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Abstract—Industrial IoT use cases have stringent reliability 

and latency requirements to enable real-time wireless control 

systems, which is supported by 5G ultra-reliable low-latency 

communications (URLLC) over cellular networks. However, 

extremely high quality-of-service (QoS) requirements in 5G 

URLLC causes huge radio resource consumption and low spectral 

efficiency limiting network capacity in terms of the number of 

supported devices. Industrial control applications typically 

incorporate redundancy in their design and may not always 

require extreme QoS to achieve the expected control performance. 

Therefore, we propose communication-control co-design and 

dynamic QoS to address the capacity issue for robotic 

manipulation use-cases in 5G-based industrial IoT. We have 

developed an advanced co-simulation framework that includes a 

network simulator, physics simulator, and compute emulator, for 

realistic performance evaluation of the proposed methods. 

Through simulations, we show significant improvements in 

network capacity (i.e., the number of supported URLLC devices), 

about 2x gain for the robotic manipulation use-case. 

Keywords—dynamic QoS, 5G URLLC, industrial robotics, 5G 

network simulator, robotic manipulation 

I. INTRODUCTION 

In recent years, the Industrial IoT sector has been 
transforming towards fully connected, flexible and intelligent 
autonomous systems. The Fourth Industrial Revolution or 
Industry 4.0 vision is driving the transformation in 
manufacturing towards flexible and re-configurable systems that 
can adapt to the production demand in real-time. Industrial IoT 
use cases have stringent requirements such as ultra-low latency, 
and extremely high reliability [1]. The 3GPP 5G specifications 
(Releases 15-17) [2-4] have adopted ultra-reliable and low 
latency communication (URLLC) technologies. Industrial 
automation is one of the key applications for URLLC features in 
5G. Certain industrial processes have extremely tight 
performance requirements for ultra-low latency and high 
reliability communications across control loops connecting 
sensors, actuators and controllers [1][3][4]. 

The 3GPP Release 15 [2] specification can support 99.999% 
reliability with 32 kB packets while Release 16 [3] specification 
can support 99.9999% reliability with 64 kB packets. The 
adopted flexible numerology for 5G frame structure can support 
sub-ms latencies. These features are attractive for supporting 
industrial IoT use cases over 5G networks. However, supporting 
such extreme performance metrics requires a lot of spectrum 
resources.  

In a white paper by 5G Americas [1], it has been shown that 
the capacity of 5G system supporting URLLC features is greatly 
impacted with the target requirements, i.e., as latency 
requirements are tightened, the URLLC capacity quickly drops 
to low values. High reliability requirements also reduce capacity 
as it comes with the cost of lower spectrum efficiency (due to 
lower order modulation and coding schemes). A 3GPP 5G  
Technical Requirement [5] also shows that the capacity is very 
low when supporting stringent requirements, e.g., a maximum 
of 25 UEs (with periodic traffic, 32 bytes every 2ms) can be 
supported per cell with ~98% satisfaction rate for latency<1ms 
and reliability>99.9999% within 20MHz bandwidth. 

Industrial networks need to support a large number of 
devices such as robotic arms, autonomous mobile robots 
(AMRs) and sensors including multiple cameras on the factory 
floor. Supporting URLLC connectivity for a large number of 
sensors and actuators needs large amounts of spectrum 
resources. An alternative approach is to develop intelligent 
techniques to reduce the overall amount of resources needed 
without compromising the target application goals. Towards the 
latter approach, a communication-control co-design method is 
proposed in [6], whereby both control and communication 
domains adapt to each other. It proposes the concept of 
application availability and application reliability as the quality 
of control requirements of the application based on an example 
of automated guided vehicle (AGV). An application-adaptive 
resource management is then proposed to adjust the success 
probability for the next transmission by dynamically adding or 
removing one or multiple links based on these application 
dependability metrics. Therein, the solution assumes availability 
of multiple independent links or multi-connectivity. 

Another communication-control co-design scheme to reduce 
wireless resource consumption based on the state of the control 
system has been proposed in [7], whereby a real-time wireless 
control process is divided into two phases to adopt extremely 
high communication quality of service (QoS) for one phase and 
lower communication QoS for another phase. Simulation results 
in [7] show a reduction in communication energy consumption 
while maintaining good control performance even for 2 levels of 
dynamic QoS adjustment. Control-communication co-design 
has been studied primarily in the model-based context for simple 
control and communication systems that do not well model 
complex industrial use cases [7-10]. These methods have been 
further extended to Wi-Fi and 5G systems [11][12]. A control-
communication co-design was introduced for industrial 
environment in [13] that leverages data driven reinforcement 



 

learning methods to handle the complex models present in 
industrial systems. 

In this paper, we propose dynamic QoS to enable 
communication-control co-design that leverages dynamic 
control state information to address the capacity issue in 5G-
based industrial IoT use-cases. The dynamic QoS provides a 
way to adapt the network resource utilization to the dynamic 
variations in application QoS requirements that is determined by 
the communication-control co-design algorithm. Another novel 
contribution of this paper is the use of an advanced co-
simulation framework to model an accurate and scalable factory 
environment by considering physics, network, and compute 
models. Through simulations, we show significant 
improvements in network capacity (i.e., the number of supported 
URLLC devices), about 2x gain for the robotic manipulation 
use-case. This paper is organized as follows: in Section II, we 
introduce the concept of communication-control co-design. In 
Section III, we provide the details of our co-simulation 
framework and the simulation scenario. We present the 
simulation results and analysis in Section IV, followed by some 
key discussions and future research directions in Section V. 
Finally, we conclude the paper in Section VI. 

II. COMMUNICATION-CONTROL CO-DESIGN 

The principle of communication-control co-design is based 
on the use of dynamic control state information to inform the 
communication system and, vice versa, to use dynamic 
communication state information to inform the control system. 
A variety of model-based [7-10] and data driven [13][14] 
techniques have been used to co-design control and 
communication systems, with varying degrees of complexity 
and performance. 

 

Fig. 1. Industrial robotic manipulation use-case. 

To understand the co-design procedure, consider an example 
industrial use case of a robotic manipulator picking objects from 
a moving conveyor belt, as illustrated in Fig. 1. The robotic 
manipulation system features a robotic arm agent, an Edge 
compute system, and a set of cameras placed around the 
conveyor belt. The robot arm and the cameras are connected 
over a wireless 5G network, with the gNodeB (gNB) co-located 
with the Edge compute system. 

A robotic arm needs to know real-time location information 
of its nearby objects on the conveyor belt to successfully 
complete the manipulation tasks. However, the robotic arms are 
assumed to have no sophisticated sensing capabilities, and hence 
rely on Edge computing for this critical information. The state 
information of the object, namely its position and velocity, is 
obtained via the processing of camera data at the Edge. In 
particular, camera frames containing image and depth data are 
sent over the 5G network to the Edge compute system, which 
runs object pose estimation workloads over the set of camera 
frames to obtain object state, which is sent to the robotic arm to 
be used in the computation of its local control action. Thus, the 
closed loop control system is obtained over the 5G network, with 
an uplink between camera and Edge, and downlink between 
Edge and robot.  

Co-design in this use-case is critical in improving the 
efficiency of the 5G network. The 5G network should adapt to 
dynamics of the robotic system in a manner that improves 
efficiency. Using control theory, we can identify performance 
requirements for the system, such as minimum object lifting 
percentage, and dynamically adapt the QoS to meet such 
requirements at minimum cost. The QoS parameters at discrete 
time index  𝑟 are given by packet delivery probability 𝑃𝐷𝑃𝑟 and 
latency 𝐿𝑟. These dynamic parameters are computed at the Edge 
as a function of the current state of the object and the robotic 
system, and communicated to the access network to be used in 
network scheduling of packets associated to various control 
loops. In particular, with a current application state 𝑥𝑟 , the 
minimum QoS parameters can be determined as, 

𝑃𝐷𝑃𝑟 , 𝐿𝑟 = arg min
𝑃𝐷𝑃,𝐿

[𝐶𝑜𝑠𝑡(𝑃𝐷𝑃, 𝐿) − 𝜆 𝑃𝑒𝑟𝑓(𝑥𝑟 , 𝑃𝐷𝑃, 𝐿)]       (1) 

where 𝐶𝑜𝑠𝑡(. ) and 𝑃𝑒𝑟𝑓(. ) characterize the cost of achieving 
given QoS parameters and the resulting application 
performance, respectively. Moreover, the hyperparameter 𝜆 
tunes the tradeoff between lower QoS and the effect on 
application-level performance. For the Edge node to be able to 
determine packet delivery probability and latency via (1), it 
needs access to the application state 𝑥𝑟 , which includes the 
current object and robot states. Note in Figure 1 that the former 
is already computed at the Edge (see Figure 1), while the latter 
is known to the robot but can be periodically communicated to 
the Edge node with small communication overhead. This 
dynamic computation of QoS parameters contrasts with 
conventional URLLC design, in which high 𝑃𝐷𝑃𝑟  and low 𝐿𝑟 is 
expected to be maintained at all times to protect against worst-
case scenarios. In the co-designed system, these parameters can 
be loosened during non-critical periods of the task, e.g., when 
the object is far from the robotic arm or when location prediction 
accuracy is high. 

As previously mentioned, model-based methods for 
computing the control state-aware dynamic QoS parameters in 
(1) are often difficult to implement in robotic systems, which 
feature complex dynamics that may not be well modelled. For 
industrial systems, we leverage the use of physics and a robotic 
application simulator, MuJoCo [15] to find data driven 
solutions. The co-design policy is represented with deep neural 
networks (DNNs), whose parameters are optimized for 
performance by simulating a large number of object 

 



 

manipulation tasks and optimizing via deep reinforcement 
learning methods—see [13] for details on this approach. 

III. SIMULATION METHODOLOGY 

This section presents the details of an advanced co-
simulation platform that models a complete end to end industrial 
system and is used for the performance evaluation of co-design 
and dynamic QoS techniques. The co-simulation platform 
implements an end-to-end simulation methodology which 
includes not only a 5G network simulator, but also includes a 
physics simulator, real application workloads, and compute 
emulator. Having an end-to-end simulation platform is 
important to evaluate the benefits of our co-design algorithm and 
quantify the impact on the overall system and application 
performance. As co-design relies on the dynamic QoS to achieve 
network capacity gain, it should be demonstrated that the 
performance of the use-case is not negatively impacted by the 
co-design algorithm. Therefore, a physics simulator is used to 
realistically model the details of use-case itself (robotic 
manipulation is used as an example use-case in this paper) by 
considering the laws of physics. Also, real application 
workloads required for the use-case are used in the simulator to 
achieve the most realistic representation of the use-case. For 
example, artificial intelligence (AI) based implementation of 
object detection and pose estimation algorithms are used at the 
Edge module, actual images of a virtual world in the physics 
simulator are rendered by the camera modules, etc. Since, the 
compute nodes in an industrial scenario (Edge, cameras, etc.) are 
characterized with diverse computing resources and capabilities, 
a compute emulator is used to accurately model distributed 
computing on different nodes in the simulation. The compute 
emulator orchestrates various containers to run the application 
workloads and also controls the execution of each container 
appropriately to match the compute capability of its respective 
compute node. 

To summarize, the simulation method makes use of a 5G 
network simulator, physics simulator, real workloads, and 
compute emulator, all working synchronously for an accurate, 
end-to-end performance evaluation of the use-case. Since the co-
simulation platform needs to run several detailed models and 
application workloads, it may be time-consuming to run large-
scale scenarios with large numbers of devices and sensors. We 
will discuss some technics to overcome these challenges in 
Section III.A. In the following paragraphs, we discuss details of 
the co-simulator architecture. 

 

Fig. 2. Overview of co-simulation platform. 

A high-level overview of the co-simulation platform is 
shown in Fig. 2, which mainly comprises of physics, network, 
and compute modules. These modules are configured and 
synchronized by the co-simulation coordinator. MuJoCo [15] is 
the physics simulation module used to model a 3D environment 
of the factory use-case which offers accurate and efficient 
physics simulation with agents such as industrial robotic arms, 
conveyor belt, camera sensors, and so on. The computation 
associated with the agents (Edge, robot arms, and cameras) have 
been emulated using Docker containers. The containers run real 
application workloads, for example, image compression 
algorithms in a camera container, object detection and pose 
estimation algorithms in an Edge container, and movement 
control algorithms in a robot arm container. During a simulation 
run, the status of the agents in the physics simulator are shared 
with the compute containers appropriately via our developed 
inter-process communication (IPC) interfaces. The shared status 
information includes rendered camera images and position 
coordinates of robot arms, etc. 

The communication between the compute nodes over the 

network is modeled using the 5G network simulator which is 

developed in Omnet++ [16]. The 5G network simulator models 

the packet loss rates and packet latencies of the IP packets sent 

from the compute nodes. The protocol stack models of gNB and 

UE nodes in Omnet++ mainly contain medium access control 

(MAC) and physical (PHY) layers which are modeled 

according to the concepts in 3GPP specifications. 

The MAC layer functionalities modeled in the simulator 

include scheduling tasks such as UE selection, resource 

allocation, and MCS selection. In the PHY layer, the 5G frame 

structure supports various slot formats to support diverse use-

cases. In the simulator, time division duplex (TDD) with self-

contained slot structure (supports low-latency transmissions) is 

modeled which includes a control channel, data channel, and an 

acknowledgement channel within the same slot. 

The wireless transmission and reception of PHY layer 
packets are modeled using wireless link model as shown in Fig. 
3. To simulate over-the-air transmissions of PHY layer packets, 
the wireless link model uses 3GPP specified Indoor Factory 
(InF) [17]. The implemented channel model includes large-scale 
fading (pathloss and shadowing) and small-scale fading models. 
For every receiver node, the wireless link model uses 3GPP 
defined procedures to compute different parameters such as 
received signal power, interference powers, SINR, packet error 
rate, etc., and then decides whether a PHY packet transmission 
was successfully received or not at the receiver node. 

A. Simulation Scenario 

This section describes an industrial robotics scenario utilized 
for the performance evaluation of communications-control co-
design. A large-scale indoor factory scenario is simulated in 
which several robotic arms are operating concurrently, each at a 
conveyor belt, as illustrated in Fig. 3. The objects on a conveyor 
belt sequentially arrive towards a robotic arm at a fixed velocity. 
The task of a robotic arm is to pick the moving objects from its 
respective conveyor belt and place it on an adjacent stationary 
platform. Each robotic arm has an associated depth camera to 
perceive the environment around its vicinity. The camera and 
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robot nodes are assumed to have low compute capabilities, and 
hence cannot execute complex environment perception 
algorithms in real time to determine the object locations on the 
conveyor belt to complete the pick-and-place tasks. 

The computationally expensive environment perception 
tasks are offloaded to the Edge via the 5G network. The cameras 
continuously stream compressed image and depth frames in the 
uplink direction to the Edge. The Edge application performs 
object detection and pose estimation tasks, and sends the 
objects’ pose information in the downlink direction to the 
respective robotic arms. Several control loops can be included 
in the simulation scenario, each comprised of a camera sensor, 
Edge process, and a robot arm. 

 

Fig. 3. Simulation scenario of industrial robotics use-case. 

For the case with control-communications co-design 
enabled, a co-design policy is executed for each control loop at 
the Edge as illustrated in Fig. 3. Using the perception 
information, the policy periodically generates the required 
packet delivery probability (𝑃𝐷𝑃𝑟) parameter and sends it to the 
camera over the downlink.  The cameras receive their respective 
𝑃𝐷𝑃𝑟  parameter and use it to probabilistically drop the image 
and depth frames, thereby reducing the amount of traffic 
injected into the network. Here, the 𝑃𝐷𝑃𝑟  is a novel dynamic 
QoS control signaling that we propose in this paper. In the 
current work, the periodic signaling of the dynamic QoS 
parameter was performed in the application layer. However, it 
could be done more efficiently via the lower layers in 5G 
protocol stack. We will discuss more about it in Section V.  

To evaluate performance benefits of the co-design algorithm 
on the 5G network and the overall robotic control system, the 
following key performance indicators (KPIs) are defined: 

1) Task Success Rate: A task is considered successful if a 

robotic arm successfully picks a moving object from the 

conveyor belt and places it on its adjacent stationary platform 

correctly. The task success rate is defined as the ratio of the 

number of successful pick-and-place tasks to the total number 

of tasks presented to a robotic arm. 

2) Network Capacity: In the context of this robotic tasks 

use-case, the network capacity is defined as the maximum 

number of concurrent control loops that can supported by the 

network such that the task success rate is maintained at or above 

a specified value. 

For performance evaluation of the scenario illustrated in Fig. 
3, it would be necessary to simulate many control loops (in the 
order of several 10’s of control loops in a cell). Simulation of 
each control loop involves several computationally expensive 
tasks such as computation of accurate physics of robotic arm and 
objects on the conveyor belt, rendering of realistic camera 
images and depth frames, object detection and pose estimation 
algorithms, etc. Also, to obtain statistically reliable results for 
task success rate, each simulation case should be run to cover a 
sufficient number of tasks (say 100 tasks) which would require 
several hundreds of simulated seconds (time duration in the 
simulated world). Simulating a large-scale scenario with these 
requirements is a compute-heavy task and needs to be 
simplified. To overcome these challenges, we designated a 
particular control loop in the scenario as a primary control loop 
and simulated all the details of its physics, network, and compute 
models. For the other control loops in the scenario, compute 
intensive tasks such as object pose estimation, rendering of 
camera frames, etc. were removed, and the object pose 
information was directly obtained from the physics simulator. 

IV. SIMULATION RESULTS 

This section presents simulation results and evaluates the 
performance gains of control-communications co-design in 5G 
Industrial IoT use-case by analyzing the task success rate and 
network capacity KPIs. The simulation scenario described in 
Section III.A was run for the two cases: without co-design, and 
with co-design. The key parameter settings for the 5G network 
simulator are as shown in Table I. 

TABLE I.  5G SIMULATOR PARAMETER SETTINGS 

Parameter Value 

Carrier frequency 3.5 GHz (CBRS band) 

Bandwidth, subcarrier 
spacing 

100 MHz, 15KHz 

BS and UE transmit power, 
and antenna configuration 

23 dBm, 1x1 SISO 

Channel model 3GPP InF-SL (sparse clutter and low BS 
height) 

Channel coding Polar coding for Control and Ack channels, 
and LDPC for Data channel 

The task success rate versus number of control loops is 
plotted in Fig. 4 for the cases of with and without co-design. 
Here, each control loop represents a conveyor belt with a robotic 
arm, depth camera and Edge communicating mission critical 
information via the 5G network. It can be noted that with a 
smaller number of control loops in the system, 100% task 
success rate is achieved for both of the cases. This shows that 
the co-design algorithm intelligently drops less critical packets 
such that it does not impact the task success rate. Furthermore, 
the results in Fig. 4 show significant gain in network capacity 
with co-design. For example, assuming 100% task success rate 
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requirement, the network can support up to 16 control loops 
without codesign. Whereas the network can support up to 31 
control loops with co-design, a ~2x gain in network capacity. 
Similarly, at 98% task success rate requirement, the network can 
support 17 and 32 control loops without and with co-design, 
respectively, a 2x gain in network capacity. 

 

Fig. 4. Task success rate with and without co-design for different number of 

control loops. 

 

Fig. 5. Injected traffic and system throughput for different number of control 

loops. 

To obtain further insights, consider the injected traffic and 
system throughput results shown in Fig. 5. As the number of 
control loops increases in the system, the injected traffic into the 
network also increases proportionally. For the case without co-
design, the injected traffic with 21 control loops (~179.4Mbps) 
exceeds the system capacity (~178.6Mbps). Hence, the task 
success rate reduces significantly due to congestion. On the 
other hand, with co-design, the injected traffic from 21 control 
loops is only about 84.5Mbps (less than half of system capacity) 
which can be easily supported by the network. 

 

Fig. 6. IP packet latency for different number of control loops. 

The cumulative distribution function (CDF) of latency of IP 
packets within the 5G network is shown in Fig. 6. As expected, 
the latency increases with the increasing number of control 
loops. For the case without co-design, the 99-percentile latency 
is less than 40ms with up to 20 control loops. However, with 21 
or more control loops, the latency increases significantly due to 
the network congestion. On the other hand, with co-design, the 
packet latency is comparatively smaller for the case of 21 control 
loops. 
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V. DISUCSSION AND FUTURE DIRECTIONS 

The simulation results presented in Section IV show 
significant capacity improvements using the communication-
control co-design, with which a greater number of robots can be 
supported in a given wireless network. In particular, about 2x 
gain in capacity was observed for the manipulation use-case. 
This is the result of the co-design algorithm and dynamic QoS 
technique with which the non-essential camera frames were 
intelligently dropped by considering the state of control system, 
resulting in lesser traffic injected into the network per control 
loop. On the contrary, without co-design and dynamic QoS, the 
QoS flows were required to be configured to satisfy stringent 
reliability and latency requirements for all the packets, which 
eventually resulted in capacity degradation. 

In this paper, a robotic manipulation scenario was studied which 
is characterized by downlink control traffic with small 
application packet sizes, and the uplink traffic with large 
application packet sizes from cameras and other sensors. Such a 
scenario presents greater challenges in network capacity due to 
the stringent reliability and latency requirements. In that case, 
dropping uplink packets which are bigger in size would provide 
higher margin in terms of reduction in traffic injected into the 
network. However, uplink packet dropping involves additional 
requirements like signaling of dynamic QoS parameters to the 
UE, which was performed in application layer in the current 
work. However, signaling of the dynamic QoS parameters could 
be performed more efficiently and with low latency via the 
lower layers in 5G protocol stack. Exploration of those efficient 
signaling methods is left for the future work. 

Another direction to achieve further improvements in network 
capacity is by using co-design policy for improving the 
robustness of robotic systems to the delay and packet loss 
introduced by the network. Here, the co-design policy is based 
on delay-aware “state correction” [18], in which the robot uses 
time stamp information to determine time delay of the received 
downlink state information. The state correction co-design 
policy can run in complementary to the communications-control 
co-design policy to provide significant network capacity 
improvements. 

VI. CONCLUSION 

In this paper, we discussed the capacity challenges of 
URLLC in large-scale industrial use-case scenarios. By taking 
robotic manipulation as an example use-case, we designed 
communications-control co-design algorithm and dynamic QoS 
techniques to address the capacity issue. We have developed an 
advanced co-simulation framework that includes a 5G network 
simulator, physics simulator, and emulation of compute 
workloads, for comprehensive and accurate modeling of the 
manipulation use-case. The simulation results show that co-
design and dynamic QoS can provide significant improvements 
in network capacity (i.e. the number of supported control loops), 
about 2x gain for the manipulation use-case. 
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