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Motivation
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Motivation

• 84% of scientists say that developing software is 
essential to their research. [1]

• Incorrect publications have led to a reproducibility 
and credibility crisis. [2, 3]

[1] Jo Hannay et al. “How Do Scientists Develop and Use Scientific Software?” 
[2] Monya Baker. “1,500 scientists lift the lid on reproducibility”.
[3] Zeeya Merali. “Computational science: Error, why scientific programming does not compute”. 
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Motivation

Researchers
• often lack knowledge about principles and practices of the software engineering 

discipline [3, 4]
• don’t gain reputation for developing software
• are pressed to publish results as fast as possible [5]

[4] Lucas Joppa et al. “Troubling Trends in Scientific Software Use”. 
[5] Mark De Rond and Alan N Miller. “Publish or perish: bane or boon of academic life?”  
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Consequences

Common problems of research software
• Low code quality
• Hard to understand
• Neither published nor documented
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Broken Window Effect

[6] George L Kelling, James Q Wilson et al. “Broken windows”. 
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Motivation

“Indeed, the ratio of time spent reading versus writing is well over 10 to 1. We are constantly 
reading old code as part of the effort to write new code. ...[Therefore,] making it easy to read 

makes it easier to write.” – Robert C. Martin
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Clean Code and Refactoring
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What is clean code?

• Term coined by Robert C. Martin
• No strict rules, but a set of principles to make code easy 

to understand, extend and adapt
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Clean Code

“Clean code always looks like it was written by someone who cares.” 
– Michael Feathers

“Clean code reads like well-written prose.” 
– Grady Booch

“Clean code can be read, and enhanced by a developer other than its original author.” 
– Dave Thomas
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Clean Code
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Refactoring

noun: a change made to the internal structure of software to make it easier to understand 
and cheaper to modify without changing its observable behavior

verb: to restructure software by applying a series of refactorings without changing its 
observable behavior.

https://refactoring.com/
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Refactoring

• Focus on improving the readability and 
structure of existing code

• Assigns clear names to the code changes
• Shares many ideas with Clean Code
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Refactoring

“Any fool can write code that a computer can understand. 
Good programmers write code that humans can understand.” 

“The point of refactoring isn’t to show how sparkly a code base is - it is purely economic. We 
refactor because it makes us faster - faster to add features, faster to fix bugs.”

– Martin Fowler
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Names

Use meaningful names
• Classes, variables, functions, modules, binaries, libraries…
• The name should describe the purpose 
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Names
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Names

Name of the Refactoring: 
Rename Variable
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Names
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Names

Even if the function is simple, 
it can be hard to understand what it does for a user

???
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Names

Make meaningful distinctions to make the 
code understandable
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Names
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Names

• Use names that are pronounceable and searchable
• Avoid encodings (unless they are commonly known)
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Names
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Names

Use domain names

Name of the Refactoring:
Change function declaration, Rename function
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Comments

„Don’t comment bad code - rewrite it.“ 
- Brian W. Kernighan and P.J. Plaugher

„The proper use of comments is to compensate for our failure to express ourself in code. 
Note that I used the word failure. I meant it. Comments are always failures."

- Robert C. Martin 
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Comments

If a comment must be used, it should describe the why and not the what or how
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Comments
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Comments

Express your intention in code instead of comments
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Comments
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Comments
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Comments

Don’t require the use of doc 
comments in private functions 
if they don’t add value

Use doc comments in public APIs
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Comments

🤔
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Comments

😱
LIES!!!
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Good Comments

Explanation of intent

Warning

Amplification
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Functions
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Functions

DRY – DON’T REPEAT YOURSELF!

Name of the Refactoring: Extract Function
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Functions
DRY – DON’T REPEAT YOURSELF!
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Functions

Duplication is dangerous, because
• it increases the chance of making mistakes.
• when requirements change, all duplicated code sections have to be adjusted.

It becomes easy to forget one of the implementations.

“Duplication may be the root of all evil in software.”
– Robert C. Martin
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Functions

Challenge:
Spot the duplication!



16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 43

Functions
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Functions

Duplications! Differences
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Functions

Extract the duplications and parameterize the differences!
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Functions
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Functions
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Functions
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Functions

Functions should only have one task!
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Integration

OperationIntegration Integration

Integration Operation Operation Operation

Functions
The Integration-Operation-Segregation-Principle (IOSP)
• Functions should perform only integrations or only operations
• An integration is a function that calls other integration or operation functions 
• An operation is a function that performs logical operations 

(e.g. if statements, for loops, math, …)
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Functions
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Functions

Function Arguments
• Attempt to use no more than 3 arguments
• Use custom data structures to combine arguments
• Many arguments are an indicator that a function does too much
• Avoid boolean flags as they don’t express intent
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Functions

???
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Functions
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Functions

• Steps are clearer now, follows IOSP
• Still a lot of parameters that make the code hard to read
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Functions

• Grouped related parameters 
together into custom data class

• Tradeoff: 
easier to read, 
but a lot more code!

Names of the Refactorings:
Extract Function, 
Replace Parameter with Query
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Functions
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Functions

Name of the Refactoring:
Replace Conditional with 
Polymorphism
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Formatting

• Code is read much more often than written
• Well formatted code helps us to focus on the essentials



16.06.22 | Sven Marcus | Clean Code and Refactoring | Seite 60

Formatting
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Formatting
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Formatting
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Formatting

Look out for

• vertical size

• horizontal size

• consistent spacing
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Python tips and tricks
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Type hinting

Python supports type hints since version 3.5
• Type hints communicate which types work with your functions
• Readers and users of your code won’t have to guess which types are expected
• Use at least in interfaces intended to be used by others 
• Recommendation: use type hints everywhere, they will help you understand your older 

code as well! 
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Type hinting
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Type hinting
Use mypy to check correct type usage across your code base
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Formatting

Use a PEP8 conformant formatter like autopep8 or black
Recommendation: black
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Linting

Linters come with many code style rules for naming, formatting and more
Recommendation: ruff
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Let’s get to work!
The Gilded Rose Kata
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Gilded Rose


