

Can TSN be the standard communication protocol for robotics ?

Milan Groshev (<u>mgroshev@pa.uc3m.es</u>) EuCNC WS10: Future deterministic programmable network for 6G

Funded by the European Union

Visit us at predict6g.eu

About me

- Researcher at UC3M (~5 years).
 - Telematics department, part of NETCOM research group
- PhD in the field of Networked robotics
- Current research interests: JCAS, Semantic orchestration, TSN
- Background
 - Al for teleoperated robots
 - DLT for mobile robot services
 - Robot as a Network Service

- Provide a brief introduction of Networked robotics
- Present the current Networked robotics communication protocols
- Time Sensitive Networking for robotics

Outline

• Provide a brief introduction of Networked robotics

- Present the current Networked robotics communication protocols
- Time Sensitive Networking for robotics

Industrial revolutions

Robotics in manufacturing

- In 2018, < 10% of the US manufacturing firms used robots
- In 2020 this number even decreased
- China is estimated to be roughly the same as in US

Productivity limits flexibility

- Automation technologies are not adaptable to changes in external environment
- 2. Require specific, deep technical skills to program and repair them
- 3. Black boxes operating without the human feedback

Maximize productivity

Minimize flexibility

What is networked robotics?

- Set of evolving **Information and Communication Technologies (ICT)** that allow, at different levels of granularity to model a robot system as a set of individual components that are glued together.
 - Started from Online robot systems (Internet robots)
 - Allows for OT and IT to co-exist
- Provides flexibility by making robots:
 - Service oriented
 - Interoperable
 - Distributed
 - Programmable
- Target different use cases:
 - Industrial robots, telepresence robots, social robots, etc

Cloud robotics example

- Robots
 - Joint states
 - Multiple sensors
 - Camera
 - Lidar
 - Mics
- Control
 - Robot config
 - Monitoring
 - Cooperation and coordination
- Why networked robotics?
 - Optimize automation
 - Availability
 - Reduce costs

- Provide a brief introduction of Networked robotics
- Present the current Networked robotics communication protocols
- Time Sensitive Networking for robotics

Current infrastructure behind networked robotics

Figure 1: The computing and communication infrastructure [1].

[1] M. Groshev et. al., "Toward Intelligent Cyber-Physical Systems: Digital Twin Meets Artificial Intelligence," in IEEE Communications Magazine

Robots traffic profile connectivity requirements

Application	Traffic Profiles	Throughput	Latency	Reliability	Mobility	Availability
Remote control and navigation; Control loops; Visual analytics;	Isochronous flows; Asynchronous messages;	Low (isoc./ async.) Low to High (video)	100 - 0.1 ms 100 – 10 ms	99.9 to 99.99999%	Low mobility (mostly indoor)	High

 Table 1: Robot traffic flows and connectivity requirements [2]

Robots traffic profile connectivity requirements

Figure 2: Typical response-time of common robotic components

Networks

- Wired technologies
 - Serial-based field busses
 - RS-485, CAN
 - Ethernet-based field-busses
 - IEEE 802.3
- Wireless technologies
 - Licensed spectrum
 - 3GPP
 - Unlicensed spectrum
 - IEEE 802.11

Figure3: Different network segments that the robot flows need to travers

Industrial communication protocols today

- Natively designed for local connections or other applications (e.g., IoT, Web).
- Can not meet all the requirements of different robot applications.
- Interoperability.
- Difficulties to cope with the unreliable and interface prone wireless channel.

Figure4: Classification of real-time industrial protocols for robotics

- Provide a brief introduction of Networked robotics
- Present the current Networked robotics communication protocols
- Time Sensitive Networking for robotics

TSN reference model

- Set of evolving standards developed by IEEE to allow for time-sensitive traffic on Ethernet, WiFi and 5G.
- Provides time synchronization and bounded latency.
 - Determinism is prioritized over throughput
- TSN tools include time synchronization (802.1 AS), scheduled traffic (802.1Qbv) and network management (802.1Qcc)
- Bring to robotic systems:
 - Scalability, flexibility, interoperability, coexistence, latency guarantees, reliability

- Time Synch over 802.11
 - 802.11AS
- Time-Aware Scheduling for missingcritical robotics flows over 802.11
 - 802.1Qbv
- Redundancy to improve reliability
 - FRER (IEEE 802.1 CB)
- Network Management Models to meet the end-to-end robotics requirements
 - IEEE 802.1Qcc
- IEEE 802.11bf (WiFi7)
 - Multi-link Operation
 - rTWT for scheduling

- Time Synch over 802.11
 - 802.11AS
- Time-Aware Scheduling for missingcritical robotics flows over 802.11
 - 802.1Qbv
- Redundancy to improve reliability
 - FRER (IEEE 802.1 CB)
- Network Management Models to meet the end-to-end robotics requirements
 - IEEE 802.1Qcc
- IEEE 802.11bf (WiFi7)
 - Multi-link Operation
 - rTWT for scheduling

- Time Synch over 802.11
 - 802.11AS
- Time-Aware Scheduling for missingcritical robotics flows over 802.11
 - 802.1Qbv
- Redundancy to improve reliability
 - FRER (IEEE 802.1 CB)
- Network Management Models to meet the end-to-end robotics requirements
 - IEEE 802.1Qcc
- IEEE 802.11bf (WiFi7)
 - Multi-link Operation
 - rTWT for scheduling

- Time Synch over 802.11
 - 802.11AS
- Time-Aware Scheduling for missingcritical robotics flows over 802.11
 - 802.1Qbv
- Redundancy to improve reliability
 - FRER (IEEE 802.1 CB)
- Network Management Models to meet the end-to-end robotics requirements
 - IEEE 802.1Qcc
- IEEE 802.11bf (WiFi7)
 - Multi-link Operation
 - rTWT for scheduling

- Time Synch over 802.11
 - 802.11AS
- Time-Aware Scheduling for missingcritical robotics flows over 802.11
 - 802.1Qbv
- Redundancy to improve reliability
 - FRER (IEEE 802.1 CB)
- Network Management Models to meet the end-to-end robotics requirements
 - IEEE 802.1Qcc
- IEEE 802.11bf (WiFi7)
 - Multi-link Operation
 - rTWT for scheduling

Challenges ahead

- Ultra-low latency.
- Time-synchronization and TSN flows
- Coexistence with other non-time-sensitive traffic.
- Bounded latency when robots are roaming between APs.
- Integration of hybrid TSN networks that guarantee end-to-end latency over shared wired and wireless infrastructure.
- Performance tradeoffs and interference issues
- Integration, testing and validation

Wrap up

- Robotic systems must improve flexibility.
- In robotics, the lack of a real standard protocol burdens the component integration or robot to infrastructure communications
- TSN aims to provide bounded latency on Ethernet, WLAN and 3GPP.
- Current TSN tools for WLANs are suitable for Robotics traffic.
- Multiple challenges ahead related to:
 - Ultra-low latency
 - Interoperability with non-time-sensitive flows
 - Mobility
 - Interference

in

PREDICT 06G

Visit us at predict6g.eu

Thanks!

 \oplus

Funded by the European Union