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Abstract
Current databases of soil hydraulic properties (SHPs) have typically been used to

develop pedotransfer functions (PTFs) to estimate water retention [θ(h)] assuming a

unimodal pore-size distribution. However, natural soils often show the presence of

bimodal to multimodal pore-size distributions. Here, we used three widely spread

databases for PTF development: UNsaturated SOil hydraulic DAtabase (UNSODA)

2.0, Vereecken, and European hydropedological data inventory (EU-HYDI), to ana-

lyze the presence of structural effects in both θ(h) and hydraulic conductivity [K(h)].

Only undisturbed samples were included in the analysis that contained enough data-

points for both θ(h) and K(h) properties, especially in the wet range. One-hundred

ninety-two samples were suitable for our analysis, which is only 1% of the total

samples in the three databases. Results showed that 65% of the samples exhibited

a bimodal pore-size distribution, and bimodality was not limited to fine-textured

but also coarser-textured soils. The Mualem–van Genuchten (MvG) expression for

both unimodal and bimodal soils was not able to predict the observed unsaturated

K. Only a joint fitting of measured θ(h) and K(h) functions provided parameter esti-

mates that were able to describe unsaturated K for uni- and bimodal soils. In addition,

we observed a negative relationship between α and n in the case of low sand con-

tent (<52%) for both unimodal and bimodal matrix domain properties, contradicting

the classical notion. The ratio of α for the macropore and matrix domain was posi-

tively correlated with the fraction of macropores and sand content. We anticipate that

the results will contribute to deriving PTF for structured soils and avoid unrealistic

combinations of MvG parameters.

Abbreviations: τ, tortuosity; AIC, Akaike Information Criterion; EU-HYDI, European hydropedological data inventory; K(h), hydraulic conductivity; K0,

hydraulic conductivity of matrix flow at zero capillary head; Ks, saturated hydraulic conductivity; MvG, Mualem–van Genuchten; PTF, pedotransfer function;

Se, effective volumetric saturation; SHP, soil hydraulic property; SSR, sum of squared residuals; UNSODA, unsaturated soil hydraulic database; θ(h), water

retention; θr, residual water content; θs, saturated water content.
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1 INTRODUCTION

Soil hydraulic properties (SHPs) are key in understanding and
predicting local to continental-scale hydrological, energy-
related, and biogeochemical processes occurring at the land
surface in managing ecosystem services of soils and for the
optimal and sustainable design of agricultural systems. Yet,
SHPs are only sparsely available and their measurement is
tedious and time-consuming. Pedotransfer functions (PTFs)
are used to estimate these soil hydraulic properties, that
is, the water retention [θ(h)] characteristic and hydraulic
conductivity [K(h)] functions from simple soil properties like
soil particle size distribution (sand, silt, and clay content),
soil organic carbon content, and bulk density (e.g., Clapp &
Hornberger, 1978; Van Looy et al., 2017; Vereecken et al.,
2010; Wösten et al., 2001). These functions avoid the need
for direct measurement of SHPs and facilitate the application
of mathematical models that describe water, energy, and
carbon fluxes in soils at various spatial scales ranging from
the field to the global scale. Currently, the estimation of the
soil θ(h) characteristic and the K(h) function using PTFs is
based on the assumption that soils exhibit a unimodal pore
size distribution. There is, however, ample experimental
evidence in the literature that soils may show a hierarchical
organization of soil structure leading to bi- or multimodal
pore size distributions (Brewer, 1964; Hadas, 1987; Dexter,
1988; Dexter et al., 2008; Oades & Waters, 1991).

Early experimental studies [e.g., Germann and Beven
(1981) and Othmer et al. (1991)] analyzed the effect of macro-
pore structures on soil hydrological processes. In the work
of Germann and Beven (1981), the authors used large undis-
turbed soil monoliths to study the effect of soil macroporosity
on the infiltration capacity of soils. The main finding was that
the K(h) decreased by factors of 4.3 and 18 when macropore
flow was excluded, pointing to the importance of macrop-
ores for water translocation at and close to saturation. Another
experimental approach was used by Othmer et al. (1991), who
analyzed the presence of a bimodal pore size distribution in
the soil θ(h) characteristic measured on undisturbed soil sam-
ples. Here, they concluded that the calculated K(h) functions
derived from the bimodal retention characteristic agreed bet-
ter with the measured hydraulic conductivities in the field than
those obtained by neglecting the bimodal distribution in the
retention characteristic.

Concepts to describe water flow in bi-and multimodal soils
were proposed by Addiscott (1977), Beven and Germann
(1981), Jarvis et al. (1991), and Gerke and van Genuchten
(1993), amongst others. In the work of Addiscott (1977),
a conceptual model accounting for the effect of soil struc-
ture on water flow and leaching of solutes was developed,
whereby he divided the flow of the soil solution into a mobile
and a retained phase, implicitly recognizing the presence of
two pore-size domains. Beven and Germann (1981) proposed

Core Ideas
∙ Only 1% of the samples in the three databases was

suitable for analyzing the presence of bimodality.
∙ Bimodality was seen in 65% of the samples, both

in fine-textured and coarser-textured soils.
∙ Joint fitting of θ(h) and K(h) data outperforms the

fitting of only θ(h) and using MvG function to
estimate K(h).

∙ Contradicting the classical notion, a negative rela-
tionship between the shape parameters α and n was
observed for both uni- and bimodal properties.

∙ α for the macropore and matrix domains was pos-
itively correlated with the fraction of macropores
and sand content.

a one-dimensional model of bulk flow in soils exhibiting a
micro- and macropore domain using the Richards equation.
Jarvis et al. (1991) also developed a model for water and solute
transport for macroporous soils, whereby the model consid-
ers again a micro- and a macropore domain. In contrast to
those of Beven and Germann (1981), the water flow in the
macropore domain is solved based on Darcy’s law with sat-
urated hydraulic conductivity (Ks) expressed as a function of
microporosity in a simple power-law form, whereas Richards
equation is solved for the matrix domain using Brooks and
Corey (1964) and Mualem (1976) for the parameterization
of θ(h) and unsaturated K(h) characteristic, respectively. To
describe the exchange between both domains, an empiri-
cal interaction term was added. Gerke and van Genuchten
(1993) proposed a dual-porosity model to account for the
bimodal nature of pore size distributions in natural soils by
considering a macropore or fracture pore domain and a less
permeable matrix pore domain, whereby the Richards equa-
tion is solved for both domains. A first-order rate equation was
additionally introduced to transfer solutes between the macro-
pore and matrix pore domains. For the parameterization of
the soil hydraulic characteristics, the Mualem–van Genuchten
model (Mualem, 1976; van Genuchten, 1980) was used to
parametrize water flow in both domains.

Another avenue to account for bi- or multimodal soils
is integrating this process directly into the θ(h) and K(h)
function. A first attempt to quantify the effect of macrop-
ores on water flow was conducted by Philip (1968) using
analytical solutions of a dual-porosity model, but suitable
concepts using modified retention and conductivity functions
accounting for macropore flow or bi- or multimodal soils were
developed much later by Smettem and Kirkby (1990), Ross
and Smettem (1993), Durner (1994), and Dexter and Richard
(2009).
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Smettem and Kirkby (1990) used the Mualem–van
Genuchten model to describe the water flow in the intra-
aggregate (macropore) and in the interaggregate (micropore)
domain of a structured soil and the matching points (θm, hm)
and (Km, hm) at the boundary between both domains, where
θm is the soil water content at the boundary, hm the matric
potential at the matching point, and Km the unsaturated K(h)
at the matching point. Each domain was characterized by its
specific van Genuchten shape parameters α (relating to the
inverse of air entry pressure) and n (measuring the pore-size
distribution). Ross and Smettem (1993), on the other hand,
introduced a bimodal parameterization of the θ(h) and K(h)
function by superimposing individual retention and conduc-
tivity curves (here the authors denote this as overlapping
pore-size distributions), whereby one curve accounts for the
macropore domain and the other one for the matrix domain.
The authors also stated that the use of sums of simple func-
tions has the advantages of simplicity and predicting power
and that the effects of macroporosity can be represented in
a physically realistic manner. The same concept was also
taken up by Durner (1994) for the Mualem–van Genuchten
characteristics and extended by Priesack and Durner (2006)
for the closed-form equation between θ(h) and K(h) func-
tion, whereby this parameterization has been widely used
since then (e.g., Spohrer et al., 2006; Jadoon et al., 2012;
Schwen et al., 2014). Finally, Dexter and Richard (2009) pub-
lished a model for θ(h) in bimodal soils, which was further
developed into a model for trimodality accounting for dif-
ferent levels or types of pores. This model is based on the
exponential (Boltzmann) θ(h) function and can be extended
to include any number of modes of porosity as may exist
because of the hierarchical nature of soil structure. Com-
pared with the Durner model, this model has not been widely
used yet.

Despite the fact that the pore network of structured soils
may often be best described by bi- or multimodal pore-size
distributions and that bi- or multimodal soil hydraulic func-
tions may better describe flow in structured soils, no effort
has been undertaken to develop PTFs that estimate bi- or
multimodal soil hydraulic properties. This is caused by the
lack of suitable variables that are able to predict hydraulic
parameters describing the soil macropore domain and by
the double number of parameters for bimodal model fitting
requires more measurement points of θ(h) characteristic or
the K(h) function than provided in most data collections.
Additionally, measurement points in the wet range of the
K(h) are often lacking. But even if data of both characteristics
[θ(h) and K(h)] were available, most PTFs were developed
on retention data only (Weihermüller et al., 2021). Until
today, almost all PTFs use a unimodal description of the soil
θ(h) characteristic to estimate soil hydraulic parameters in
analytical expressions of the θ(h) relationship and to derive
the unsaturated hydraulic conductivity from the soil θ(h)

characteristic using, for example, Mualem–van Genuchten or
Brooks and Corey equations. Some exceptions are Li et al.
(2014) and Haghverdi et al. (2020), who estimated the param-
eters of bimodal soil θ(h) models from basic soil properties.
Both works call attention to the limited application of the
derived PTFs because of the low number of training samples
used for the analysis. In using unimodal approaches to fit soil
hydraulic properties of structured soils, Dexter and Richard
(2009) notice that “it seems likely to us that the need for
adjustable ‘shape factors’, for example the parameters m and
n that are used in the van Genuchten (1980) θ(h) equation,
is mainly a consequence of trying to fit unimodal models to
data from soils that are inherently bi- or multimodal as a con-
sequence of the hierarchical nature of soil structure (Brewer,
1964; Hadas, 1987; Dexter, 1988; Oades & Waters, 1991).”

Despite the limited number of soil samples to analyze
the bimodal and multimodal properties and limited efforts
devoted to developing PTFs for these properties, it is gener-
ally accepted that hydraulic properties of fine-textured soils
are strongly influenced by structural properties such as aggre-
gates and macropores (Coppola, 2000; Coppola, Basili, et al.,
2009; Coppola, Comenga, et al. 2009). Multiporosity and
dual-porosity/dual-permeability models have been proposed
to better account for these properties. For example, Cop-
pola (2000) superimposed a van Genuchten or a Ross and
Smettem formulation to describe the macroporosity and van
Genuchten for the matrix part. Through validation on 18 clay–
clay loam soils, they were found to be more closely correlated
with measured soil θ(h) and unsaturated conductivity dataset
when bimodal approaches were used compared with unimodal
approaches. Coppola, Basili, et al. (2009) investigated the
effects of unimodal and bimodal soil hydraulic properties on
the predictions of soil water content in an ensemble frame-
work. They found significantly better simulation of soil water
content compared with measurement by using a bimodal
approach when validated on clayey loam soils. Most of the
work regarding bimodal soil hydraulic properties has mostly
been tested and validated on fine-textured soils. Here we will
analyze the structural properties from a wide range of soil tex-
tures and check if the effect of structural properties on soil
hydraulic properties is only limited to the fine-textured soils
or occurs across all textural classes.

Lehmann et al. (2020) suggested that traditional estima-
tion of soil hydraulic properties by PTFs is unconstrained
and may result in unphysical soil hydraulic parameters, for
example, the unphysical relationship between α and n param-
eters in the van Genuchten model. By injecting an additional
soil-specific characteristic length that controls capillary flow
to an evaporating surface, the occurrence of unphysical soil
hydraulic parameter combinations was reduced, and the land
surface representation was improved. It is, therefore, interest-
ing to check if the α and n relationship is physically reasonable
by analyzing the estimated soil hydraulic parameters obtained
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from the unimodal and bimodal soil hydraulic functions fitted
to soil hydraulic characteristic data.

The aims of this study are (a) to collect and establish a
database of soil hydraulic properties for the analysis of the
effect of soil structure on soil θ(h) characteristics and K(h),
(b) to evaluate unimodal and bimodal soil hydraulic func-
tions using the Mualem–van Genuchten model with respect to
the estimated parameters, and (c) to evaluate the dependence
of the van Genuchten shape factors α and n with respect to
different fitting strategies.

2 MATERIALS AND METHODS

2.1 Soil hydraulic functions

Two different soil functions, namely the unimodal and
bimodal model, were used in this study to describe the
soil hydraulic properties by parameter estimation from mea-
sured retention and saturated and unsaturated hydraulic
conductivities. For the first approach, the commonly applied
Mualem–van Genuchten (MvG) functions (Mualem, 1976;
van Genuchten, 1980) were fitted to the data, whereby
the effective volumetric saturation (Se) is described by the
following equation:

𝑆e (ℎ) =
θ − θr
θs − θr

=

{ 1
[1+|αℎ|𝑛]𝑚 ℎ < 0
1 ℎ ≥ 0

(1)

where θ (cm3 cm−3) is the volumetric water content; h (cm)
is the matric potential; α (cm−1), n, and m are empirical shape
parameters, where m is set to m = 1 − 1/n in this study as
suggested by van Genuchten (1980); and θs and θr are the
volumetric water contents as the saturated and residual water
contents (cm3 cm−3), respectively. During the parameter esti-
mation described in the Objective Functions and Parameter
Estimation section, a large majority of soils yielded a θr value
of 0. To be consistent with all fittings, θr was set to 0 for all
soil samples, or in other words, θr was not fitted at all, as was
also done by, for example, Weynants et al. (2009).

The K(h) function is expressed by Equation 2:

𝐾 (ℎ) = 𝐾s𝑆
τ
e

[
1 −

(
1 − 𝑆

1∕𝑚
e

)𝑚]2
(2)

where Ks is the K(h) (cm d−1) acting as a matching point,
whereby classically, the saturated K(h) is used for it (Schaap
& Leij, 2000), and τ is the tortuosity factor.

The second approach used to describe the soil hydraulic
properties is the bimodal model according to Durner (1994),
which accounts for soil structure and macroporosity espe-
cially for soils at high water contents. In this model, the
porous soil can be divided into i overlapping MvG functions

weighted by a factor wi. The effective saturation can therefore
be described by Equation 3:

𝑆e (ℎ) =
𝑘∑
𝑖=1

𝑤𝑖

(
1

1 + ||α𝑖ℎ||𝑛𝑖
)𝑚𝑖

(3)

with the sum of w1 to wk being equal to 1. The bimodal model
is therefore restricted by k= 2. Combining Equation 3 with the
pore size distribution model of Mualem (1976), the bimodal
unsaturated K(h) function can be expressed according to
Priesack and Durner (2006) by the following equation:

𝐾
(
𝑆e

)
= 𝐾s

(
𝑘∑
𝑖=1

𝑤𝑖𝑆e𝑖

)τ⎧⎪⎨⎪⎩
∑𝑘

𝑖=1 𝑤𝑖α𝑖

[
1 −

(
1 − 𝑆

1∕𝑚𝑖
e

)𝑚𝑖
]

∑𝑘

𝑖=1 𝑤𝑖α𝑖

⎫⎪⎬⎪⎭
2

(4)
Both the soil hydraulic parameters and the weighting fac-

tors wi were determined in the parameter estimation and are
described in Objective Functions and Parameter Estimation
section.

2.2 Soil θ(h) and K(h) database

Three different databases were used, namely the Vereecken
(Vereecken et al., 1989, 1990), the UNSODA 2.0 database
(Nemes et al., 2001), and the EU-HYDI database as described
by Weynants et al. (2013). The UNSODA 2.0 database
included some samples from Vereecken et al. (1989, 1990)
and was further extended by other datasets covering soil
samples from the global distribution.

All databases were heterogeneous and consisted of data
from different sources and measurement procedures and
essential soil variables such as soil texture (sand, silt, and
clay content), bulk density, soil organic carbon content if
included in the dataset. Water retention and K(h) data were
available at various levels of detail. The Vereecken and
UNSODA 2.0 databases initially have 183 and 790 soil sam-
ples, respectively, whereas the EU-HYDI has 18,537 soil
samples. Only data from undisturbed samples were used in
our study, reducing the number of samples to 183, 520, and
14,294, respectively. For the Vereecken dataset, the water con-
tent in the low-pressure head range was determined for the
undisturbed samples, while water content in the high-pressure
head range (>246 kPa) was measured on disturbed samples
taking from core samples. For the UNSODA and EU-HYDI
dataset, no clear measurement method is available for the
pressure ranges, and we analyzed the soil samples that was
labeled as ‘undisturbed’. In addition, θ(h) and unsaturated
K(h) data had to be available, and we analyzed the soil sam-
ples measured in the laboratory, reducing the number of soil
samples to 145, 244, and 1,412, respectively, for the three



ZHANG ET AL. 5 of 21Vadose Zone Journal

databases. To ensure that enough information is included in
the measured data, at least three θ(h) data pairs at matric
potential higher than −20 cm are required including θs. For
K(h), three pairs at matric potential higher than −20 cm are
required, whereby one should be Ks. Scotter (1978) suggested
that soil pores with water-entry pressure higher than −15 cm
can be classified as macropore, whereas Jarvis (2007) sug-
gested the value as −10 to −6 cm. We relaxed the requirement
of data pairs near the saturation to −20 cm and two more data
pairs in addition to θs and Ks to make sure that sufficient infor-
mation is included near saturation. Additionally, the samples
should have at least six θ(h) pairs and at least seven K(h) pairs
in the entire matric potential range as partially proposed by
Schaap and van Genuchten (2006). The number of data pairs
will guarantee that the number of observations will be larger
than the number of fitted parameters, avoiding underdeter-
mined cases and a nonunique solution of the fitted parameters.
By setting these constraints, the Vereecken database consists
of 59, the UNSODA database of 16, and the EU-HYDI of
119 individual samples totaling 194 samples, accounting for
only 1% of the total number samples in the three databases.

2.3 Objective functions and parameter
estimation

For the fitting of the unimodal and bimodal soil θ(h) equations
(Equation 1 or 3) and K(h) functions (Equation 2 or 4), we
minimize the objective function of the sum of squared residu-
als (SSR) between estimated and observed quantities of water
content and K(h) respectively at given matric potential.

For the joint fitting of the unimodal MvG equations
(joint of Equations 1 and 2) and bimodal equations (joint of
Equations 3 and 4), the objective function is the sum of the
weighted SSR for θ(h) and K(h) as follows:

Φ (𝐏) =
𝐼∑
𝑖=1

𝑢𝑖
[
θ𝑖
(
ℎ𝑖
)
− θ′

𝑖

(
ℎ𝑖
)]2

+
𝐽∑
𝑗=1

𝑣𝑗

[
log𝐾𝑗

(
ℎ𝑗
)
− log𝐾 ′

𝑗

(
ℎ𝑗
)]2

(5)

where θi(hi) and Kj(hj) are respectively the ith measured
water content and jth K(h) data for each soil sample; θ′

𝑖
(ℎ𝑖)

and 𝐾 ′
𝑗
(ℎ𝑗) are corresponding estimated water content and

hydraulic conductivity; I and J are the number of measured
θ(h) and K(h) for each sample; P is the MvG parameter vector
for unimodal and MvG parameter vector and weighting fac-
tors wi for bimodal equations, being used to estimate θ′

𝑖
(ℎ𝑖)

and 𝐾 ′
𝑗
(ℎ𝑗) at corresponding h; and ui and vj are weighting

terms used to balance the soil θ(h) and K(h), which are
respectively obtained from the inverse of the variance of the
unimodal (or bimodal for bimodal fitting) soil θ(h) and K(h)

functions fitted to the data, that is, the aforementioned SSR
values. Large SSR values are weighted less compared with the
small SSR values. See Weynants et al. (2009) and Zhang and
Schaap (2017) for the details of deriving the balance terms.

A combination of optimization algorithms was used to
minimize the objective function for each soil sample. To
obtain the optimal (global minimum) soil hydraulic param-
eters, a step-wise fitting approach was performed where the
dataset was firstly fitted by using the generalized simulated
annealing algorithm in R package (Xiang et al., 2013), the
particle swarm optimization described by Kennedy and Eber-
hart (1995) and built-in PSO package (Bendtsen, 2012), and
the differential evolution approach described by Mullen et al.
(2011) and Price et al. (2006) implemented in DEoptim pack-
age (Ardia et al., 2020). The corresponding fitting with the
lowest SSR values among the three algorithms was selected
and used as an initial guess to estimate parameters for the
second fitting. During the second fitting, the particle swarm
optimization algorithm was used because this algorithm was
found to perform somewhat superior over the other algorithms
and was computationally efficient. The second fitting results
were used as the final optimum fitted parameters. These pro-
cedures were repeated for both the θ(h) and K(h) datasets to
obtain the θ(h) and K(h) parameters. The joint fitting of dual-
porosity soil θ(h) curves and dual-porosity soil K(h) curves
was fitted to the dataset again using the same second-fitting
approach. Here, it has to be noted that the second-fitting might
lead to minor improvement compared with the first fitting,
and it is worth deciding on the need for a second fitting for
specific samples. The SSR values from the aforementioned
dual-porosity soil θ(h) model and dual-porosity K(h) model
were used to weight the joint fitting and balance the θ(h)
and K(h) dataset. The obtained dual-porosity soil hydraulic
parameters were used as the final parameters.

During the fitting process, a large majority of soils yielded
a θr value of 0. To be consistent with all fittings, θr was set
to 0 for all soil samples, or in other words θr was not fitted at
all, as was also done by Weynants et al. (2009), for example.
In addition, because of the limited number of measurement of
soil characteristic data, less-fitted parameters and the simpler
representation of soil hydraulic properties are more desirable.
For the joint fitting of retention and K(h) data, the tortuosity
(τ) was also considered as a fitting parameter as was done
by Schuh and Cline (1990) or Schaap and Leij (2000), for
example.

During the fitting, the parameter bounds used were set to
0.00001 < α < 1 (cm−1), 1.01 < n < 30.0, 0.001 < θs < 1.0
(cm3 cm−3), 0.0001 < Ks < 10,000,000 (cm d−1), and 0.0 <

w < 1.0, whereby w is the weighting factor for the macropore
(fracture) domain (See Equation 3). For the constraint of τ,
Peters et al. (2011) suggested that the fundamental require-
ment is to keep the hydraulic functions monotonic, that is,
both θ(h) and K(h) curves should decrease or stay constant as



6 of 21 ZHANG ET AL.Vadose Zone Journal

the matric potential h decreases, whereas a stricter physical
requirement is to keep the concave shape of the conductivity
function. To keep more flexibility for the fitting, we choose
to keep the monotonicity of the coupled MvG K(h) function.
For the unimodal (Equation 2) fitting, τ should be larger than
−2/m (where m is van Genuchten parameter; see Equation 1)
suggested by Peters et al. (2011) and the lower and upper
bounds of τ is set as −10.0 < τ < 10.0. For bimodal fitting
strategies (Equation 4), τ is suggested to be larger than −2
min{|1/mk|} (k = 1, 2, respectively, for macropore and matrix
domain) and τ is also set as −10.0 < τ < 10.0. Addition-
ally, a constrain with respect to αi and ni was included to
clearly identify α and n values for the macropore (α1 and n1)
and matrix (α2 and n2) dominated domain by the following
equation:

SSR = 10SSR if(α1 < α2 & 𝑛1 > 𝑛2) 𝑜𝑟 (α1 > α2 & 𝑛1 < 𝑛2)
(6)

which ensured that α1 has to be larger than α2 and n1 larger
than n2.

Further to the joint fitting, we also analyzed the accuracy
of the K(h) function by considering the parameters resulting
from the fitting of the unimodal and bimodal soil θ(h) model
and considering Ks as the measured Ks value (Ks is fixed
during the fitting) and τ fixed at 0.5.

All fittings were performed in the R software (Version
3.6.0) (R Core Team, 2020).

2.4 Dependency of α on n in the van
Genuchten equation

To explore the theoretical relationship between α (cm−1) vs.
n parameters, the derivative of α vs. n, ∂α/∂n, was calculated
for the case where m = 1 − 1/n, which leads to the closed
form of relative K(h) suggested by van Genuchten (1980). The
derivative of α vs. n derived in this section does not show how
the two parameters are related when comparing different soils.
However, we use this derivative to show how α varies with n
in order to match the mathematical relationship between Se

and h.
When αh is significantly >1, Equation 1 can be approxi-

mated by the following:

𝑆e ≈ (αℎ)1−𝑛 (7)

yielding Equation 8:

1
1 − 𝑛

log𝑆e = log (αℎ) (8)

where α is, therefore, given as Equation 9:

α = 1
ℎ
𝑒

1
1−𝑛 log𝑆e (9)

thus leading to Equation 10:

∂α
∂𝑛

=
1−𝑛
√
𝑆e log𝑆e

ℎ(1 − 𝑛)2
(10)

The right-hand side of Equation 10 is always < 0, because
(a) 0 < Se < 1, leading to 1−𝑛

√
𝑆𝑒 > 0; (b) since n ≠ 1, we

obtain (1 – n)2 > 0; and (c) log(Se) < 0. It becomes clear that
∂α
∂𝑛 < 0. Therefore, α increases with decreasing n.

2.5 Model selection criterion and
comparison of parameters in different models

To select the best model to characterize the measured θ(h)and
K(h) data, the Akaike Information Criterion (AIC) (Akaike,
1974) was used. The AIC estimates the differences between
the data’s unknown true likelihood function and the fitted
likelihood function of the model used. Hereby, the smallest
AIC values indicate the best model describing the measured
data. The AIC is derived from frequentist probability and was
calculated based on the following equation:

AIC = 𝑁 ln (SSR∕𝑁) + 2𝑝m +
2𝑝m

(
𝑝m + 1

)
𝑁 − 𝑝m − 1

(11)

where N is the number of measured data points (soil θ(h) and
K(h) data pairs), pm is the number of fitted model parameters,
and SSR is the sum of squared residuals. For the joint fitting
of the θ(h) and K(h) functions, the total SSR (the terms shown
in Equation 5 without adding the weighting terms) was used
in AIC calculation, whereby for the fitting of retention data
only, the SSR was also calculated for the K(h) data by the use
of the closed-form equation (Equations 2 and 4, respectively,
for unimodal and bimodal) and the two individual SSRs were
summed up. The best model was chosen as those yielding the
lowest AIC value.

For the analysis of differences in fitted soil hydraulic
parameters, the comparison of the mean of more groups was
performed with the nonparametric Kruskal–Wallis test with
adjustment of p values by Benjamini and Hochberg (1995)
using R package ‘agricolae’ (De Mendiburu, 2014) based on
the probability p = .05.

3 RESULTS AND DISCUSSION

3.1 General database statistics and
properties

For the selected samples obtained from the UNSODA,
Vereecken, and EU-HYDI database, the total number of
measurements for θ(h) and K(h) vary significantly with a
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T A B L E 1 Number of measurements for θ(h), K(h), and θ(h) +
K(h) for the 194 samples extracted from the UNsaturated SOil

hydraulic DAtabase (UNSODA), Vereecken, and European

hydropedological data inventory (EU-HYDI) databases

θ(h) K(h) θ(h) + K(h)
Mean 19 33 52

Min. 7 7 16

Max. 62 118 148

F I G U R E 1 USDA soil textural triangle for all 79 soil samples

where soil textural information was provided in the database. Red

markers indicate those sampled best fitted by unimodal fits, and blue

markers indicate bimodal according to the lowest Akaike Information

Criterion

minimum of six for θ(h) and seven for K(h), which is slightly
larger as the thresholds defined for measurement near satura-
tion [three for θ(h) larger than−20 cm and three for K(h) larger
than −20 cm]. The maximum reported data pairs showed an
extremely high number of measurements with a number of 62
and 118 individually (see Table 1). Mean data pairs are 19 and
33 for the two characteristics [θ(h) and K(h), respectively].

For the total 194 soil samples, we found that more soil sam-
ples were best fitted by the bimodal fit, accounting for 65%
of the soil samples. It is interesting and helpful to discover
how the best unimodal or bimodal fit varies with different soil
textures. To this end, we select soil samples in our database
containing soil textural information. Unfortunately, only
79 (41%) samples contain information on soil texture,
whereby for those samples, the mean (minimum and maxi-
mum) percentages are 33.9% (6.9 and 95.3%) for sand, 47.3%
(2.6 and 80.7%) for silty, and 18.8% (0 and 81.4%) for clay,
indicating significant variation of soil texture. The soil textu-
ral distribution is plotted in Figure 1 for those soils identified

as unimodal (by the lowest AIC values for the unimodal fits,
red dot in the figure) and bimodal (by the lowest AIC for the
bimodal fits, blue triangle in the figure). It is clearly shown
that contrary to the previous observations in the literature that
bimodality was often observed in fine-textured soils, heavy
clayey soils (clay content >70%) in our dataset did not show
a clear bimodality and were mostly best fitted by a unimodal
model and median clayey soils (clay content in the range of
40–70%) were best fitted by the bimodal model. In addi-
tion, silt loam soil samples, accounting for the largest portion
of soil samples containing soil texture information in our
database, were best fitted by the bimodal fit. The abundance of
silt loam samples that are best fitted with a bimodal model can
be explained by the fact that besides silt class, this class has the
largest amount of silt compared with all other textural classes,
whereby the silt-sized fraction sometimes shows characteris-
tics that are similar to both sand and clay-sized constituents
(Lal & Shukla, 2004), which may lead to the development of
aggregated soil structures depending on the type of bonding
agents present in the soil. These structures are then likely to
lead to bi-or multimodal pore size distributions. On the other
hand, there is no distinct clustering of unimodal or bimodal
soil for the other USDA soil texture classes.

3.2 Identifying best-fitting strategy

After fitting the data to the unimodal or bimodal model, the
best-fitting strategy, that is, fitting to retention data only or
the joint fitting of θ(h) and K(h) dataset, was identified. As
the classical fitting to estimate the soil hydraulic parameters
would be the unimodal fitting to θ(h) data only (abbreviated
as unimodal θ(h), hereafter) or jointly fitting of θ(h) and K(h)
data with fixed Ks, in which Ks is not fitted but equal to the
measured Ks [abbreviated as unimodal θ(h)+K(h)Ks fixed] or
Ks fitted [abbreviated as unimodal θ(h) + K(h)Ks fitted], these
fitting results are discussed first. The lowest AIC values were
still considered as an indicator for the best-fitting strategy.

We found that for the unimodal fitting (i.e., θ(h), θ(h) +
K(h) Ks fixed, and θ(h) + K(h) Ks fitted cases) of all soil sam-
ples (N = 194), only one sample (sample ID = 101 in the
EU-HYDI database; see Supplemental Table S1) was best fit-
ted by using unimodal θ(h) and simultaneously setting τ = 0.5
in predicting the K(h) based on Equation 2. In this case, Ks is
fixed during the fitting, and Ks is alternatively called a match-
ing point at saturation in some references (see, e.g., Schaap &
van Genuchten, 2006), whereas a measured Ks is often used
for the matching point. It is noted that the outperformance of
the unimodal θ(h) strategy for this sample is mainly because
it has fewer parameters to fit and it has less data points used
in the fitting. The unimodal θ(h) strategy has three parameters
(θs, α, n) to fit, whereas unimodal θ(h) + K(h) Ks fixed and
θ(h) + K(h) Ks fitted strategies have four (θs, α, n, τ) and five
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T A B L E 2 Absolute and relative percentage for the best fitting strategy identified by the lowest Akaike Information Criterion using all data (N
= 194)

Unimodal Bimodal
θ(h) θ(h) + K(h) Ks fixed θ(h) + K(h) Ks fitted θ(h) θ(h) + K(h) Ks fixed

Total fits 1 123 70 – –

Percentage 0.5 63.4 36.1 – –

Total fits 0 48 20 0 126

Percentage 0 24.7 10.3 0 64.9

Note. The first and second rows are the statistics from the unimodal fitting only. The third and fourth rows are the statistics from the combination of the unimodal and

bimodal fitting.

(θs, α, n, τ, Ks) parameters, respectively. In addition, sample
101 has 12 and 25 data points for the θ(h) and θ(h) + K(h)
characteristics, respectively. Both fewer parameters to be fit-
ted and less data points available in the fitting for the unimodal
θ(h) strategy lead to the lowest AIC values. In terms of SSR
values, the unimodal θ(h) + K(h) Ks fixed and unimodal θ(h)
+ K(h) Ks fitted strategies still outperformed unimodal θ(h)
fitting along with the K(h) prediction. This result is in line
with Schaap and Leij (2000), who indicated that this fitting
strategy is not suitable to predict the unsaturated hydraulic
characteristics, even though this approach is used for many
applications because K(h) data is rarely measured. On the
other hand, fitting both θ(h) and K(h) functions at the same
time dramatically outperforms the fitting to θ(h) only, as indi-
cated by lower AIC values for all other samples (N = 193)
even if fitting both θ(h) and K(h) simultaneously generated a
trade-off between soil θ(h) and unsaturated K(h) data.

Allowing only unimodal fitting of all soil samples (N =
194), the results show that the unimodal θ(h) + K(h) with
Ks fixed strategy yielded the best performance for 63.4% (N
= 123) of soil samples over all unimodal fitting strategies
(Table 2). As in some cases, Ks will be not fixed but fitted;
this fitting strategy (unimodal θ(h)+K(h) Ks fitted) was also
performed and yielded the best for 36.1% (N = 70) of all
samples based on the lowest AIC values. Here, 60.0% (N
= 75) of the samples fitted best by unimodal θ(h) + K(h)
with Ks fixed and 40.0% (N = 50) of the samples fitted best
by unimodal θ(h) + K(h) with Ks fitted are characterized as
bimodal. In this case, both options for joint fitting using a
unimodal model (unimodal θ(h) + K(h) with Ks fitted and
unimodal θ(h) + K(h) with Ks fixed) do not yield the overall
best fit if bimodal fitting would have also been performed.

If we also allow bimodal fitting and compare all fitting
strategies (unimodal and bimodal), the results show that
64.9% (N = 126) of the soil samples were best characterized
by bimodal, as indicated by the lowest AIC values in Supple-
mental Table S1 (highlighted in green). In addition, only the
fitting based on bimodal θ(h) + K(h) showed good results in
bimodal fitting strategies. The fitting based on bimodal θ(h)
did not show any good result, indicating that most informa-
tion about bimodality is contained in the conductivity data.

The unimodal θ(h) + K(h) with Ks fixed strategy showed
the best performance for 24.7% (N = 48) of soil samples if
both unimodal and bimodal strategies were considered (see
Table 2). As already stated, in some cases, Ks will also be
fitted (not fixed) and this fitting strategy (unimodal θ(h) +
K(h) Ks fitted) showed the best for 10.3% (N = 20) of all
samples based on the lowest AIC values. An overview of all
AIC values for the individual fitting strategies of the 194 soil
samples is provided in Supplemental Table S1. The fitting
strategy θ(h) + K(h) Ks fitted for the bimodal fitting was not
carried out, as macroporosity information is often included
in Ks. Fitting Ks might, therefore, largely cannot accurately
characterize the macroporous domain of both the θ(h) and
K(h) function, especially if the data density in the wet range
is small. Weynants et al. (2009) has proposed to fit a K0

[K(h) of matrix flow at zero capillary head], which should
be located at a small negative pressure head, for example, −6
cm, to avoid effects of macroporosity on the estimated θ(h)
and K(h) function, as the macroporosity cannot be captured
by the classical unimodal MvG equation (e.g., Schaap &
van Genuchten, 2006; Weynants et al., 2009). We analyzed
the K0 and compared with the observed Ks in Supplemental
Text S1.

Based on these results, it can be concluded that the
soils identified as bimodal could have been more accurately
described by considering dual-porosity models in the PTF
development of Rosetta (Schaap et al., 2001), Rosetta3 (Zhang
& Schaap, 2017), in the PTF of Vereecken (Vereecken et al.,
1989, 1990) and Weynants (Weynants et al., 2009), as well
as those of euptfs (Tóth et al., 2015; Szabó et al., 2021) and
Weber et al. (2020), as they used, or partly used, either the
UNSODA, Vereecken, or EU-HYDI dataset.

3.3 Statistical analysis of fitted soil
hydraulic parameters

As different fitting strategies will yield different soil hydraulic
parameters, we show here the statistics of the estimated
parameters α, n, θs, τ, and Ks and their relation in different
fitting strategies.
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F I G U R E 2 Violin plots for Mualem–van Genuchten (a) α, (b) n, (c) θs, (d) τ, and (e) Ks in the case of the unimodal fitting strategy using all

soil samples (N = 194). Centerline indicates the median, lower and upper lines of the 25th and 75th quantiles, the white point the arithmetic mean,

and the vertical bars the one standard deviation. Letters above each subfigures indicate significant differences (p = .05), whereby cases with different

letters are significantly different. It is noted that Ks in the θ(h) + K(h) Ks fixed case is from the measurement

For the visualization of the statistics of the estimated soil
hydraulic parameters, violin plots were generated. In a first
step, only the hydraulic parameters of the unimodal fitting for
the three unimodal fitting strategies, that is, θ(h) only, both
hydraulic functions fitted with fixed Ks (abbreviated as θ(h)
+ K(h) Ks fixed), and both hydraulic functions fitted with fit-
ted Ks (abbreviated as θ(h) + K(h) Ks fitted) are depicted in
Figure 2 for the fits of all soil samples (N = 194). As can

be seen in Figure 2a, the unimodal θ(h) fitting strategy yield
the smallest median α value (0.017 cm−1, centerline in the
figure; see Table 3) compared with the other fitting strategies
in which both data sources, θ(h) and K(h), were used (median
for θ(h) + K(h) Ks fixed = 0.034 cm−1 and θ(h) + K(h) Ks

fitted = 0.027 cm−1). Additionally, the fitted α values from
unimodal θ(h) are significantly lower (p= .05) than in the case
of the other two unimodal fitting strategies. On the other hand,
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T A B L E 3 Fitting statistics of α, n, θs, and τ of the unimodal parameters for all soil samples (N = 194)

Parameter Statistic

Unimodal
θ(h) θ(h) + K(h) Ks fixed θ(h) + K(h) Ks fitted

α, cm−1 Arithmetic mean 0.0190 0.0356 0.0282

Median 0.0169 0.0343 0.0274

Min. 0.0014 0.0008 0.0013

Max. 1.0000 0.5680 0.2954

n Arithmetic mean 1.4944 1.3827 1.4239

Median 1.3075 1.2214 1.2269

Min. 1.0244 1.0487 1.0401

Max. 4.4728 3.6930 4.1332

θs, cm3 cm−3 Arithmetic mean 0.441 0.455 0.450

Median 0.408 0.426 0.417

Min. 0.286 0.288 0.289

Max. 0.887 0.916 0.907

τ Arithmetic mean – −1.542 −1.674

Median – −1.616 −1.760

Min. – −10.000 −10.000

Max. – 10.000 10.000

Note. Values for α and n were log10 transformed before calculating the mean and median values and then were anti-log transformed for calculating the presented values.

the arithmetic mean of the fitted α value is still the lowest for
the fitting to θ(h) data only (0.019 cm−1) compared with the
fitting using both functions (arithmetic mean for θ(h) + K(h)
with Ks fixed = 0.036 cm−1 and θ(h) + K(h) with Ks fitted =
0.028 cm−1). Here, we have to note that we used the anti-log
transformed α values for median and mean values to indicate
the statistical values mentioned above.

The fitted n value for the different unimodal strategies has
median values with 1.494, 1.383, and 1.424, respectively, for
θ(h), θ(h) + K(h) Ks fixed, and θ(h) + K(h) Ks fitted, but there
is no significant difference between them, which is verified
by the same letter above the violin plot in Figure 2b. On the
other hand, the mean fitted n values vary with a difference
of 0.112 between θ(h) and θ(h) + K(h) Ks fixed and 0.071
between θ(h) and θ(h) + K(h) Ks fitted (see Table 3). Next, the
fitted θs was also analyzed (see Figure 2c), whereby the medi-
ans are 0.408, 0.426, and 0.417 cm3 cm−3 for unimodal θ(h),
unimodal θ(h) + K(h) Ks fixed, and unimodal θ(h) + K(h) Ks

fitted, suggesting marginal differences among different fitting
strategies.

Finally, differences in the estimated tortuosity factor τ are
analyzed, whereby τ was only estimated for the case where
θ(h) and K(h) datasets were simultaneously used for the fitting
(see Figure 2d). Factor τ shows considerable variation from
the lower limits of −10 to the upper limits of 10. The median
values are −1.616 and −1.760 for unimodal θ(h) + K(h) Ks

fixed and unimodal θ(h) + K(h) Ks fitted strategies, whereas
the mean fitted values are −1.542 and −1.674, respectively,
for the two strategies (see Table 3). The median and mean val-

ues of τ deviate from the default setting of 0.5, but are close to
the optimal value of −1 suggested by Schaap and Leij (2000).
The θ(h) + K(h) Ks fixed strategy produced higher τ values in
both the median and mean values. Larger τ yields, in general,
higher K values for a given water content or pressure head
and also produces a steeper decrease of unsaturated hydraulic
conductivity K as the matrix potential h decreases. By setting
Ks as fitted in the θ(h) + K(h) Ks fitted strategy, the optimiza-
tion procedure results in a more negative τ (see Table 3), and
significantly smaller Ks (being the fitted matching point, see
Figure 2e for the fitted Ks values) with a less steep unsaturated
K(h) curve.

Based on the differences described above, it becomes obvi-
ous that the choice of the fitting strategy for unimodal fitting
determines the fitting outcome for all soil hydraulic parame-
ters, whereby especially the fitted α values showed significant
differences.

After evaluating the hydraulic parameters of the unimodal
fitting for different fitting strategies, we select only those soil
samples (N = 126) that have been identified as bimodal by
the lowest AIC amongst all fitting strategies and compare
the estimated soil hydraulic parameters of the different fit-
ting strategies. Here, it has to be noted that for the bimodal
fit, in addition to the parameters θs and τ, only the α and
n values from the matrix domain were used in the compari-
son, as the α and n values of the matrix domain differ greatly
from those estimated for a unimodal model. Additionally,
α and n values for the structural or macropore domain are
highly uncertain, which is mainly caused by the low number of
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T A B L E 4 Statistics of α, n, θs, and τ of the unimodal and bimodal parameter for soil samples identified as bimodal by the lowest Akaike

Information Criterion (N = 126)

Parameter Statistic

Unimodal Bimodal
θ(h) θ(h) + K(h) Ks fixed θ(h) + K(h) Ks fitted θ(h) θ(h) + K(h) Ks fixed

α, cm−1 Arithmetic mean 0.0174 0.0359 0.0265 0.0049 0.0028

Median 0.0143 0.0352 0.0251 0.0074 0.0043

Min. 0.0019 0.0008 0.0013 0.00001 0.00001

Max. 1.0000 0.5680 0.2623 0.0802 0.2025

n Arithmetic mean 1.460 1.345 1.395 1.414 1.558

Median 1.298 1.207 1.221 1.298 1.329

Min. 1.026 1.050 1.050 1.010 1.010

Max. 4.473 2.607 3.486 4.410 15.627

θs, cm3 cm−3 Arithmetic mean 0.451 0.467 0.461 0.459 0.463

Median 0.411 0.430 0.420 0.426 0.423

Min. 0.289 0.299 0.296 0.297 0.300

Max. 0.887 0.916 0.907 0.910 0.958

τ Arithmetic mean – −1.583 −1.732 – −1.048

Median – −1.616 −1.549 – −1.613

Min. – −10.000 −10.000 – −10.000

Max. – 10.000 10.000 – 10.000

Note. Values for α and n from the bimodal model are shown for the matrix domain. Values for α and n were log10 transformed before calculating the mean and median

values and then were anti-log transformed for calculating the presented values.

available data points in the wet region. This uncertainty has
been partly addressed by Dettmann et al. (2014), who sug-
gested fixing the n value for the macropore domain to a high
value to overcome the uncertainty and to reduce the number
of parameters to be fitted. The summaries of the statistics of
the fitted α, n, θs, and τ are provided in Table 4.

Figure 3 shows the distribution of van Genuchten parame-
ters for those soils identified as bimodal among the different
fitting strategies. As can be seen, the α value is in generally
larger for the unimodal fittings compared with the bimodal
ones in terms of mean, median, the 25 and 75% quantile val-
ues (see Figures 3a,b), and the difference is also statistically
significant, as all unimodal fittings differ from those based
on the bimodal model. The significant difference is shown
by alphabetical letters above each violin graph, whereby the
different letters indicate differences between groups (fitting
strategies). There is a significant difference between the fitting
strategies in the case of estimating n as well (see Figures 3c,d).
The largest mean and median values for n were detected for
the bimodal θ(h) + K(h) Ks fixed strategy (n = 1.558 and
1.329) (Table 4). There is no significant difference between
bimodal θ(h) and bimodal θ(h) + K(h) Ks fixed cases. The
unimodal θ(h) + K(h) Ks fixed strategy has the lowest n val-
ues in terms of arithmetic mean and median values (n = 1.345
and 1.207, respectively). We also observe that the minimum
and maximum values are affected by the choice of the fit-
ting strategy, whereby the minimum values for both bimodal
fitting strategies hit the lower bounds set to 1.01 and the max-

imum values for the bimodal θ(h) + K(h) Ks fixed strategy
reached 15.627. For the estimated θs (see Figures 3e,f), no sig-
nificant differences can be found between the different fitting
strategies.

Differences in the estimated tortuosity (τ) are analyzed,
whereby τ was only estimated for the case where both data
θ(h) and K(h) were used in the fitting. Table 4 shows that
the estimated τ has significant variations with the minimum
and maximum hitting the lower and upper bounds of the
parameters (−10 and 10). The bimodal θ(h) + K(h) Ks fixed
case showed higher τ in terms of arithmetic mean values
(τ = −1.048) and lower τ in terms of median values with
τ = −1.613 compared with the unimodal θ(h) + K(h) Ks

fixed and θ(h) + K(h) Ks fitted cases. This is because the
bimodal θ(h)+K(h) Ks fixed case produced more τ values
hitting the upper bounds of 10 and less hitting the lower
bounds of −10, which can be vividly shown in the violin
plot for τ (Figure 3h). Again, both the mean and median
values of τ deviated from the default of 0.5 but are close
to the optimal value of −1 suggested by Schaap and Leij
(2000). Rezanezhad et al. (2009) identified that tortuosity,
porosity, and the hydraulic radius of the pores are the main
aspects that influence K(h). In this study, the soil porosity,
being equivalent to the value of θs (soil porosity includes the
dead-end pores compared with θs), has very close values in
all fitting strategies. Compared with the fitting to θ(h)-only
strategy, fitting both θ(h) and K(h) functions simultaneously
for both the unimodal and bimodal cases greatly improved the
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F I G U R E 3 Violin plots for Mualem–van Genuchten α, n, and θs, and τ for soil samples identified as bimodal by the lowest Akaike Information

Criterion (N = 133). The first three left cases (a, c, e, g) show parameters of unimodal fitting strategies, and the right two cases (b, d, f, h) are for

bimodal. Centerline indicates the median, lower and upper line the 25th and 75th quantiles, the white point the arithmetic mean, and the vertical bars

suggest the standard deviation. Note that for the bimodal samples, only the matrix α and n values of the bimodal model were used. Letters indicate

significant differences (p = .05), whereby cases with different letters are significantly different

fitting by adding only tortuosity factor (τ), as indicated by the
lowest AIC values, suggesting the importance of including
tortuosity during the fitting. However, there are no significant
differences between the fitting strategies based on τ neither
on all samples nor on samples with bimodal characteristics.

The overall results indicate that the estimated α and n (or
matrix α2 and n2 for bimodal fits) values are affected by the
choice of the fitting strategy. In general, α is more influenced
by structural porosity as already shown by Assouline and Or
(2013), whereas n is known to be strongly determined by soil
texture (e.g., Vereecken et al., 2010; Wösten et al., 2001).
There are no significant differences between the estimated
θs and τ for different strategies. By including τ, fitting both
θ(h) and K(h) functions simultaneously greatly improved the
fitting for both the unimodal and bimodal cases.

Finally, both the mean and standard deviation of sand, clay
fraction, bulk density, bimodal soil hydraulic parameters for
both the macropore and matrix domains, and associated basic
soil properties are shown in lookup tables in Supplemental

Tables S3 and S4. Soil samples identified to have bimodality
by the lowest AIC and soil texture information are used for
the statistical analysis. The soil textural information is avail-
able for all the Vereecken and UNSODA samples, whereas
only very few EU-HYDI samples have textural information,
leading to only 53 samples for the analysis.

3.4 The α versus n relationship

3.4.1 The oretical α vs. n relationship

To explore the relationship between α and n in the van
Genuchten equation, we firstly investigate the relationship
analytically (Equations 7–10). To this end, we calculated the
derivative between α and n in order to match the mathemati-
cal relationship between Se and h, which is shown graphically
for a calculated water content at a given matric potential h
(here h = −200 cm) in Figure 4. As can be seen, a clear
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F I G U R E 4 Calculated effective saturation (Se) for different unimodal van Genuchten α (cm−1) and n value for a given matric potential h of

−200 cm

negative relationship between α and n for the dry regions
(warm color in the figure) is detectable. At high saturation,
α and n does not show a one-way relationship anymore, but
illustrates a shift to a positive relationship when n is higher
than ∼1.5, and a negative relationship when n is lower than
∼1.5. This is because the (αh)n values are approximately
the same order as one in the van Genuchten equation (see
Equation 7) at high water contents.

3.4.2 The α versus n relationship from
literature

Besides the theoretical relationship between α and n discussed
above, α and n parameters reported in the literature were col-
lected and analyzed and shown in Figure 5. As can be seen,
neither a linear positive nor a negative relationship can be
detected from the entire data source. Additionally, some scat-
tered data for α values ranging from 0.02 to 0.05 (cm−1) with
high values of n (>2.5) are reported (in red box). Those scat-
tered data appear in almost all data sources and mostly belong
to the USDA sand textural classification. Neglecting the high
n values between α from 0.02 to 0.05, a negative trend can
be assumed with a correlation coefficient r = −0.42 for all
data sources. For a single data source, a weak negative trend
between α and n can be identified by neglecting the out-
lier for the Rawls (red square cross), Puhlmann & Wilpert
dataset (black diamond), and Botros (green star) dataset.
However, neither any positive nor negative relationship can be
detected for the Ahuja (red square), UNSODA dataset (orange
triangle), and HYPRES (blue triangle) dataset.

Here, it has to be noted that the data from Rawls, Ahuja,
UNSODA, and ‘all’ from Schaap and Leij (1998), as well as
those from HYPRES represent mean values of the USDA soil
textural classes and those averaging values among soil textu-

F I G U R E 5 The relationship between van Genuchten α (cm−1) vs.

n taken from literature. The superscript in the legend indicate dataset

from 1Schaap and Leij (1998), 2Wösten et al. (1999), 3Puhlmann and

von Wilpert (2012), and 4Botros et al. (2009). Dataset from Schaap and

Leij (1998) and Wösten et al. (1999) represent mean values for the

USDA textural classes. The dataset with the α value in the range of .02

and .05 and high n values are encircled by the red box. The trendline

was added for the remaining dataset excluding the data in the red box

ral classes might alleviate the relationship between α and n. In
addition, the dataset shown in Figure 5 originates from differ-
ent sources and is subject to different measurement methods,
which might again relieve the relationship.

3.4.3 The α versus n relationship in this study

After analyzing the α vs. n relationship from literature, the
relationship from the dataset used in this study was also inves-
tigated, whereby all different fitting strategies for both the
unimodal and bimodal models were used.

Figure 6a shows the α vs. n relationship from the uni-
modal fitting to θ(h) data only and all the three datasets used,
whereby no obvious relationship can be deduced. Again, some
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F I G U R E 6 The relationship between van Genuchten α (cm−1) vs. n from unimodal soil water retention curve (Equation 1) fitted to retention

data only. (a) The case for all datasets including the Vereecken, unsaturated soil hydraulic database (UNSODA), and European hydropedological data

inventory (EU-HYDI) dataset. (b), (c), (d) The cases for the entire, high-sand (≥52%), and low-sand (<52%) content dataset from the Vereecken

dataset. (e), (f), (g) The cases for the entire high-sand (≥52%) and low-sand (<52%) content dataset from the UNSODA dataset; (h) The case from

the EU-HYDI dataset

scatter (high values) for n with α values ranging from 0.01 to
0.1 can be detected as we have also seen in the literature data
for α in the range from 0.02 to 0.05 (Figure 5). After divid-
ing the data into high (≥52%) and low (<52%) sand content,
a negative correlation can be found between α and n in the
case of low sand content (<52%) with a correlation coefficient
of r = −0.602 and −0.235, respectively, for both Vereecken
(Figure 6d) and UNSODA (Figure 6 g) datasets. The thresh-
old value of 52% is the upper sand content limit of loam soils
in the USDA soil texture triangle. Soil sand content >52%
is classified as sandy loam, sandy clay loam, or similar tex-

ture, while the value <52% is categorized as loam or related
texture. Other values ∼52% were also investigated, which led
to similar results. On the other hand, for samples with high
sand content (≥52%), a clear relationship cannot be identi-
fied (Figures 6c,f). Unfortunately, for the EU-HYDI samples,
there was no possibility for the distinction of samples based on
sand content because the dataset does not have affiliated soil
particle size property for the samples selected for this analysis.

In the case of joint fitting of unimodal soil θ(h) and
K(h) data, the above-mentioned negative relationship is again
detectable for the samples with low sand content with a
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correlation coefficient of r = −0.675 and −0.775, respec-
tively for Vereecken and UNSODA datasets (Supplemental
Figures S1d,g). The correlation has been improved compared
with the unimodal fitting to θ(h) data only because the joint
fitting of soil θ(h) and K(h) data contained more informa-
tion to constrain the α and n relationship. For samples with
high sand content (≥52%), similarly to the above case, a clear
relationship is not visible.

For the α vs. n relationship obtained from the bimodal
fitting to both θ(h) only and θ(h) + K(h) Ks fixed cases,
no significant relationship can be observed between α vs.
n of the macropore domain (See Supplemental Figures S2
and S3). This may result from the fact that the macropore
domain is inherently challenging to characterize using clas-
sically used soil θ(h) and K(h) models, leading to bias or even
incorrect parameters. The second reason is that even if the
classically used models are appropriate to characterize the
macropore domain, the macropore soil hydraulic parameters
have no correlations intrinsically. The third reason is likely
that the measurement of soil θ(h) and K(h) dataset does not
have enough records in the sample near saturation to charac-
terize the macropore domain, leading to high uncertainty of
the fitted parameters.

For the matrix domain from the bimodal fitting to θ(h)
data, the two parameters are also negatively correlated for the
low sand content samples (<52%) with correlation coefficient
r = −0.658 and −0.763, respectively, for the Vereecken and
UNSODA databases by excluding the extremely low α values
(0.00005 cm−1) (Figures 7b,e). Those extremely low α values
hit the lower threshold set for α in the parameter estimation,
suggesting the optimal α values may not be found. For the
EU-HYDI samples, the negative correlation between the two
parameters is not as clear, and some scatter with high n values
in the range of 0.001 to 0.1 for α exist. We observed a similar
relationship for the matrix domain from the bimodal fitting to
θ(h) + K(h) Ks fixed case in Supplemental Figure S4.

The α parameter is related to the scaling of the inverse of air
entry pressure, indicating the size of the largest pores in the
soil porous system. For the low sand content situation (sand
fraction <52%), fine-textured samples may have connected
large pores, leading to low air entry pressure and therefore
to high α values. For the silt-sized samples, as we mentioned
in the General Database Statistics and Properties section that
silt-sized fraction sometimes shows characteristics similar to
both sand and clay-sized constituents, it may show small-sized
pores and therefore low α values. n, on the other hand, indi-
cates the width of the pore size distribution, suggesting the
slope of the soil θ(h) and K(h) curves. Fine-textured soils typ-
ically have low n values, suggesting a broad range of pore size
distributions and a gradual increasing slope in θ(h) curves. As
n becomes larger, the pore size distribution becomes narrower
and the slope of soil θ(h) curves becomes steeper. This leads
to the negative relationship between α and n for low sand con-

tent samples (sand fraction <52%). The relationship between
α and n in our analysis contradicts the classical notion that
there is a positive relationship between α and n, which was
often based on mean values for textural classes to analyze the
dataset and the mean values may weaken the relationship. In
addition, the entire soil textural classes were often analyzed,
which may produce the artifact that α and n are positively
correlated.

3.5 The relationship between bimodal
parameters and other soil properties

The above analysis showed the relationship between α and
n both in analytical solutions and in a statistical approach
from literature data and the dataset used in this study. We
also analyzed whether the ratios of macropore and matrix soil
hydraulic parameters describing the shape of the θ(h) curve
correlate with the weighting factor (w, being used to super-
pose the macropore and matrix domain pore systems, see
Equations 3 and 4) and basic soil properties. The presence
of correlation amongst these parameters and soil properties
may pave a way forward in the PTF development to estimate
bimodal soil hydraulic properties so that end-users can derive
bimodal soil hydraulic properties from readily available basic
soil properties.

For the bimodal fitting to θ(h) only, Figure 8a shows that the
ratio of α between macropore and matrix domain [log(α1/α2)]
has a moderate positive correlation with the weighting fac-
tor (w) for the Vereecken and UNSODA dataset, with a
correlation coefficient (r) of 0.504 and 0.691, respectively,
while the correlation for the EU-HYDI dataset shows a neg-
ative relationship with r of −0.410. It has to be noted that
we removed the parameters that hit the upper and lower
parameter bounds and also parameters that were fitted to
the same values for the macropore and matrix domains,
as those parameters might be unreliable. Unfortunately, the
former two datasets and the latter one shows contradict-
ing trends. To the best of our knowledge, the trend from
the Vereecken and UNSODA datasets seems more reason-
able. The reason is that, firstly, in contrast to the bimodal
fitting to θ(h) only, the bimodal fitting to θ(h) + K(h) Ks

fixed case shown in Supplemental Figure S5a also indi-
cates that all three databases have a positive relationship
between [log(α1/α2)] and the weighting factor (w). In contrast,
the EU-HYDI dataset has an even higher positive correla-
tion (r = 0.648) than the results from the Vereecken and
UNSODA datasets. The bimodal fitting to θ(h) + K(h) Ks

fixed case used both θ(h) and K(h) dataset to fit the bimodal
soil hydraulic properties and may provide additional infor-
mation to constrain the fitted parameters and therefore may
provide improved fitted parameters. Secondly, the higher
weighting factor (w) suggests that the macropore domain
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F I G U R E 7 The relationship between van Genuchten α (cm−1) versus n (−) of matrix domain from the bimodal fitting of soil water retention

curve (Equation 3) to the retention dataset. (a) The case for samples with dual porosity for all three datasets including the Vereecken, unsaturated soil

hydraulic database (UNSODA), and European hydropedological data inventory (EU-HYDI). (b), (c), (d) The cases for the entire high-sand (≥52%)

and low-sand (< 52%) content dataset from the Vereecken dataset. (e), (f) (g) The cases for the entire, high-sand (≥52%) and low-sand (<52%)

content dataset from the UNSODA dataset. (h) The case from the EU-HYDI dataset

is more dominated, whereas related higher α1/α2 ratios are
caused by larger α1 and smaller α2 values, being associated
with larger macropores and finer-textured matrix, indicating
larger macropores embedded in a relatively fine matrix. This
is consistent with the positive correlation observed from the
Vereecken and UNSODA dataset. Therefore, we conclude
that by including the K(h) data in the fitting, the EU-HYDI
dataset improves the fitting results shown in Supplemental
Figure S5a.

For the bimodal fitting to θ(h) only, we also observed
a strong positive correlation between the ratio of α among
macropore and matrix domain [log(α1/α2)] with soil sand
content (sand percentage) for the UNSODA dataset with an
r = 0.965 in Figure 8c, while the correlation for the Vereecken
dataset is very weak. The positive correlation suggests that
soil samples with a high sand content are likely to have a
high ratio of α values between macropore and matrix domain
[log(α1/α2)], indicating large macropores (α1) embedded in a
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F I G U R E 8 van Genuchten (a) α and (b) n in the corresponding macropore (α1 or n1) and matrix (α2 or n2) domain vs. weighting factors (w).

(c) and (d) corresponding ratios of macropore (α1 or n1) and matrix (α2 or n2) domain vs. soil sand content. The parameters were obtained based on

bimodal fitting to the retention dataset (Equation 3). Values that hit the upper and lower parameter bounds and that macropore and matrix parameters

that produced the same values were removed

fine matrix (α2). The same observations and conclusion were
also drawn for the bimodal fitting to θ(h) + K(h) Ks fixed case
shown in Supplemental Figure S5c.

Because the bimodal fitting to θ(h) from the EU-HYDI
dataset is questionable in Figure 8a, we focus on the
Vereecken and UNSODA datasets to analyze the relationship
between the ratio of n in the macropore and matrix domain
[log(n1/n2)] with the weighting factors (w), which shows that
the correlation is not apparent in Figure 8b. We derived the
same conclusion for the relationship between log(n1/n2) and

w based on the bimodal fitting to θ(h) + K(h) Ks fixed case
shown in Supplemental Figure S5b. The unclear correlation
may result from the fitted macropore n1 value having very
large uncertainty. Dettmann et al. (2014) even suggested that
the macropore n1 parameter can be set to the upper param-
eter limit for the largest macropores during the fitting, and
a further increase of the upper limits would not significantly
improve model performance but often lead to a raised insta-
bility of the numerical solution when those data are used in
predictive models. The correlation between log(n1/n2) and
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sand content (sand percentage) for the UNSODA dataset has
an r = 0.563 in Figure 8d. However, r = −0.058 for the
Vereecken dataset, suggesting no correlation between the two
quantities. The bimodal fitting to θ(h) + K(h) Ks fixed case
is shown in Supplemental Figure S5d and also shows a very
weak correlation of r = 0.246 for the Vereecken dataset.
We attribute this again to the large uncertainty of the fitted
macropore n1 parameter.

The ratio of soil hydraulic properties between the macrop-
ore and matrix domain with the other basic soil properties—
soil bulk density and soil organic carbon content from the
dataset—is also investigated, and we did not find an apparent
tendency. The correlation graphs are, therefore, not shown.

4 CONCLUSIONS

In this study, we collected and established a database of
basic soil properties and soil hydraulic properties for analyz-
ing the effect of soil structure and macropore on soil θ(h)
and K(h) characteristics. To this end, both unimodal and
bimodal soil hydraulic functions were used to describe the soil
hydraulic properties. Our work leads to the following major
conclusions:

1. We analyzed three databases (Vereecken, UNSODA, and
EU-HYDI) that have been used to develop unimodal PTFs
to study the presence of bimodality in measured soil θ(h)
and K(h) curves. Out of a total of 19,510 samples, only
194 samples were suitable to perform this analysis, as
these samples were undisturbed and contained enough data
points in the wet range of both θ(h) and K(h). More than
half of them (65%) showed the presence of bimodality
independent of the textural class. We found that bimodal-
ity is therefore not only limited to fine-textured soils, for
which bimodal models have been shown to provide good
results in describing the θ(h) and K(h) curves, but it is
also observed in many coarser-textured soils. Silt loam soil
samples, accounting for the largest portion of soil samples
containing soil texture information in our database, were
best fitted by the bimodal fit. The fact that only 1% of the
data in three databases together was suitable for analyz-
ing the presence of bimodality and thus structural effects
on soil hydraulic properties calls for a community effort
to jointly analyzing θ(h) and K(h) on undisturbed samples.
The samples should be measured in a standardized manner
and provide auxiliary variables beyond soil texture, bulk
density, and organic matter, which allows for the develop-
ment of PTFs that account for the effect of bimodality or
even multimodality on soil hydraulic properties.

2. The classical approach that uses either fitted or PTF-
estimated retention parameters of the van Genuchten
model in combination with a fixed tortuosity parameter of

0.5 and a measured Ks value leads to poor performance in
estimating the unsaturated K(h). Only one sample out of a
total of 194 samples was best fitted by using this approach
and showed a good prediction of unsaturated K(h). Yet, this
is still the current practice in estimating unsaturated K(h),
and it shows that the standard MvG model is not suitable
for predicting unsaturated K(h) solely from θ(h) data and
measured Ks. Fitting both unimodal θ(h) and unsaturated
K(h) functions simultaneously significantly outperforms
the fitting of θ(h) data only and then using the MvG param-
eters and Ks to calculate the K(h). Fitting based on bimodal
θ(h) + K(h) functions simultaneously also outperformed
the fitting based on bimodal only θ(h) and using MvG
parameters and Ks to calculate K(h). Our study further
suggests that soil hydraulic characteristics that show the
presence of structural properties cannot be appropriately
described with unimodal models, and more accurate fit-
ting can only be performed by considering dual-porosity
models. Therefore, including the presence of soil struc-
tural effects on soil hydraulic parameters may improve the
development of PTFs, especially for PTFs estimating the
K(h) function.

3. For the unimodal model, α values (scaling parameter
related to the inverse of air entry pressure) in the van
Genuchten model showed systematic differences between
different fitting strategies. For the bimodal model, the α

and n (a measure for the pore size distribution) estimated
for the matrix domain show significant differences among
different fitting strategies. In contrast, saturated water con-
tent (θs) and tortuosity factor (τ) did not show significant
differences, suggesting that both α and n values are more
influenced by structural porosity.

4. We analyzed the relationship between α vs. n analytically
from literature data and from our established dataset. For
the analytical method, we showed in the van Genuchten
model that when m = 1 − 1/n, there is a clear negative
relationship between α and n for the dry regions. For the
near-saturation regions, the relationship between α and
n depends upon the n parameter. The literature dataset,
partly providing textural class averaged parameters, does
not show a clear relationship between α and n. We sus-
pect that the averaging of the values might alleviate the
relationship between the two parameters.

5. Our established dataset showed a clear negative relation-
ship between α and n parameters in the van Genuchten
model in the case of low sand content (<52%) both for all
the fitting cases [i.e., unimodal fitting to θ(h) data, joint
fitting of unimodal θ(h) + K(h) data, the matrix domain
properties of the bimodal fitting to θ(h) data, and the
matrix domain properties of the bimodal fitting to θ(h)
+ K(h) data] from the Vereecken and UNSODA dataset.
This negative trend seems to contradict the classical notion
that larger α values usually correspond to larger n values.
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Because the samples selected from the EU-HYDI dataset
do not have associated soil particle size information for
most data selected, it is impossible to analyze the apparent
relationship between α and n for the case of low sand con-
tent. In addition, no significant relationship was observed
for the two parameters of the macropore domain.

6. The ratio of α between macropore and matrix domain
[log(α1/α2)] showed a positive correlation with the weight-
ing factor for most of the analyzed samples, which is used
to describe how much the macropore domain is accounted
for in the entire domain. The ratio of α between the two
domains is also observed to have a positive relationship
with the soil sand content (sand percentage) especially
for the UNSODA dataset with a correlation coefficient
of 0.965. This relationship is promising and paves a way
forward the PTF development of bimodal soil hydraulic
properties.
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