
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Sven Marcus, 09.11.23

Clean Code and Refactoring

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 2

Content

• Motivation

• Clean code and Refactoring

• Python tips and tricks

• Let’s get to work: the Guilded Rose Kata

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 3

Motivation

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 4

Motivation

• 84% of scientists say that developing software is
essential to their research. [1]

• Incorrect publications have led to a reproducibility
and credibility crisis. [2, 3]

[1] Jo Hannay et al. “How Do Scientists Develop and Use Scientific Software?”
[2] Monya Baker. “1,500 scientists lift the lid on reproducibility”.
[3] Zeeya Merali. “Computational science: Error, why scientific programming does not compute”.

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 5

Motivation

Researchers
• often lack knowledge about principles and practices of the software engineering

discipline [3, 4]
• don’t gain reputation for developing software
• are pressed to publish results as fast as possible [5]

[4] Lucas Joppa et al. “Troubling Trends in Scientific Software Use”.
[5] Mark De Rond and Alan N Miller. “Publish or perish: bane or boon of academic life?”

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 6

Consequences

Common problems of research software
• Low code quality
• Hard to understand
• Neither published nor documented

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 7

Broken Window Effect

[6] George L Kelling, James Q Wilson et al. “Broken windows”.

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 8

Motivation

“Indeed, the ratio of time spent reading versus writing is well over 10 to 1. We are constantly
reading old code as part of the effort to write new code. ...[Therefore,] making it easy to read

makes it easier to write.” – Robert C. Martin

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 9

Clean Code and Refactoring

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 10

What is clean code?

• Term coined by Robert C. Martin
• No strict rules, but a set of principles to make code easy

to understand, extend and adapt

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 11

Clean Code

“Clean code always looks like it was written by someone who cares.”
– Michael Feathers

“Clean code reads like well-written prose.”
– Grady Booch

“Clean code can be read, and enhanced by a developer other than its original author.”
– Dave Thomas

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 12

Clean Code

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 13

Refactoring

noun: a change made to the internal structure of software to make it easier to understand
and cheaper to modify without changing its observable behavior

verb: to restructure software by applying a series of refactorings without changing its
observable behavior.

https://refactoring.com/

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 14

Refactoring

• Focus on improving the readability and
structure of existing code

• Assigns clear names to the code changes
• Shares many ideas with Clean Code

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 15

Refactoring

“Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.”

“The point of refactoring isn’t to show how sparkly a code base is - it is purely economic. We
refactor because it makes us faster - faster to add features, faster to fix bugs.”

– Martin Fowler

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 16

Names

Use meaningful names
• Classes, variables, functions, modules, binaries, libraries…
• The name should describe the purpose

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 17

Names

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 18

Names

Name of the Refactoring:
Rename Variable

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 19

Names

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 20

Names

Even if the function is simple,
it can be hard to understand what it does for a user

???

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 21

Names

Make meaningful distinctions to make the
code understandable

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 22

Names

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 23

Names

• Use names that are pronounceable and searchable
• Avoid encodings (unless they are commonly known)

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 24

Names

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 25

Names

Use domain names

Name of the Refactoring:
Change function declaration, Rename function

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 26

Comments

„Don’t comment bad code - rewrite it.“
- Brian W. Kernighan and P.J. Plaugher

„The proper use of comments is to compensate for our failure to express ourself in code.
Note that I used the word failure. I meant it. Comments are always failures."

- Robert C. Martin

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 27

Comments

If a comment must be used, it should describe the why and not the what or how

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 28

Comments

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 29

Comments

Express your intention in code instead of comments

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 30

Comments

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 31

Comments

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 32

Comments

Don’t require the use of doc
comments in private functions
if they don’t add value

Use doc comments in public APIs

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 33

Comments

🤔

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 34

Comments

😱
LIES!!!

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 35

Good Comments

Explanation of intent

Warning

Amplification

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 36

Functions

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 37

Functions

DRY – DON’T REPEAT YOURSELF!

Name of the Refactoring: Extract Function

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 38

Functions
DRY – DON’T REPEAT YOURSELF!

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 41

Functions

Duplication is dangerous, because
• it increases the chance of making mistakes.
• when requirements change, all duplicated code sections have to be adjusted.

It becomes easy to forget one of the implementations.

“Duplication may be the root of all evil in software.”
– Robert C. Martin

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 42

Functions

Challenge:
Spot the duplication!

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 43

Functions

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 44

Functions

Duplications! Differences

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 45

Functions

Extract the duplications and parameterize the differences!

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 46

Functions

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 47

Functions

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 48

Functions

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 49

Functions

Functions should only have one task!

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 50

Integration

OperationIntegration Integration

Integration Operation Operation Operation

Functions
The Integration-Operation-Segregation-Principle (IOSP)
• Functions should perform only integrations or only operations
• An integration is a function that calls other integration or operation functions
• An operation is a function that performs logical operations

(e.g. if statements, for loops, math, …)

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 51

Functions

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 52

Functions

Function Arguments
• Attempt to use no more than 3 arguments
• Use custom data structures to combine arguments
• Many arguments are an indicator that a function does too much
• Avoid boolean flags as they don’t express intent

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 53

Functions

???

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 54

Functions

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 55

Functions

• Steps are clearer now, follows IOSP
• Still a lot of parameters that make the code hard to read

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 56

Functions

• Grouped related parameters
together into custom data class

• Tradeoff:
easier to read,
but a lot more code!

Names of the Refactorings:
Extract Function,
Replace Parameter with Query

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 57

Functions

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 58

Functions

Name of the Refactoring:
Replace Conditional with
Polymorphism

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 59

Formatting

• Code is read much more often than written
• Well formatted code helps us to focus on the essentials

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 60

Formatting

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 61

Formatting

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 62

Formatting

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 63

Formatting

Look out for

• vertical size

• horizontal size

• consistent spacing

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 75

Python tips and tricks

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 76

Type hinting

Python supports type hints since version 3.5
• Type hints communicate which types work with your functions
• Readers and users of your code won’t have to guess which types are expected
• Use at least in interfaces intended to be used by others
• Recommendation: use type hints everywhere, they will help you understand your older

code as well!

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 77

Type hinting

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 78

Type hinting
Use mypy to check correct type usage across your code base

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 79

Formatting

Use a PEP8 conformant formatter like autopep8 or black
Recommendation: black

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 80

Linting

Linters come with many code style rules for naming, formatting and more
Recommendation: ruff

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 81

Let’s get to work!
The Gilded Rose Kata

16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 82

Gilded Rose

