=) AIDA

Advanced European Infrastructures for Detectors at Accelerators

DDRec

Reconstruction Interface for the

DD4hep Geometry Description
Toolkit

F.Gaede
CERN, 1211 Geneva 23, Switzerland
Desy, 22607 Hamburg, Germany

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

F.Gaede
CERN, 1211 Geneva 23, Switzerland
Desy, 22607 Hamburg, Germany

Abstract

The reconstruction of particle tracks and clusters in an High Energy Physics detector re-
quires information about the geometrical and material properties of the various tracking
and calorimeter subdetectors. In general, a higher level view on the detector geometry is
needed than for the purpose of simulating the detailed detector response with tools such
as Geant4[]. This higher level view typically involves the abstraction of detector layers,
the corresponding measurement surfaces, accumulation of dead material along a path and
conversion between celllDs and positions. While in principle it is of course possible to
extract this information from the detailed detector geometry model used for simulation,
doing so would tightly couple the reconstruction code to the specific implementation of the
simulation model. DDRec provides a generalized API for reconstruction that can be used
to decouple the details of the DD4hep [I] detector geometry model from the reconstruction

algorithms.
Document History
Document
version Date Author
1.0 11/11/2014 | Frank Gaede CERN/DESY

DDRec User Manual |

;=, AIDA Advanced European Infrastructures for Detectors at Accelerators
Contents
1 Introductionl 1
2 Surfaces| 1
2.1 namespace DDSurfaces|.o 2
[2.2 _Surface implementation| Lo 3

|2.3 Using surfaces in geometry constructors| 4
P-4 Using surfaces in reconstruction code]. v v v v oot 5

2.5 Visualizing detector surfaces|.o oo 6
3 Materialsl 7
4_TDDecoder] 8
6_Detectors] 9

DDRec User Manual Il

O
&) zs zs
NS ID Advanced European Infrastructures for Detectors at Accelerators

1 Introduction

This manual introduces the DDRec package which is part of DD4hep and provides the high level view
on the HEP detector geometry that is needed during reconstruction and analysis. In the detailed
simulation of the response of a typical High Energy Physics detector very little information is needed
in principle on the actual structure of the material distribution in the detector. This becomes obvious
if one considers the fact that the Geant4 program is also used in medical applications where the human
body is approximated by a voxelised phantom. During the reconstruction of particle trajectories and
calorimeter clusters, in particular in the phase of pattern recognition, one typically regards the detector
as an abstract structure of measurement surfaces or volumes that generally follow a layering structure.
DDRec contains an API that provides this information for reconstruction algorithms, thereby decoupling
the details of the actual simulation model used from the reconstruction code. The DDRec API provides
the following functionality:

e description of measurement surfaces with coordinate systems for track finding and fitting

e description of non-active surfaces with material properties in order to take effects of multiple
scattering and energy loss into account

e conversion of celllDs assigned to simulated tracker and calorimeter hits to positions of readout

cells and vice versa

access to a list of materials between any two points inside the world volume of the detector

access to the materials at any given point or along a straight line between two points

averaged material properties for a list of materials

computation of radiation and interaction lengths for detector layers, modules or arbitrary sections
through the detector

In this manual we describe the different classes in DDRec and how they should be used in the detector
geometry constructors as well as in the reconstruction code.

Doxygen code documentation

Please also refer to the code documentation that is created with doxygen for more details on the classes
and their members. This documentation can be build with:

cmake -D INSTALL_DOC=0N ${path_to_dd4hep_source}
make install

and will then be available at

${DD4hepINSTALL}/doc/html/index.html

2 Surfaces

For fitting the trajectories of charged particle tracks one generally needs to know the measurement
surfaces on which the hits where deposited. Additionally the material properties along the trajectory
need to be known in order to correct for effects from multiple scattering and energy loss. DDRec
provides an abstract interface for surfaces and materials in the namespace DDSurfaces and a concrete
implementation, described below, in the namespace DDRec. This is done in order to separate interface
and implementation and allow other software tools, e.g. tracking packages to just use the interface.

DDRec User Manual 1

©) AIDA

Advanced European Infrastructures for Detectors at Accelerators

DDSurfaces:IMaterial

DDSurfaces::ISurface double double
+ ~ISurface() +~IMaterial()
+ type() +name()
+id() +A)
+ insideBounds(} +Z() _u B
+ul) jroonatl) v -y
+v() + radiationLength() B z
+ normal() + interactionLength ()
+ globalTolocal() DDSurfaces::ISurface
+ localToGlobal() -Vector2D DDSurfaces: VectoraD
+ origin() ¥ x
+ innerMaterial() +_u ¢y
+ outerMaterial() bitset<32 > +_V # 2
+ innerT hickness() —
+ outerThickness() + Vector20() + Vector3D()
+ distance() + Vector2D() + VectoraD()
+ operator(}() +Vector3D()
+u() + VectoraD()
-bits +v() + VectoraD()
+ VectoraD()
DDSurfaces::SurfaceType : :ﬁgmhhﬂ
g
DDSurfaces: ICylinder + SurfaceT .
v : smaeeTﬁg and 23 more...
+ Surface Type() +carnesian()
+ Surface Type() + cylindrical()
+ ~ICylinder() + Surface Type() + spherical()
+ radius() + SurfaceType()
+ setProperty()
+ isSensitive()
+ isHelper()
+ isPlane()
and 11 mare...

Figure 1: Classes in namespace DDSurfaces: abstract interfaces ISurface, IMaterial, ICylinder and
helper classes Vector3D, ISurface::Vector2D, SurfaceType.

2.1 namespace DDSurfaces

The basic concept of surfaces in DDRec is expressed with the two main interfaces ISurface and IMaterial.
They are shown together with helper classes in the DDSurfaces in figure{l] and are briefly described in
the following.

ISurface: Defines the surface by means of an origin, a normal vector n and two, typically orthogonal,
direction vectors u and v, where all of the vectors n,u,v might depend on the actual position on (or close
to) the surface. In order to describe material properties two thicknesses are assigned to the surface - one
in direction of the normal vector (outerThickness) and one in the opposite direction (innerThickness).
There are two materials assigned to these thicknesses, where these materials could be averaged along the
normal and thickness. The method isInsideBounds allows in principle to implement arbitrary bounds
for the surface. Two methods allow the conversion between global 3d coordinates (on the surface) and
local 2d coordinates in the coordinate system of the surface.

IMaterial: Interface to describe the relevant material properties: atomic number and weight, density
and radiation- and interaction lengths. These can be real materials or averaged materials along a given
direction and length (thickness assigned to the surface).

ICylinder: Simple interface for cylindrical surfaces adding the cyliner radius to a surface through
multiple inheritance.

ISurface::Vector2D Helper struct inside ISurface for 2d vectors with coordinates u and v.
Vector3D: Generic 3d vector class with cartesian coordinates x,y,z that allows initialization from other
3d vector implementations or using cylindircal or spherical coordinates. Provides acces to quantities
often needed, such as magnitude, transversal component, representation in non-cartesian coordinates.
SurfaceType: Helper class using an std::bitfield;32; to encode the following properties of the surface:
1sCylinder, isPlane, isSensitive, isHelper (dead material), isParallelToZ, isOrthogonalToZ, isInvisible,
isMeasurement1D.

DDRec User Manual 2

©) AIDA

Advanced European Infrastructures for Detectors at Accelerators

2.2 Surface implementation

DDRec provides classes that implement the interface defined in DDSurfaces. The main classes for

implementing ISurface are shown in figure [2]

DDSurfaces:ISurface

+ ~ISurface()
+type(}

+ id(}

+ insideBounds(}
+ ul}

+v()

+ normal()

+ globalTolocal()
+ localToGlobal(}
+ origin(}

+ innerMaterial()
+ outerMaterial()

+ innerT hickness(}
+ outerThickness(}
+ distance()

/

DD4hep::DDRec::Surface

_det

_volSurf

* wiM DD4hep::DDRec::VolSurface

#_id

¥ Type # _vol

#_u +~VolSurface()

#_v + VolSurface()

#_n + VolSurface()

#_o +volume()
+id()

+~Surface()

+ Surface() :2]{?&(}

+ {d(] 0 +v()

+type

+ volume(} :gﬁgil:f(ll}“

+volSurface() and 10 more...

158 # setU()

setV()
+normal() # setNormal(}
+ origin()
and & more...

Surface()
initialize()

DD4hep::DDRec::VolCylinder

DD4hep::DDRec::CylinderSurface
DD4hep::DDRec::VolPlane
+ VolCylinder()

" + VolCylinder()
+ CylinderSurface() .
+uf) : E(O}ICy\lnder(} +VolPlane()
+vi) | i) +:o::}ane(]
oo Local rramal) el
+ \ozellIToGIobal(} + insideBounds() +insideBounds()
+radius() + globalTolLocal(}

+ localToGlobal()

Figure 2: Class diagram with the main classes describing detector surfaces and their relations.

The implementation of the surfaces in DDRec is done in two parallel hierarchies of implementation
classes. The first hierarchy is based on the VolSurface class which connects a surface with its surround-
ing volume. This volume then provide the boundaries of the surface and gives access to the local to
global coordinate transformations inside the coordinate system of the volume. There are currently two
concrete implementations: VolCylinder and VolPlane that can be used in the detector construction
code as described 23] The second hierarchy is the actual implementation of the surface concept in
DDRec to be used by reconstruction code as described in 2.4} It uses the extension and views concept
described in the main DD4hep manual[2]. The Surface class has a VolSurface object and a DetFElement
and uses these to establish the local to global coordinate transforms, the surface boundaries and the
material properties. The materials on both sides of the surface are the averaged materials along the

DDRec User Manual 3

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

direction of the normal with the given thicknesses. It is thus possible to also take material effects
into account for materials that lay outside of the actual volume the surface is attached to. This is in
particular useful for compound materials that consist of a larger number of thin slices.

2.3 Using surfaces in geometry constructors

The surfaces that should be available in the reconstruction code, have to be assigned to their corre-
sponding volume and detector element by the user in the detector geometry construction code. This is
done by specifying the coordinate system and orientation of the surface inside the volume with vectors
o,n,u and v and then instantiating one of the two types VolCylinder or VolPlane for a given volume.
After the placement of the corresponding DetElement, the surface is added to the list of surfaces for
this DetElement.

This is demonstrated in the following example code:

1 #include "DDRec/Surface.h"

2 //...

3 // base vectors for surfaces:

4 DDSurfaces::Vector3D 0(0,0,0) ;

5 DDSurfaces::Vector3D u(1,0,0) ;

6 DDSurfaces::Vector3D v(0,1,0) ;

7 DDSurfaces::Vector3D n(0,0,1) ;

8

9 // --- loop over layers ----

0 // ...

11

12 DD4hep: :Geometry: :Box box(dimX/2, dimY/2, dimZ/2) ;

13 DD4hep: : Geometry: :Volume vol(volumeName, lcdd.material(x_layer.materialStr())) ;
14

15 DD4hep: : Geometry: :DetElement layerDetElement(parentDetElement , "layer"+_toString(i,"_%02d") , det_id) ;
16

17 // add a measurement surface to the layer for every sensitive slice:

18

19 DD4hep: :DDRec: :VolPlane surf(vol ,

20 DDSurfaces: :SurfaceType (DDSurfaces: :SurfaceType: :Sensitive),
21 dimZ, dimZ,

22 u, v, n, o) ;

23

24 // place the layer

25 DD4hep: :Geometry: :PlacedVolume pv = parentVol.placeVolume(vol, layerPlacement);
26

27 layerDetElement.setPlacement(pv) ;

28

29 DD4hep: :DDRec: :volSurfaceList (layerDetElement)->push_back(surf) ;

30

31 // --- end loop over layers ----

32

In this example a planar (VolPlane) measurement (Surface Type(Sensitive)) surface is attached to the
box volume of a detector layer. The thickness of the surface corresponds to that of the box and is given
by its half length in z (Vector3D n(0,0,1) runs along z). Thus the surface is completely contained in
the box and no averaging of materials will be done, unless additional volumes are placed inside the
box at a later stage. The origin of the coordinate system of the surface coinsides with that of the box
(Vector3D 0(0,0,0);) and the two measurememnt directions u,v run along the x and y axis of the box
respectively.

The following code snipped shows the creation of a cylindrical surface attached to a tube volume for
the inner field cage of a tpc. The radius of the cylindrical surface is given by the transversal component

DDRec User Manual 4

O~NOOT A WN -

e el el el el
DO WDNH OO

O~NO O WD -

e el el el e
O ~NOOT A~ WNEHFH OV

19

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

of the origin vector ocyl. The volume innerWallVol is filled with air and will be later populated with
slices of a compound material, thus the material properties will be averaged along the thickness of the
tube.

//...
DD4hep: : Geometry: :Tube innerWallSolid(rInner ,rInner + dr_InnerWall ,dz_Wall / 2.0) ;

DD4hep: :Geometry: :Volume innerWallVol("TPCInnerWallVol", innerWallSolid, materialldir) ;
pv = tpc_motherLog.placeVolume(innerWallVol) ;
DDSurfaces::Vector3D ocyl(rInner + 0.5*%dr_InnerWall , 0. , 0.) ;

DD4hep: :DDRec: :VolCylinder surfI(innerWallVol ,
SurfaceType(SurfaceType::Helper) ,
0.5%dr_InnerWall, 0.5*dr_InnerWall,
ocyl) ;

volSurfacelList(tpc)->push_back(surfl) ;
//...

2.4 Using surfaces in reconstruction code

Accessing and using the surfaces in reconstruction code is very easy. There are two possibilities to
access the surfaces:

e use the DetectorSurfaces view class to get a list of all surfaces that have been assigned to a
particular DetElement object.

e or use the SurfaceManager class to get a list of all surfaces of a given DetFElement and all its
daughters.

The following code snippet uses the SurfaceManager, initialized with the world DetFElement, to get a
list of all surfaces defined for a given detector model. The surfaces are then printed to std::cout and
filled into a map, using the surfaces ID as a key. For sensitive surfaces, attached to sensitive volumes,
the ID will be that of the sensitve volume and thus such a map provides a very easy lookup from the
hitID to its corresponding measurement surface.

/] ...

DD4hep: : Geometry: :LCDD& lcdd = DD4hep: :Geometry: :LCDD: :getInstance();
lcdd.fromCompact(inFile);

DD4hep: :Geometry: :DetElement world = lcdd.world() ;

// create a list of all surfaces in the detector:
DD4hep: :DDRec: : SurfaceManager surfMan(world) ;

const DD4hep: :DDRec: :SurfacelList& sL = surfMan.surfaceList() ;

// map of surfaces
std: :map< long64, DD4hep::DDRec::Surface* > surfMap ;

for(DD4hep: :DDRec::Surfacelist::const_iterator it = sL.begin() ; it != sL.end() ; ++it){

DD4hep: :DDRec: :Surface* surf = x*it ;

DDRec User Manual 5

20
21
22
23
24
25
26
27

O ~NOOThA WN R

@)
NS4 AIDA Advanced European Infrastructures for Detectors at Accelerators

std::cout << " --- - "
<< " surface: " << xsurf << std::endl
PO _— --— " << std::endl ;

surfMap[surf->id()] = surf ;

}

And similarily this code uses the DetectorSurfaces class to just access the surfaces for a particular
detector element:

// ...
DD4hep: :Geometry: :DetElement ladderDE = lcdd.detector("VXD_layer02_ladder42")
// create surfaces
DD4hep: :DDRec: :DetectorSurfaces ds(ladderDE) ;
const DD4hep: :DDRec::SurfacelList& detSL = ds.surfacelList() ;
for(DD4hep: :DDRec::Surfacelist::const_iterator it = detSL.begin() ; it != detSL.end() ; ++it){
DD4hep: :DDRec: :Surface* surf = *it ;
std::cout << " --- ————
<< " surface: " << *surf << std::endl
<< " ———= --- " << std::endl ;

2.5 Visualizing detector surfaces

The detector surfaces and the vectors defining their coordinate system can be visualized with the
program teveDisplay that is part of DD4hep . In a future version of DD4hep this visualization might be
included in DDEve . Currently a full 3d view of the detector surfaces as well as a p — ¢-view and a p-z
view are available. See figure [3]

Figure 3: Example of surface visualization. Left: p-z view of the tracking surfaces in the ILD detector,
Right: 3D view of the surfaces in the inner tracking detectors in ILD.

DDRec User Manual 6

O~NO O W=

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

3 Materials

The surfaces classes described above provide a way that allows to augment a detector geometry de-
scription with a high level view on the detector that should be sufficient for most reconstruction tasks,
such as pattern recognition, track fitting and calorimeter reconstruction as in a particle flow algorithm.
However they require that care has been taken to assign all relevant surfaces with corresponding thick-
nesses to the volumes and detector elements. For cases where this is not possible or where other
reconstruction geometries should be instantiated, DDRec provides the possibility to access the mate-
rials at any given point in the world volume of the detector or to retrieve a list of materials along a
straight line between any two points.

This is done with the class MaterialManager, which also allows to create an averaged material for a
list of materials (MaterialVector). The usage of this class is simple and best demonstrated with an
example:

DD4hep: : Geometry: :LCDD& lcdd = DD4hep: :Geometry::LCDD::getInstance();
lcdd.fromCompact(inFile);

DDSurfaces: :Vector3D pO(x0, yO, z0) ;
DDSurfaces::Vector3D pl1(x1, y1, z1) ;

DD4hep: :DDRec: :MaterialManager matMgr ;
const DD4hep: :DDRec::MaterialVec& materials = matMgr.materialsBetween(pO , pl) ;

std::cout << std::endl
<< " ####### materials between the two points : "
<< p0 << "¥cm and " << pl << "xcm : "
<< std::endl ;

double sum_x0 = 0 ;

double sum_lambda = 0 ;

double path_length = 0 ;

for(unsigned i=0,n=materials.size();i<n;++i){

DD4hep: :DDRec: :Material mat = materials[i].first ;
double length = materials[i].second ;

double nx0 = length / mat.radLength() ;
sum_x0 += nx0 ;

double nLambda = length / mat.intLength() ;

sum_lambda += nLambda ;
path_length += length ;
std::cout << " " << mat
<< " thickness: " << length
<< " path_length:" << path_length
<< " integrated_XO0: " << sum_x0
<< " integrated_lambda: " << sum_lambda

<< std::endl ;

Creation of an averaged material:

DDRec User Manual 7

OOV ~NOOTHA WN

[y

O~NO O WN -

11
12
13
14
15
16
17
18
19
20
21
22
23

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

/...
const DD4hep: :DDRec: :MaterialVec& materials = matMgr.materialsBetween(pO , pl) ;

const DD4hep: :DDRec::MaterialData& avMat = matMgr.createAveragedMaterial(materials) ;

std::cout << " averaged Material : " << " Z: " << avMat.Z() << " A: " << avMat.AQ)
<< " densitiy: " << avMat.density()
<< " radiationLength: " << avMat.radiationLength()
<< " interactionLength: " << avMat.interactionLength()

<< std::endl ;
There is a utility program print_materials that can be used to debug detector geometries:

$ print_materials
usage: print_materials compact.xml x0 yO z0 x1 y1 z1

-> prints the materials on a straight line between the two given points (unit is cm)

Note: accessing the materials using the MaterialManager is a rather costly operation and
should only be done at the initialization phase of a reconstruction program for caching
material properties !

4 IDDecoder

Sensitive volumes in a DD4hep geometry model are assigned a unique volume-ID. This ID is then used
by the corresponding DDSegmentation object to create a unique cellD for tracker and calorimeter
hits, allowing to uniquely match hits to their sensitive volumes and also to their DetElements if they
have been defined appropriately. During reconstruction tasks, including digitization of simulated hits,
one often needs to convert between a celllD assigned to the hit and the position of the corresponding
detector cell. For example one could write out simulated calorimeter hits without position information
in order to save disk space and retrieve the position information based on the celllD. Another application
might be a clustering algorithm where one looks for hits in the neighbor cells of a given hit.

The functionality to do this is provided by the IDDecoder class with the following interface:

class IDDecoder {

public:
/// Default constructor using the name of the corresponding readout collection
IDDecoder(const std::string& collectionName) ;

/// Default constructor using a readout object
IDDecoder (const Geometry::Readout& readout);

/// Destructor
virtual ~IDDecoder();

/// Returns the cell ID from the local position in the given volume ID.
CellID cellIDFromLocal(const Geometry::Position& local, const VolumeID volumeID) const;

/// Returns the global cell ID from a given global position
CellID cellID(const Geometry::Position& global) const;

/// Returns the global position from a given cell ID
Geometry: :Position position(const CellID& cellID) const;

/// Returns the local position from a given cell ID
Geometry: :Position localPosition(const CellID& cellID) const;

DDRec User Manual 8

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

=y

I7SN
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

/// Returns the volume ID of a given cell ID
VolumeID volumeID(const CellID& cellID) const;

/// Returns the volume ID of a given global position
VolumeID volumeID(const Geometry::Position& global) const;

/// Returns the placement for a given cell ID
Geometry: :PlacedVolume placement(const CellID& cellID) const;

/// Returns the placement for a given global position
Geometry: :PlacedVolume placement(const Geometry::Position& global) const;

/// Returns the subdetector for a given cell ID
Geometry: :DetElement subDetector(const CellID& cellID) const;

/// Returns the subdetector for a given global position
Geometry: :DetElement subDetector(const Geometry::Position& global) const;

/// Returns the closest detector element in the hierarchy for a given cell ID
Geometry: :DetElement detectorElement(const CellID& cellID) const;

/// Returns the closest detector element in the hierarchy for a given global position
Geometry: :DetElement detectorElement(const Geometry::Position& global) const;

/// Calculates the neighbours of the given cell ID and adds them to the list of neighbours
void neighbours(const CellID& cellID, std::set<CellID>& neighbours) const;

/// Checks if the given cell IDs are neighbours
bool areNeighbours(const CellID& cellID, const CellID& otherCellID) const;
}

5 Detectors

To be done ...

DDRec User Manual 9

O
(a2 A A
NS ID Advanced European Infrastructures for Detectors at Accelerators

References

[1] M. Frank et al, "DD4hep: A Detector Description Toolkit for High Energy Physics Experiments”,
International Conference on Computing in High Energy and Nuclear Physics (CHEP 2013),
Amsterdam, Netherlands, 2013, proceedings.

[2] M. Frank et al, "DD4hep: A Detector Description Toolkit for High Energy Physics Experiments”,
Users manual (DD4hepManual.pdf).

[3] R.Brun, A.Gheata, M.Gheata, ”The ROOT geometry package”,
Nuclear Instruments and Methods A 502 (2003) 676-680.

[4] S. Agostinelli et al., ”Geant4 - A Simulation Toolkit”,
Nuclear Instruments and Methods A 506 (2003) 250-303.

DDRec User Manual 10

	Introduction
	Surfaces
	namespace DDSurfaces
	Surface implementation
	Using surfaces in geometry constructors
	Using surfaces in reconstruction code
	Visualizing detector surfaces

	Materials
	IDDecoder
	Detectors

