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Abstract. This paper presents two strategies to prevent the pitch embeddings
from being too close to the dataset characteristics so as to improve the pitch and
pitch class distributions of generation. The first strategy is to switch the pitch rep-
resentation from the MIDI number representation to an alternative representation
that encodes a pitch into pitch class and octave, which forces musically similar
pitches to share part of the embedding vectors. The second strategy freezes the
pitch embeddings during training according to the proposed metrics that evaluate
the quality of pitch embedding space, maintaining the robustness of the embed-
ding obtained in the first strategy. The experiments show that, when both strate-
gies are applied on the training in an auto-regressive melody generation task, the
generated samples exhibit slightly improved pitch distribution but noticeably im-
proved pitch class distribution, indicating the effectiveness of both strategies.
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1 Introduction

The selection of an appropriate input music representation has been one of the key
challenges in designing neural sequence models for symbolic generation, as multiple
types of musical features must be serialized into sequences. Early MIDI event-like input
representation (e.g. [26, 22]), suffered from the issues of being long and redundant to be
handled by neural sequence models, and being implicit for models to reconstruct basic
musical features (e.g. duration and metrical structures) [12]. Since then, solutions have
been proposed to overcome these two problems, including applying constraints to the
input representation using musical domain knowledge.

The REMI representation [13] uses the domain knowledge to recommend explicitly
encoded durational and metrical features instead of MIDI-like note-on/note-off events,
for a transformer to better capture durational and structural features on a sequential rep-
resentation. The Compound Word representation (CPW) [11] improved the length limit
and generation quality by shortening the input sequence length, based on the domain
knowledge that tokens of the same type of musical features should be placed and treated
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similarly in the input. The recent Music Fundamental Embedding (MFE) [10] avoids
a type of generation failure by treating pitch, duration and metric position features as
numeric features to ensure consistency of the implied relative musical features in the
embedding space. We notice that the general approach here is to apply domain knowl-
edge constraints on the model input such that the explicitness can benefit the model in
capturing specific features related to the domain knowledge.

Comparatively, pitch feature domain knowledge constraints are less researched in
symbolic music generation, with most models using the simple MIDI number encod-
ing for input. Also, the current generation systems still struggle with capturing slightly
complicated pitch and harmony features. For instance, the generated music usually lack
a clear key center, without clear harmonic tension and releases. However, in discrimi-
native tasks, such as chord estimation, music style clustering and automatic harmonic
analysis [17, 6, 31], the pitch class feature is used more often than MIDI pitch number,
indicating its effectiveness in capturing pitch-based features. Therefore, we consider the
concept of pitch class important in the generation task as well.

It is therefore hypothesized that using pitch class and octave for the pitch feature
would improve the learned pitch representation and the generation pitch and pitch class
distribution by preserve more pitch proximity in the embedding space. First, an auxil-
iary metric SLD is proposed for the evaluation of pitch embedding space. The hypoth-
esis is then evaluated through two experiments. Experiment 1 tests whether pitch class
and octave can improve the pitch distribution compared to MIDI number encoding. Ex-
periment 2 is based on the results of experiment 1, testing if freezing the pitch embed-
dings according to the SLD metric maintains high pitch performance during training.

In experiment 1, a Transformer-XL model is trained for melody generation under
the two different pitch encoding methods multiple times with different pitch-unrelated
hyper-parameters. Results show that melodies sampled from the group of models using
class-octave encoding have better pitch and pitch class distributions compared to the
MIDI-number encoding group. Also, the evaluation of SLD metric on the corresponding
metric space is consistent with the pitch and pitch class performance in generation.

Although the class-octave pitch encoding outperforms the other, it exhibit a behav-
ior of deterioration over epochs which is more obvious than the MIDI number encod-
ing. Correspondingly, the SLD metrics of most class-octave models are observed to
have reached an local minima when the the model at the best pitch performance. There-
fore, in experiment 2, the best model of Experiment 1 is trained multiple times but the
pitch embeddings are frozen at different epochs, respectively. The results reveal that the
models whose pitch embeddings are frozen near the local minima of the SLC metric
has better performance over longer training.

The outcomes of the two experiments show the effectiveness of the pitch class and
octave constraints on the pitch representation, which informed the development of two
practical pitch training strategies presented in this paper.

The rest of the paper would begin by a brief review of the previous methodologies
in Section 2, followed by proposed methods in Section 3. The experiment and results
are discussed in 4 and 5.
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2 Related Work

2.1 Pitch representations

The one-hot representation is a widely used pitch representation in the literature [1,
14]. It does not assume any pitch structure or proximity, as all the one-hot pitch vectors
are equidistant. However, Mozer [24] argued that equidistant one-hot pitch vectors are
problematic for music generation. Mozer proposed a novel pitch representation called
PHCCCF based on the spiral model by [25] and psychoacoustic experiments in 1979
[15, 16]. In PHCCCF, pitch vectors are closer in euclidean distance if they are closer as
perceived by ears. While Mozer’s results has been able to learn some structure of dia-
tonic scales [1], the psychoacoustic experiments were limited to isolated pitches without
musical context, making the pitch representation less generalizable to music generation,
where musical context is vital. In this work, we use the concept of pitch class and oc-
tave (both having been used in PHCCCF) but stick to the embedding representation
learned through back propagation rather than static representation. To the best of our
knowledge, PiRhDy [19] is the only recent music generation work that employed pitch
class and octave, but the authors did not provide a comparison with the MIDI number
encoding. Therefore, our work should be the first to compare these two different pitch
encodings.

Alternative pitch encodings with domain knowledge have also been used in the sym-
bolic music domain, but less frequently used in symbolic music generation. The tonnetz
representation, proposed by Euler [7] in 1739, arranges pitch classes along major third,
minor third, and perfect fifth dimensions. It has been successfully used for both fea-
ture extraction [3] and generative modelling in [20], but lacks smooth presentation of
voice leading (namely the semitone or major second movements). Pitch classes are also
effectively adopted in some discriminative tasks, e.g. chord classification[17] and style
clustering [6, 31], but pitch-class-only representations ignore octave information needed
for precise pitch description in generation tasks. This work, as a result, combines the
pitch class and the octave feature for comparison with the MIDI-number encoding.

2.2 Word Embedding Training Strategies

Word embedding suffers from the representation degeneration problem [8], i.e. the em-
bedding vector distribution is gradually distorted into a narrow cone shape, increasing
the similarity of the word vectors with decreasing performance. [30] explained that rare
token embeddings are pushed by their gradients away from the non-rare tokens, caus-
ing degeneration. Our observations, likewise, show that the pitch embedding space is
biased towards the imbalanced pitch and pitch class distributions in the dataset. To pre-
vent degeneration, [30] proposed a gradient gating strategy that freezes the rare tokens
at early training, inspiring our strategy two.

Regarding poor numeracy performance of word embedding in language models
[27], Gorishniy et al [9] demonstrated the advantages of using piecewise linear encod-
ing (PLE) and sinusoidal activation functions (PAF) for numerical feature embedding.
The FME [10], adopted an similar embedding scheme to embed pitch, duration and
position features, ensuring the consistency of relative musical features such as intervals
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and durations in the embedding space. Instead of enhancing the pitch feature numeracy,
this work studies the robustness brought by periodicity of pitch class and octave.

3 Methods

3.1 Pitch Encodings
In the commonly used music representations, (e.g. the MIDI event representation and
the REMI representation), a pitch is encoded as a single token, indexed by the MIDI
number, which we refer to as the MIDI number encoding. Being represented by one-hot
vectors before embedding, the pitch vectors contain no domain knowledge information
about frequency or pitch height as the dimensions are isotropic. This encoding is the
baseline encoding.

The class-octave encoding is an alternative pitch encoding, which is less used in
generation models [19] but more common in discriminative tasks as part of the input
features [17, 6, 31, 18, 2]. It encodes a pitch to its pitch class (0 to 11) and the pitch
octave number (0 to 9, if considering the highest valid MIDI pitch). If this encoding is
used in a sequential music representation, a pitch is represented by two separate tokens
in the sequence: the pitch class token (p mod 12) followed by an octave token

⌊ p

12

⌋
.

For instance, the pitch 60 (C4) is encoded into token p0 and o5, corresponding to two
different embedding vectors, respectively.

What is unique to about the class-octave encoding is its robustness to the slight
pitch shifts, which manifests the proximity in listening experience before and after the
shift. The pitch class-octave encoding is experimented to be compared with the baseline
encoding because it has a much smaller vocabulary size (12 + the number of octaves
to be encoded), which reduces the chances of over-parameterization. The pitch class-
octave encoding also explicitly provides the constraints on the translational invariance
for octaves (δ = 12), i.e. all pitches that are octaves apart from each other share the same
pitch class vector. Hence, it is expected to result in pitch embeddings that outperforms
that of the MIDI number encoding.

3.2 Freezing Pitch Embedding in Early Training
The decreasing trend of the pitch performance over epochs suggests the possibility of
deterioration of the pitch embeddings. As proposed in [30], freezing the rare token
embeddings at early stage can alleviate the performance decline by preventing the em-
bedding degeneration problem. In the music generation task of interest, most datasets
have imbalanced pitch and pitch class distributions. Likewise, if the pitch embeddings
are frozen at the optimal state, the resulting pitch performance is expected to be better.
Hence, freezing the pitch embeddings at different epochs of training is investigated.

3.3 Metrics
This study employs two kinds of evaluative metrics to examine whether the proposed
strategies effectively alleviate the pitch performance issue caused by imbalanced pitch
(and pitch class) distribution in the dataset. The first kind evaluates the pitch embedding
space itself and the other kind focuses on the generation quality, particularly about pitch.
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Embedding Space Evaluation Metrics In order to obtain consistent embedding repre-
sentations for intervals, (i.e. relative pitch features), the pitch vectors in the embedding
space must follow certain constraints about intervals. According to FME [10], all the in-
terval vectors {pi+δ − pj+δ|δ ∈ Z} that represent the same pitch distance |i− j| must
have the same magnitude. As is not satisfied in most existing generation systems, this
constraint is too strict. Therefore, we propose SLD, a metric that loosely measures the
violation of such constraints. The Standard deviation of L2 Distances of pitch vectors3

in the embedding space is defined as follows:

SLD(P) :=

δmax∑
δ=1

[
Std

i=1..n−δ
(|pi+δ − pi|)

]
. (1)

This metric penalizes the differences in magnitudes for all pitch vectors whose differ-
ence vector represents the interval of δ semitone. δmax is empirically set to 24 here for
two octaves, since intervals larger that are likely to have more different auditory expe-
riences depending on the actual pitch height [23]. A better pitch embedding space is
expected to have a lower SLD.

Generation Quality Evaluation Metrics (for Pitch) Admittedly, it is not practical
to conduct a subjective listening test when the many models are experimented, also
because the differences in the generated pitch distributions can be subtle to human au-
diences. Hence, objective metrics are adopted to evaluate the pitch performance in the
generated samples. That is, the entropy of pitch class distribution H(PC), and for pitch
H(P), as used in [28, 5]. These two metrics can accurately capture the lack of pitch di-
versity, or the repetition of very limited pitches when the H(P) is lower than that of the
dataset, while H(PC) is an octave-agnostic version of H(P). The H(P) and H(PC) distri-
butions of the test dataset are first approximated by Gaussian Kernel Density Estimation
(KDE), and then compared to the KDEs of generation distributions. The overlapping
area (OA) [29] between the fake and the true is used to score the generation quality,
with the higher OA being the better.

4 Experiment Setup

4.1 Dataset

A cleaned version of the Wikifonia dataset4 is used. Specifically, we only keep the
songs with constant 4/4 time signatures. The training set (90%) contains 3,861 songs,
and 429 songs for the test set. Note that quite a number of songs have modulations (key
changes), so we do not do any kind of transposition for dataset balance as it will not
completely balance the distribution. The imbalanced pitch class distribution is plotted
in Figure 1. As can be seen, The frequent pitches come from the C major scales, the rest
being rare in both subsets. The pitch class entropy H(PC) of the train set and dataset are

3 The pitch vectors must be z-score transformed before SLD calculation, so as to eliminate the
influence of the scaling along different dimensions

4 http://www.wikifonia.org

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

90



0.05

0.10

0.15

Db Ab Eb Bb F C G D A E B F#
Pitch Classes

P
ro

b.

subset

test

train

Dataset Pitch Class Distribution

Fig. 1: Pitch Class Distributions of the Training Set and the Test Set

3.370 and 3.376 bits, respectively. Hence, the H(PC) of generated melodies should also
be close to this dataset average value.

4.2 Data Representation

The input music representation resembles the REMI representation [13] because of
the usage of duration, bar and position tokens. However, the features chord, tempo and
velocity that are defined in REMI are ignored. In this work, the vocabulary set is formed
by pitch, octave (if used), duration, bar and position tokens5. We also vary the beat
resolution settings, allowing for the identification of consistent patterns in the model
performance and a more robust analysis of the results.

4.3 Model and Training Specifications

A 4-layer transformer-XL network (proposed by [4] as used in [13, 28]) is employed
to generates melodies in a next-token-prediction manner. The parameter size of the
network is also cut down to 4M from the original, 12-layer model of 150M parameters
in order to reduce the risks of over-fitting on such a small symbolic music dataset.

The experimented models in this work share most of the training hyper-parameters,
including the cross-entropy loss, 0.9 to 0.1 train-test split, the optimizer AdamW [21],
the learning rate 8e-4, batch size 32 and the number of epochs. Since the Transformer-
XL architecture does not have a limit on the sequence length, the training sequence
length is set to 1,024 tokens chunked into 8 segments of 128 tokens. The model is saved
at the end of each epoch. Top-k sampling (at k = 5) and softmax temperature τ = 1.0
is used for inference. For each model, 128 melodies are (unconditionally) sampled to
evaluate the generation quality. However, only 512 tokens are sampled for each melody
since longer sequences seem to be repetitive at the end.

5 Miscellaneous tokens include a REST for silence that comes before duration, and PAD that
pads the sequence

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

91



5 Results and Discussions

5.1 Experiment 1 - Comparison of Pitch Encodings

In this experiment, models are trained in pairs for token-by-token melody generation,
teacher-forced. The two models in each pair share the common dataset, model archi-
tecture and only differ in the pitch encoding of the data representation: one uses the
MIDI number encoding and the other uses the class-octave encoding. 24 pairs are set in
order to compare the performance of two pitch encodings in different hyper-parameter
configurations (e.g. the beat resolution).

Generation Result Metrics 128 melodies are sampled from each model for evaluation.
The distributions of pitch entropy (H(P)) and pitch class entropy (H(PC)) are calculated
for all the samples for each models. The overlapping area between the generation dis-
tribution KDE and the test dataset KDE are obtained to represent the performance of a
model on a specific metric. Higher values are better.

Wilcoxon, p = 0.021
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Fig. 2: Paired Box Plots of Model Performance Scores on Two Objective Metrics,
Grouped by Pitch Encoding Used.

In Figure 2, each dot represents the generation metric distribution performance mea-
sured by OA of a model, grouped by the pitch encoding that the model uses. Line-
connected dots are pairs of models that only differ in non-pitch hyper-parameters. The
class-octave group on average outperforms the number group because of higher average
performance. Paired Wilcoxcon tests on show that, such mean differences are signifi-
cant (p = 0.021 for pitch, and p = 4.4× 10−5 for pitch class).

Note that there is a considerable gap between the two models with the highest OA
H(PC) , where the class-octave has model learned about 81% of the true H(PC) distri-
bution while the number pitch model only learned around 60%. This suggests that the
best performance on pitch class is dominated by class-octave encoding. However, the
best performance of the class-octave group on pitch is slightly inferior to the number
encoding, which is not surprising since the number-encoding pitch vectors have more
parameters directly fitted to pitch distributions more accurately.

Embedding Space Metrics The best model and the worst model judged by OA H(PC)
of each group are picked out, with their embedding space visualized in Figure 3. PCA
is used to reduce the dimensionality from 32 two the 3 primary components with the
largest variances for visualization purpose. However, the two number pitch visualiza-
tions are obtained from Uniform Manifold Approximation and Projection (UMAP)
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SLD: 0.09
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Fig. 3: The pitch / pitch class vectors are plotted as points, colored by pitch classes.
Red segments represent semitone relationship. Clear proximity between semitone pitch
vectors is shown in embedding spaces with low SLD values, but less clear when SLD is
high. The low SLDs are consistent with the actual best generation performance on both
pitch and pitch class.

since the large number of pitch vectors are crowded in the PCA results and can be
better clustered in the UMAP results. Note that when calculating SLD for class-octave
embedding spaces, we first take the sum of octaves to all the pitch classes to restore the
128 pitches6.

Overall, the visual differences between the best cases and the worst cases in Figure 3
suggest that pitch embedding space quality greatly contributes to the model perfor-
mance on pitch performances. The two best cases demonstrate the success of modelling
pitch distributions in early finished instances (because of other hyper-parameters e.g.
beat resolution, that affects the model’s learning ability before over-fitting happens),
while the two worse cases show how the embedding space deteriorates over epochs.

6 Summation is just one way to approximate the vector representation of the pitch feature, under
the assumption that the embedding vectors are semantic and they follow the analogy property
of word embedding. However, this can lead to different expected ranges of SLDs from that
of the number pitch vectors, because the vector differences cancel out octave vectors if the
two pitches are from the same octave. After all, this approximation error does not change the
overall trend of SLD, which is of interest, since the error is only on the formula.
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By comparing Figure 3a with 3c, and 3b with 3d, the class-octave encoding shows
strong robustness and the embedding spaces suffer much less from the rare-token de-
generation problem. That is, in MIDI number encoding, the lowest and the highest
pitches are always rare tokens, regardless of the data augmentation methods such as
random transposition. As a result, the rare pitch tokens are pushed into a cluster during
the optimization (as demonstrated in [30]), resulting in worse pitch performance.

In contrast, for the class-octave encoding, the rare pitches are represented by only
a few octave tokens (e.g. o0 to o3, o8 to o9), and their pitch classes are no different
from that of the non-rare pitches because they share the pitch classes. The degeneration
problem can still be seen on the visualization (3d), i.e. {D♭,E♭, F ♯,A♭,B♭} these rare
pitch classes in this dataset (see Figure 1), are extruding out away from the non-rare
pitch classes, causing worse pitch performance.

To conclude, the class-octave encoding is an underrated pitch encoding in the sym-
bolic domain, outperforming the zero-domain-knowledge number encoding. It displays
stronger robustness and interpretablity. In addition, the results show that a low SLD is
a necessary condition of models being able to precisely capturing pitch and pitch class
distributions.

5.2 Experiment 2 - Freezing Pitch Embedding Space at Different Stages of
Training

This experiment validates the existence of the optimal state of the pitch embeddings by
freezing the pitch embedding vectors at different epochs of training and tracking the
their states (SLD and pitch performance).

The best set of non-pitch hyper-parameters7 used in experiment 1 was adopted.
Specifically, both the number encoding models and the class-octave model achieved
lowest test set loss around epoch 5, which ended way earlier than other models who
were trained for around 30 – 40 epochs, suggesting that further training the models is
prone to decreasing performance.

However, as previously discussed, the SLD of the number encoding model did not
decrease (or slightly decreased but rose very quickly at the beginning), which is a gen-
eral problem regardless of most hyper-parameter settings. Conversely, the SLD of the
best class-octave model decreased in the first 5 epochs and started to increase, reaching
the best OA H(PC) at epoch 5, too. Hence, this experiment is dedicated to class-octave
encoding where the SLD can decrease more noticeably at the beginning of training.

15 model instances were separately trained for 15 epochs from scratch (for bet-
ter reproducibility), except that every time the pitch vectors are frozen 1 epoch later
by zeroing out the gradients of pitch vectors. For each model, pitch embedding SLD
was evaluated at each epoch until frozen. Note that the embedding vectors would still
slightly change after frozen because of the existence of the projection layer between
embedding output and the transformer input, which was not frozen as it is shared by
all word vectors (including non-pitch vectors). In actual results, there was a very slight
increase in the SLD for models but they did not change the ranking of different SLDs.

7 Hyper-parameters: A beat resolution of 8 subdivisions per quarter note, a position grid similar
to REMI [13] but each bar now has 8 × 4 = 32 positions instead of 16 used by the authors.
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Metric Results Each of the trained models was evaluated at two states: Best, referring
to the epoch of lowest test NLL loss; Last, at the end of epoch 15. The embedding
metric SLD and pitch performance metric overlapping area OA H(PC) are listed in
Table 4a. Arrows near the metrics indicated whether the maximum or the minimum is
desired.

Freezing
Epoch

SLD
Best ↓

H(PC)
Last ↑

H(PC)
Best ↑

Best
Epoch

1 0.078 0.788 0.485 11
2 0.046 0.772 0.710 7
3 0.042 0.705 0.579 13
4 0.039 0.639 0.792 4
5 0.032 0.615 0.615 14
6 0.043 0.700 0.370 11
7 0.034 0.518 0.636 11
8 0.063 0.678 0.469 11
9 0.049 0.619 0.619 14

10 0.058 0.741 0.332 4
11 0.046 0.598 0.702 9
12 0.039 0.761 0.592 12
13 0.078 0.468 0.513 9
14 0.073 0.650 0.633 12
15 0.079 0.286 0.301 4

(a) The Embedding SLDs and Gener-
ation OA H(PC)s of 15 Models. SLDs
are measured at model reaching lowest
test error, not necessarily before or af-
ter the freezing moment.

123
4

5 6

7

89

10

11

12

13

14

15
0.3

0.4

0.5

0.6

0.7

0.8

0.03 0.04 0.05 0.06 0.07 0.08
SLD

OA H(PC) Last (Epoch 15)

1

2

3

4

5

6

7

8

9

10

11

12 13
14

15
0.3

0.4

0.5

0.6

0.7

0.8

0.03 0.04 0.05 0.06 0.07 0.08
SLD

OA H(PC) Best

5 10 15
Epoch to Freeze

(b) The plot traces the pair of both OA H(PC)
and SLD over epochs of freezing. Higher po-
sitions stand for better pitch class performance
while lefter positions for better embedding qual-
ity.

Fig. 4: Models with Pitch Vectors Frozen at Different Epochs

The 15 models display an interesting 3-phase training dynamics every 5 epochs.
– In phase 1, when frozen before epoch 5, the pitch embedding SLD decreased. The

OA H(PC) of the resulting best models climbed up, reaching the maximal perfor-
mance 0.79 at epoch 4. Models 1 to 4 at epoch 15 have OA H(PC) higher than 0.6,
suggesting that the pitch performance is maintained in longer training.

– In phase 2, freezing happened between epoch 6 and 9, when the SLD was higher.
Both last and best OA H(PC) slightly decreased, especially for the best models the
OA H(PC) dropped below 0.4.

– In phrase 3, from epoch 10 onward, the pitch performance became much more
unstable. The SLD for around epoch 13 to 15 quickly increases, with decreasing OA
H(PC). Also notice that the “best epoch” numbers below the dashed line in Table 4a
are all smaller than the freezing epoch, indicating over-fitting if pitch embeddings
were frozen later than epoch 10. Conversely, if freezing happened before epoch 10,
all except model 4 could last for longer training.

The results first suggest that it is effective to freeze pitch embeddings at low SLD
level to retain pitch performance at higher levels for both the best and the last mod-
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els. In addition, this strategy offers the benefit of being able to train a properly frozen
embedding longer before the model is over-fitted.

6 Conclusion
This paper presents two strategies aiming at improving the pitch performance of a sym-
bolic music generation model. Both involve incorporating domain knowledge that re-
stricts the pitch representation in terms of feature encoding and feature representation,
which effectively alleviate the problem of pitch performance deterioration. Strategy 1
introduces the concept of octave and pitch class, which preserves more pitch proximity
than the MIDI number encoding while strategy 2 maintains the advantage of strategy
1 according to the proposed SLD, a loose version of translational invariance property.
This study and also calls attention to the generation performance issues related to lack
of prior knowledge when designing music generation models. In futural works, the
authors plan to generalize such strategies for more advanced pitch features, such as
intervals and harmony, or other non-pitch musical features with similar constraints.
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