers consist of:

– 1st layer: The frequency axis of the guitar’s feature representation is compressed to
one dimension. The input spectrogram of dimension 1025 × 500 (frequency axis:
1025, time axis: 500) is compressed to a 1× 500 matrix with a 1025× 1 filter.

– 2nd layer: The 1× 500 matrix is compressed to a 1× 250 with a 1× 2 filter.
– 3rd layer: The 1× 250 matrix is compressed to a 1× 50 with a 1× 5 filter.
– 4th and later layers: A 1 × 2 filter and a 1 × 5 filter are alternately applied until a
1× 5 matrix is obtained.

The number of filter channels in each layer is 1024. The stride is 1.No padding is used.
A ReLU function is used for the activation.

For the Mel model, the filter size for the 1st layer is 128×1 because the input matrix
size is 128× 500. Apart from this, the same configurations are used.

For the Chroma model, the following convolution layers are used:

– 1st layer: The 12× 22 chromagram is compressed to a 1× 22 (filter size: 12× 1).
– 2nd layer: The 1× 22 matrix is compressed to a 1× 11 matrix (filter size: 1× 2).
– 3rd layer: The 1× 11 matrix is compressed to a 1× 2 matrix (filter size: 1× 5).

Deconvolution layers The set of deconvolution layers generates a bass spectrogram
independently of the feature representation used for guitar signals. It consists of:

– Multiple decomposition layers with filter sizes of 1× 5 and 1× 2 are alternatively
applied. These layers converts a 1×5 matrix (a 1×2 matrix for the Chroma model)
to a 1× 500 matrix.

– After that, a deconvolution layer expanding the frequency axis is applied. This layer
has a filter size of 1025×1, which converts a 1×500 matrix to a 1025×500 matrix.
This matrix represents a bass spectrogram.

2.4 Generation of the bass’s audio signals

The audio signal of the bass part is obtained by using inverse Fourier transform and
phase restoration on the spectrogram generated from the CNN. The Griffin-Lim algo-
rithm is used for phase restoration. The number of iterations is 32, the window size is
2048, and the hop size is 1/1000 of the sampling frequency. To reduce impulsive noises,
we use harmonic percussive source separation (HPSS) because impulsive noises are
similar to percussive sounds.
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(a) For the STFT and Mel models

(b) For the Chroma model

Fig. 1. Architecture of the CNN model. The numbers above the rectangles represent the shape of
the data, and the numbers above the arrows represent the shape of the filter. Right-pointing arrows
indicate the convolution layer and left-pointing arrows indicate the inverse convolution layer.

3 Experiment

We conducted an experiment to confirm whether an appropriate bass sound can be gen-
erated in several conditions.

3.1 Dataset

We made MIDI sequences that consisted of the guitar chord performances and bass
lines using Cakewalk by BandLab. For simplicity, we only used four-bar chord pro-
gressions that consisted of one chord per measure. The guitar and bass performances
are a sequence of eighth notes (for the bass, root eighth notes). Those MIDI sequences
were converted to waveforms using software synthesizers (sforzando for the guitar and
SI-Bass Guitar for the bass, included in Cakewalk by BandLab). The tempo for all se-
quences was set to 120 BPM. Based on these criteria, 20 pairs of guitar and bass signals
were created. These pairs include those of the same chord progression but with different
voicings. An example is shown in Fig.2. Out of them, 10 were allocated for training and
10 for testing.

3.2 Experimental conditions

The following three conditions were set.
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Fig. 2. Examples of guitar and bass scores created
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Fig. 3. Condition 1: F0 of generated bass lines with the Chroma model and the ground truth (Left:
CDmEmD, the lowest accuracy; Right: EmAmFG, the highest accuracy)

Condition 1 The chord progressions or voicings are different between the training and
test data, but all conditions in generating audio signals are the same.

Condition 2 In addition to Condition 1, the acoustic features are different between
the training and test data. Specifically, a low-pass filter (setting: −3dB per octave
increase) was applied to the test data.

Condition 3 The training data were those described above, while the test data was a
recording of a performance by the first author on a real guitar. It was recorded using
M-Audio’s M-Track.

The generated bass signals were evaluated by calculating the ratio of correct frames.
When the difference of the fundamental frequency (F0) at each frame from the signal
given as the ground truth is lower than 50 cents, that frame is regarded as a correct
frame. This ratio is called accuracy here. We also calculated octave-ignored accuracy,
in which the difference of 1200 cents was considered correct.

3.3 Experimental results

The experimental results, listed in Table 1, can be summarized below1.

Experimental condition 1 The model with the highest average accuracy, both with
and without octave ignorance, was the Chroma model, and the model with the lowest
average accuracy was the Mel model. When the octave is not ignored, the Mel model

1 Audio samples are available at: https://sites.google.com/kthrlab.jp/
cmmr2023-kouzai
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Table 1. Accuracy and Octave-ignored accuracy for each test data

Condition Filename Accuracy Octave-ignored accuracy
STFT Mel Chroma STFT Mel Chroma

Condition1 A♯CDmEm voicing 0.37 0.32 0.66 0.55 0.65 0.83
EABmC♯m voicing 0.39 0.20 0.64 0.48 0.29 0.67
CDEmAm voicing 0.39 0.49 0.53 0.53 0.57 0.81
GABmD voicing 0.55 0.54 0.62 0.62 0.56 0.77

GCDEm 0.58 0.56 0.62 0.76 0.57 0.83
CDmEmDm 0.42 0.21 0.17 0.66 0.26 0.77

DmEmAmEm 0.57 0.40 0.32 0.65 0.40 0.84
EmAmFG 0.59 0.39 0.81 0.69 0.42 0.87
AmFGC 0.70 0.54 0.79 0.81 0.58 0.88

FAmGDm 0.58 0.35 0.63 0.69 0.38 0.90
Average 0.51 0.40 0.58 0.65 0.47 0.82

Condition2 A♯CDmEm voicing 0.29 0.26 0.58 0.53 0.58 0.78
EABmC♯m voicing 0.22 0.26 0.62 0.27 0.41 0.75
CDEmAm voicing 0.17 0.30 0.51 0.29 0.43 0.82
GABmD voicing 0.28 0.49 0.67 0.34 0.51 0.74

GCDEm 0.24 0.31 0.52 0.32 0.34 0.78
CDmEmDm 0.15 0.11 0.23 0.20 0.10 0.85

DmEmAmEm 0.23 0.17 0.22 0.27 0.18 0.85
EmAmFG 0.35 0.26 0.68 0.43 0.28 0.88
AmFGC 0.17 0.35 0.76 0.21 0.39 0.79

FAmGDm 0.41 0.42 0.58 0.43 0.46 0.83
Average 0.25 0.29 0.54 0.33 0.37 0.81

Condition3 CDEmAm Audio 0.20 0.09 0.35 0.21 0.11 0.69

The name of the test data represents the chord progression. The same chord progression used for
training, but with different voicing, was given ” voicing”.

had the lowest accuracy among the three models in 6 out of the 10 data. When the
octave is ignored, the Mel model had the lowest accuracy among the three models in 8
out of the 10 data.

Looking at Figure 3, which shows generated bass lines’ F0 with the highest and
lowest accuracy in the Chroma model, we can see that F0 is moving up and down.
This is because the estimated F0s often contain double-pitch errors. In fact, the octave-
ignored accuracy for these data is 0.77 and 0.6, respectively. For data containing three or
more minor chords, the STFT model showed higher accuracy than the Chroma model,
but again, the octave-ignored accuracy was high with the Chroma model.

Experimental condition 2 As in Condition 1, the model with the highest average
accuracy with and without octave ignorance was the Chroma model. Especially for
the Chroma model, the average accuracy was almost the same as for Condition 1. On
the other hand, the model with the lowest average accuracy with and without octaves
ignorance was the STFT model.
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Fig. 4. Condition 2: F0 of generated bass lines with the Chroma model and the ground truth (Left:
DmEmAmDm, the lowest accuracy; Right: AmFGC, the highest accuracy)
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Fig. 5. Estimation of the fundamental frequency of CDEmAm audio in the lowest accuracy Mel
model and the highest accuracy Chroma model

Compared to Condition 1, the average accuracy for the STFT model dropped by
more than 0.2, while the average accuracy for the Chroma model did not drop as much.
This would be because the chromagram is a robust feature to timbral changes caused
by the low-pass filter. Compared to Condition 1, the accuracy for data with many minor
chords was lower for all models, especially for the STFT model; the accuracy dropped
to less than half of the accuracy in Condition 1.

Figure 4 showed that the F0 fluctuates less up and down than in Condition 1. In-
stead, for DmEmAmEm, the double pitch was stably estimated. This is why the octave-
ignored accuracy is high (0.85) while the accuracy is low (0.22).

Experimental condition 3 Although the accuracy was lower than in conditions 1 and
2, the model with the highest accuracy was the Chroma model, while the model with
the lowest accuracy was the Mel model. The Mel model generated no harmonic tone in
the first two measures. Because there were no harmonic tones, the F0 estimator showed
erroneous values, as shown in Figure 5. This is why this model showed the lowest
accuracy. With the Chroma model, bass-like harmonic tones were generated but were
slightly distorted. This distortion caused double-pitch errors in F0 estimation; in fact,
the accuracy and octave-ignored accuracy had a large difference.
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4 Conclusion

In this paper, we proposed a method for generating bass signals from given guitar sig-
nals using a convolutional neural network. The experimental results show that the accu-
racy of the model using the chromagram is the best in all conditions, while the accuracy
of the model using the mel-spectrogram and STFT is considerably low for guitar signals
with a low-pass filter.

However, these models have been tested only with simple bass lines that consist
of only root notes. To enable to generate more complex bass lines, the models need to
learn various bass lines, ranging from rhythmic to melodious ones, played in real songs.
To achieve this, we must consider longer contexts in the models. Therefore, we would
like to extend our models, for example by increasing context layers.
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