
Metadata Standards Catalog WG Final
Report

RDA Recommendation

DOI: 10.15497/RDA00085

Authors: Alex Ball, Keith Jeffrey, Rebecca Koskela, Metadata Standards Catalog WG

Published: November 2023

Version: 1.0

Abstract: The Metadata Standards Catalog Working Group continued the work of the Metadata Standards
Directory Working Group, to develop a directory that would enable researchers, and those who support
them, to discover metadata standards appropriate for documenting their research data. The particular goals
of this phase of work were to simplify the process of contributing to the Catalog for users, enrich the
information held to support more use cases, provide a machine-to-machine API, and provide a more flexible
basis for future enhancements. The Group collected user stories describing ways the Catalog might be used.
These were organized into a requirements specification that was used as the basis for developing the
Catalog Web application. The Catalog is now live and accepting contributions from the community. A
Metadata Standards Catalog maintenance activity continues under the umbrella of the Metadata Interest
Group. Further developments are planned, including support for analyzing metadata schemes through the
lens of the Metadata Interest Group’s concept of metadata packages.

Impact: The MSC is the continuation of Metadata Standards Directory and DCC Disciplinary Metadata
Catalogue, so it is anticipated that users and adopters of the earlier incarnations will migrate over to the
new Catalog in time. The following are examples of impact specific to the Catalog: (a) MSC has been adopted
by RDA as the output from MSCWG and currently is being used actively – it will be used as the data source,
and possibly the interface, for a tool proposed by the Metadata Interest Group for interconverting between
arbitrary standards; (b) the API is used to incorporate content from the MSC into the DCC’s DMPonline tool;
(c) the MSC and its API are used by the FAIRsFAIR project; (d) the MSC has been used as a research resource
by postgraduate students at the University of Victoria and Karlsruhe Institute of Technology.

Contribution to United Nations SDGs: Since the MSC helps researchers discover metadata standards
appropriate to their data, as well as the tools and assistance they need to apply those standards, it removes
barriers to describing research data with rich metadata. Any research contributing to the SDGs benefits
from the data FAIRness afforded by rich metadata. In this way, the MSC contributes indirectly to all the UN
SDGs, and most especially to those requiring the greatest data inputs, such as “Good Health and Wellbeing”,
“Climate Action”, “Life Below Water” and “Life on Land”.

Language: English

License: Attribution 4.0 International (CC BY 4.0)

RDA webpage: https://www.rd-alliance.org/group/metadata-standards-catalog-

wg/outcomes/metadata-standards-catalog-wg-final-report

Citation and Download: Ball, A., Jeffrey, K., & Koskela, R. (2023). RDA Metadata Standards Catalog

Working Group: Final Report (Version 1.0). Research Data Alliance. https://doi.org/10.15497/RDA00085

https://doi.org/10.15497/RDA00085
https://www.rd-alliance.org/groups/metadata-standards-catalog-working-group.html
https://creativecommons.org/licenses/by/4.0/
https://www.rd-alliance.org/group/metadata-standards-catalog-wg/outcomes/metadata-standards-catalog-wg-final-report
https://www.rd-alliance.org/group/metadata-standards-catalog-wg/outcomes/metadata-standards-catalog-wg-final-report
https://doi.org/10.15497/RDA00085

RDAMetadata Standards CatalogWorking Group:
Final Report

Alex Ball Keith Jeffery Rebecca Koskela

2019

All RDA Recommendations are under a Creative Commons Attribution
4.0 International (CC BY 4.0) and all authors, generators, contributors
and users of RDA Recommendations are governed by these licensing
regulations: http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

Contents

Executive summary 1

1 Summary of working group activity 2
1.1 Problem addressed . 2
1.2 Goals . 3
1.3 Developing the requirements specification 4
1.4 Developing the Catalog . 5

2 User Guide to the Catalog 8
2.1 Consulting the Catalog . 8
2.2 Contributing to the Catalog . 11
2.3 Using the public API . 14
2.4 Using the restricted API . 18

3 Developer Guide to the Catalog 22
3.1 Pre-requisite software . 22
3.2 Installing a local instance . 23
3.3 Version control . 24
3.4 Folder structure . 24
3.5 Coding conventions . 25
3.6 Application: serve.py . 25
3.7 Database control: dbctl.py . 27

4 Impact statement 28

5 Sustainability plan 29

6 Works cited 30

ii

Executive summary

The Metadata Standards CatalogWorking Group continued the work of the Metadata
Standards Directory Working Group, to develop a directory that would enable
researchers, and thosewho support them, to discovermetadata standards appropriate
for documenting their research data. The particular goals of this phase of work
were to simplify the process of contributing to the Catalog for users, enrich the
information held to support more use cases, provide a machine-to-machine API, and
provide a more flexible basis for future enhancements.

The Group collected user stories describing ways the Catalog might be used. These
were organized into a requirements specification that was used as the basis for
developing the CatalogWeb application.

The Catalog is now live and accepting contributions from the community. A Metadata
Standards Catalogmaintenance activity continues under the umbrella of theMetadata
Interest Group. Further developments are planned, including support for analyzing
metadata schemes through the lens of the Metadata Interest Group’s concept of
metadata packages.

1

1

Summary of working group activity

1.1 Problem addressed

The Metadata Standards Catalog (MSC) Working Group was the third in a series
of activities to develop a resource supporting the discovery and use of metadata
standards and application profiles appropriate for research data. It followed on from
the Metadata Standards DirectoryWorking Group, which in turn extended and built
upon work conducted by the UK Digital Curation Centre.

The problem addressed by all these activities is that all too many research datasets
are shared without adequate metadata. There may be no documentation at all. The
documentation may be provided only as unstructured text, rendering it prone to
incompleteness and misinterpretation; furthermore, such documentation demands
a level of human attention that does not scale in the context of data-intensive science.
Where structured metadata is provided, it may be in a format unrecognized by the
rest of the domain, or non-conformant to the specification it claims to follow.¹,²

The consequence of this is that the value inherent in shared research datasets cannot
be realized. High quality metadata is vital if datasets are to be efficiently and robustly
identified, discovered, contextualized, interpreted and reused.

In order to combat this, the mission of the Metadata Standards Catalog Working
Group and its predecessors was to develop a catalog of metadata standards and
profiles ensuring that researchers and research supporters would be able to

1. discover metadata schemes suitable for particular domains and types of data;

2. access specifications and other documentation explaining how those schemes
should be used;

3. discover software tools and libraries that help to create and process metadata
conforming to those schemes;

¹C. Tenopir, S. Allard, K. Douglass, A. U. Aydinoglu, L. Wu, E. Read, M. Manoff, and M. Frame, “Data
Sharing by Scientists: Practices and Perceptions,” PLoS ONE 6/6 (2011): e21101. doi: https://doi.org/
10.1371/journal.pone.0021101
²C.Willis, J. Greenberg, and H.White, “Analysis and Synthesis of Metadata Goals for Scientific Data,”

Journal of the American Society for Information Science and Technology 63/8 (2012): 1505–1520. doi:
https://doi.org/10.1002/asi.22683

2

https://doi.org/10.1371/journal.pone.0021101
https://doi.org/10.1371/journal.pone.0021101
https://doi.org/10.1002/asi.22683

4. consult example records conforming to those schemes, either as individual
files or in the context of a working data repository or other service.

The particular contribution of the Metadata Standards CatalogWorking Group was to
extend the previous work in various ways:

• to provide a greater level of detail than was previously collected, supporting
academic research into the development and history of metadata standards, as
well as practical implementation;

• to provide enhanced search capabilities;

• to provide an online editing interface to further reduce barriers to community
contributions to the catalog;

• to provide a machine-to-machine interface, allowing information from the
catalog to be used by (and potentially updated from) other services in the
e-research fabric;

• to provide a more flexible basis for further enhancements and developments.

As an example of the kinds of development this work aims to support, the ultimate
vision is for the MSC to be used as the data source, and possibly the interface,
for a tool proposed by the Metadata Interest Group for interconverting between
arbitrary standards via one or more metadata “packages.” These “packages” would
be groupings of metadata elements for particular purposes – such as discovery,
contextualization, or detailed connection of software to data – with the following
characteristics:

• Each element may be a structure instead of single-valued attribute.

• There are relationships between elements including those carrying referential
and functional integrity.

• Elements may belong to more than one package.

As well as being useful for constructing converters, the packages may form the
basis of novel presentations of schemas and specifications for metadata standards
within the MSC. They may also be useful for designing systems and considering new
standards.

1.2 Goals

The goal achieved by the Metadata Standards CatalogWorking Group was to produce
a catalog of metadata standards of relevance to research data. Specifically, the catalog
system consists of the following components:

• A set of records describing metadata standards.

The group interpreted “metadata standard” loosely, as a defined metadata
structure and format used independently bymultiple actorswithin a community.
Some metadata standards have formal standardization status but this is not
necessarily an indication of quality or utilization.

• A user interface for submitting information, searching, browsing and displaying
standards information.

3

• A machine-to-machine interface (API) allowing automated tools to submit
information, perform queries and retrieve information from the catalog.

In this sense the catalog is “machine readable.” The information provided
through the API is structured in such a way that the recipient machine will be
able to process and act upon it, and in this sense the catalog is also “machine
actionable.”

The code for the MSC is available from GitHub.³ The MSC itself was available initially
from the Digital Curation Centre domain, but has since been migrated to hosting at
the University of Bath.⁴

1.3 Developing the requirements specification

Since the aim of the group was to develop a new electronic resource, it was important
to begin by establishing what use cases the MSC should be addressing, and therefore
what the requirements for the MSC should be.

The Metadata Standards DirectoryWorking Group had collected a set of use cases as
part of its work program.⁵ These were adapted into a set of user stories⁶ and arranged
into four thematic groups:

• Properties by which to select records

• Additional properties to display

• GUI (Web page) functionality

• API functionality

Each user story consisted of a statement of the form, “As a <stakeholder>, I would like
to <interaction with the Catalog>, so that <benefit>,” and optionally an explanatory note.
It was assigned an identifier, title and a suggested priority (must, should, or could).

This list was discussed at Plenaries 6 and 7, and opened out to the wholeWorking
Group to extend and expand. The Working Group co-chairs reviewed the list in
mid-2016, combining or splitting use cases as appropriate and confirming the priority
each should be given. At the end of this process, a total of 26 user stories were listed.

The user stories were used to develop a formal requirements specification⁷ consisting
of the following sections:

• System description

• Data model (in outline)

• Functional requirements:

³https://github.com/rd-alliance/metadata-catalog-dev
⁴https://rdamsc.bath.ac.uk/
⁵A. Ball, J. Greenberg, K. Jeffery, and R. Koskela, RDA Metadata Standards Directory Working Group:

Final Report (Research Data Alliance, 2016), https://rd-alliance.org/group/metadata-standards-catalog
-wg/outcomes/metadata-standards-directory-wg-recommedations.html
⁶https://goo.gl/wFTwHM
⁷https://goo.gl/7bdSiz

4

https://github.com/rd-alliance/metadata-catalog-dev
https://rd-alliance.org/group/metadata-standards-catalog-wg/outcomes/metadata-standards-directory-wg-recommedations.html
https://rd-alliance.org/group/metadata-standards-catalog-wg/outcomes/metadata-standards-directory-wg-recommedations.html
https://goo.gl/wFTwHM
https://goo.gl/7bdSiz

– Search or browse (9 requirements)
– Display (10 requirements)
– Update (2 requirements)
– Compare (2 requirements)

• Non-functional requirements (4 requirements)

Again, each requirement was given a priority (must, should, or could); the re-
quirements were validated with reference to the corresponding user stories, and
dependencies between the requirements were noted.

These requirements were presented to theWorking Group at Plenary 8 for approval.

1.4 Developing the Catalog

A source code repository was set up on GitHub⁸ as the central focus for developing the
Catalog. Requirements from the specification were transferred into the repository’s
issue tracker so that progress against them could be monitored.

Some efforts were made to attract funding or volunteer effort to help with developing
the Catalog. In the end, the University of Bath generously donated the time of one of
the co-chairs for this purpose.

The first step was to devise a data model for the Catalog that could satisfy the
requirements specification, while also permitting straightforward migration of
information from the Metadata Standards Directory database and cohering with the
set of recommended metadata elements being developed by the Metadata Interest
Group. A summary of the eventual data model is provided in Tables 1.1 and 1.2.

Table 1.1: The entities of the MSC data model and their elements.

Metadata Scheme Tool Mapping Organization Endorsement

identifiers identifiers identifiers identifiers identifiers
locations locations locations locations locations
title title name
data types types type
description description description citation
versions versions versions
keywords creators creators date issued
samples date valid

It was decided to group all versions of the same entity under the same record, with
the aim of reducing human effort in maintaining the records at the expense of some
additional computational complexity. Therefore, for the entities with a “versions”
element, each version listed would have a version number and a date. Where the

⁸https://github.com/rd-alliance/metadata-catalog-dev

5

https://github.com/rd-alliance/metadata-catalog-dev

Table 1.2: Relationships between entities in the MSC data model.

Entity has… Entity

Metadata Scheme parent scheme Metadata Scheme
Metadata Scheme maintainer Organization
Metadata Scheme funder Organization
Metadata Scheme user Organization
Tool supported scheme Metadata Scheme
Tool maintainer Organization
Tool funder Organization
Mapping input scheme Metadata Scheme
Mapping output scheme Metadata Scheme
Mapping maintainer Organization
Mapping funder Organization
Endorsement endorsed scheme Metadata Scheme

properties of the entity varied between versions, these could be given at the version
level instead of the top level.

Another issue to considerwas the controlled vocabulary used for domain classification.
The Metadata Standards Directory had used a scheme based closely on that used
by the DCC Disciplinary Metadata Catalogue, which was in turn based on the UK
Joint Academic Coding System (JACS)⁹ with some custom high-level groupings.
The Working Group co-chairs felt that it would be better to use a vocabulary was
international in origin, and after examining some alternatives decided on the
UNESCO Thesaurus.¹⁰ The particular advantages of this were as follows:

• It had good coverage across a wide range of academic domains.

• It had terms at approximately the same granularity as JACS, making migration
from one to the other relatively straightforward.

• The terms had already been translated into various languages, potentially
aiding clarity internationally.

• Being a UN product, it avoided national bias.

• It had an RDF representation, making it easy to load into the Catalog system
with the hierarchy of terms intact.

The one adaptation made to the Thesaurus was to combine the groups, subgroups
and concepts into a single hierarchy.

Given that the Metadata Standards Directory was effectively using a NoSQL database,
in the form of four directories of YAML files, and the Catalog data model saw

⁹https://www.hesa.ac.uk/support/documentation/jacs/jacs3-detailed
¹⁰http://vocabularies.unesco.org/browser/thesaurus/en/

6

https://www.hesa.ac.uk/support/documentation/jacs/jacs3-detailed
http://vocabularies.unesco.org/browser/thesaurus/en/

version-level records nesting inside records at the intellectual entity level, it made
sense to continue with the NoSQL approach. A script was written, therefore, to
migrate the Directory YAML files into Catalog YAML files, and then compile the
Catalog YAML files into a (JSON-based) NoSQL database. Only a small amount of
human intervention was needed to handle cases where JACS terms did not map
cleanly to the UNESCO Thesaurus.

For the the development of the CatalogWeb application itself, it was decided to use the
Flask¹¹ microframework for Python.¹² Flask is well suited to rapid development and
is supported by a large number of plugins for specific tasks such as authentication,
authorization, and form handling. The Developer Guide below lists the Flask-specific
and generic Python modules chosen as dependencies.

As well as the formal requirements specification, development of the Catalog was
guided by the following considerations:

• To encourage as much community participation as possible, the barriers to
contribution should be kept low.

• Since this implies the barrier to abuse of the system would also be low, the
database should be version controlled so that vandalism can be reverted and
offending user accounts identified. There should also be a mechanism for
blocking users.

• To reduce security risks, the Catalog should hold a minimum level of personal
information about users, and should hold no user passwords or password
hashes. Authentication should be delegated to existing OpenID providers such
as the RDAWebsite.

Authenticating API clients via OpenID did not turn out to be practicable, so the
Catalog does handle password hashes for this subset of users. Version control of the
database turned out to be relatively straightforward since the database is stored on
disk as JSON.

The initial development of the Catalog application was completed in July 2017.
Subsequent to this, development effort concentrated on moving the Catalog into
production. The DCC kindly agreed to host the catalog, and the Working Group
co-chairs would like to acknowledge the assistance and support of Jimmy Angelakos
and Sam Rust in setting up and maintaining the first live instance. In early 2019, the
live instance was moved to hosting generously provided by the University of Bath
Library in order to simplify its ongoing maintenance.

The following User Guide and Developer Guide refer to the Catalog as it was at
the time of the migration. Since further developments are planned as part of the
maintenance activity, please check GitHub¹³ for the latest documentation.

¹¹http://flask.palletsprojects.com/
¹²https://www.python.org/
¹³https://github.com/rd-alliance/metadata-catalog-dev

7

http://flask.palletsprojects.com/
https://www.python.org/
https://github.com/rd-alliance/metadata-catalog-dev

2

User Guide to the Catalog

2.1 Consulting the Catalog

It is possible to look up records for metadata standards, profiles and schemes in three
ways: (a) browsing an alphabetical, hierarchical list of schemes; (b) browsing an
alphabetical, hierarchical list of subject terms drawn from the UNESCO Thesaurus;
or (c) searching.

The corresponding three pages can all be reached from links on the front page. The
search page is can also be reached from the navigation bar at the top of each screen.

An alphabetical list of the metadata-related tools in the Catalog is also provided, but
there is no corresponding search function. It is anticipated that most users will come
to the tools via the metadata scheme records, or else can use their browser’s “Find in
page” facility to search for tools by name on the index page, but feedback on this
point is welcome.

Browsing by scheme name

The browse list for metadata schemes is arranged so that application profiles are
shown below the scheme(s) on which they are based in a lower-order list. This means
that the schemes listed at the top level are independently defined (i.e., not derived or
adapted from another scheme), and that profiles based on multiple schemes may
appear in several places.

Browsing by subject term

The first term in the list is “Multidisciplinary,” capturing those schemes without
a particular disciplinary focus. The remaining top level terms correspond to the
UNESCO Thesaurus “groups”; these are not filtered, so following some of these links
may result in an empty list of schemes.

The second-level terms correspond with UNESCO Thesaurus sub-groups, and lower
level terms with UNESCO Thesaurus concepts. These are filtered so terms with no
associated schemes are not shown.

8

Searching

It is possible to search on the following fields:

• title or name of the metadata scheme;

• subject keyword (i.e., group, sub-group, or concept from the UNESCO
Thesaurus);

• identifier (internal or external);

• funder;

• data type (keyword or identifying URL).

In the screenshot (Figure 2.1), the latter two are hidden since at the time of writing
data types and funding information had not been added to the Catalog database.

Figure 2.1: Search form

All the above fields autocomplete with values present in the database. If more than
one field is used, the search is broadened: the search criteria are joined with a
Boolean “OR.”Within a given field it is possible to use wildcard syntax, i.e., “*” for
0 or more missing characters, “?” for one missing character. It is not currently
possible, however, to search for more than one value at once within a given field.
Again, feedback is welcome on whether to support more advanced searches.

Viewing

When searching or browsing by subject, the results come back as a series of panels
showing the name and description of each matching scheme (see Figure 2.2). Select
the name to navigate to the record.

The records themselves start with the name and description of scheme, followed by
the other information collected about it (see Figure 2.3).

• You can search for other schemes tagged with the same subject term or data
type by selecting the appropriate button.

• Selecting buttons such as “View specification” or “View website” will take you
off-site to the respective resource.

9

Figure 2.2: Search results

Figure 2.3: Catalog page for the DDI standard

10

• You can select to name of a maintaining organization, funding body or known
(corporate) user of a scheme to search for other schemes maintained, funded
or used by that organization, respectively.

• In the section “Relationships to other metadata standards,” hyperlinked names
of standards take you to the Catalog page for that standard.

• Similarly, in the “Tools” section, the hyperlinked names take you to the Catalog
page for the respective tool.

2.2 Contributing to the Catalog

Signing in

To make contributions to the Catalog, you must first sign in using the link in the top
navigation bar (see Figure 2.4).

Figure 2.4: Page for signing in to the Catalog

The preferred way of signing in is via the RDA website.

1. Go to https://rd-alliance.org/user and sign in there.

2. On successfully signing in, you will be redirected to your profile page. In the
address bar of your browser, you should see a URL like this: https://rd-
alliance.org/users/jane-doe. The final portion (jane-doe in this case) is
your OpenID username. Copy the whole URL.

3. On the Catalog “Sign in” page, paste the URL into the “OpenIDURL” box and add
/openid to the end, e.g., https://rd-alliance.org/users/jane-doe/openid.

4. Select the “Sign in” button.

The first time you do this, you will be redirected to the RDAwebsite, where you will be
asked if you want to use your credentials to log into the site. Once you have accepted,
you be asked to set up your account for the Catalog. Your account details consist of
your OpenID, and your name and email address. This is the minimum needed to

11

https://rd-alliance.org/user

be able to track your contributions in the database log. Since these details will be
permanently attached to any edits you make, it is recommended that you do not use a
personal email address.

On subsequent occasions you will be redirected to the front page after signing in.
You will see an additional link in the top navigation bar, “My Profile,” which you can
follow should you wish to update your name or email address.

The Catalog also has the ability to work with OpenID Connect providers, meaning
you could sign in using a Google, LinkedIn or Twitter account. This ability is switched
off currently in the live version to reduce the potential for spam accounts, but could
be enabled if demand is sufficient.

Adding new records

On signing in, you will see an additional section on the front page headed “Make
changes” (see Figure 2.5).

Figure 2.5: Front page of the Catalog after signing in

From here you can add new records to the database. If you have several records to
add, it is most efficient do so in the following order, due to the directionality of the
relationships between records:

1. organizations;

2. metadata schemes;

3. metadata-related tools, mappings and endorsements.

Editing existing records

To modify an existing record for a metadata scheme or related tool, navigate to the
page corresponding to the record. At the end of the page, follow the link that says
“Edit this record” (see Figure 2.6).

To modify the record for an organization, mapping or endorsement, first find a
Catalog page (for a scheme or tool) where the entity appears. At the end of the set of
links associated with it, you will find an “Edit record” link. The changes you make
will (of course) be reflected everywhere that entity appears in the Catalog.

12

Figure 2.6: Links added to a Catalog page to allow editing

Using the editing forms

The forms for editing records are largely self-explanatory. Fill in as many fields as
you can following the inline instructions.

If you need to link to a metadata scheme or organization that is not already in the
Catalog, use the “Add scheme” or “Add organization” button provided to open up a
new editing window and add it. You will need to reload your first editing page to see
the new record.

The records for metadata schemes and tools allow you to provide more specific
information for particular versions. Alongside each known version you will see a link
“Add version-specific details.” This will open up a new window which will be very like
the first, but the versions section will be missing. You should only add information to
this form that is unique to this particular version; this will prevent needless repetition
on the parent page.

Some sets of fields can be repeated. You will see that one blank row is provided at a
time. If you need to add several sets of information, save your changes after adding
each one, and a new row will be added after each save. For this reason, the page does
not automatically close or take you back to the finished Catalog page after saving, but
instead allows you to continue editing.

Once you have saved all your changes, you can either close the window (if it was
spawned during the editing process) or select “Cancel” to return to the normal
Catalog page.

As part of the maintenance phase for the Catalog, we have plans to make this process
smoother using AJAX (Asynchronous JavaScript and XML).

Signing out

You can sign back out of the Catalog at any time using the link in the top navigation
bar.

13

2.3 Using the public API

Display one record

To retrieve a record in JSON, send a GET request to a URL formed from the internal
MSC ID: replace the initial msc: with the URL of the Catalog followed by either

• /msc/, in which case you have to specify JSON format in the headers, e.g.,

curl -H 'Accept: application/json'
https://rdamsc.bath.ac.uk/msc/m13↪

• /api/, in which case you get JSON automatically, e.g.,

curl https://rdamsc.bath.ac.uk/api/m13

The response you will get will be a JSON object that closely resembles the data
structure used within the Catalog database itself. So, for example, a request for
msc:g22might yield:

{
"description": "A Web-based service for searching for and

visualizing chemical structures. It uses data from the
Protein Data Bank that has been transformed to RDF.",

↪

↪

"identifiers": [
{

"id": "msc:g22",
"scheme": "RDA-MSCWG"

}
],
"locations": [

{
"type": "website",
"url": "http://xpdb.nist.gov/chemblast/pdb.pl"

}
],
"name": "Chem-BLAST",
"slug": "chem-blast"

}

Unlike the HTML equivalent, it will not pull in information from related records in
the database, so to get the full picture you will need to make multiple requests. We
welcome feedback on whether to provide a method for retrieving a composite record
in one go.

Search for records

To perform a search of the database, and receive a list of internal MSC IDs in return,
use something like the following:

14

curl -X POST -F 'title=ABCD' https://rdamsc.bath.ac.uk/query/schemes
curl -X POST -F 'name=University'

https://rdamsc.bath.ac.uk/query/organizations↪

curl -X POST -F 'supported_scheme=msc:m13'
https://rdamsc.bath.ac.uk/query/tools↪

curl -X POST -F 'input_scheme=msc:m15' -F 'output_scheme=msc:m11'
https://rdamsc.bath.ac.uk/query/mappings↪

curl -X POST -F 'endorsed_scheme=msc:m46'
https://rdamsc.bath.ac.uk/query/endorsements↪

Unless otherwise stated, if you search using more than one field, the result set will be
broadened. In other words, it will be as if you searched using each field individually
then combined the results.

Supported queries when retrieving a list of scheme IDs:

• title: searches within the title using regular expression syntax.

• keyword: searches for an exact match for the given term, plus narrower and
broader terms, within the list of keywords. To search formore than one keyword
at once, separate the keywords with pipes, e.g., keyword=Astronomy|Biology.

• keyword_id: works similarly to keyword, but accepts one or more URIs from
the UNESCOVocabulary, separated by pipes. (Youmay notice a slight difference
in behavior from keyword since several URIs map to the same keyword.)

• identifier: searches for an exact match within the list of identifiers. The
primary use of this is to search for schemes by external identifier, though it can
also be used to test if an internal ID is in use.

• funder: searches, using Python’s regular expression¹ syntax, within the names
of organizations listed as funders of the scheme.

• funder_id: searches for an exact match within the list of identifiers of
organizations listed as funders of the scheme.

• dataType: searches for an exact match within the list of data types.

Supported queries when retrieving a list of organization IDs:

• name: searches within the name using regular expression syntax.

• identifier: works in the same way as for schemes.

• type: searches for organizations of the given type, drawn from the con-
trolled vocabulary, i.e., standards body, archive, professional group or
coordination group.

Supported queries when retrieving a list of tool IDs:

• title: searches within the title using regular expression syntax.

• identifier: works in the same way as for schemes.

¹https://docs.python.org/3/library/re.html

15

https://docs.python.org/3/library/re.html

• type: searches for tools of the given type, drawn from the controlled vocabulary,
i.e., terminal (<platform>), graphical (<platform>), web service, or web
application, where <platform> is one of Windows, Mac OS X, Linux, BSD,
cross-platform or an equivalent term for another platform.

• supported_scheme: searches for tools that support the given scheme, expressed
as an internal identifier.

Supported queries when retrieving a list ofmapping IDs:

• identifier: works in the same way as for schemes.

• input_scheme: searches for mappings from the given scheme, expressed as
an internal identifier. Contrary to how other fields work, the search will be
narrowed if you also give an output_scheme.

• output_scheme: searches for mappings to the given scheme, expressed as
an internal identifier. Contrary to how other fields work, the search will be
narrowed if you also give an input_scheme.

Supported queries when retrieving a list of endorsement IDs:

• identifier: works in the same way as for schemes.

• endorsed_scheme: searches for endorsements of the given scheme, expressed
as an internal identifier.

The response will be a JSON object, consisting of the key ids with an array as its
value:

{
"ids": [

"msc:m1",
"msc:m2"

]
}

List records

To get a list of all the records of a particular type, send a GET request to one of the
following URLs:

• https://rdamsc.bath.ac.uk/api/m for metadata schemes
• https://rdamsc.bath.ac.uk/api/g for organizations (groups)
• https://rdamsc.bath.ac.uk/api/t for tools
• https://rdamsc.bath.ac.uk/api/c for mappings (crosswalks)
• https://rdamsc.bath.ac.uk/api/e for endorsements

The response will be a JSON object, consisting of a key representing the type of
record (e.g., metadata-schemes) with an array of objects as its value. Each object has
two keys:

• id: the MSC ID of the record.

16

• slug: a less opaque identifying string for the record, derived from the title of
a metadata scheme, the name of an organization, etc. This string is used to
generate file names when dumping the database to individual YAML files.

Example:

{
"tools": [

{
"id": 1,
"slug": "agrimetamaker"

},
{

"id": 2,
"slug": "anz-mest-metadata-entry-and-search-tool"

},
{

"id": 3,
"slug": "avedas-converis"

}
]

}

List subject terms in use

To get a list of all the subject terms currently in use, send a GET request to
https://rdamsc.bath.ac.uk/api/subject-index:

curl https://rdamsc.bath.ac.uk/api/subject-index

The result will be a list of JSON objects, each of which contains two or three keys:

• name provides the subject keyword itself.

• url provides the URL, relative to the base URL of the Catalog, of theWeb page
listing matching metadata schemes.

• children, if applicable, provides a list of child keywords, similarly represented
as a list of JSON objects.

Example:

[
{

"name": "Multidisciplinary",
"url": "/subject/Multidisciplinary"

},
{

"name": "Culture",
"url": "/subject/Culture",
"children": [

17

{
"name": "Cultural policy and planning",
"url": "/subject/Cultural+policy+and+planning",
"children": [

{
"name": "Cultural heritage",
"url": "/subject/Cultural+heritage"

}
]

},
{
"name": "Population",
"url": "/subject/Population"

}
]

}
]

2.4 Using the restricted API

In order to use the restricted API, you will need to have your organization or
application registered in the user database. API accounts must have a name, email
address and password.

These accounts must be set up by an administrator, and cannot be added through the
Web interface.

You should only use the restricted API over HTTPS, otherwise your username and
password may be at risk of interception.

Change password

To change the password, use something like the following:

curl -u userid:password -X POST -H "Content-Type: application/json"
-d '{"new_password": "your_new_password"}'
https://rdamsc.bath.ac.uk/api/reset-password

↪

↪

If successful , the response will be a JSON object like this:

{
"username": "your_username",
"password_reset": "true"

}

Get token

To receive an authorization token, use something like the following:

18

curl -u userid:password -X GET https://rdamsc.bath.ac.uk/api/token

If authentication is successful, the response will be a JSON object, consisting of the
key token and a long string as the value:

{
"token": "the_actual_token_itself"

}

The token will be valid for 600 seconds.

Create a new record

To create a new record, send a POST request to one of the following URLs:

• https://rdamsc.bath.ac.uk/api/m for a metadata scheme
• https://rdamsc.bath.ac.uk/api/g for an organization
• https://rdamsc.bath.ac.uk/api/t for a tool
• https://rdamsc.bath.ac.uk/api/c for a mapping
• https://rdamsc.bath.ac.uk/api/e for an endorsement

The body of the request should be a JSON object representing the complete record;
see the database documentation² for details. Say for example you wanted to register
the following minimal record:

{
"name": "Test group",
"description": "This is a test.",
"types": [

"coordination group"
]

}

You would do so with a request such as this:

curl -u token:anything -X POST -H 'Content-Type: application/json' -d
'{"name": "Test group", "description": "This is a test.",
"types": ["coordination group"] }'
https://rdamsc.bath.ac.uk/api/g

↪

↪

↪

The response will be a JSON object, consisting of three keys:

• success indicates whether the record was created successfully.

• conformance indicates if the record was judged to be invalid, valid, useful, or
complete, the definitions of which are given in the database documentation.³

• If the record was invalid, errors contains the reasons why the record was
rejected, otherwise id contains the MSC ID of the new record.

²https://github.com/rd-alliance/metadata-catalog-dev/blob/master/db/README.md
³https://github.com/rd-alliance/metadata-catalog-dev/blob/master/db/README.md

19

https://github.com/rd-alliance/metadata-catalog-dev/blob/master/db/README.md
https://github.com/rd-alliance/metadata-catalog-dev/blob/master/db/README.md

Example of a successful response:

{
"success": true,
"conformance": "valid",
"id": "msc:g99"

}

Example of an unsuccessful response:

{
"success": false,
"conformance": "invalid",
"errors": {

"locations": [
{
"type": ["This field is required."]

}
]

}
}

Modify an existing record

To modify a record, send a PUT request to https://rdamsc.bath.ac.uk/api/
followed by the MSC ID, e.g., https://rdamsc.bath.ac.uk/api/m1.

The body of the request should be a JSON object representing the complete record;
see the database documentation⁴ for details. Example:

curl -u token:anything -X PUT -H 'Content-Type: application/json' -d
'{"name": "Test group", "description": "This is a test.",
"types": ["coordination group"] }'
https://rdamsc.bath.ac.uk/api/g99

↪

↪

↪

The response is the same as for “Create a new record.”

Delete an existing record

To delete a record, send a DELETE request to https://rdamsc.bath.ac.uk/api/
followed by the MSC ID, e.g., https://rdamsc.bath.ac.uk/api/m1. Example:

curl -u token:anything -X DELETE https://rdamsc.bath.ac.uk/api/g99

The response will be a JSON object, consisting of two keys:

• success indicates whether the record was deleted successfully.

• id contains the MSC ID of the deleted record.

⁴https://github.com/rd-alliance/metadata-catalog-dev/blob/master/db/README.md

20

https://github.com/rd-alliance/metadata-catalog-dev/blob/master/db/README.md

{
"success": true,
"id": "msc:g99"

}

The ID will remain in the database as a null record, to prevent it being reused.

21

3

Developer Guide to the Catalog

If you would like to contribute to the development of the Catalog, it is recommended
that you set up an environment where you will be able to run the code locally to test
your changes.

3.1 Pre-requisite software

The Metadata Standards Catalog is written in Python 3,¹ so as a first step this will
need to be installed on your machine. You will also need quite a few non-standard
packages, but all of them are easily available via the pip utility:

• For the actual rendering of the pages you will need Flask,² Flask-WTF³ (and
henceWTForms⁴), and Flask-Login.⁵

• For Open ID v2.x login support, you will need Flask-OpenID.⁶

• For Open ID Connect (OAuth) support, you will need RAuth⁷ (and hence
Requests⁸), and Google’s oauth2client.⁹

• For API authentication, you will need Flask-HTTPAuth¹⁰ and PassLib.¹¹

• For database capability, you will need TinyDB¹² v3.6.0+, tinyrecord,¹³ and
RDFLib.¹⁴

¹https://www.python.org/
²http://flask.palletsprojects.com/
³https://flask-wtf.readthedocs.io/
⁴https://wtforms.readthedocs.io/
⁵https://flask-login.readthedocs.io/
⁶https://pythonhosted.org/Flask-OpenID/
⁷https://rauth.readthedocs.io/
⁸http://docs.python-requests.org/
⁹https://developers.google.com/api-client-library/python/guide/aaa_oauth
¹⁰https://flask-httpauth.readthedocs.io/
¹¹https://passlib.readthedocs.io/
¹²http://tinydb.readthedocs.io/
¹³https://github.com/eugene-eeo/tinyrecord
¹⁴http://rdflib.readthedocs.io/

22

https://www.python.org/
http://flask.palletsprojects.com/
https://flask-wtf.readthedocs.io/
https://wtforms.readthedocs.io/
https://flask-login.readthedocs.io/
https://pythonhosted.org/Flask-OpenID/
https://rauth.readthedocs.io/
http://docs.python-requests.org/
https://developers.google.com/api-client-library/python/guide/aaa_oauth
https://flask-httpauth.readthedocs.io/
https://passlib.readthedocs.io/
http://tinydb.readthedocs.io/
https://github.com/eugene-eeo/tinyrecord
http://rdflib.readthedocs.io/

• For version control of the databases, you will need Dulwich.¹⁵

• To allow requests from JavaScript, you will need Flask-CORS.¹⁶

• For compiling the database from and backing it up to YAML files, you will need
PyYAML¹⁷; this is not used by theWeb application itself, only by the database
control script.

For example, on a Debian-based Linux machine you could run commands like these:

sudo apt install python3-pip
sudo -H pip3 install flask Flask-WTF flask-login Flask-OpenID rauth

oauth2client flask-httpauth passlib tinydb tinyrecord rdflib
dulwich flask-cors pyyaml

↪

↪

The Catalog was written for Flask 0.10 but can be used with later versions.

You will also need Git¹⁸ to handle the version control.

3.2 Installing a local instance

Navigate to the folder where you want to download the code. Use Git to checkout a
copy of the repository (or your own GitHub fork of it), and enter it:

git clone https://github.com/rd-alliance/metadata-catalog-dev.git
cd metadata-catalog-dev

Now you need to set up a database for the Catalog to use by running the dbctl.py
script. You can do this by running one of the following commands, depending on
your operating system and Python installation:

./dbctl.py compile
python dbctl.py compile
python3 dbctl.py compile

For brevity, the remaining instructions here will assume the first form for similar
commands. Do remember to convert them as necessary to the form that works.

What the above command does is take the files in the db folder and use them to gen-
erate a database file, instance/data/db.json. It will also set up the instance/data
folder as its own Git repository, so that changes can be tracked.

One other thing you will probably want to do is switch the debugging feature back on
(it is switched off in the default configuration). You can do this by saving a new file,
instance/keys.cfg, with the following content:

DEBUG = True

¹⁵https://www.dulwich.io/
¹⁶http://flask-cors.readthedocs.io/
¹⁷https://pyyaml.org/
¹⁸https://git-scm.com/

23

https://www.dulwich.io/
http://flask-cors.readthedocs.io/
https://pyyaml.org/
https://git-scm.com/

You can now start the Catalog itself:

./serve.py

The feedback on the command line will tell you the URL to use in your browser. The
Catalog will automatically reload when you make changes to the code.

3.3 Version control

As mentioned above, version control is handled by Git.¹⁹ The master branch
represents the live code; when the branch is updated, the live instance is notified and
pulls in the changes.

It is therefore recommended to make your changes in a different branch or a forked
repository, so you can fully test your code before pushing (or making a pull request)
to the master branch.

3.4 Folder structure

The top level folder contains the following files:

• Documentation files in Markdown plain text format: README.md provides
general information and instructions for using the API; INSTALLATION.md
and ADMINISTRATION.md contain implementer guides for installing and
administering the Catalog, respectively.

• The main Python 3 scripts, serve.py and dbctl.py.

• The UNESCO Thesaurus in RDF/Turtle plain text format, both in its official
form, unesco-thesaurus.ttl, and the simplified version used by the Catalog,
simple-unesco-thesaurus.ttl.

• Tools for migrating data from the Metadata Standards Directory to the Catalog,
namely migrate.py and vocabulary mapping files jacs2*.yml.

The remaining files are arranged into folders as follows:

• config contains a Python 3 module with the default configuration options.
Sample configurations are given for production and development use. It
is recommended that you override at least the SECRET_KEY variable in your
instance/keys.cfg file.

• db contains the Catalog database in YAML form. This folder was initially
populated by migrating the data files from the Metadata Standards Directory. It
will be refreshed periodically with dumps from the live Catalog database.

• github_webhook contains a local copy of python-github-webhook,²⁰ a Python 3
module for interacting with GitHub webhooks.

• static contains the style sheets, Web fonts, JavaScript files and application
icon served verbatim by Flask.

¹⁹https://git-scm.com/
²⁰https://bloomberg.github.io/python-github-webhook/

24

https://git-scm.com/
https://bloomberg.github.io/python-github-webhook/

• templates contains the page templates used to generate the HTML pages.
They are all written in the Jinja2 templating language.²¹ The outer HTML page
structure is in base.html. Macros for handling form errors are in macros-
forms.html. The template for the index pages is in contents.html. All the
others relate to specific pages.

3.5 Coding conventions

The Catalog is written in Python 3. The two main scripts are serve.py, which is
the Web application, and dbctl.py, which is a command-line database control
tool. There is another script, migrate.py, which was used to migrate data from the
Metadata Standards Directory, but is no longer relevant.

The Python scripts are formatted according to PEP8 conventions. You can check
conformance with these conventions with the pycodestyle²² (formerly pep8) tool.
Please run it with the default settings regarding which errors and warnings are
enabled/disabled and the maximum line length.

3.6 Application: serve.py

To aid navigation through the file, sections and subsections are marked with
underlined comments.

• Dependencies: The library import statements are grouped, with standard
libraries first and non-standard ones second. Non-standard libraries should be
annotated with a link to their documentation and a hint for how to install them
(e.g., via pip3).

• Customization: This contains new and replacement classes required by the
application:

– JSONStorageWithGit is, as the name suggests, a version of TinyDB’s
JSONStorage that triggers a Git commit after each update, and uses the
standard json library instead of ujson.

– User is required by Flask-Login. ApiUser is the equivalent for API users.

– OAuthSignIn and its subclasses GoogleSignIn, LinkedinSignIn and
TwitterSignIn provide the functionality for signing in via OpenID
Connect.

• Basic setup: This section contains the global variables used by the script.
The first subsection contains the key objects (the app itself, the databases,
authorization handler, webhook handler). The second implements key parts of
the data model, such as table names and controlled vocabularies.

• Utility functions: These functions and classes do not handle requests directly
but are used by several request-handling functions.

²¹http://jinja.palletsprojects.com/
²²https://pycodestyle.readthedocs.io/

25

http://jinja.palletsprojects.com/
https://pycodestyle.readthedocs.io/

• Non-interactive pages: These functions handle requests for non-interactive
pages.

– Front page
– Terms of use
– Display (or return as JSON) a record for a metadata scheme or tool
– Display a per-subject list of metadata schemes
– Display a per-data-type list of metadata schemes
– Display a per-funder/maintainer/user list of metadata schemes
– Display the index of metadata schemes
– Display the list of tools
– Display the index of subject terms

• Form utilities: Most of these functions help out with the translation between
the internal data representation of records and the data structure used by
WTForms in the HTML forms. There is also a function for generating selection
option lists from the database.

• Interactive pages: The HTML forms and API query equivalents are defined
by classes that extend either Form (for read-only operations) or FlaskForm (for
write operations).

– Search/query forms for schemes (HTML and API) and organizations, tools,
mappings and endorsements (API only). This section also contains some
helper functions specific to these forms and their handlers.

– User accounts. Forms and handler functions for signing in and out, and
creating, editing and deleting profiles.

– API authentication routes and functions.

– Forms for editing the five different record types. The section is arranged
with specialist fields and sub-forms representing repeated groups of fields
first, following by the main forms themselves, followed by the route
handler. There are also helper functions for ensuring consistency of
data-type labels/URLs across the database, and removing duplicate error
messages.

– API route handling functions for create, update and delete operations.

– API route handling functions for retrieving records, lists of records and
the index of subject terms.

• Automatic self-updating: This contains the function that pulls changes from
the master branch on GitHub whenever commits are pushed to the code
repository.

The request-handling functions can be easily distinguished by the @app.route()
decorator. The syntax for these route decorations can be found in the Werkzeug
documentation.²³

Regarding naming conventions, class names andWTForms validator functions use
CamelCase while all other variables and functions use snake_case.

²³http://werkzeug.palletsprojects.com/

26

http://werkzeug.palletsprojects.com/

3.7 Database control: dbctl.py

The structure of this file should be self-explanatory. Sections and subsections are
marked with underlined comments.

• Dependencies: The library import statements are grouped, with standard
libraries first and non-standard ones second. Non-standard libraries should be
annotated with a link to their documentation and a hint for how to install them
(e.g., via pip3).

• Utility definitions: The first of these is for a class that overrides the default
storage used by TinyDB. The issue is that TinyDB uses ujson by default if
available for its speed, but ujson does not write JSON to disk in a consistent
order. This making version control of those files highly inefficient, and the diff
logs rather noisy. This class definition enforces use of the standard json library
which can sort keys consistently.

The second definition provides a handler for serializing date objects to JSON as
ISO formatted strings.

• Initializing: This section contains the global variables used by the script,
including the definitions of the command-line argument parser and sub-
parsers.

• Operations: In this section, each of the functions of the script is defined in
turn. The names of the main functions start with a capital letter, prefixed by db;
after the definition the function is associated with the matching subparser. If
the function relies on helper functions, these are defined immediately before;
the naming convention for helper functions is snake_case. Helper functions
should also have a docstring (a triple-quoted string at the very start explaining
what the function does).

• Processing: This contains the main function that runs when the script is
executed.

27

4

Impact statement

The MSC is the continuation of Metadata Standards Directory and DCC Disciplinary
Metadata Catalogue, so it is anticipated that users and adopters of the earlier
incarnations will migrate over to the new Catalog in time. The following are examples
of impact specific to the Catalog:

• MSC has been adopted by RDA as the output from MSCWG and currently is
being used actively. As discussed earlier in the report, it will be used as the
data source, and possibly the interface, for a tool proposed by the Metadata
Interest Group for interconverting between arbitrary standards.

• The API is used to incorporate content from the MSC into the DCC’s DMPonline
tool.¹

• The MSC and its API are used by the FAIRsFAIR project.²

• The MSC has been used as a research resource by postgraduate students at the
University of Victoria and Karlsruhe Institute of Technology.

¹https://dmponline.dcc.ac.uk/
²https://www.fairsfair.eu/

28

https://dmponline.dcc.ac.uk/
https://www.fairsfair.eu/

5

Sustainability plan

The MSC has been designed deliberately to be easy to use and to require a minimum
of systems maintenance. Full documentation has been provided on how to install
development and production instances, in order to aid ongoing maintenance and
allow easy transfer between hosts. This documentation has already been tested in
the transfer of the live instance from the Digital Curation Centre’s servers to those of
the University of Bath.

The University of Bath has committed to hosting the MSC for the foreseeable future,
for which the co-chairs of the group would like to express their gratitude.

The MSC database is backed up periodically to GitHub so as to guard against data loss,
enable development instances to use a snapshot of the live data, and facilitate any
future platformmigrations.

The Metadata Standards CatalogWorking Group will continue in maintenance mode
with oversight from the Metadata Interest Group. The group will further develop
the code base in the light of feature and security improvements in its software
dependencies. Several possible improvements to the user experience, API, and data
model have already been identified; the group aims to implement these changes in a
new release of the MSC by the end of 2020.

The Metadata Interest Group is working to build a community of contributors to the
MSC, similar to and seeded from the one the Metadata Standards DirectoryWorking
Group achieved for the precursor Directory. In this way, the records in the MSC will
be kept up to date with a high degree of coverage.

29

6

Works cited

Ball, A., Greenberg, J, Jeffery, K., and Koskela, R., RDA Metadata Standards Directory
Working Group: Final Report (Research Data Alliance, 2016), https://rd-alliance.org/
group/metadata-standards-catalog-wg/outcomes/metadata-standards-directory-wg
-recommedations.html

Tenopir, C., Allard, S., Douglass, K., Aydinoglu, A. U., Wu, L., Read, E., Manoff, M.,
and Frame, M., “Data Sharing by Scientists: Practices and Perceptions,” PLoS ONE 6/6
(2011): e21101. doi: 10.1371/journal.pone.0021101

Willis, C., Greenberg, J., andWhite, H., “Analysis and Synthesis of Metadata Goals for
Scientific Data,” Journal of the American Society for Information Science and Technology
63/8 (2012): 1505–1520. doi: 10.1002/asi.22683

30

https://rd-alliance.org/group/metadata-standards-catalog-wg/outcomes/metadata-standards-directory-wg-recommedations.html
https://rd-alliance.org/group/metadata-standards-catalog-wg/outcomes/metadata-standards-directory-wg-recommedations.html
https://rd-alliance.org/group/metadata-standards-catalog-wg/outcomes/metadata-standards-directory-wg-recommedations.html
https://doi.org/10.1371/journal.pone.0021101
https://doi.org/10.1002/asi.22683

